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Coloumb’s Law

Consider two charges: g at x € R3 and @ at y € R3. According to
Coloumb’s law, the force

- 99 =%
Yy —x[?

The electric field of a charge x is

q —
F(y) = oY

The electric field of a configuration of N charges is

Z\y—XI2 a
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Coloumb’s Law

The work one needs to do to move a charge from y; to y» along a
path vy € R" is
W=-— / F-ds
v

The potential energy U(y) is defined as the amount of work one
needs to do in order to bring a unit charge to y from infinity.

Since F is a conservative vector field, U(y) does not depend on

the choice of path ~:

Uly) =Y a !

— " ly—x
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Level sets of the Potential

Lemma. The level sets of the potential {U = c} are orthogonal to
the electric field F.
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Level sets of the Potential

Lemma. The level sets of the potential {U = c} are orthogonal to
the electric field F.

Charged particles travel orthogonally to equipotential surfaces in the

direction that minimizes the potential energy the fastest.
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Level sets of the Potential

Lemma. The level sets of the potential {U = c} are orthogonal to
the electric field F.

Charged particles travel orthogonally to equipotential surfaces in the
direction that minimizes the potential energy the fastest.

Proof. Suppose that near y € R”, the level {U = c} looks like an
(n — 1)—dimensional manifold. Indeed, in a tangent direction
e TV,

F-¢(=D:U=0.
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Energy of a configuration

The energy of a configuration of n charges is defined as the amount
of work one needs to do bring all the n charges from infinity.
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Energy of a configuration

The energy of a configuration of n charges is defined as the amount
of work one needs to do bring all the n charges from infinity.

1. Bringing the first charge requires zero work since initially the
electric field is 0.
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Energy of a configuration

The energy of a configuration of n charges is defined as the amount
of work one needs to do bring all the n charges from infinity.

1. Bringing the first charge requires zero work since initially the
electric field is 0.

2. To bring charge g» to xp, requires the work

q1q92
o — x|
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Energy of a configuration

The energy of a configuration of n charges is defined as the amount
of work one needs to do bring all the n charges from infinity.

1. Bringing the first charge requires zero work since initially the
electric field is 0.

2. To bring charge g» to xp, requires the work

q1q92
o — x|

3. To bring charge g3 to x3, requires the work

q1q3 92G3
3 —x|  |x3—x

Oleg lvrii Potentials and Energy



Thus, the total work required is
qj
E=) — .
Z X — Xl
i#

The continuous analogues of the potential and energy are:

1
U:/ di.
: R3|X_Y|M

1
E“:// dudp.
3 Jr3 X =y

Oleg lvrii Potentials and Energy



Equilibrium Measures

A set is called polar if does not admit a measure of finite energy.

A measure that minimizes the energy is called an equilibrium
measure.
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Equilibrium Measures

A set is called polar if does not admit a measure of finite energy.

A measure that minimizes the energy is called an equilibrium
measure.

Lemma. Energy is lower semicontinuous: if j, — 1 converge in
weak-*, then liminf, o E,, > E,.
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Equilibrium Measures

A set is called polar if does not admit a measure of finite energy.
A measure that minimizes the energy is called an equilibrium

measure.

Lemma. Energy is lower semicontinuous: if j, — 1 converge in
weak-*, then liminf, o E,, > E,.

Corollary. If E is non-polar, it admits at least one equilibrium
measure.

(We will later show that the equilibrium measure is unique.)
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Suppose we have n particles of charge 1/n on a conductor in the
form of a compact connected set E C R3.
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Suppose we have n particles of charge 1/n on a conductor in the
form of a compact connected set E C R3.

Question. How will the charges distribute in the conductor?

Oleg lvrii Potentials and Energy



Suppose we have n particles of charge 1/n on a conductor in the
form of a compact connected set E C R3.

Question. How will the charges distribute in the conductor?

Answer. They will seek to minimize the energy

_n2z\x,—le
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Suppose we have n particles of charge 1/n on a conductor in the
form of a compact connected set E C R3.

Question. How will the charges distribute in the conductor?

Answer. They will seek to minimize the energy
-2 Z Ix; — XJ,

An optimal configuration of points is called a Fekete set; however,
it may not be unique.
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Some remarks

Remark 1. As n — oo,

1
Hn = ;Z‘SXI'
x=1

converge to the equilibrium measure and E,, — E,,.
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Some remarks

Remark 1. As n — oo,
1
Hn = n Xz; Ox;
converge to the equilibrium measure and E,, — E,,.

Remark 2. Since any Fekete set lies on the outer boundary of E,
the same must be true for the equilibrium measure.
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Some remarks

Remark 1. As n — oo,

1
Hn = n E :6Xi
x=1

converge to the equilibrium measure and E,, — E,,.

Remark 2. Since any Fekete set lies on the outer boundary of E,
the same must be true for the equilibrium measure.

Remark 3. After reaching the equilibrium state, charge does not
move in a conductor: U,(y) = E, n.e.
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More generally, one can study
1
Ujo = ——du.
e /Rd x — yf "

1
Eu,a:/ / Tz dudp.
Rd JRrd X — Y|

When o« = 0, one instead uses
U / lo L du
0= g .
g Ix =y

Eu.o //Iog d,ud,u
RY JRA -
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Hausdorff measure and Hausdoff dimension

Suppose E C R? is a compact set. Its a-dimensional Hausdorff
content is given by

HY (E) =0 mf > .

B(x;,r;)DE
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Hausdorff measure and Hausdoff dimension

Suppose E C R? is a compact set. Its a-dimensional Hausdorff
content is given by

HS (E :: f
< (E) |n DEZr

Xl7rl

The a-dimensional Hausdorff measure is H*(E) = lim;_,o Hf'(E),
where in H*(E) we allow covers by balls whose radius is < t.
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Hausdorff measure and Hausdoff dimension

Suppose E C R? is a compact set. Its a-dimensional Hausdorff
content is given by

HS (E :: f
< (E) |n DEZr

Xl7rl

The a-dimensional Hausdorff measure is H*(E) = lim;_,o Hf'(E),
where in H*(E) we allow covers by balls whose radius is < t.

Given E C R9, the Hausdorff dimension of E is the critical «
between H*(E) = oo and H*(E) = 0.
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Frostman's theorem

Theorem. Suppose E C R? is a compact set. Then, H*(E) > 0 iff
du € M>o(E), s.it. u(B(x,r)) S r.
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Frostman's theorem

Theorem. Suppose E C R? is a compact set. Then, H*(E) > 0 iff
du € M>o(E), s.it. u(B(x,r)) S r.

Proof. (<) If p exists, then H*(E) 2 u(E) > 0.
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Frostman's theorem

Theorem. Suppose E C R? is a compact set. Then, H*(E) > 0 iff
du € M>o(E), s.it. u(B(x,r)) S r.

Proof. (<) If p exists, then H*(E) 2 u(E) > 0.

(=) Suppose H*(E) > 0. We can assume that E C [0,1]".

For each m=1,2,3,..., we will construct a measure pp,. The
weak limit of these measures will be the desired measure p.
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Frostman's theorem

To define i, we look at all dyadic cubes @ of size 27,

o If QN E # 0, we define u, to be a constant multiple of
Lebesgue measure so that u(Q) = ¢(Q)“.

o If QN E =0, we define um(Q) =0.
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Frostman's theorem

To define i, we look at all dyadic cubes @ of size 27,

o If QN E # 0, we define u, to be a constant multiple of
Lebesgue measure so that u(Q) = ¢(Q)“.

o If QN E =0, we define um(Q) =0.
We now look at dyadic cubes 271, If 11,(Q) < £(Q)*.

o If um(Q) < 4(Q)%, don't touch fim]g.
o If um(Q) > £(Q)?, redefine um|@ to be the constant multiple
of Lebesgue measure so that um(Q) = £(Q).
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Frostman's theorem

Continue to redefine yi, by scanning the scales 2m—2 2m=3 20,
At each step of the process, the mass of u,, can only decrease.
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Frostman's theorem

Continue to redefine yi, by scanning the scales 2m—2 2m=3 20,
At each step of the process, the mass of u,, can only decrease.

For each x € a, there is a dyadic cube @ so that
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Frostman's theorem

Continue to redefine yi, by scanning the scales 2m—2 2m=3 20,
At each step of the process, the mass of u,, can only decrease.

For each x € a, there is a dyadic cube @ so that

Since

lmlla = Y- UQ)™ Z H(E),

Q: maximal

p# 0.
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Frostman's theorem

Continue to redefine yi, by scanning the scales 2m—2 2m=3 20,
At each step of the process, the mass of u,, can only decrease.

For each x € a, there is a dyadic cube @ so that

Since

lmlla = Y- UQ)™ Z H(E),

Q: maximal

p # 0. Since p satisfies u(Q) < £(Q)* on dyadic cubes, it satisfies
this bound on all cubes.

Oleg lvrii Potentials and Energy



Sets admitting measures of finite energy

Question. Suppose p € M>o(E) with pu(B(x,r)) S r®. Is it true
that E,[pu] < 007
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Sets admitting measures of finite energy

Question. Suppose p € M>o(E) with pu(B(x,r)) S r®. Is it true
that E,[pu] < 007

Short answer. Not necessarily, but almost.
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Sets admitting measures of finite energy

Question. Suppose p € M>o(E) with pu(B(x,r)) S r®. Is it true
that E,[pu] < 007

Short answer. Not necessarily, but almost.

Long answer. For any 0 < 8 < «,

1 >~ 1
= - . <
/E|X_y|ﬂdu(y> B /0 T H(BOG))dr S laa,

so that Eglu] < oo.
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Sets admitting measures of finite energy

Question. Suppose E,[u] < co. Is it true that

w(B(x,r)) Sr*?

~
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Sets admitting measures of finite energy

Question. Suppose E,[u] < co. Is it true that
w(B(x,r)) Sr*?

~

Short answer. Not necessarily, but almost.
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Sets admitting measures of finite energy

Question. Suppose E,[u] < co. Is it true that

w(B(x,r)) Sr*?

Short answer. Not necessarily, but almost.

Long answer. For M > 0, let

A:{er:/Ewdu(y)SM}

and v = pi|a. Then, v(B(x,r)) < r*.
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Frostman's theorem: summary

A set E of Hausdorff dimension > « may not admit a truly
a-dimensional measure satisfying

w(B(x,r)) < r® or E,[p] < o0,

but it does admit a measure satisfying these conditions for any
0<fB<a.
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Frostman's theorem: summary

A set E of Hausdorff dimension > « may not admit a truly
a-dimensional measure satisfying

w(B(x,r)) < r® or E,[p] < o0,

but it does admit a measure satisfying these conditions for any
0<fB<a.

Conversely, if E admits a measure satisfying either of these
properties, then H.dim E > «.
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Capacity via Energy

For a compact set E, its a-capacity is defined as

E:= inf
“2Pa weP(E) Enlp]’

If E does not support a measure with finite a-energy, then its
a-capacity is 0.

Warning. There are a several definitions of capacity which are not
exactly the same, but they do agree which sets have capacity 0.
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Application: projections

The Grassmanian G(m, n) is the space of m-planes in R" passing
through the origin. It comes with a natural O(n)-invariant
measure.
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Application: projections

The Grassmanian G(m, n) is the space of m-planes in R" passing
through the origin. It comes with a natural O(n)-invariant
measure.

Theorem. Let E C R"” be a compact set and 0 < o« < m. For any
measure 1 € M>o(E),

| Elmv)mlav S Eulul
G(m,n)

where the implicit constant can depend on m, n, c.
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Application: projections

The Grassmanian G(m, n) is the space of m-planes in R" passing
through the origin. It comes with a natural O(n)-invariant
measure.

Theorem. Let E C R"” be a compact set and 0 < o« < m. For any
measure 1 € M>o(E),

| Elmv)mlav S Eulul
G(m,n)

where the implicit constant can depend on m, n, c.

Corollary. In particular, a.e. projection has finite a-energy, so has
H.dim > a.
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Application: projections
Proof.

[ By = [ [ [ oo duGoduty)av.
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Application: projections
Proof.

[ By = [ [ [ oo duGoduty)av.

Exercise. For any two points x,y € R”,

| eV S e
Slmay [PU =) =y
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Application: projections
Proof.

[ By = [ [ [ oo duGoduty)av.

Exercise. For any two points x,y € R”,

| eV S e
Slmay [PU =) =y

Hence,

LHS < /E/E ! du(x)du(y) = Ealul.

Ix — yl|«
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Application: Brownian Motion

Theorem. Run B; in RY, d > 2. Almost surely,
H.dim B([0,0)) = H.dim B([0,1]) = 2.

Proof. (<) The upper bound follows from that fact that Brownian
motion is in C1/2%¢ for any .

(>) For the lower bound, let ;i be the occupation measure on
B([0,1]): that is u(A) = |{t: B; € A}|.

We want to show that a.s. for 0 < oo < 2

1 1
1
E, = —dsdt < oo.
il /0 /0 B, ~ B,
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Application: Brownian Motion

By the quadratic scaling of Brownian motion,

E|Ealp] / / {B —Bt|0‘]d5dt
:/0 /o = et

1 1
5| 5] =1 x| 7072 < o,
1 ™ Rd

E|[Ea[u]] is finite.

Since
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Fourier Series

To a measure u € M(S?), we can associate the Fourier series

(e.)
in6

n=—oo

where
a ——1 / e 0y
n= -
27'[' st
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Fourier Series

To a measure u € M(S?), we can associate the Fourier series

(e.)
in6

n=—oo

1 .
an = 2/ e Mdy.
m™,Jst

L? theory. If f € L2(S'), the Fourier series converges in L? and

where

(e 9]

FO)Pdx =) |anl*.

n=—0o0

1
27T0
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Sobolev spaces

Motivation. If f € L2 and f’ € L2 then

o0
’ . in@
i E nane"”,

n=—0o0

In this case, n? 3 |an|? < oo.

Oleg lvrii Potentials and Energy



Sobolev spaces

Motivation. If f € L2 and f’ € L2 then

’ . in@
i E nane"”,

n=—0o0

In this case, n? 3 |an|? < oo.

Definition. For s > 0, the Sobolev space HS = W*? consists of all
functions whose Fourier coefficients satisfy > n?$|a,|? < oo.
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Sobolev spaces

Motivation. If f € L2 and f’ € L2 then
i Z nane™,
n—=——oo

In this case, n? 3 |an|? < oo.

Definition. For s > 0, the Sobolev space HS = W*? consists of all
functions whose Fourier coefficients satisfy > n?$|a,|? < oo.

Warning. For s < 0, H® can contain distributions that are not

functions.
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Convolution

Given f,g € L1(S!) with Fourier series

inf inf
waa,,e’”, gNZb,,e’”,

the convolution f x g is defined as
1
(F+8)() 1= 5o [ Felx—)ab.
™ Jst

By Young's inequality, f x g € L! and

frxgr~ Z anbne™.
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Fourier Transform

The Fourier transform of a measure u € M(R) is defined by

p6) = [ edut),  €eR
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Fourier Transform

The Fourier transform of a measure u € M(R) is defined by
p6) = [ edut),  €eR

If £, € L1(R), then one can recover f by the inverse Fourier
transform

F(x) = % /R e ER(¢)de.
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Fourier Transform

The Fourier transform of a measure u € M(R) is defined by
p6) = [ edut),  €eR

If £, € L1(R), then one can recover f by the inverse Fourier
transform

2

The Fourier transform is essentially an isometry:

) = — /R MR (€)de.

17117 = -1

=
21
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Energy and Sobolev spaces

The energy has a very natural interpretation in terms of Sobolev
spaces:

Ejo = /Rd Up,a(2)dp(z)
. / Up o(€)dp(€) e ?
Rd

—c / APle12 9 del?,
Rd

ie. Eglu] < oo <= p e HZ".
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Capacity via Sobolev spaces (o = d — 2)

For a function ¢ € H1, its Dirichlet energy is given by
D(6) = V6l = [ Vol |oxl”

For a compact set E, its H'-capacity is defined as

E:= inf D
cap Jnf (9),

where the infimum is taken (over the H!-closure of)

¢ € Cz, ¢ >0, ¢>1onE.
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Lemma. Suppose capy: E = 0. Then, it does not carry a
non-trivial measure 1 € M>o(E) N H~1(RY).

By assumption, there exists a sequence ¢, — 0 of positive

/ ¢ndp > 1.
C

However, by the duality between H' and H71,

functions for which

/C bndpt = (G i) < [ nllen - lll—s — 0.
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Positive capacity

Lemma. Suppose capy: E > 0. Then, there exists a non-trivial
measure ;1 € M>o(E) N HH(RY).

Proof idea. The extremal ¢ € H' is
© Harmonic on R?\ E,
@ Superharmonic on all on RY and

© Tends to 0 at infinity.

Then, u = —Au € M>o(E) N H71(RY) as desired.

In fact, ¢ = const - U,,.

Oleg lvrii Potentials and Energy



Thank you for your attention!
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