Frostman's theorem and applications

Oleg Ivrii

November 16, 2020

Oleg Ivrii Frostman's theorem and applications

≣ ▶

In these slides, we will be following the book of Thomas Ransford, who uses the notation:

$$p_{\mu}(z) = \int_{\mathbb{C}} \log |z - w| d\mu(w).$$

$$I_{\mu}(z) = \int_{\mathbb{C}} \int_{\mathbb{C}} \log |z - w| d\mu(z) d\mu(w).$$

- Potentials are subharmonic functions.
- A set is polar if it only supports measures with energy $-\infty$.
- Equilibrium measure maximizes the energy.

Theorem. Let K be a compact set and $\mu \in \mathcal{M}_{\geq 0}(K)$. **1** For $\zeta_0 \in K$,

$$\liminf_{z\to\zeta_0}p_\mu(z)=\liminf_{z\to\zeta_0,\,z\in K}p_\mu(z).$$

In particular, if

$$\liminf_{z\to\zeta_0,\,z\in K}p_\mu(z)=p_\mu(z_0),$$

then p_{μ} is continuous at ζ_0 .

★週 ▶ ★ 注 ▶ ★ 注 ▶

Case I. If $p_{\mu}(\zeta_0) = -\infty$, then

$$\liminf_{z\to\zeta_0}p_\mu(z)=\liminf_{z\to\zeta_0,\,z\in {\cal K}}p_\mu(z)=-\infty.$$

・ロン ・回 と ・ ヨン ・ ヨン

Case I. If $p_{\mu}(\zeta_0) = -\infty$, then

$$\liminf_{z\to\zeta_0}p_\mu(z)=\liminf_{z\to\zeta_0,\,z\in K}p_\mu(z)=-\infty.$$

Case II. If $p_{\mu}(\zeta_0) > -\infty \implies \mu(\{\zeta_0\}) = 0 \implies \mu(\Delta) < \varepsilon$, where Δ is some ball centered at ζ_0 .

(《圖》 《문》 《문》 - 문

Case I. If $p_{\mu}(\zeta_0) = -\infty$, then

$$\liminf_{z\to\zeta_0}p_\mu(z)=\liminf_{z\to\zeta_0,\,z\in {\mathcal K}}p_\mu(z)=-\infty.$$

Case II. If $p_{\mu}(\zeta_0) > -\infty \implies \mu(\{\zeta_0\}) = 0 \implies \mu(\Delta) < \varepsilon$, where Δ is some ball centered at ζ_0 .

For $z \in \mathbb{C}$,

$$p_{\mu}(z) = p_{\mu}(\zeta) - \int_{\mathcal{K}} \log \left| \frac{\zeta - w}{z - w} \right| d\mu(w).$$

Pick $\zeta \in K$ to minimize dist(z, K) !

白 ト イヨト イヨト

- ~

-

For
$$z \in \mathbb{C}$$
,

$$p_{\mu}(z) = p_{\mu}(\zeta) - \underbrace{\int_{\Delta} \log \left| \frac{\zeta - w}{z - w} \right| d\mu(w)}_{\text{small}} - \underbrace{\int_{K \setminus \Delta} \log \left| \frac{\zeta - w}{z - w} \right| d\mu(w)}_{\text{converges at } z \to \zeta_0}.$$

・ロン ・四と ・ヨン ・ヨン

For
$$z \in \mathbb{C}$$
,

$$p_{\mu}(z) = p_{\mu}(\zeta) - \underbrace{\int_{\Delta} \log \left| \frac{\zeta - w}{z - w} \right| d\mu(w)}_{\text{small}} - \underbrace{\int_{K \setminus \Delta} \log \left| \frac{\zeta - w}{z - w} \right| d\mu(w)}_{\text{converges at } z \to \zeta_0}.$$

Since

$$|\zeta-w| \leq |\zeta-z|+|z-w| \leq 2|z-w|,$$

$$\int_{\Delta} \log \left| \frac{\zeta - w}{z - w} \right| d\mu(w) \le \varepsilon \log 2.$$

Theorem. Let K be a compact set and $\mu \in \mathcal{M}_{\geq 0}(K)$. If $p_{\mu} \geq M$ on K, then $p_{\mu} \geq M$ on all of \mathbb{C} .

・回 ・ ・ ヨ ・ ・ ヨ ・

Theorem. Let K be a compact set and $\mu \in \mathcal{M}_{\geq 0}(K)$. If $p_{\mu} \geq M$ on K, then $p_{\mu} \geq M$ on all of \mathbb{C} .

Proof. Since p_{μ} is harmonic on $\mathbb{C} \setminus K$, the minimum value is achieved on $\partial K \cup \{\infty\}$ in liminf-sense.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem. Let K be a compact set and $\mu \in \mathcal{M}_{\geq 0}(K)$. If $p_{\mu} \geq M$ on K, then $p_{\mu} \geq M$ on all of \mathbb{C} .

Proof. Since p_{μ} is harmonic on $\mathbb{C} \setminus K$, the minimum value is achieved on $\partial K \cup \{\infty\}$ in liminf-sense.

However, for any $\zeta \in \partial K$,

 $\liminf_{z\to\zeta_0}p_\mu(\zeta)\geq M,$

while

$$\lim_{z\to\infty}p_{\mu}(\zeta)=\infty.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. Let $K \subset \mathbb{C}$ be a compact set and ν be an equilibrium measure for K. Then:

- $p_{\nu} \geq I(\nu)$ on \mathbb{C} .
- $p_{\nu} = I(\nu)$ n.e. on K.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. Let $K \subset \mathbb{C}$ be a compact set and ν be an equilibrium measure for K. Then:

*p*_ν ≥ *l*(ν) on C. *p*_ν = *l*(ν) n.e. on *K*.

To prove Frostman's theorem, it suffices to show:

$$K_n = \{ z \in K : p_{\nu}(z) \ge I(\nu) + 1/n \}.$$
 polar?
 $L_n = \{ z \in \text{supp } \nu : p_{\nu}(z) < I(\nu) - 1/n \}.$ empty?

高 とう ヨン うまと

Claim. For any $n = 1, 2, \ldots$, the set

$$K_n = \left\{ z \in K : p_\nu(z) \ge I(\nu) + 1/n \right\}$$

is polar.

・ロン ・回 と ・ ヨ と ・ ヨ と

Claim. For any $n = 1, 2, \ldots$, the set

$$K_n = \left\{z \in K : p_\nu(z) \ge I(\nu) + 1/n\right\}$$

is polar.

Proof. Suppose $\exists \mu \in \mathcal{P}(K_n)$ with finite energy.

白 ト く ヨ ト く ヨ ト

Claim. For any $n = 1, 2, \ldots$, the set

$$K_n = \left\{z \in K : p_\nu(z) \ge I(\nu) + 1/n\right\}$$

is polar.

Proof. Suppose $\exists \mu \in \mathcal{P}(K_n)$ with finite energy. $\exists z_0 \in \text{supp } \nu \text{ s.t. } p_{\nu}(z_0) \leq I(\nu).$

向下 イヨト イヨト

Claim. For any $n = 1, 2, \ldots$, the set

$$K_n = \left\{z \in K : p_\nu(z) \ge I(\nu) + 1/n\right\}$$

is polar.

Proof. Suppose $\exists \mu \in \mathcal{P}(K_n)$ with finite energy. $\exists z_0 \in \text{supp } \nu \text{ s.t. } p_{\nu}(z_0) \leq I(\nu).$ **1** USC $\implies p_{\nu} < I(\nu) + \frac{1}{2n} \text{ on some ball } \overline{\Delta} = \overline{B(z_0, r)}.$

伺 と く き と く き と

Claim. For any $n = 1, 2, \ldots$, the set

$$K_n = \left\{z \in K : p_\nu(z) \ge I(\nu) + 1/n\right\}$$

is polar.

Proof. Suppose $\exists \mu \in \mathcal{P}(K_n)$ with finite energy. $\exists z_0 \in \text{supp } \nu \text{ s.t. } p_{\nu}(z_0) \leq I(\nu).$ **1** USC $\implies p_{\nu} < I(\nu) + \frac{1}{2n}$ on some ball $\overline{\Delta} = \overline{B(z_0, r)}.$ **2** $a = \nu(\overline{\Delta}) > 0.$

伺 と く き と く き と

Define a path of probability measures $[0, \varepsilon) \rightarrow \mathcal{P}(K)$:

$$u_t = \nu + t \begin{cases} \mu, & \text{on } K_n, \\ -\nu/a, & \text{on } \overline{\Delta}, \\ 0, & \text{otherwise.} \end{cases}$$

★週 ▶ ★ 注 ▶ ★ 注 ▶

Define a path of probability measures $[0, \varepsilon) \rightarrow \mathcal{P}(K)$:

$$u_t = \nu + t \begin{cases} \mu, & \text{on } K_n, \\ -\nu/a, & \text{on } \overline{\Delta}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\begin{split} \frac{I(\nu_t) - I(\nu)}{t} &= 2 \bigg[\int_{K_n} p_{\nu}(z) d\mu(z) - \int_{\overline{\Delta}} p_{\nu}(z) \frac{d\nu(z)}{a} \bigg] \\ &\geq 2 \bigg[\bigg(I(\nu) + \frac{1}{n} \bigg) - \bigg(I(\nu) + \frac{1}{2n} \bigg) \bigg] \\ &> 0. \end{split}$$

★週 ▶ ★ 注 ▶ ★ 注 ▶

Claim. For any $n = 1, 2, \ldots$, the set

$$L_n = \left\{ z \in \operatorname{supp}
u : p_
u(z) < I(
u) - 1/n
ight\}$$

is empty.

・ロン ・回 と ・ヨン ・ヨン

Claim. For any $n = 1, 2, \ldots$, the set

$$L_n = ig\{z \in \operatorname{supp}
u : p_
u(z) < I(
u) - 1/nig\}$$

is empty.

Proof. If $\exists z_0 \in L_n$, then by USC

 $p_{\nu}(z) < I(\nu) - 1/n, \qquad \Delta = \overline{B(z_0, r)}, \quad b = \nu(\overline{\Delta}).$

(本間) (本語) (本語) (語)

Claim. For any $n = 1, 2, \ldots$, the set

$$L_n = ig\{z \in \operatorname{supp}
u : p_
u(z) < I(
u) - 1/nig\}$$

is empty.

Proof. If $\exists z_0 \in L_n$, then by USC

$$p_{\nu}(z) < I(\nu) - 1/n, \qquad \Delta = \overline{B(z_0, r)}, \quad b = \nu(\overline{\Delta}).$$

By the first part of the proof,

$$I(\nu) = \int_{K \cap \overline{\Delta}} p_{\nu} d\nu + \int_{K \setminus \overline{\Delta}} p_{\nu} d\nu < I(\nu).$$

同 と く き と く き と

Theorem. Suppose $\{v_n\} \subset sh(\Omega)$ is locally bounded above.

Let $u = \sup v_n$

同 ト く ヨ ト く ヨ ト

• 3 > 1

Theorem. Suppose $\{v_n\} \subset \operatorname{sh}(\Omega)$ is locally bounded above. Let $u = \sup v_n$ and u^* be its USC-regularization. Then, $u^* \in \operatorname{sh}(\Omega)$

同 ト イヨ ト イヨト

Then, $u^* \in sh(\Omega)$ and $\{z \in \Omega : u(z) < u^*(z)\}$ is polar.

向下 イヨト イヨト

Then, $u^* \in sh(\Omega)$ and $\{z \in \Omega : u(z) < u^*(z)\}$ is polar.

Remark 1. Only the last assertion is difficult.

• 3 > 1

Then, $u^* \in sh(\Omega)$ and $\{z \in \Omega : u(z) < u^*(z)\}$ is polar.

Remark 1. Only the last assertion is difficult.

Remark 2. One can also take lim sup instead of sup:

$$\limsup u_n = \inf_n \left(\sup_{m > n} u_m \right).$$

To show that the set $\{z : u(z) < u^*(z)\}$ is polar, it suffices to prove:

Claim. For any disk $\overline{\Delta} \subset \Omega$ and $\beta \in \mathbb{Q}$, the set

$$E = \{z \in \Delta : u(z) \le \beta < u^*(z)\}$$

is polar.

向下 イヨト イヨト

To show that the set $\{z : u(z) < u^*(z)\}$ is polar, it suffices to prove:

Claim. For any disk $\overline{\Delta} \subset \Omega$ and $\beta \in \mathbb{Q}$, the set

$$E = \{z \in \Delta : u(z) \le \beta < u^*(z)\}$$

is polar.

Proof (by contradiction). If *E* is not polar, it contains a compact subset $K \subset \Delta$ with a non-trivial equilibrium measure ν .

向下 イヨト イヨト

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

3

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

For each *n*, $u_n - q$ is subharmonic on $\Delta \setminus K$,

イロト イヨト イヨト イヨト

2

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

For each *n*, $u_n - q$ is subharmonic on $\Delta \setminus K$,

and ≤ 0 in the lim sup-sense on $\partial(\Delta \setminus K)$.

(4回) (4回) (4回)

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

For each *n*, $u_n - q$ is subharmonic on $\Delta \setminus K$,

and ≤ 0 in the lim sup-sense on $\partial(\Delta \setminus K)$.

 $\implies u_n \leq q \text{ on } \Delta \setminus K$, and thus on all on Δ . (C large)

(1日) (日) (日)

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

For each *n*, $u_n - q$ is subharmonic on $\Delta \setminus K$,

and ≤ 0 in the lim sup-sense on $\partial(\Delta \setminus K)$.

 $\implies u_n \leq q \text{ on } \Delta \setminus K \text{, and thus on all on } \Delta. \qquad (C \text{ large})$

Since $q \in sh(\Delta)$, $u_n^* \leq q$ on Δ .

Brelot-Cartan Theorem

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

For each *n*, $u_n - q$ is subharmonic on $\Delta \setminus K$,

and ≤ 0 in the lim sup-sense on $\partial(\Delta \setminus K)$.

 $\implies u_n \leq q \text{ on } \Delta \setminus K \text{, and thus on all on } \Delta. \qquad (C \text{ large})$

Since $q \in sh(\Delta)$, $u_n^* \leq q$ on Δ .

 $\implies q > \beta$ on K, and hence $\implies p_{\nu} > I(\nu)$ on K.

Brelot-Cartan Theorem

Form the subharmonic function $q = C(\underbrace{p_{\nu} - I(\nu)}_{>0 \text{ on } \partial \Delta}) + \beta.$

For each *n*, $u_n - q$ is subharmonic on $\Delta \setminus K$,

and ≤ 0 in the lim sup-sense on $\partial(\Delta \setminus K)$.

 $\implies u_n \leq q \text{ on } \Delta \setminus K \text{, and thus on all on } \Delta. \qquad (C \text{ large})$

Since $q \in sh(\Delta)$, $u_n^* \leq q$ on Δ .

 $\implies q > \beta$ on K, and hence $\implies p_{\nu} > I(\nu)$ on K.

This contradicts Frostman's theorem " $p_{\nu} = I(\nu)$ n.e. on K."

Theorem. Let $u \in sh(\Omega)$. The set $E = \{z : u(z) = -\infty\}$ is a G_{δ} polar set.

イロン イヨン イヨン イヨン

æ

Theorem. Let $u \in sh(\Omega)$. The set $E = \{z : u(z) = -\infty\}$ is a G_{δ} polar set.

Proof. Since

$$E=\bigcap_{n=1}^{\infty}\{z:u(z)<-n\},\$$

E is G_{δ} .

・ 御 と ・ 臣 と ・ を 臣 と

æ

Theorem. Let $u \in sh(\Omega)$. The set $E = \{z : u(z) = -\infty\}$ is a G_{δ} polar set.

Proof. Since
$$E = \bigcap_{n=1}^{\infty} \{z : u(z) < -n\},$$

E is G_{δ} .

Let

$$v(z) = \limsup_{n \to \infty} \frac{u(z)}{n} = \begin{cases} 0, & z \in \Omega \setminus E, \\ -\infty, & z \in E. \end{cases}$$

Since $v^*(z) = 0$, E is polar.

(1日) (日) (日)

3

同 と く き と く き と

Write $E = \bigcap_{n=1}^{\infty} E_n$ as a decreasing intersection of closed neighbourhoods with $I(E_n) < -2^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Write $E = \bigcap_{n=1}^{\infty} E_n$ as a decreasing intersection of closed neighbourhoods with $I(E_n) < -2^n$.

Let ν_n be the equilibrium measure on E_n .

高 とう ヨン うまと

Write $E = \bigcap_{n=1}^{\infty} E_n$ as a decreasing intersection of closed neighbourhoods with $I(E_n) < -2^n$.

Let ν_n be the equilibrium measure on E_n .

Set

$$u(z)=\sum 2^{-n}p_{\nu_n}(z).$$

伺 と く き と く き と

Theorem. Let $u \in sh(\Omega \setminus E)$ where $E \subset \Omega$ be a closed polar set. If u is locally bounded above, then u extends to $sh(\Omega)$.

向下 イヨト イヨト

Theorem. Let $u \in sh(\Omega \setminus E)$ where $E \subset \Omega$ be a closed polar set. If u is locally bounded above, then u extends to $sh(\Omega)$.

Remark. The extension is unique since E has measure 0.

Theorem. Let $u \in sh(\Omega \setminus E)$ where $E \subset \Omega$ be a closed polar set. If u is locally bounded above, then u extends to $sh(\Omega)$.

Remark. The extension is unique since E has measure 0.

Proof. We extend u to E by upper semi-continuity:

$$u(w) = \limsup_{z \to w} u(z).$$

Let $\overline{\Delta} = \overline{B(z_0, r)} \subset \Omega$ be a ball and *h* is a harmonic function on $\overline{\Delta}$ such that $u \leq h$ on $\partial \Delta$ in limsup-sense. To show that $u \leq h$ in Δ , note that

$$u(z) - \varepsilon v_E(z) \leq h(z), \qquad \varepsilon > 0.$$

向下 イヨト イヨト

Theorem 1. Suppose $u : \mathbb{C} \to [0, \pi]$ is a subharmonic function which is bounded above. Then, it is constant.

周▶ ▲ 臣▶

< ∃ >

Theorem 1. Suppose $u : \mathbb{C} \to [0, \pi]$ is a subharmonic function which is bounded above. Then, it is constant.

Theorem 2. More generally, if $u : \mathbb{C} \to [-\infty, \infty)$ satisfies

$$\limsup_{z\to\infty}\frac{u(z)}{\log|z|}=0,$$

then it is constant.

向下 イヨト イヨト

Theorem 1. Suppose $u : \mathbb{C} \to [0, \pi]$ is a subharmonic function which is bounded above. Then, it is constant.

Theorem 2. More generally, if $u : \mathbb{C} \to [-\infty, \infty)$ satisfies

$$\limsup_{z\to\infty}\frac{u(z)}{\log|z|}=0,$$

then it is constant.

Recall that $A(r) = \frac{1}{2\pi} \int_{|z|=r} f(re^{i\theta}) d\theta$ is an increasing function of r. It is actually logarithmically convex, i.e. a convex function of log r. Hint: Use the decomposition $u = p_{\mu} + h$.

Theorem 1^{*}. Suppose $u : \mathbb{C} \setminus E \to [-\infty, \infty)$ is a subharmonic function which is bounded above, where *E* is a polar set. Then, it is constant.

Theorem 2^{*}. More generally, if $u : \mathbb{C} \setminus E \to [-\infty, \infty)$ satisfies

$$\limsup_{z\to\infty}\frac{u(z)}{\log|z|}=0,$$

then it is constant.

伺 とう ヨン うちょう

(4回) (4回) (4回)

Proof. For $\varepsilon > 0$, define

$$E_{\varepsilon} = \Big\{ \zeta \in \partial \Omega \setminus \{\infty\} : \limsup_{z \to \zeta} u(z) \ge \varepsilon \Big\}.$$

Clearly, E_{ε} is a closed polar set.

伺 とう ヨン うちょう

Proof. For $\varepsilon > 0$, define

$$E_{\varepsilon} = \Big\{ \zeta \in \partial \Omega \setminus \{\infty\} : \limsup_{z \to \zeta} u(z) \ge \varepsilon \Big\}.$$

Clearly, E_{ε} is a closed polar set. Define

$$\mathbf{v} = egin{cases} \mathsf{max}(u,arepsilon), & ext{on } \Omega, \ arepsilon, & ext{on } (\mathbb{C}\setminus\Omega)\cup(\partial\Omega\setminus E_arepsilon). \end{cases}$$

回り くほり くほり ……ほ

Proof. For $\varepsilon > 0$, define

$$E_{\varepsilon} = \Big\{ \zeta \in \partial \Omega \setminus \{\infty\} : \limsup_{z \to \zeta} u(z) \ge \varepsilon \Big\}.$$

Clearly, E_{ε} is a closed polar set. Define

$$u = \begin{cases}
\max(u, \varepsilon), & \text{on } \Omega, \\
\varepsilon, & \text{on } (\mathbb{C} \setminus \Omega) \cup (\partial \Omega \setminus E_{\varepsilon}).
\end{cases}$$

Since v is subharmonic, $v = \varepsilon$,

通 と く ヨ と く ヨ と

Proof. For $\varepsilon > 0$, define

$$E_{\varepsilon} = \Big\{ \zeta \in \partial \Omega \setminus \{\infty\} : \limsup_{z \to \zeta} u(z) \ge \varepsilon \Big\}.$$

Clearly, E_{ε} is a closed polar set. Define

$$\nu = \begin{cases} \max(u, \varepsilon), & \text{on } \Omega, \\ \varepsilon, & \text{on } (\mathbb{C} \setminus \Omega) \cup (\partial \Omega \setminus E_{\varepsilon}). \end{cases}$$

Since v is subharmonic, $v = \varepsilon$, i.e. $u \le \varepsilon$.

通 と く ヨ と く ヨ と

Thank you for your attention!

Oleg Ivrii Frostman's theorem and applications

< ∃ >