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Sobolev Spaces

Let Ω ⊂ Rn. The Sobolev space W k,p(Ω) consists of functions

with k distributional derivatives in Lp:

‖f ‖W k,p :=
(
‖f ‖pp + ‖Df ‖pp + · · ·+ ‖Dk f ‖pp

)1/p
.

It is easy to see that W k,p(Ω) is a Banach space.

Lemma. The space C∞(Ω) is dense in W k,p(Ω).
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Main theorems

Sobolev embedding theorem. Suppose u ∈W 1,p(Ω) where Ω is a

bounded domain with C 1 boundary.

If 1 ≤ p < n then u ∈ Lp
∗
(Ω) where 1/p∗ = 1/p − 1/n.

If p < n ≤ ∞ then u ∈ C 1−n/p(Ω).

If p = n then u ∈ BMO.

Sobolev compactness theorem. For 1 ≤ q < p∗, the space W 1,q

sits compactly in Lp, that is, any bounded sequence um in W 1,q

has a subsequence which converges in Lp.
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Density of smooth functions

Corollary. If Ω has C 1 boundary, then C∞(Ω) is dense in W k,p(Ω).

Warning 1. The above theorem fails for arbitrary domains Ω.

Warning 2. C∞c (Ω) is usually not dense in W k,p(Ω).

It really suffices to treat the case when Ω = Hn = {xn > 0} and

then use a partition of unity argument.
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Extensions

Theorem. Any function in W 1,p(Hn) extends to a function in

W 1,p(Rn). The extension operator E : W 1,p(Hn)→W 1,p(Rn) can

be chosen to be linear and bounded.

Proof. Suppose u ∈ C 1(Hn). On the lower half plane, define

Eu(x) = −3u(x1, x2, . . . , xn−1) + 4u
(
x1, x2, . . . , xn−1,−

xn
2

)
.

Then, Eu ∈ C 1(Rn) with ‖Eu‖W 1,p(Rn) . ‖u‖W 1,p .

This crucial estimate allows us to extend Eu to W 1,p(Hn) by

continuity. By a partition of unity argument, this construction

extends to domains bounded by C 1 curves.
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Traces

Theorem. Suppose Ω is a bounded domain with C 1 boundary. Any

function in W 1,p(Ω) restricts to a function in Lp(∂Ω):

‖f ‖Lp(∂Ω) . ‖f ‖W 1,p(Ω).

Proof. By a partition of unity argument, we can transfer to the

upper half-space.

Suppose u ∈ C 1(Rn) and ζ(x) is a bump function supported in a

ball B(w , 1), w ∈ Rn−1. By Stokes theorem,

ˆ
Rn−1

|u|pζ dx ′ =

ˆ
B+(w ,1)

∂xn

(
|u|pζ

)
dx . ‖u‖W 1,p(B+(w ,1)).
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Trace zero functions

Suppose Ω is a bounded domain with C 1 boundary. Let W 1,p
0 (Ω)

be the closure of C∞c (Ω) in W 1,p.

Theorem. W 1,p
0 is precisely the set of functions of trace 0 on ∂Ω.

Corollary. In particular, a function in W 1,p
0 (Ω) extends by 0 to a

function in W 1,p
0 (Rn).
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Sobolev inequalities in dimension 1

Theorem. Suppose 1 < p <∞. If f ∈W 1,p then f ∈ C 1−1/p.

Proof. Suppose f ∈ C∞. By the fundamental theorem of calculus,

|f (y)− f (x)| ≤
ˆ y

x
|f ′(y)|dy ≤

(ˆ y

x
|f ′(y)|p

)1/p

|y − x |1/q.

Since 1/q = 1− 1/p, we see that

‖f ‖C1−1/p . ‖f ‖W 1,p .

Since C∞(R) is dense in W 1,p, the inclusion map extends to W 1,p.
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Sobolev inequalities in dimension 1

Theorem. Suppose f ∈W 1,1. Then, f ∈ BMO.

Proof. By the fundamental theorem of calculus,

|f (y)− f (x)| ≤
ˆ y

x
|f ′(t)|dt

Integrating over y , we get

 x+h

x−h
|f (y)− f (x)|dy ≤

 x+h

x−h
|f ′(t)|

(
h − |x − t|

)
dt

≤ 1

2

ˆ x+h

x−h
|f ′(t)|dt

≤ 1

2
‖f ‖W 1,1(R).
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Sobolev inequalities: 1 ≤ p < n

Theorem. Suppose 1 ≤ p < n. For 1/p∗ = 1/p − 1/n, then

‖u‖Lp∗ . ‖Du‖Lp

for u ∈ C∞c (Rn).

Proof (p = 1). By the fundamental theorem of calculus,

|u(x1, x2)| ≤
ˆ
R
|Du(y1, x2)|dy1.

Switching the roles of the two variables and multiplying, we get

|u(x)|2 ≤
(ˆ

R
|Du(y1, x2)|dy1

)(ˆ
R
|Du(x1, y2)|dy2

)
.
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Sobolev inequalities: 1 ≤ p < n

Integrating over x1:

ˆ
R
|u|2dx1 ≤

(ˆ
R
|Du|dy1

) ˆ
R

ˆ
R
|Du(x1, y2)|dy2dx1.

Integrating over x2:

ˆ
R2

|u|2dx ≤
ˆ
R

ˆ
R
|Du(x1, y2)|dy2dx1

ˆ
R

ˆ
R
|Du(x1, y2)|dy2dx1.

The RHS is of course ‖Du‖2
L1(R2).
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Sobolev inequalities: 1 ≤ p < n

For 1 < p < n, we apply Sobolev’s inequality to |u|γ with γ > 1 to

be chosen.(ˆ
Rn

|u|
γn
n−1 dx

) n−1
n

≤
ˆ
Rn

∣∣D|u|γ∣∣dx = γ

ˆ
Rn

|u|γ−1|Du|dx

Applying Hölder’s inequality, we get

≤ γ
(ˆ

Rn

|u|(γ−1) p
p−1 dx

) p−1
p
(ˆ

Rn

|Du|pdx
) 1

p

Choose γ s.t. γn
n−1 = (γ − 1) p

p−1 ⇐⇒ γ = p(n−1)
n−p > 1.

(ˆ
Rn

|u|
γn
n−1 dx

) n−1
n
− p−1

p

.

(ˆ
Rn

|Du|pdx
) 1

p

.
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Sobolev inequalities: p < n <∞

Lemma. For u ∈W 1,p,

 
B(x ,r)

|u(y)− u(x)|dy .
ˆ
B(x ,r)

|Du(y)|
|y − x |n−1

dy .

If n < p <∞, we can apply Hölder’s inequality:

RHS ≤
(ˆ

B(x ,r)

dy

|y − x |(n−1) p
p−1

) p−1
p

‖Du‖Lp . r1− n
p ‖Du‖Lp .

Proof. For ξ ∈ B(x , r),

|u(ξ)− u(x)| ≤
ˆ ξ

x
|Du|,

where we integrate over a straight line from x to ξ.
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Sobolev inequalities: p < n <∞

Theorem. Any u ∈W 1,p with n < p <∞ is bounded:

‖u‖L∞ ≤ C‖u‖W 1,p .

Proof. By the above lemma,

|u(x)| ≤
 
B(x ,1)

|u(x)− u(y)|dy +

 
B(x ,1)

|u(y)|dy

. ‖Du‖Lp + ‖u‖Lp .
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Sobolev inequalities: p < n <∞

Theorem. Any u ∈W 1,p with n < p <∞ is Hölder continuous:

‖u‖
C

1− n
p
≤ C‖u‖W 1,p .

Proof. If r = |x − y | and W = B(x , r) ∩ B(y , r),

|u(x)− u(y)| ≤
 
W
|u(x)− u(z)|dy +

 
W
|u(y)− u(z)|dy

≤
 
B(x ,r)

|u(x)− u(z)|dy +

 
B(y ,r)

|u(y)− u(z)|dy

. r1− n
p ‖Du‖Lp .
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Sobolev compactness

Theorem. Suppose Ω ⊂ Rn is a bounded domain with C 1

boundary. If 1 ≤ p < n and q < p∗, the inclusion

i : W 1,q(Ω) ⊂ Lp(Ω)

is compact.

In other words, given a bounded sequence {um} ⊂W 1,q, we can

extract a subsequence that converges in Lp(Ω).

We may assume that each function um is defined on all of Rn,

‖um‖W 1,q(Rn) < C are uniformly bounded and that um are

supported on a fixed ball B(0,R) ⊃ Ω.
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Sobolev compactness

Set uεm = ηε ∗ um. It is easy to see that for each m = 1, 2, . . . ,

uεm → um, in Lq(B(0,R))

as ε→ 0.

We claim that the convergence is uniform in ε, i.e.

sup
m
‖uεm − um‖Lq(B(0,R)) → 0, as ε→ 0.

By interpolation, we only need to show that

sup
m
‖uεm − um‖L1(B(0,R)) → 0, as ε→ 0.
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Sobolev compactness

Claim. Suppose v(x) ∈W 1,p
0 (B(0,R)) is a smooth function. Then,

ˆ
B(0,R)

|v ε − v | ≤ ε
ˆ
B(0,R)

|Dv |.

Proof. For ξ ∈ B(x , r),

|v(ξ)− v(x)| ≤
ˆ ξ

x
|Du|,

where we integrate over a straight line from x to ξ.
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Sobolev embedding: an improvement

Theorem. Suppose u ∈ H1(D). Then h = u|∂D ∈ H1/2(∂D).

Conversely, any function in H1/2(∂D) is the trace of a unique

harmonic function u ∈ H1(D).

Proof. Suppose h(θ) =
∑

ane
inθ with

∑
|n||an|2 <∞. Set

u(z) =
∑
n≥0

anz
n +

∑
n<0

anz
n.

The function u is harmonic and

‖∇u‖2
L2(D) = π

∑
n 6=0

|n||an|2.
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Dirichlet’s principle

Given h ∈ C 1(∂D), consider all H1(D) = W 1,2(D) functions on the

unit disk whose Sobolev trace is u|∂D.

Problem. Minimize the energy E [u] =
´
D |∇u|

2dx .

Theorem. The energy minimizer exists, unique and is harmonic.

Uniqueness. If u, v are two minimizers then t → E [tu + (1− t)v ]

is strictly convex on [0, 1].

Minimizers are harmonic: If φ ∈ C∞c (D), then E [u + tφ] ≤ E [u].

This shows that
´
D∇u · ∇φ = 0 for all φ, or −

´
D u ·∆φ = 0.
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Dirichlet’s principle

Existence: If un is a bounded sequence in W 1,2(D), there exists a

subsequence which converges strongly in L2(Ω). We will show that

the energy is lower continuous:

E [u] ≤ lim inf
n→∞

E [un].

Suppose Φ ∈ C∞(D,Rn).∣∣∣∣ˆ
D
un div Φ

∣∣∣∣ =

∣∣∣∣ˆ
D
∇un · Φ

∣∣∣∣ ≤ E [un] · ‖Φ‖L2(Ω).

Taking n→∞,∣∣∣∣ˆ
D
u div Φ

∣∣∣∣ ≤ (lim inf
n→∞

E [un]
)
· ‖Φ‖L2(D).
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Dirichlet’s principle

Since C∞(D,Rn) is dense in L2(D,Rn), the linear functional

Φ→
ˆ
D
u div Φ

extends to L2(D,Rn),

=⇒ ∃G ∈ L2(D,Rn) s.t.

ˆ
D
u div Φ =

ˆ
G · Φ.

Therefore, u ∈W 1,q
0 with ∆u = −G . Then,

E [u] = ‖G‖2
L2(D) ≤ lim inf

n→∞
E [un].
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An obstacle problem

Let Ω be a smoothly bounded domain. For u ∈ L1(Ω), define

Su = {v ∈W 1,2
0 (Ω), v ≥ u a.e. in Ω}.

If Su is not empty, then infv∈Sµ E [v ] is achieved by the smallest

superharmonic function in Su.

Existence and unique proceed as before.
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Why is ũ superharmonic?

Euler-Lagrange equation. For any v ∈ Su, we have

ˆ
Ω
∇ũ · ∇(v − ũ) ≥ 0.

To see this, note that the derivative function

t →
ˆ

Ω
|∇(tv + (1− t)ũ)|2, t ∈ [0, 1].

is non-negative at t = 0.

To see that ũ is subharmonic, plug in v = ũ + ϕ where ϕ ∈ C∞c is

a non-negative function.
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Why is ũ minimal?

Suppose w ∈ Su. We want to show that (ũ − w)+ = 0.

ˆ
Ω
|∇(ũ − w)+|2 =

ˆ
Ω
∇(ũ − w)∇(ũ − w)+

=

ˆ
Ω
∇ũ · ∇(ũ − w)+ −

ˆ
Ω
∇w · ∇(ũ − w)+.

We will show that both terms in the RHS are ≤ 0:

ˆ
Ω
∇ũ · ∇(ũ − w)+ = −

ˆ
Ω
∇ũ ·

(
min{w , ũ} − ũ

)
≤ 0.
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=

ˆ
Ω
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Thank you for your attention!
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