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Potentials and energy

In these slides, we will be following the book of Thomas Ransford,

who uses the notation:

pµ(z) =

ˆ
C

log |z − w |dµ(w).

Iµ(z) =

ˆ
C

ˆ
C

log |z − w |dµ(z)dµ(w).

Potentials are subharmonic functions.

A set is polar if it only supports measures with energy −∞.

Equilibrium measure maximizes the energy.

Oleg Ivrii Frostman’s theorem and applications



Continuity Principle

Theorem. Let K be a compact set and µ ∈M≥0(K ).

1 For ζ0 ∈ K ,

lim inf
z→ζ0

pµ(z) = lim inf
z→ζ0, z∈K

pµ(z).

2 In particular, if

lim inf
z→ζ0, z∈K

pµ(z) = pµ(z0),

then pµ is continuous at ζ0.
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Continuity Principle

Case I. If pµ(ζ0) = −∞, then

lim inf
z→ζ0

pµ(z) = lim inf
z→ζ0, z∈K

pµ(z) = −∞.

Case II. If pµ(ζ0) > −∞ =⇒ µ({ζ0}) = 0 =⇒ µ(∆) < ε,

where ∆ is some ball centered at ζ0.

For z ∈ C,

pµ(z) = pµ(ζ)−
ˆ
K

log

∣∣∣∣ζ − w

z − w

∣∣∣∣dµ(w).

Pick ζ ∈ K to minimize dist(z ,K ) !
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Continuity Principle

For z ∈ C,

pµ(z) = pµ(ζ)−
ˆ

∆
log

∣∣∣∣ζ − w

z − w

∣∣∣∣dµ(w)︸ ︷︷ ︸
small

−
ˆ
K\∆

log

∣∣∣∣ζ − w

z − w

∣∣∣∣dµ(w)︸ ︷︷ ︸
converges at z → ζ0

.

Since

|ζ − w | ≤ |ζ − z |+ |z − w | ≤ 2|z − w |,

ˆ
∆

log

∣∣∣∣ζ − w

z − w

∣∣∣∣dµ(w) ≤ ε log 2.
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Minimum Principle

Theorem. Let K be a compact set and µ ∈M≥0(K ). If pµ ≥ M

on K , then pµ ≥ M on all of C.

Proof. Since pµ is harmonic on C \ K , the minimum value is

achieved on ∂K ∪ {∞} in lim inf-sense.

However, for any ζ ∈ ∂K ,

lim inf
z→ζ0

pµ(ζ) ≥ M,

while

lim
z→∞

pµ(ζ) =∞.
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Frostman’s Theorem

Theorem. Let K ⊂ C be a compact set and ν be an equilibrium

measure for K . Then:

pν ≥ I (ν) on C.
pν = I (ν) n.e. on K .

To prove Frostman’s theorem, it suffices to show:

Kn =
{
z ∈ K : pν(z) ≥ I (ν) + 1/n

}
. polar?

Ln =
{
z ∈ supp ν : pν(z) < I (ν)− 1/n

}
. empty?
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Frostman’s Theorem

Claim. For any n = 1, 2, . . . , the set

Kn =
{
z ∈ K : pν(z) ≥ I (ν) + 1/n

}
is polar.

Proof. Suppose ∃µ ∈ P(Kn) with finite energy.

∃z0 ∈ supp ν s.t. pν(z0) ≤ I (ν).

1 USC =⇒ pν < I (ν) + 1
2n on some ball ∆ = B(z0, r).

2 a = ν(∆) > 0.
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Frostman’s Theorem

Define a path of probability measures [0, ε)→ P(K ):

νt = ν + t


µ, on Kn,

−ν/a, on ∆,

0, otherwise.

I (νt)− I (ν)

t
= 2

[ˆ
Kn

pν(z)dµ(z)−
ˆ

∆
pν(z)

dν(z)

a

]
≥ 2

[(
I (ν) +

1

n

)
−
(
I (ν) +

1

2n

)]
> 0.
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Frostman’s Theorem

Claim. For any n = 1, 2, . . . , the set

Ln =
{
z ∈ supp ν : pν(z) < I (ν)− 1/n

}
is empty.

Proof. If ∃z0 ∈ Ln, then by USC

pν(z) < I (ν)− 1/n, ∆ = B(z0, r), b = ν(∆).

By the first part of the proof,

I (ν) =

ˆ
K∩∆

pνdν +

ˆ
K\∆

pνdν < I (ν).
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Brelot-Cartan Theorem

Theorem. Suppose {vn} ⊂ sh(Ω) is locally bounded above.

Let u = sup vn

and u∗ be its USC-regularization.

Then, u∗ ∈ sh(Ω) and {z ∈ Ω : u(z) < u∗(z)} is polar.

Remark 1. Only the last assertion is difficult.

Remark 2. One can also take lim sup instead of sup:

lim sup un = inf
n

(
sup
m>n

um
)
.
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Brelot-Cartan Theorem

To show that the set {z : u(z) < u∗(z)} is polar, it suffices to

prove:

Claim. For any disk ∆ ⊂ Ω and β ∈ Q, the set

E = {z ∈ ∆ : u(z) ≤ β < u∗(z)}

is polar.

Proof (by contradiction). If E is not polar, it contains a compact

subset K ⊂ ∆ with a non-trivial equilibrium measure ν.

Oleg Ivrii Frostman’s theorem and applications



Brelot-Cartan Theorem

To show that the set {z : u(z) < u∗(z)} is polar, it suffices to

prove:

Claim. For any disk ∆ ⊂ Ω and β ∈ Q, the set

E = {z ∈ ∆ : u(z) ≤ β < u∗(z)}

is polar.

Proof (by contradiction). If E is not polar, it contains a compact

subset K ⊂ ∆ with a non-trivial equilibrium measure ν.

Oleg Ivrii Frostman’s theorem and applications



Brelot-Cartan Theorem

Form the subharmonic function q = C (pν − I (ν)︸ ︷︷ ︸
>0 on ∂∆

) + β.

For each n, un − q is subharmonic on ∆ \ K ,

and ≤ 0 in the lim sup-sense on ∂(∆ \ K ).

=⇒ un ≤ q on ∆ \ K , and thus on all on ∆. (C large)

Since q ∈ sh(∆), u∗n ≤ q on ∆.

=⇒ q > β on K , and hence =⇒ pν > I (ν) on K .

This contradicts Frostman’s theorem “pν = I (ν) n.e. on K .”
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Minus infinity sets

Theorem. Let u ∈ sh(Ω). The set E = {z : u(z) = −∞} is a Gδ
polar set.

Proof. Since

E =
∞⋂
n=1

{z : u(z) < −n},

E is Gδ.

Let

v(z) = lim sup
n→∞

u(z)

n
=

{
0, z ∈ Ω \ E ,
−∞, z ∈ E .

Since v∗(z) = 0, E is polar.
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Minus infinity sets

Theorem. Suppose E is a compact polar set. Then, there exists a

subharmonic function that is −∞ on E .

Write E =
⋂∞

n=1 En as a decreasing intersection of closed

neighbourhoods with I (En) < −2n.

Let νn be the equilibrium measure on En.

Set

u(z) =
∑

2−npνn(z).
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Removable singularities

Theorem. Let u ∈ sh(Ω \ E ) where E ⊂ Ω be a closed polar set. If

u is locally bounded above, then u extends to sh(Ω).

Remark. The extension is unique since E has measure 0.

Proof. We extend u to E by upper semi-continuity:

u(w) = lim sup
z→w

u(z).

Let ∆ = B(z0, r) ⊂ Ω be a ball and h is a harmonic function on ∆

such that u ≤ h on ∂∆ in limsup-sense. To show that u ≤ h in ∆,

note that

u(z)− εvE (z) ≤ h(z), ε > 0.
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u(w) = lim sup
z→w

u(z).

Let ∆ = B(z0, r) ⊂ Ω be a ball and h is a harmonic function on ∆

such that u ≤ h on ∂∆ in limsup-sense. To show that u ≤ h in ∆,

note that

u(z)− εvE (z) ≤ h(z), ε > 0.
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Liovuille’s theorem

Theorem 1. Suppose u : C→ [0, π] is a subharmonic function

which is bounded above. Then, it is constant.

Theorem 2. More generally, if u : C→ [−∞,∞) satisfies

lim sup
z→∞

u(z)

log |z |
= 0,

then it is constant.

Recall that A(r) = 1
2π

´
|z|=r f (re iθ)dθ is an increasing function of

r . It is actually logarithmically convex, i.e. a convex function of

log r . Hint: Use the decomposition u = pµ + h.
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Extended Liovuille’s theorem

Theorem 1∗. Suppose u : C \ E → [−∞,∞) is a subharmonic

function which is bounded above, where E is a polar set. Then, it

is constant.

Theorem 2∗. More generally, if u : C \ E → [−∞,∞) satisfies

lim sup
z→∞

u(z)

log |z |
= 0,

then it is constant.
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Extended maximum principle

Theorem. Suppose u ∈ sh(Ω) is bounded above. If ∂Ω is non-polar

and lim supz→ζ u(z) ≤ 0. Then u ≤ 0.

Proof. For ε > 0, define

Eε =
{
ζ ∈ ∂Ω \ {∞} : lim sup

z→ζ
u(z) ≥ ε

}
.

Clearly, Eε is a closed polar set. Define

v =

{
max(u, ε), on Ω,

ε, on (C \ Ω) ∪ (∂Ω \ Eε
)
.

Since v is subharmonic, v = ε, i.e. u ≤ ε.
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Thank you for your attention!
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