
Potentials and Energy

Oleg Ivrii

November 9, 2020

Oleg Ivrii Potentials and Energy



Coloumb’s Law

Consider two charges: q at x ∈ R3 and Q at y ∈ R3. According to

Coloumb’s law, the force

−−→
Fx ,y =

qQ

|y − x |2
· ŷ − x .

The electric field of a charge x is

F (y) =
q

|y − x |2
· ŷ − x .

The electric field of a configuration of N charges is

N∑
i=1

qi
|y − xi |2

· ŷ − xi .
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Coloumb’s Law

The work one needs to do to move a charge from y1 to y2 along a

path γ ∈ Rn is

W = −
ˆ
γ
F · ds

The potential energy U(y) is defined as the amount of work one

needs to do in order to bring a unit charge to y from infinity.

Since F is a conservative vector field, U(y) does not depend on

the choice of path γ:

U(y) =
N∑
i=1

qi ·
1

|y − xi |

Oleg Ivrii Potentials and Energy



Level sets of the Potential

Lemma. The level sets of the potential {U = c} are orthogonal to

the electric field F .

Charged particles travel orthogonally to equipotential surfaces in the

direction that minimizes the potential energy the fastest.

Proof. Suppose that near y ∈ Rn, the level {U = c} looks like an

(n − 1)–dimensional manifold. Indeed, in a tangent direction

ξ ∈ TxU,

F · ξ = DξU = 0.
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Energy of a configuration

The energy of a configuration of n charges is defined as the amount

of work one needs to do bring all the n charges from infinity.

1. Bringing the first charge requires zero work since initially the

electric field is 0.

2. To bring charge q2 to x2, requires the work

q1q2
|x2 − x1|

.

3. To bring charge q3 to x3, requires the work

q1q3
|x3 − x1|

+
q2q3
|x3 − x2|

.
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Energy

Thus, the total work required is

E =
∑
i 6=j

qiqj
|xi − xj |

.

The continuous analogues of the potential and energy are:

Uµ =

ˆ
R3

1

|x − y |
dµ.

Eµ =

ˆ
R3

ˆ
R3

1

|x − y |
dµdµ.
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Equilibrium Measures

A set is called polar if does not admit a measure of finite energy.

A measure that minimizes the energy is called an equilibrium

measure.

Lemma. Energy is lower semicontinuous: if µn → µ converge in

weak-∗, then lim infn→∞ Eµn ≥ Eµ.

Corollary. If E is non-polar, it admits at least one equilibrium

measure.

(We will later show that the equilibrium measure is unique.)
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Fekete Points

Suppose we have n particles of charge 1/n on a conductor in the

form of a compact connected set E ⊂ R3.

Question. How will the charges distribute in the conductor?

Answer. They will seek to minimize the energy

E =
1

n2

∑
i 6=j

1

|xi − xj |
.

An optimal configuration of points is called a Fekete set; however,

it may not be unique.
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Some remarks

Remark 1. As n→∞,

µn =
1

n

n∑
x=1

δxi

converge to the equilibrium measure and Eµn → Eµ.

Remark 2. Since any Fekete set lies on the outer boundary of E ,

the same must be true for the equilibrium measure.

Remark 3. After reaching the equilibrium state, charge does not

move in a conductor: Uµ(y) = Eµ n.e.
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α-Energy

More generally, one can study

Uµ,α =

ˆ
Rd

1

|x − y |α
dµ.

Eµ,α =

ˆ
Rd

ˆ
Rd

1

|x − y |α
dµdµ.

When α = 0, one instead uses

Uµ,0 =

ˆ
Rd

log
1

|x − y |
dµ.

Eµ,0 =

ˆ
Rd

ˆ
Rd

log
1

|x − y |
dµdµ.
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Hausdorff measure and Hausdoff dimension

Suppose E ⊂ Rd is a compact set. Its α-dimensional Hausdorff

content is given by

Hα
∞(E ) := inf⋃

B(xi ,ri )⊃E

∑
rαi .

The α-dimensional Hausdorff measure is Hα(E ) = limt→0H
α
t (E ),

where in Hα
t (E ) we allow covers by balls whose radius is ≤ t.

Given E ⊂ Rd , the Hausdorff dimension of E is the critical α

between Hα(E ) =∞ and Hα(E ) = 0.
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Frostman’s theorem

Theorem. Suppose E ⊂ Rd is a compact set. Then, Hα(E ) > 0 iff

∃µ ∈M≥0(E ), s.t. µ(B(x , r)) . rα.

Proof. (⇐) If µ exists, then Hα(E ) & µ(E ) > 0.

(⇒) Suppose Hα(E ) > 0. We can assume that E ⊂ [0, 1]n.

For each m = 1, 2, 3, . . . , we will construct a measure µm. The

weak limit of these measures will be the desired measure µ.
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Frostman’s theorem

To define µm, we look at all dyadic cubes Q of size 2−m.

If Q ∩ E 6= ∅, we define µm to be a constant multiple of

Lebesgue measure so that µ(Q) = `(Q)α.

If Q ∩ E = ∅, we define µm(Q) = 0.

We now look at dyadic cubes 2m−1. If µm(Q) ≤ `(Q)α.

If µm(Q) ≤ `(Q)α, don’t touch µm|Q .

If µm(Q) > `(Q)α, redefine µm|Q to be the constant multiple

of Lebesgue measure so that µm(Q) = `(Q)α.
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Frostman’s theorem

Continue to redefine µm by scanning the scales 2m−2, 2m−3, . . . , 20.

At each step of the process, the mass of µm can only decrease.

For each x ∈ α, there is a dyadic cube Q so that

µm(Q) = `(Q)α.

Since

‖µm‖M =
∑

Q: maximal

`(Q)α & Hα(E ),

µ 6= 0. Since µ satisfies µ(Q) ≤ `(Q)α on dyadic cubes, it satisfies

this bound on all cubes.
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Sets admitting measures of finite energy

Question. Suppose µ ∈M≥0(E ) with µ(B(x , r)) . rα. Is it true

that Eα[µ] <∞?

Short answer. Not necessarily, but almost.

Long answer. For any 0 < β < α,

ˆ
E

1

|x − y |β
dµ(y) = β

ˆ ∞
0

1

rβ+1
· µ(B(x , r))dr . ‖µ‖M,

so that Eβ[µ] <∞.
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Sets admitting measures of finite energy

Question. Suppose Eα[µ] <∞. Is it true that

µ
(
B(x , r)

)
. rα ?

Short answer. Not necessarily, but almost.

Long answer. For M > 0, let

A =

{
x ∈ E :

ˆ
E

1

|x − y |α
dµ(y) ≤ M

}
and ν = µ|A. Then, ν

(
B(x , r)

)
. rα.
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Frostman’s theorem: summary

A set E of Hausdorff dimension ≥ α may not admit a truly

α-dimensional measure satisfying

µ(B(x , r)) . rα or Eα[µ] <∞,

but it does admit a measure satisfying these conditions for any

0 < β < α.

Conversely, if E admits a measure satisfying either of these

properties, then H. dimE ≥ α.
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Capacity via Energy

For a compact set E , its α-capacity is defined as

capα E := inf
µ∈P(E)

1

Eα[µ]
,

If E does not support a measure with finite α-energy, then its

α-capacity is 0.

Warning. There are a several definitions of capacity which are not

exactly the same, but they do agree which sets have capacity 0.
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Application: projections

The Grassmanian G(m, n) is the space of m-planes in Rn passing

through the origin. It comes with a natural O(n)-invariant

measure.

Theorem. Let E ⊂ Rn be a compact set and 0 < α < m. For any

measure µ ∈M≥0(E ),

ˆ
G(m,n)

Eα
[
(πV )∗µ

]
dV . Eα[µ],

where the implicit constant can depend on m, n, α.

Corollary. In particular, a.e. projection has finite α-energy, so has

H. dim ≥ α.
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Application: projections

Proof.ˆ
G
Eα
[
(πV )∗µ

]
dV =

ˆ
G

ˆ
E

ˆ
E

1

|PV x − PV y |α
dµ(x)dµ(y)dV ,

Exercise. For any two points x , y ∈ Rn,

ˆ
G(m,n)

1

|PV (x − y)|α
dV .

1

|x − y |α
.

Hence,

LHS .
ˆ
E

ˆ
E

1

|x − y |α
dµ(x)dµ(y) = Eα[µ].
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Application: Brownian Motion

Theorem. Run Bt in Rd , d ≥ 2. Almost surely,

H. dimB([0,∞)) = H. dimB([0, 1]) = 2.

Proof. (≤) The upper bound follows from that fact that Brownian

motion is in C 1/2+ε for any ε.

(≥) For the lower bound, let µ be the occupation measure on

B([0, 1]): that is µ(A) =
∣∣{t : Bt ∈ A}

∣∣.
We want to show that a.s. for 0 < α < 2

Eα[µ] =

ˆ 1

0

ˆ 1

0

1

|Bs − Bt |α
dsdt <∞.
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Application: Brownian Motion

By the quadratic scaling of Brownian motion,

E
[
Eα[µ]

]
=

ˆ 1

0

ˆ 1

0
E
[

1

|Bs − Bt |α

]
dsdt

=

ˆ 1

0

ˆ 1

0
E
[

1

|B1|α

]
· 1

|s − t|α/2
dsdt.

Since

E
[

1

|B1|α

]
=

1

(2π)d/2

ˆ
Rd

|x |−αe−x2/2 <∞,

E
[
Eα[µ]

]
is finite.
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Fourier Series

To a measure µ ∈M(S1), we can associate the Fourier series

µ ∼
∞∑

n=−∞
ane

inθ,

where

an =
1

2π

ˆ
S1

e−inθdµ.

L2 theory. If f ∈ L2(S1), the Fourier series converges in L2 and

1

2π

ˆ 2π

0
|f (x)|2dx =

∞∑
n=−∞

|an|2.
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Sobolev spaces

Motivation. If f ∈ L2 and f ′ ∈ L2 then

f ′ ∼ i
∞∑

n=−∞
nane

inθ,

In this case, n2
∑
|an|2 <∞.

Definition. For s > 0, the Sobolev space Hs = W s,2 consists of all

functions whose Fourier coefficients satisfy
∑

n2s |an|2 <∞.

Warning. For s < 0, Hs can contain distributions that are not

functions.
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Convolution

Given f , g ∈ L1(S1) with Fourier series

f ∼
∑

ane
inθ, g ∼

∑
bne

inθ,

the convolution f ? g is defined as

(f ? g)(x) :=
1

2π

ˆ
S1

f (y)g(x − y)dy .

By Young’s inequality, f ? g ∈ L1 and

f ? g ∼
∑

anbne
inθ.
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Fourier Transform

The Fourier transform of a measure µ ∈M(R) is defined by

µ̂(ξ) =

ˆ
R
e−ixξdµ(x), ξ ∈ R.

If f , f̂ ∈ L1(R), then one can recover f by the inverse Fourier

transform

f (x) =
1

2π

ˆ
R
e ixξ f̂ (ξ)dξ.

The Fourier transform is essentially an isometry:

‖f ‖2L2 =
1

2π
‖f̂ ‖2L2 .
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Energy and Sobolev spaces

The energy has a very natural interpretation in terms of Sobolev

spaces:

Eµ,α =

ˆ
Rd

Uµ,α(z)dµ(z)

= c

ˆ
Rd

Ûµ,α(ξ)d̂µ(ξ)|dξ|2

= c

ˆ
Rd

|µ̂|2|ξ|α−d |dξ|2,

i.e. Eα[µ] <∞⇐⇒ µ ∈ H
α−d
2 .
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Capacity via Sobolev spaces (α = d − 2)

For a function φ ∈ H1, its Dirichlet energy is given by

D(φ) = ‖∇φ‖2L2 =

ˆ
C
|∇φ|2 |dx |n.

For a compact set E , its H1-capacity is defined as

capH1 E := inf
φ∈F
D(φ),

where the infimum is taken (over the H1-closure of)

φ ∈ C∞c , φ ≥ 0, φ ≥ 1 on E .
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Zero capacity

Lemma. Suppose capH1 E = 0. Then, it does not carry a

non-trivial measure µ ∈M≥0(E ) ∩ H−1(Rd).

By assumption, there exists a sequence φn → 0 of positive

functions for which ˆ
C
φndµ ≥ 1.

However, by the duality between H1 and H−1,

ˆ
C
φndµ = 〈φn, µ〉 . ‖φn‖H1 · ‖µ‖H−1 → 0.
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Positive capacity

Lemma. Suppose capH1 E > 0. Then, there exists a non-trivial

measure µ ∈M≥0(E ) ∩ H−1(Rd).

Proof idea. The extremal φ ∈ H1 is

1 Harmonic on Rd \ E ,

2 Superharmonic on all on Rd , and

3 Tends to 0 at infinity.

Then, µ = −∆u ∈M≥0(E ) ∩ H−1(Rd) as desired.

In fact, φ = const · Uµ.
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Thank you for your attention!
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