Oleg Ivrii

November 4, 2020

Dirichlet's problem. Suppose Ω is a bounded domain. Given a continuous function $f \in C(\partial\Omega)$, solve

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ u = f, & \text{on } \partial \Omega. \end{cases}$$

Dirichlet's problem. Suppose Ω is a bounded domain. Given a continuous function $f \in C(\partial\Omega)$, solve

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ u = f, & \text{on } \partial \Omega. \end{cases}$$

Perron's method. Take

$$u(z) := H[f](z) = \sup_{v \in \Phi} v(z)$$

where Φ is the collection of all subharmonic functions on Ω that are $\leq f$ on $\partial\Omega$ in lim sup-sense.

Theorem. The Perron solution H[f] is a harmonic function, which matches f nearly everywhere (except on a polar set).

The key is that Φ is a Perron family, i.e. a **non-empty** collection of subharmonic functions which satisfies

- **1** If $u, v \in \mathcal{F}$, then $\max(u, v) \in \Phi$.
- ② If $u \in \Phi$ and $B \subset\subset \Omega$, then $M_B u \in \Phi$.

Theorem. If a Perron family is locally bounded above, then

$$u_{\Phi}(z) = \sup_{v \in \Phi} v(z)$$

is a harmonic function.

Theorem. If a Perron family is locally bounded above, then

$$u_{\Phi}(z) = \sup_{v \in \Phi} v(z)$$

is a harmonic function.

Proof. To show that a function is harmonic, we need to show that it is harmonic on a neighbourhood $B = B(z_0, r) \subset \Omega$.

- **1** Pick a maximizing sequence $u_n(z_0) \rightarrow u(z_0)$.
- 2 Replace u_n with $M_B u_n$.
- **3** Replace u_n with $\max(u_1, u_2, \ldots, u_n)$.

The function $\tilde{u} = \lim_{n \to \infty} u_n$ has the following properties:

$$\tilde{u} \leq u_{\Phi} \text{ on } \Omega, \qquad \tilde{u}(z_0) = u_{\Phi}(z_0), \qquad \tilde{u} \text{ is harmonic on } B.$$

We would be done if we could show that $\tilde{u} = u_{\Phi}$ on B.

The function $\tilde{u} = \lim_{n \to \infty} u_n$ has the following properties:

$$\tilde{u} \leq u_{\Phi} \text{ on } \Omega, \qquad \tilde{u}(z_0) = u_{\Phi}(z_0), \qquad \tilde{u} \text{ is harmonic on } B.$$

We would be done if we could show that $\tilde{u} = u_{\Phi}$ on B.

Claim.
$$\tilde{u}(z_1) = \tilde{u}_{\Phi}(z_1)$$
, where $z_1 \in B$.

- **1** Pick a maximizing sequence $v_n(z_1) \rightarrow u_{\Phi}(z_1)$.
- 2 Replace v_n with $M_B v_n$.
- **3** Replace v_n with $\max(u_1, u_2, \ldots, u_n; v_1, v_2, \ldots v_n)$.

We obtain a new function

$$\tilde{u} \leq \tilde{v} \leq u_{\Phi},$$

which matches u_{Φ} at z_0 and z_1 .

We obtain a new function

$$\tilde{u} \leq \tilde{v} \leq u_{\Phi}$$
,

which matches u_{Φ} at z_0 and z_1 .

Since $\tilde{u}(z_0) = \tilde{v}(z_0)$, the difference $\tilde{v} - \tilde{u}$ has a local minimum at z_0 .

We obtain a new function

$$\tilde{u} \leq \tilde{v} \leq u_{\Phi}$$
,

which matches u_{Φ} at z_0 and z_1 .

Since $\tilde{u}(z_0) = \tilde{v}(z_0)$, the difference $\tilde{v} - \tilde{u}$ has a local minimum at z_0 .

Since $\tilde{v} - \tilde{u}$ is harmonic on B, $\tilde{u} = \tilde{v}$ on B. In particular, $\tilde{u}(z_1) = u_{\Phi}(z_1)$ as desired.

Barriers

A weak local barrier at $\zeta \in \partial \Omega$ is a subharmonic function defined on $\Omega \cap N$ s.t.

$$b < 0$$
 and $\lim_{z \to \zeta} b(z) = 0$.

Theorem. If Ω possesses a barrier at $\zeta \in \partial \Omega$, then H[f] is continuous at ζ .

The proof relies on two lemmas:

Lemma 1. $H[f] + H[-f] \le 0$ on Ω .

Lemma 2. Suppose Ω has a weak local barrier $\zeta \in \partial \Omega$. Then ζ admits a strong global barrier $b_{\varepsilon} \in \operatorname{sh}(\Omega)$: $\forall N'$,

$$b_{arepsilon} \leq 0, \qquad b_{arepsilon} \leq -1 \ ext{on} \ \Omega \setminus extstyle{N'}, \qquad \liminf_{z o \zeta} b_{arepsilon}(z) \geq -arepsilon.$$

Lemma 2. Suppose Ω has a weak local barrier $\zeta \in \partial \Omega$. Then ζ admits a strong global barrier $b_{\varepsilon} \in \operatorname{sh}(\Omega)$: $\forall N'$,

$$b_{arepsilon} \leq 0, \qquad b_{arepsilon} \leq -1 \ ext{on} \ \Omega \setminus extstyle{N'}, \qquad \liminf_{z o \zeta} b_{arepsilon}(z) \geq -arepsilon.$$

Proof. We can assume that $N' = \Delta = B(\zeta, r) \subset N$.

Lemma 2. Suppose Ω has a weak local barrier $\zeta \in \partial \Omega$. Then ζ admits a strong global barrier $b_{\varepsilon} \in \operatorname{sh}(\Omega)$: $\forall N'$,

$$b_{arepsilon} \leq 0, \qquad b_{arepsilon} \leq -1 \ ext{on} \ \Omega \setminus extstyle{N'}, \qquad \liminf_{z o \zeta} b_{arepsilon}(z) \geq -arepsilon.$$

Proof. We can assume that $N' = \Delta = B(\zeta, r) \subset N$.

Let K be a compact set in $\Omega \cap \partial \Delta$ s.t. $|(\Omega \cap \partial \Delta) \setminus K| < \varepsilon$.

Lemma 2. Suppose Ω has a weak local barrier $\zeta \in \partial \Omega$. Then ζ admits a strong global barrier $b_{\varepsilon} \in \operatorname{sh}(\Omega)$: $\forall N'$,

$$b_arepsilon \leq 0, \qquad b_arepsilon \leq -1 \ ext{on} \ \Omega \setminus extit{N}', \qquad \liminf_{z o \zeta} b_arepsilon(z) \geq -arepsilon.$$

Proof. We can assume that $N' = \Delta = B(\zeta, r) \subset N$.

Let K be a compact set in $\Omega \cap \partial \Delta$ s.t. $|(\Omega \cap \partial \Delta) \setminus K| < \varepsilon$.

Consider

$$b_{\varepsilon}^*(z) = \frac{b(z)}{m} - P_{\Delta}[\chi_L](z), \quad \text{on } \Omega \cap \Delta,$$

where m > 0 is chosen so that $b_{\varepsilon}^* \leq -1$ on $\Omega \cap \partial \Delta$.

We have thus constructed a negative subharmonic function

$$b_{\varepsilon}^*(z) = \frac{b(z)}{m} - P_{\Delta}[\chi_L](z), \quad \text{on } \Omega \cap \Delta$$

which is ≤ -1 on $\Omega \cap \partial \Delta$.

We have thus constructed a negative subharmonic function

$$b_{arepsilon}^*(z) = rac{b(z)}{m} - P_{\Delta}[\chi_L](z), \qquad ext{on } \Omega \cap \Delta$$

which is ≤ -1 on $\Omega \cap \partial \Delta$.

Set

$$b_{\varepsilon} = \max(b_{\varepsilon}^*, -1), \quad \text{on } \Omega \cap \Delta.$$

We have thus constructed a negative subharmonic function

$$b_{\varepsilon}^*(z) = \frac{b(z)}{m} - P_{\Delta}[\chi_L](z), \quad \text{on } \Omega \cap \Delta$$

which is ≤ -1 on $\Omega \cap \partial \Delta$.

Set

$$b_{arepsilon}=\max(b_{arepsilon}^*,-1),\qquad ext{on }\Omega\cap\Delta.$$

This glues to -1 on $\Omega \setminus \Delta$ to form a subharmonic function on Ω .

Since $f:\partial\Omega\to\mathbb{R}$ is continuous at ζ_0 , there exists $\Delta=B(\zeta_0,r)$ so that $|f(\zeta)-f(\zeta_0)|<\varepsilon$ for all $\zeta\in\partial\Omega\cap\Delta$.

Since $f:\partial\Omega\to\mathbb{R}$ is continuous at ζ_0 , there exists $\Delta=B(\zeta_0,r)$ so that $|f(\zeta)-f(\zeta_0)|<\varepsilon$ for all $\zeta\in\partial\Omega\cap\Delta$.

Set

$$v = f(\zeta_0) - \varepsilon + M \cdot b_{\varepsilon},$$

Since $f: \partial\Omega \to \mathbb{R}$ is continuous at ζ_0 , there exists $\Delta = B(\zeta_0, r)$ so that $|f(\zeta) - f(\zeta_0)| < \varepsilon$ for all $\zeta \in \partial\Omega \cap \Delta$.

Set

$$v = f(\zeta_0) - \varepsilon + M \cdot b_{\varepsilon},$$

where $M = 2||f||_{L^{\infty}(\partial\Omega)}$ is large enough to make $v \in \Phi_f$.

Since $f: \partial\Omega \to \mathbb{R}$ is continuous at ζ_0 , there exists $\Delta = B(\zeta_0, r)$ so that $|f(\zeta) - f(\zeta_0)| < \varepsilon$ for all $\zeta \in \partial\Omega \cap \Delta$.

Set

$$v = f(\zeta_0) - \varepsilon + M \cdot b_{\varepsilon},$$

where $M = 2||f||_{L^{\infty}(\partial\Omega)}$ is large enough to make $v \in \Phi_f$.

Hence,

$$\liminf_{z\to\zeta_0}H[f](\zeta_0)\geq f(\zeta_0).$$

Since $f: \partial\Omega \to \mathbb{R}$ is continuous at ζ_0 , there exists $\Delta = B(\zeta_0, r)$ so that $|f(\zeta) - f(\zeta_0)| < \varepsilon$ for all $\zeta \in \partial\Omega \cap \Delta$.

Set

$$v = f(\zeta_0) - \varepsilon + M \cdot b_{\varepsilon},$$

where $M = 2||f||_{L^{\infty}(\partial\Omega)}$ is large enough to make $v \in \Phi_f$.

Hence,

$$\liminf_{z\to\zeta_0}H[f](\zeta_0)\geq f(\zeta_0).$$

Similarly,

$$-\limsup_{z\to\zeta_0}H[-f](\zeta_0)\geq \liminf_{z\to\zeta_0}H[-f](\zeta_0)\geq -f(\zeta_0).$$

Theorem. If Ω is a simply-connected domain bounded by a Jordan curve, then every $\zeta \in \partial \Omega$ admits a barrier.

Theorem. If Ω is a simply-connected domain bounded by a Jordan curve, then every $\zeta \in \partial \Omega$ admits a barrier.

Corollary. Dirichlet's problem can always be solved in a Jordan domain.

Theorem. If Ω is a simply-connected domain bounded by a Jordan curve, then every $\zeta \in \partial \Omega$ admits a barrier.

Corollary. Dirichlet's problem can always be solved in a Jordan domain.

Proof. As $\log(z-\zeta)$ maps $B(\zeta,1)$ to the left half-plane,

Theorem. If Ω is a simply-connected domain bounded by a Jordan curve, then every $\zeta \in \partial \Omega$ admits a barrier.

Corollary. Dirichlet's problem can always be solved in a Jordan domain.

Proof. As $\log(z-\zeta)$ maps $B(\zeta,1)$ to the left half-plane, the function

$$b(z) = \operatorname{Re} \frac{1}{\log(z - \zeta)}$$

defines a barrier at ζ , with $N = B(\zeta, 1)$.

Thank you for your attention!