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Perron’s Method

Dirichlet’s problem. Suppose Q is a bounded domain. Given a
continuous function f € C(99), solve

Au=0, in Q,
u=f, on 09).
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Perron’s Method

Dirichlet’s problem. Suppose Q is a bounded domain. Given a
continuous function f € C(99), solve

Au=0, in Q,
u=f, on 09).

Perron's method. Take

u(z) := H[f](z) = sup v(z)
ved

where @ is the collection of all functions on Q that
are < f on 99 in lim sup-sense.
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Perron’s Method

Theorem. The Perron solution H[f] is a harmonic function, which
matches f nearly everywhere (except on a polar set).

The key is that @ is a Perron family, i.e. a non-empty collection
of subharmonic functions which satisfies

Q If u,v € F, then max(u,v) € ®.
Q If uec ®and B CC €, then Mgu € .
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Perron’s Method

Theorem. If a Perron family is locally bounded above, then
ue(z) = sup v(z)
ved

is a harmonic function.
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Perron’s Method

Theorem. If a Perron family is locally bounded above, then

ue(z) = sup v(z)
ved

is a harmonic function.

Proof. To show that a function is harmonic, we need to show that
it is harmonic on a neighbourhood B = B(zy, r) C Q.

@ Pick a maximizing sequence u,(zy) — u(zo).

@ Replace u, with Mgu,.

© Replace u, with max(uy, 2, ..., up).
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Perron’s Method

The function i = lim,_,« u, has the following properties:
i < ue on Q, i(z0) = ue(20), i is harmonic on B.

We would be done if we could show that i = ue on B.
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Perron’s Method

The function i = lim,_,« u, has the following properties:
i < ue on Q, i(z0) = ue(20), i is harmonic on B.
We would be done if we could show that i = ue on B.

Claim. i(z1) = d¢e(z1), where z; € B.

@ Pick a maximizing sequence v,(z1) — ue(z1).
@ Replace v, with Mguv,,.

© Replace v, with max(u1, ua,. .., up; vi, va,. .. Vy).
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Perron’s Method

We obtain a new function
i<v< Uo,

which matches ug¢ at zp and z;.
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Perron’s Method

We obtain a new function
i<v< Uo,
which matches ug¢ at zp and z;.

Since i(zp) = V(zp), the difference vV — i has a local minimum at
2.
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Perron’s Method

We obtain a new function
i<v< Uo,
which matches ug¢ at zp and z;.

Since i(zp) = V(zp), the difference vV — i has a local minimum at
2.

Since v — i is on B, i = V on B. In particular,
i(z1) = ue(z1) as desired.
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Barriers

A weak local barrier at ¢ € 92 is a subharmonic function defined
on QNN s.t.
b<0 and limb(z)=0.

z—(

Theorem. If Q possesses a barrier at ( € 99, then H[f] is
continuous at (.

The proof relies on two lemmas:

Lemma 1. H[f] + H[—f] <0 on Q.

Oleg lvrii Perron’s Method



Bouligand's Lemma

Lemma 2. Suppose Q2 has a weak local barrier { € 9. Then (
admits a strong global barrier b, € sh(Q2): VN,

b. <0, b: <—lonQ\ N, lim igf b.(z) > —e.
z—
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Bouligand's Lemma

Lemma 2. Suppose Q2 has a weak local barrier { € 9. Then (
admits a strong global barrier b, € sh(Q2): VN,

b. <0, b: <—lonQ\ N, lim igf b.(z) > —e.
z—

Proof. We can assume that N = A = B(¢,r) C N.
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Bouligand's Lemma

Lemma 2. Suppose Q2 has a weak local barrier { € 9. Then (
admits a strong global barrier b, € sh(Q2): VN,

b. <0, b: <—lonQ\ N, lim igf b.(z) > —e.
z—

Proof. We can assume that N = A = B(¢,r) C N.
Let K be a compact set in QN IA s.t. [(QNIA)\ K| <e.
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Bouligand's Lemma

Lemma 2. Suppose Q2 has a weak local barrier { € 9. Then (
admits a strong global barrier b, € sh(Q2): VN,

b. <0, b: <—lonQ\ N, lim igf b.(z) > —e.
z—

Proof. We can assume that N = A = B(¢,r) C N.
Let K be a compact set in QN IA s.t. [(QNIA)\ K| <e.

Consider

b= "2 pafalz), enana,

where m > 0 is chosen so that b} < —1 on QN OA.
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Bouligand's Lemma

We have thus constructed a negative subharmonic function
. b(z
bi(z) = En) — Palxt](2), on QNA

which is < —1 on QN OA.
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Bouligand's Lemma

We have thus constructed a negative subharmonic function
. b(z
bi(z) = En) — Palxt](2), on QNA
which is < —1 on QN OA.

Set
b. = max(b:, —1), on QNA.
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Bouligand's Lemma

We have thus constructed a negative subharmonic function
. b(z
bi(z) = En) — Palxt](2), on QNA
which is < —1 on QN OA.

Set
b. = max(b:, —1), on QNA.

This glues to —1 on 2\ A to form a subharmonic function on Q.
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Continuity at a regular boundary point

Since f : 9Q — R is continuous at (g, there exists A = B((p, r) so
that | (¢) — f({o)| < € for all ¢ € 92N A.
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Continuity at a regular boundary point

Since f : 9Q — R is continuous at (g, there exists A = B((p, r) so
that | (¢) — f({o)| < € for all ¢ € 92N A.

Set
v=Ff(C)—e+ M- b.,
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Continuity at a regular boundary point

Since f : 9Q — R is continuous at (g, there exists A = B((p, r) so
that | (¢) — f({o)| < € for all ¢ € 92N A.

Set
v=Ff(C)—e+ M- b.,

where M = 2||f|,~(aq) is large enough to make v € ®¢.
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Continuity at a regular boundary point

Since f : 9Q — R is continuous at (g, there exists A = B((p, r) so
that | (¢) — f({o)| < € for all ¢ € 92N A.

Set
v=Ff(C)—e+ M- b.,

where M = 2||f|,~(aq) is large enough to make v € ®¢.

Hence,
Hm?fHVK@)ZfKM'
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Continuity at a regular boundary point

Since f : 9Q — R is continuous at (g, there exists A = B((p, r) so
that | (¢) — f({o)| < € for all ¢ € 92N A.

Set
v=Ff(C)—e+ M- b.,

where M = 2||f|,~(aq) is large enough to make v € ®¢.

Hence,
Hm?fHVK@)ZfKM'

Similarly,

— limsup H[~f](¢o) = lim inf H[~f](¢o) = —F(Co).

Z—)Co
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Barriers for Jordan domains

Theorem. If Q is a simply-connected domain bounded by a Jordan
curve, then every ¢ € 952 admits a barrier.
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Barriers for Jordan domains

Theorem. If Q is a simply-connected domain bounded by a Jordan
curve, then every ¢ € 952 admits a barrier.

Corollary. Dirichlet's problem can always be solved in a Jordan
domain.
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Barriers for Jordan domains

Theorem. If Q is a simply-connected domain bounded by a Jordan
curve, then every ¢ € 952 admits a barrier.

Corollary. Dirichlet's problem can always be solved in a Jordan
domain.

Proof. As log(z — ¢) maps B((,1) to the left half-plane,
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Barriers for Jordan domains

Theorem. If Q is a simply-connected domain bounded by a Jordan
curve, then every ¢ € 952 admits a barrier.

Corollary. Dirichlet's problem can always be solved in a Jordan
domain.

Proof. As log(z — ¢) maps B((, 1) to the left half-plane, the

function
1

b(z) = Re og(z = 0)

defines a barrier at ¢, with N = B((, 1).
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Thank you for your attention!
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