Sobolev spaces

Oleg Ivrii

November 23, 2020

・ロト ・回ト ・ヨト

< ≣⇒

Let $\Omega \subset \mathbb{R}^n$. The Sobolev space $W^{k,p}(\Omega)$ consists of functions with k distributional derivatives in L^p :

$$\|f\|_{W^{k,p}} := \left(\|f\|_p^p + \|Df\|_p^p + \dots + \|D^k f\|_p^p\right)^{1/p}.$$

It is easy to see that $W^{k,p}(\Omega)$ is a Banach space.

Lemma. The space $C^{\infty}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

• If $1 \le p < n$ then $u \in L^{p^*}(\Omega)$ where $1/p^* = 1/p - 1/n$.

・ 同・ ・ ヨ・

- If $1 \le p < n$ then $u \in L^{p^*}(\Omega)$ where $1/p^* = 1/p 1/n$.
- If $p < n \le \infty$ then $u \in C^{1-n/p}(\overline{\Omega})$.

- If $1 \le p < n$ then $u \in L^{p^*}(\Omega)$ where $1/p^* = 1/p 1/n$.
- If $p < n \le \infty$ then $u \in C^{1-n/p}(\overline{\Omega})$.
- If p = n then $u \in BMO$.

• If $1 \le p < n$ then $u \in L^{p^*}(\Omega)$ where $1/p^* = 1/p - 1/n$.

• If
$$p < n \le \infty$$
 then $u \in C^{1-n/p}(\overline{\Omega})$.

• If
$$p = n$$
 then $u \in BMO$.

Sobolev compactness theorem. For $1 \le q < p^*$, the space $W^{1,q}$ sits compactly in L^p ,

• If $1 \le p < n$ then $u \in L^{p^*}(\Omega)$ where $1/p^* = 1/p - 1/n$.

• If
$$p < n \leq \infty$$
 then $u \in C^{1-n/p}(\overline{\Omega})$.

• If
$$p = n$$
 then $u \in BMO$.

Sobolev compactness theorem. For $1 \le q < p^*$, the space $W^{1,q}$ sits compactly in L^p , that is, any bounded sequence u_m in $W^{1,q}$ has a subsequence which converges in L^p .

Corollary. If Ω has C^1 boundary, then $C^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$.

Warning 1. The above theorem fails for arbitrary domains Ω .

Warning 2. $C_c^{\infty}(\Omega)$ is usually not dense in $W^{k,p}(\Omega)$.

It really suffices to treat the case when $\Omega = \mathbb{H}^n = \{x_n > 0\}$ and then use a partition of unity argument.

Extensions

Theorem. Any function in $W^{1,p}(\mathbb{H}^n)$ extends to a function in $W^{1,p}(\mathbb{R}^n)$. The extension operator $E: W^{1,p}(\mathbb{H}^n) \to W^{1,p}(\mathbb{R}^n)$ can be chosen to be linear and bounded.

Proof. Suppose $u \in C^1(\overline{\mathbb{H}^n})$. On the lower half plane, define

$$Eu(x) = -3u(x_1, x_2, \ldots, x_{n-1}) + 4u\left(x_1, x_2, \ldots, x_{n-1}, -\frac{x_n}{2}\right).$$

Then, $Eu \in C^1(\mathbb{R}^n)$ with $||Eu||_{W^{1,p}(\mathbb{R}^n)} \lesssim ||u||_{W^{1,p}}$.

This **crucial** estimate allows us to extend Eu to $W^{1,p}(\mathbb{H}^n)$ by continuity. By a partition of unity argument, this construction extends to domains bounded by C^1 curves.

▶ ▲圖▶ ▲圖▶ ▲圖▶

Theorem. Suppose Ω is a bounded domain with C^1 boundary. Any function in $W^{1,p}(\Omega)$ restricts to a function in $L^p(\partial\Omega)$:

$$\|f\|_{L^p(\partial\Omega)} \lesssim \|f\|_{W^{1,p}(\Omega)}.$$

Proof. By a partition of unity argument, we can transfer to the upper half-space.

Suppose $u \in C^1(\mathbb{R}^n)$ and $\zeta(x)$ is a bump function supported in a ball B(w, 1), $w \in \mathbb{R}^{n-1}$. By Stokes theorem,

$$\int_{\mathbb{R}^{n-1}} |u|^p \zeta \ dx' = \int_{B^+(w,1)} \partial_{x_n} \Big(|u|^p \zeta \Big) dx \lesssim \|u\|_{W^{1,p}(B^+(w,1))}.$$

Suppose Ω is a bounded domain with C^1 boundary. Let $W_0^{1,p}(\Omega)$ be the closure of $C_c^{\infty}(\Omega)$ in $W^{1,p}$.

Theorem. $W_0^{1,p}$ is precisely the set of functions of trace 0 on $\partial\Omega$.

Suppose Ω is a bounded domain with C^1 boundary. Let $W_0^{1,p}(\Omega)$ be the closure of $C_c^{\infty}(\Omega)$ in $W^{1,p}$.

Theorem. $W_0^{1,p}$ is precisely the set of functions of trace 0 on $\partial\Omega$.

Corollary. In particular, a function in $W_0^{1,p}(\Omega)$ extends by 0 to a function in $W_0^{1,p}(\mathbb{R}^n)$.

Proof. Suppose $f \in C^{\infty}$. By the fundamental theorem of calculus,

$$|f(y) - f(x)| \leq \int_x^y |f'(y)| dy \leq \left(\int_x^y |f'(y)|^p\right)^{1/p} |y - x|^{1/q}.$$

Proof. Suppose $f \in C^{\infty}$. By the fundamental theorem of calculus,

$$|f(y) - f(x)| \leq \int_x^y |f'(y)| dy \leq \left(\int_x^y |f'(y)|^p\right)^{1/p} |y - x|^{1/q}.$$

Since 1/q = 1 - 1/p, we see that

 $\|f\|_{C^{1-1/p}} \lesssim \|f\|_{W^{1,p}}.$

Proof. Suppose $f \in C^{\infty}$. By the fundamental theorem of calculus,

$$|f(y) - f(x)| \leq \int_x^y |f'(y)| dy \leq \left(\int_x^y |f'(y)|^p\right)^{1/p} |y - x|^{1/q}.$$

Since 1/q = 1 - 1/p, we see that

$$\|f\|_{C^{1-1/p}} \lesssim \|f\|_{W^{1,p}}.$$

Since $C^{\infty}(\mathbb{R})$ is dense in $W^{1,p}$, the inclusion map extends to $W^{1,p}$.

Sobolev inequalities in dimension 1

Theorem. Suppose $f \in W^{1,1}$. Then, $f \in BMO$.

▲ □ ► ▲ □ ►

문 문 문

Sobolev inequalities in dimension 1

Theorem. Suppose $f \in W^{1,1}$. Then, $f \in BMO$.

Proof. By the fundamental theorem of calculus,

$$|f(y)-f(x)| \leq \int_x^y |f'(t)| dt$$

Sobolev inequalities in dimension 1

Theorem. Suppose $f \in W^{1,1}$. Then, $f \in BMO$.

Proof. By the fundamental theorem of calculus,

$$|f(y)-f(x)| \leq \int_x^y |f'(t)| dt$$

Integrating over y, we get

$$\begin{split} \int_{x-h}^{x+h} |f(y) - f(x)| dy &\leq \int_{x-h}^{x+h} |f'(t)| (h - |x - t|) dt \\ &\leq \frac{1}{2} \int_{x-h}^{x+h} |f'(t)| dt \\ &\leq \frac{1}{2} \|f\|_{W^{1,1}(\mathbb{R})}. \end{split}$$

Theorem. Suppose $1 \le p < n$. For $1/p^* = 1/p - 1/n$, then

$\|u\|_{L^{p^*}} \lesssim \|Du\|_{L^p}$

for $u \in C^{\infty}_{c}(\mathbb{R}^{n})$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem. Suppose
$$1 \le p < n$$
. For $1/p^* = 1/p - 1/n$, then $\|u\|_{L^{p^*}} \lesssim \|Du\|_{L^p}$

for $u \in C^{\infty}_{c}(\mathbb{R}^{n})$.

Proof (p = 1). By the fundamental theorem of calculus,

$$|u(x_1,x_2)| \leq \int_{\mathbb{R}} |Du(y_1,x_2)| dy_1.$$

Switching the roles of the two variables and multiplying, we get

$$|u(x)|^2 \leq \left(\int_{\mathbb{R}} |Du(y_1, x_2)| dy_1\right) \left(\int_{\mathbb{R}} |Du(x_1, y_2)| dy_2\right).$$

イロン イボン イヨン イヨン 三日

Integrating over x_1 :

$$\int_{\mathbb{R}} |u|^2 dx_1 \leq \left(\int_{\mathbb{R}} |Du| dy_1\right) \int_{\mathbb{R}} \int_{\mathbb{R}} |Du(x_1, y_2)| dy_2 dx_1.$$

Integrating over x_2 :

$$\int_{\mathbb{R}^2} |u|^2 dx \leq \int_{\mathbb{R}} \int_{\mathbb{R}} |Du(x_1, y_2)| dy_2 dx_1 \int_{\mathbb{R}} \int_{\mathbb{R}} |Du(x_1, y_2)| dy_2 dx_1.$$

The RHS is of course $||Du||^2_{L^1(\mathbb{R}^2)}$.

⊡ ▶ € ▶

For $1 , we apply Sobolev's inequality to <math>|u|^{\gamma}$ with $\gamma > 1$ to be chosen.

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}} \leq \int_{\mathbb{R}^n} |D|u|^{\gamma} |dx = \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |Du| dx$$

イロト イヨト イヨト イヨト

3

For $1 , we apply Sobolev's inequality to <math>|u|^{\gamma}$ with $\gamma > 1$ to be chosen.

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}} \leq \int_{\mathbb{R}^n} |D|u|^{\gamma} |dx = \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |Du| dx$$

Applying Hölder's inequality, we get

$$\leq \gamma \left(\int_{\mathbb{R}^n} |u|^{(\gamma-1)\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |Du|^p dx \right)^{\frac{1}{p}}$$

・回 ・ ・ ヨ ・ ・ ヨ ・

2

For $1 , we apply Sobolev's inequality to <math>|u|^{\gamma}$ with $\gamma > 1$ to be chosen.

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}} \leq \int_{\mathbb{R}^n} |D|u|^{\gamma} |dx = \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |Du| dx$$

Applying Hölder's inequality, we get

$$\leq \gamma \left(\int_{\mathbb{R}^n} |u|^{(\gamma-1)\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |Du|^p dx \right)^{\frac{1}{p}}$$

Choose γ s.t. $\frac{\gamma n}{n-1} = (\gamma - 1) \frac{p}{p-1} \iff \gamma = \frac{p(n-1)}{n-p} > 1.$

$$\left(\int_{\mathbb{R}^n}|u|^{\frac{\gamma n}{n-1}}dx\right)^{\frac{n-1}{n}-\frac{p-1}{p}}\lesssim \left(\int_{\mathbb{R}^n}|Du|^pdx\right)^{\frac{1}{p}}.$$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Sobolev inequalities: $p < n < \infty$

Lemma. For $u \in W^{1,p}$,

$$\int_{B(x,r)} |u(y)-u(x)| dy \lesssim \int_{B(x,r)} \frac{|Du(y)|}{|y-x|^{n-1}} dy.$$

Sobolev inequalities: $p < n < \infty$

Lemma. For $u \in W^{1,p}$,

$$\int_{B(x,r)} |u(y)-u(x)|dy \lesssim \int_{B(x,r)} \frac{|Du(y)|}{|y-x|^{n-1}}dy.$$

If n , we can apply Hölder's inequality:

$$\mathsf{RHS} \leq \left(\int_{B(x,r)} \frac{dy}{|y-x|^{(n-1)\frac{p}{p-1}}} \right)^{\frac{p-1}{p}} \|Du\|_{L^p} \lesssim r^{1-\frac{n}{p}} \|Du\|_{L^p}.$$

▲圖▶ ▲屋▶ ▲屋▶

2

Sobolev inequalities: $p < n < \infty$

Lemma. For $u \in W^{1,p}$,

$$\int_{B(x,r)} |u(y)-u(x)|dy \lesssim \int_{B(x,r)} \frac{|Du(y)|}{|y-x|^{n-1}}dy.$$

If n , we can apply Hölder's inequality:

$$\mathsf{RHS} \leq \left(\int_{B(x,r)} \frac{dy}{|y-x|^{(n-1)\frac{p}{p-1}}} \right)^{\frac{p-1}{p}} \|Du\|_{L^p} \lesssim r^{1-\frac{n}{p}} \|Du\|_{L^p}.$$

Proof. For $\xi \in B(x, r)$,

$$|u(\xi)-u(x)|\leq \int_x^\xi |Du|,$$

where we integrate over a straight line from x to ξ .

Theorem. Any $u \in W^{1,p}$ with n is bounded:

$$\|u\|_{L^{\infty}}\leq C\|u\|_{W^{1,p}}.$$

Proof. By the above lemma,

$$egin{aligned} |u(x)| &\leq \int_{B(x,1)} |u(x) - u(y)| dy + \int_{B(x,1)} |u(y)| dy \ &\lesssim \|Du\|_{L^p} + \|u\|_{L^p}. \end{aligned}$$

Theorem. Any $u \in W^{1,p}$ with n is Hölder continuous:

$$||u||_{C^{1-\frac{n}{p}}} \leq C ||u||_{W^{1,p}}.$$

Proof. If r = |x - y| and $W = B(x, r) \cap B(y, r)$,

$$\begin{aligned} |u(x) - u(y)| &\leq \int_{W} |u(x) - u(z)| dy + \int_{W} |u(y) - u(z)| dy \\ &\leq \int_{B(x,r)} |u(x) - u(z)| dy + \int_{B(y,r)} |u(y) - u(z)| dy \\ &\lesssim r^{1 - \frac{n}{p}} \|Du\|_{L^{p}}. \end{aligned}$$

同 と く ヨ と く ヨ と …

2

Theorem. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with C^1 boundary. If $1 \le p < n$ and $q < p^*$, the inclusion

 $i: W^{1,q}(\Omega) \subset L^p(\Omega)$

is compact.

Theorem. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with C^1 boundary. If $1 \le p < n$ and $q < p^*$, the inclusion

$$i:W^{1,q}(\Omega)\subset L^p(\Omega)$$

is compact.

In other words, given a bounded sequence $\{u_m\} \subset W^{1,q}$, we can extract a subsequence that converges in $L^p(\Omega)$.

Theorem. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with C^1 boundary. If $1 \leq p < n$ and $q < p^*$, the inclusion

$$i:W^{1,q}(\Omega)\subset L^p(\Omega)$$

is compact.

In other words, given a bounded sequence $\{u_m\} \subset W^{1,q}$, we can extract a subsequence that converges in $L^p(\Omega)$.

We may assume that each function u_m is defined on all of \mathbb{R}^n , $\|u_m\|_{W^{1,q}(\mathbb{R}^n)} < C$ are uniformly bounded and that u_m are supported on a fixed ball $B(0, R) \supset \Omega$.

Sobolev compactness

Set $u_m^{\varepsilon} = \eta_{\varepsilon} * u_m$. It is easy to see that for each m = 1, 2, ...,

$$u_m^{\varepsilon} \to u_m, \quad \text{in } L^q(B(0,R))$$

as $\varepsilon \rightarrow 0$.

イロト イヨト イヨト イヨト

3

Sobolev compactness

Set $u_m^{\varepsilon} = \eta_{\varepsilon} * u_m$. It is easy to see that for each $m = 1, 2, \ldots$,

$$u_m^{\varepsilon} \to u_m, \qquad \text{in } L^q(B(0,R))$$

as $\varepsilon \rightarrow 0$.

We claim that the convergence is **uniform** in ε , i.e.

$$\sup_m \|u_m^{\varepsilon} - u_m\|_{L^q(B(0,R))} \to 0, \qquad \text{as } \varepsilon \to 0.$$

Sobolev compactness

Set $u_m^{\varepsilon} = \eta_{\varepsilon} * u_m$. It is easy to see that for each $m = 1, 2, \ldots$,

$$u_m^{\varepsilon} \to u_m, \qquad \text{in } L^q(B(0,R))$$

as $\varepsilon \rightarrow 0$.

We claim that the convergence is **uniform** in ε , i.e.

$$\sup_m \|u_m^\varepsilon - u_m\|_{L^q(B(0,R))} \to 0, \qquad \text{as } \varepsilon \to 0.$$

By interpolation, we only need to show that

$$\sup_m \|u_m^{\varepsilon} - u_m\|_{L^1(B(0,R))} \to 0, \qquad \text{as } \varepsilon \to 0.$$

回 と く ヨ と く ヨ と

Claim. Suppose $v(x) \in W_0^{1,p}(B(0,R))$ is a smooth function. Then,

$$\int_{B(0,R)} |v^{\varepsilon} - v| \leq \varepsilon \int_{B(0,R)} |Dv|.$$

▲ □ ► < □ ►</p>

Claim. Suppose $v(x) \in W_0^{1,p}(B(0,R))$ is a smooth function. Then,

$$\int_{B(0,R)} |v^{\varepsilon} - v| \leq \varepsilon \int_{B(0,R)} |Dv|.$$

Proof. For $\xi \in B(x, r)$,

$$|v(\xi)-v(x)|\leq \int_x^\xi |Du|,$$

where we integrate over a straight line from x to ξ .

Theorem. Suppose $u \in H^1(\mathbb{D})$. Then $h = u|_{\partial \mathbb{D}} \in H^{1/2}(\partial \mathbb{D})$. Conversely, any function in $H^{1/2}(\partial \mathbb{D})$ is the trace of a unique harmonic function $u \in H^1(\mathbb{D})$.

Sobolev embedding: an improvement

Theorem. Suppose $u \in H^1(\mathbb{D})$. Then $h = u|_{\partial \mathbb{D}} \in H^{1/2}(\partial \mathbb{D})$. Conversely, any function in $H^{1/2}(\partial \mathbb{D})$ is the trace of a unique harmonic function $u \in H^1(\mathbb{D})$.

Proof. Suppose $h(\theta) = \sum a_n e^{in\theta}$ with $\sum |n| |a_n|^2 < \infty$. Set

$$u(z) = \sum_{n\geq 0} a_n z^n + \sum_{n<0} a_n \overline{z}^n.$$

Theorem. Suppose $u \in H^1(\mathbb{D})$. Then $h = u|_{\partial \mathbb{D}} \in H^{1/2}(\partial \mathbb{D})$. Conversely, any function in $H^{1/2}(\partial \mathbb{D})$ is the trace of a unique harmonic function $u \in H^1(\mathbb{D})$.

Proof. Suppose $h(\theta) = \sum a_n e^{in\theta}$ with $\sum |n| |a_n|^2 < \infty$. Set

$$u(z) = \sum_{n\geq 0} a_n z^n + \sum_{n<0} a_n \overline{z}^n.$$

The function u is harmonic and

$$\|\nabla u\|_{L^2(\mathbb{D})}^2 = \pi \sum_{n \neq 0} |n| |a_n|^2.$$

Problem. Minimize the energy $\mathcal{E}[u] = \int_{\mathbb{D}} |\nabla u|^2 dx$.

Problem. Minimize the energy $\mathcal{E}[u] = \int_{\mathbb{D}} |\nabla u|^2 dx$.

Theorem. The energy minimizer exists, unique and is harmonic.

Problem. Minimize the energy $\mathcal{E}[u] = \int_{\mathbb{D}} |\nabla u|^2 dx$.

Theorem. The energy minimizer exists, unique and is harmonic.

Uniqueness. If u, v are two minimizers then $t \to \mathcal{E}[tu + (1-t)v]$ is strictly convex on [0, 1].

Problem. Minimize the energy $\mathcal{E}[u] = \int_{\mathbb{D}} |\nabla u|^2 dx$.

Theorem. The energy minimizer exists, unique and is harmonic.

Uniqueness. If u, v are two minimizers then $t \to \mathcal{E}[tu + (1-t)v]$ is strictly convex on [0, 1].

Minimizers are harmonic: If $\phi \in C^{\infty}_{c}(\mathbb{D})$, then $\mathcal{E}[u + t\phi] \leq \mathcal{E}[u]$.

(《圖》 《문》 《문》 - 문

Problem. Minimize the energy $\mathcal{E}[u] = \int_{\mathbb{D}} |\nabla u|^2 dx$.

Theorem. The energy minimizer exists, unique and is harmonic.

Uniqueness. If u, v are two minimizers then $t \to \mathcal{E}[tu + (1-t)v]$ is strictly convex on [0, 1].

Minimizers are harmonic: If $\phi \in C_c^{\infty}(\mathbb{D})$, then $\mathcal{E}[u + t\phi] \leq \mathcal{E}[u]$. This shows that $\int_{\mathbb{D}} \nabla u \cdot \nabla \phi = 0$ for all ϕ , or $-\int_{\mathbb{D}} u \cdot \Delta \phi = 0$.

(ロ) (同) (E) (E) (E)

Existence: If u_n is a bounded sequence in $W^{1,2}(\mathbb{D})$, there exists a subsequence which converges strongly in $L^2(\Omega)$. We will show that the energy is lower continuous:

 $\mathcal{E}[u] \leq \liminf_{n \to \infty} \mathcal{E}[u_n].$

Existence: If u_n is a bounded sequence in $W^{1,2}(\mathbb{D})$, there exists a subsequence which converges strongly in $L^2(\Omega)$. We will show that the energy is lower continuous:

 $\mathcal{E}[u] \leq \liminf_{n \to \infty} \mathcal{E}[u_n].$

Suppose $\Phi \in C^{\infty}(\overline{\mathbb{D}}, \mathbb{R}^n)$.

$$\left|\int_{\mathbb{D}} u_n \operatorname{div} \Phi\right| = \left|\int_{\mathbb{D}} \nabla u_n \cdot \Phi\right| \leq \mathcal{E}[u_n] \cdot \|\Phi\|_{L^2(\Omega)}.$$

Existence: If u_n is a bounded sequence in $W^{1,2}(\mathbb{D})$, there exists a subsequence which converges strongly in $L^2(\Omega)$. We will show that the energy is lower continuous:

 $\mathcal{E}[u] \leq \liminf_{n \to \infty} \mathcal{E}[u_n].$

Suppose $\Phi \in C^{\infty}(\overline{\mathbb{D}}, \mathbb{R}^n)$.

$$\left|\int_{\mathbb{D}} u_n \operatorname{div} \Phi\right| = \left|\int_{\mathbb{D}} \nabla u_n \cdot \Phi\right| \leq \mathcal{E}[u_n] \cdot \|\Phi\|_{L^2(\Omega)}.$$

Taking $n \to \infty$,

$$\left|\int_{\mathbb{D}} u \operatorname{div} \Phi\right| \leq \left(\liminf_{n \to \infty} \mathcal{E}[u_n]\right) \cdot \|\Phi\|_{L^2(\mathbb{D})}.$$

Since $C^{\infty}(\overline{\mathbb{D}}, \mathbb{R}^n)$ is dense in $L^2(\mathbb{D}, \mathbb{R}^n)$, the linear functional

$$\Phi o \int_{\mathbb{D}} u \operatorname{div} \Phi$$

extends to $L^2(\mathbb{D}, \mathbb{R}^n)$,

Since $C^{\infty}(\overline{\mathbb{D}}, \mathbb{R}^n)$ is dense in $L^2(\mathbb{D}, \mathbb{R}^n)$, the linear functional

$$\Phi \to \int_{\mathbb{D}} u \operatorname{div} \Phi$$

extends to $L^2(\mathbb{D},\mathbb{R}^n)$, $\implies \exists \ G \in L^2(\mathbb{D},\mathbb{R}^n)$ s.t.

$$\int_{\mathbb{D}} u \operatorname{div} \Phi = \int G \cdot \Phi.$$

▲同 ▶ ▲ 臣 ▶

Since $C^{\infty}(\overline{\mathbb{D}}, \mathbb{R}^n)$ is dense in $L^2(\mathbb{D}, \mathbb{R}^n)$, the linear functional

$$\Phi \to \int_{\mathbb{D}} u \operatorname{div} \Phi$$

extends to $L^2(\mathbb{D},\mathbb{R}^n)$, $\implies \exists \ G \in L^2(\mathbb{D},\mathbb{R}^n)$ s.t.

$$\int_{\mathbb{D}} u \operatorname{div} \Phi = \int G \cdot \Phi.$$

Therefore, $u \in W_0^{1,q}$ with $\Delta u = -G$. Then,

$$E[u] = \|G\|_{L^2(\mathbb{D})}^2 \leq \liminf_{n \to \infty} E[u_n].$$

Let Ω be a smoothly bounded domain. For $u \in L^1(\Omega)$, define

$$\mathcal{S}_u = \{ v \in W^{1,2}_0(\Omega), v \geq u \text{ a.e. in } \Omega \}.$$

If S_u is not empty, then $\inf_{v \in S_\mu} \mathcal{E}[v]$ is achieved by the smallest superharmonic function in S_u .

Existence and unique proceed as before.

Euler-Lagrange equation. For any $v \in S_u$, we have

$$\int_\Omega
abla ilde u \cdot
abla (
u - ilde u) \geq 0.$$

To see this, note that the derivative function

$$t o \int_\Omega |
abla (t
u + (1-t) \widetilde{u})|^2, \qquad t \in [0,1].$$

is non-negative at t = 0.

To see that \tilde{u} is subharmonic, plug in $v = \tilde{u} + \varphi$ where $\varphi \in C_c^{\infty}$ is a non-negative function.

Euler-Lagrange equation. For any $v \in S_u$, we have

$$\int_{\Omega}
abla ilde{u} \cdot
abla (v- ilde{u}) \geq 0.$$

To see this, note that the derivative function

$$t o \int_\Omega |
abla (t
u + (1-t) ilde u)|^2, \qquad t \in [0,1].$$

is non-negative at t = 0.

Euler-Lagrange equation. For any $v \in S_u$, we have

$$\int_\Omega
abla ilde u \cdot
abla (
u - ilde u) \geq 0.$$

To see this, note that the derivative function

$$t o \int_\Omega |
abla (t
u + (1-t) \widetilde{u})|^2, \qquad t \in [0,1].$$

is non-negative at t = 0.

To see that \tilde{u} is subharmonic, plug in $v = \tilde{u} + \varphi$ where $\varphi \in C_c^{\infty}$ is a non-negative function.

Suppose $w \in \mathcal{S}_u$. We want to show that $(\tilde{u} - w)^+ = 0$.

$$\begin{split} \int_{\Omega} |\nabla (\tilde{u} - w)^{+}|^{2} &= \int_{\Omega} \nabla (\tilde{u} - w) \nabla (\tilde{u} - w)^{+} \\ &= \int_{\Omega} \nabla \tilde{u} \cdot \nabla (\tilde{u} - w)^{+} - \int_{\Omega} \nabla w \cdot \nabla (\tilde{u} - w)^{+}. \end{split}$$

Suppose $w \in \mathcal{S}_u$. We want to show that $(\tilde{u} - w)^+ = 0$.

$$\begin{split} \int_{\Omega} |\nabla (\tilde{u} - w)^{+}|^{2} &= \int_{\Omega} \nabla (\tilde{u} - w) \nabla (\tilde{u} - w)^{+} \\ &= \int_{\Omega} \nabla \tilde{u} \cdot \nabla (\tilde{u} - w)^{+} - \int_{\Omega} \nabla w \cdot \nabla (\tilde{u} - w)^{+}. \end{split}$$

We will show that both terms in the RHS are ≤ 0 :

$$\int_{\Omega} \nabla \tilde{u} \cdot \nabla (\tilde{u} - w)^+ = - \int_{\Omega} \nabla \tilde{u} \cdot (\min\{w, \tilde{u}\} - \tilde{u}) \le 0.$$

イロン イヨン イヨン イヨン

Thank you for your attention!

A⊒ ▶ ∢ ∃