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Abstract

Consider the sequence of complex numbers zn defined by the rule

zn+1 = z2n + 1/4.

For which initial values z0 ∈ C do we have zn → ∞?

This work proves that the set of such values of z0 is quasiconvex. This means that

every two points in it can be connected by a curve which is comparable in length to

a straight line segment.
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1 Introduction

Let fc : z 7→ z2 + c be a quadratic polynomial. Its filled Julia set consists of points

in the complex plane with bounded orbit under iteration by fc :

Kc =
{
z ∈ C : sup

n≥0
f ◦n
c (z) <∞

}
.

Its boundary Jc = ∂K(fc) is known as the Julia set , and its complement Exterior(Jc) =

C \K(fc) forms the attracting basin of infinity, also called the escaping set. The sets

Jc and Kc are compact and are both forward and backward invariant under the

dynamics of fc.

The main cardioid

♡ =
{
c ∈ C : c = λ/2− λ2/4, λ ∈ D

}
is the set of parameters c ∈ C for which fc has an attracting fixed point. When c ∈ ♡,

the filled Julia set Kc is a quasidisk , the image of a round disk under a quasiconformal

mapping of the plane, e.g. see [Gam03, Theorem VI.2.1]. This intuitively means that

Kc has no “cusps”.

In this work we take c = 1/4, which lies on the boundary of ♡. The filled Julia

set K1/4, also called the Cauliflower, is a Jordan domain with an inward-pointing

cusp at the point p = 1/2. See Figure 1.

According to a theorem of Carleson, Jones and Yoccoz [CJY94, Theorem 6.1],

the Cauliflower is a John domain, a condition which rules out “outward-pointing

cusps”. Formally, a domain Ω is John if there exists a “center” z0 ∈ Ω that can be

connected to any other point z1 ∈ Ω by a curve γ which does not get too close to

the boundary:

dist(z, ∂Ω) ≳ |z1 − z|, (1.1)

for all z ∈ γ.

A set Ω ⊆ C is called quasiconvex if its intrinsic metric is comparable to the

ambient Euclidean metric. Explicitly, this means that there exists a constant A ≥ 1

such that every two points z1, z2 ∈ Ω are connected by a rectifiable path ηz1,z2 :
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(a) c = 0.1. (b) c = 1/4.
The Cauliflower

(c) c = 0.3.

Figure 1: Julia sets Jc for different values of c. When c > 1/4, the Julia set is no
longer connected.

[0, 1] → Ω which satisfies

Length(ηz1,z2) ≤ A · |z1 − z2| (1.2)

and ηz1,z2(w) ∈ Ω for all w ∈ (0, 1). We refer to a family of paths ηz1,z2 satisfying

Equation (1.2) with a uniform constant A as quasiconvexity certificates.

If Ω is a quasiconvex Jordan domain, then its complement has a John interior; see

[HH08, Corollary 3.4] for a proof. In this work, we strengthen the result of [CJY94,

Theorem 6.1] by showing:

Theorem 1.1. The exterior of the Cauliflower is quasiconvex.

Our result also has a function-theoretic interpretation. For a planar domain

Ω ⊂ R2, the Sobolev space W 1,1(Ω) is the set of functions u ∈ L1(Ω) for which the

distributional derivatives ∂1u, ∂2u exist and are in L1(Ω). We call Ω a W 1,1 extension

domain if every u ∈ W 1,1(Ω) extends to a function inW 1,1(C). In [GBR22, Equation

(1.1)], it is proved that a bounded Jordan domain is a W 1,1 extension domain if and

only if its complement is quasiconvex. Thus our result can be rephrased as follows:

Theorem 1.2. The Cauliflower is a W 1,1 extension domain.

4



1.1 Sketch of the argument

By [HH08, Corollary F], to show that a Jordan domain Ω is quasiconvex, it is enough

to find certificates for points z1, z2 that lie on the boundary curve ∂Ω.

We show quasiconvexity by explicitly constructing the certificates that connect

pairs of points on the Julia set. We first build the certificates in the exterior unit

disk D∗ in an f0 : z 7→ z2 invariant manner, and then transport them to the exterior

of the Cauliflower by the Riemann map ψ : D∗ → Exterior(J1/4), which conjugates

the dynamics of f0 and f1/4. As the certificates in the exterior of the Cauliflower

possess an invariance property under f1/4, they may be analyzed using a parabolic

variant of the principle of the conformal elevator.

In the hyperbolic setting (c ∈ ♡), the principle of the conformal elevator says that

small balls centered at points of Jc can be blown up to a definite size by repeatedly

applying fc, while roughly retaining their shape. Put more colloquially, Julia sets

of hyperbolic polynomials are self-similar with bounded distortion. We use this self-

similarity to analyze certificates that connect nearby points by using certificates that

connect their iterated images located a definite distance apart.

In the parabolic setting (c = 1/4), we can only blow up balls to definite size as

long as they stay away from the parabolic point. Nevertheless, we are able to control

the certificates by exploiting the geometry of the cusp.

To facilitate the reading, we first demonstrate the proof in the hyperbolic case of

maps fc(z) = z2 + c with c ∈ ♡, in which the usual conformal elevator applies, and

subsequently treat the parabolic case with c = 1/4.

2 Preliminaries

In this section, we gather a number of tools from complex analysis and dynamics

that will be used throughout this work.
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2.1 The hyperbolic metric

The hyperbolic metric on the unit disk D is given by

ρ =
2|dz|

1− |z|2
. (2.1)

It is the unique Riemannian metric on the unit disk, up to multiplication by a positive

constant, which is invariant under conformal automorphisms in AutD. The factor 2
makes the curvature −1 instead of −4. One may transfer the hyperbolic metric to

any simply connected domain in the plane using the Riemann map.

Definition 2.1. A domain U ⊂ Ĉ is hyperbolic if its universal covering space Ũ is

biholomorphic to D.

It is well known that if U ⊂ Ĉ is a domain which omits at least three points, then

it is hyperbolic. One may define the hyperbolic metric on any hyperbolic domain U

by asking that the projection D ∼= Ũ → U is a local isometry.

Theorem 2.2 (The Schwarz-Pick theorem). Let f : U1 → U2 be a holomorphic map

between two hyperbolic domains U1, U2 ⊂ Ĉ. Then f is a hyperbolic contraction,

meaning that

distU2(f(z), f(w)) ≤ distU1(z, w), (2.2)

for all z, w ∈ U1. If f is not a covering map, then the inequality is strict for all

z ̸= w.

Proof. ([Mil06], Theorem 2.11). The classical Schwarz-Pick lemma is the case when

f : D → D. The general case follows after lifting f to a map between the universal

covering spaces of U1 and U2.

Definition 2.3. Let f : U1 → U2 be holomorphic map between hyperbolic domains.

The hyperbolic derivative of f at a point z ∈ U1 is given by

∥f ′(z)∥hyp =
∥Df(z)(v)∥hyp(U2)

∥v∥hyp(U1)

=
ρU2(f(z))

ρU1(z)
· |f ′(z)|, (2.3)

where v is a nonzero tangent vector at the point z.
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2.2 Koebe’s distortion theorem

One important tool in complex dynamics is Koebe’s distortion theorem, which says

that on a compact set, a conformal map resembles a linear map:

Theorem 2.4 (Koebe distortion theorem). Let φ : D → C be a univalent map.

There exist C1, C2 > 0 so that

C1 |φ′(0)| ≤ |φ′(z)| ≤ C2 |φ′(0)|, for any z ∈ B(0, 1/2).

In particular,
|φ(y)− φ(z)|

|y − z|
≍ |φ′(x)| (2.4)

for all x, y, z ∈ B(0, 1/2).

2.3 Relative distance

The following notion will be used for showing the existence of Koebe space, i.e. room

to apply Koebe’s distortion theorem:

Definition 2.5. The relative distance between two sets E,F ⊂ C is

∆(E,F ) =
dist(E,F )

min(diam(E), diam(F ))
, (2.5)

and ∆(E,F ) = ∞ if the denominator vanishes. If ∆(E,F ) ≥ η, we say that E and

F are η-relatively separated.

Lemma 2.6. Suppose γ is a rectifiable curve which efficiently connects two points

w1, w2 ∈ C, i.e. satisfies
Length(γ) ≤ C|w1 − w2|.

If γ is contained in a simply connected domain U with

dist(γ, ∂U) ≥ η|w1 − w2|
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and φ : U → C is a univalent map, then its image φ◦γ connects the points z1 = φ(w1)

and z2 = φ(w2) efficiently:

Length(φ ◦ γ) ≤ A|z1 − z2|,

for some constant A > 0 which depends only on C, η > 0.

Proof. We can cover γ by at most M = ⌈2C/η⌉ balls of radius (η/2)|w1 − w2|,
centered at points of γ. Applying Koebe’s distortion theorem on each ball shows

that |φ′(p)| ≍ |φ′(q)| for any two points p, q ∈ γ. In particular,

Length(φ ◦ γ) ≍ |φ′(w1)| · Length(γ) ≍ |φ′(w1)| · |w1 − w2|. (2.6)

Without loss of generality, we may assume that η < 1. Since the ball

B
(
w1, (η/2)|w1 − w2|

)
does not contain w2, Koebe’s distortion theorem implies that

|z1 − z2| ≳ |φ′(w1)| · |w1 − w2|. (2.7)

Putting the statements (2.6) and (2.7) together completes the proof.

The following corollary is essentially a variation of Lemma 2.6:

Corollary 2.7. Let K be a compact subset of a domain U ⊂ C, P be a compact set

disjoint from U , and g be a function univalent in U .

(i) The sets g(K) and g(P ) are η-relatively separated, for some η = η(K) inde-

pendent of g.

(ii) For rectifiable curves γ1, γ2 ⊂ K,

Length(g(γ1))

Length(g(γ2))
≍ Length(γ1)

Length(γ2)
,

where the implicit constant depends on K but not on g.
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2.4 The post-critical set

Let f : z 7→ z2 + c be a quadratical polynomial. Since our argument will involve

applying Koebe’s distortion theorem to the iterates of f−1, we will need to exclude

points around which some iterate f ◦n does not have a holomorphic inverse:

Definition 2.8. The post-critical set of f is the closure of the forward orbits of the

critical points,

P = {f ◦n(0) : n ≥ 1} ∪ {∞}.

If c ̸= 0, then the post-critical set P contains at least 3 points, e.g. 0, c and ∞,

and consequently its complement Ĉ \ P admits a hyperbolic metric.

Theorem 2.9. For c ̸= 0, the map f : Ĉ \ P → Ĉ \ P is strictly expanding with

respect to the hyperbolic metric of Ĉ \ P, in the sense that the hyperbolic derivative

satisfies

∥f ′(z)∥hyp > 1, z ∈ Ĉ \ P . (2.8)

Proof. ([McM94], Theorem 3.5). To see the theorem, notice that

f : Ĉ \ f−1(P) → Ĉ \ P ,

is a local isometry, while the inclusion Ĉ \ f−1(P) ↪−→ Ĉ \P is a strict contraction by

Theorem 2.2.

A map f is hyperbolic if its post-critical set P is disjoint from its Julia set J . By

the above theorem, this is equivalent to f being expanding on J :

∥f ′(z)∥hyp ≥ κ, z ∈ J , (2.9)

for some constant κ > 1.

Corollary 2.10. Let f be a hyperbolic quadratic map. There exists an ϵ > 0 such

that every pair of points z, w ∈ J has a forward iterate f ◦n for which

|f ◦n(z)− f ◦n(w)| > ϵ.
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Proof. By (2.9), for every iterate f ◦j, we have∥∥(f ◦j)′(z)
∥∥
hyp

≥ κj, z ∈ J . (2.10)

As the hyperbolic metric and the Euclidean metric are equivalent on J , we may take

j large enough so that for g = f ◦j, the Euclidean derivative

|g′(z)| > µ, z ∈ J ,

for some constant µ > 1. By compactness, there exists an ϵ > 0 such that for

z, w ∈ J with |z−w| < ϵ on J , we have |g(z)− g(w)| ≥ µ|z−w|. The claim follows

with this value of ϵ by iterating g.

3 The exterior disk

We write D∗ = C\D for the exterior of the unit disk. We connect any two boundary

points ζ1, ζ2 ∈ ∂D∗ by a path in D∗ in a manner that respects the map f0 : ζ 7→ ζ2.

We describe these paths using the metaphor of a passenger who travels by train:

Definition 3.1. Stations are the points in D∗ of the form

sn,k = 21/2
n

exp

(
2πi · k

2n

)
, n ∈ N0, k ∈ {0, . . . , 2n − 1}.

See Figure 2. These are the iterated preimages of the central station s0,0 = 2 under

the map f0. We refer to n as the generation of the station sn,k. The 2n stations of

generation n are equally spaced on the circle Cn =
{
|ζ| = 21/2

n}
.

We next lay two types of “rail tracks”, which we use to travel between stations.

Definition 3.2. Let s = sn,k be a station.

1. The peripheral neighbors of s are the two stations sn,(k±1)(mod 2n) adjacent to

sn,k on Cn.

2. The peripheral track γs,s′ from s to a peripheral neighbor s′ is the shorter arc

of the circle Cn connecting s to s′.
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3. The radial successor of s is RadialSuccessor(s) = sn+1,2k, the unique station

of generation n+ 1 on the radial segment [0, s].

4. The express track γs,s′ from s to its radial successor s′ is the radial segment

[s, s′].

Notice that the tracks respect the dynamics: applying f0 to a track gives a track

of the previous generation.

When a passenger travels between two stations s1 and s2, he or she must follow

a particular itinerary from s1 to s2. If s1 is the central station, then this itinerary is

determined by the rule that the passenger stays as close as possible to its destination

s2 in the angular distance. This also determines how to travel from the central station

to a boundary point ζ ∈ ∂D∗, by continuity. See Figure 2 and the next definition.

Definition 3.3. Let ζ = exp(2πiθ) ∈ ∂D. The central itinerary of ζ is a path

ηζ = γσ0,σ1 + γσ1,σ2 + . . . from the central station to ζ, made of tracks between the

stations σ0, σ1, . . . . It is defined inductively as follows:

Start at the central station σ0 = s0,0. Suppose that we already chose σ0, . . . , σk.

If there is a peripheral neighbor σ of σk that is closer peripherally to ζ, meaning that

|Arg(ζ)− Arg(σ)| < |Arg(ζ)− Arg(σk)|,

then take σk+1 = σ. Otherwise, take σk+1 = RadialSuccessor(σ).

We identify the central itinerary ηζ with its sequence of stations (σ0, . . .). We

record two properties of central itineraries:

• No central itinerary ηζ uses two consecutive peripheral tracks. In particular,

Generation(σk) ≥
k

2
; (3.1)

• Central itineraries are essentially equivariant under f0, in the sense that

f0(ηζ) = ηf0(ζ) ∪ [s0,0, f0(s0,0)]

for every ζ ∈ ∂D∗.
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ζ

s0,0s1,0s1,1

Figure 2: The central itinerary to a point ζ.
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ζ1

ζ2

Figure 3: A quasiconvexity certificate between two points ζ1, ζ2 in D∗. Only the first
two steps are shown.

Definition 3.4. Given two distinct boundary points ζ1, ζ2 ∈ ∂D∗, form the central

itineraries ηζ1 = (σ1
n)

∞
n=0 and ηζ2 = (σ2

n)
∞
n=0 and let σ = σ1

i = σ2
j be the last station

that is in both ηζ1 and ηζ2 . We define the itinerary between ζ1 and ζ2 to be the path

ηζ1,ζ2 = (. . . , σ1
i+2, σ

1
i+1, σ, σ

2
j+1, σ

2
j+2, . . . ).

This is a simple bi-infinite path connecting ζ1 and ζ2, see Figure 3. Note that

itineraries are equivariant under the dynamics: we have

f(ηζ1,ζ2) = ηf(ζ1),f(ζ2) (3.2)

for every pair of boundary points ζ1, ζ2 ∈ ∂D∗ with |ζ1 − ζ2| <
√
2.
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−π −π
2

0 π
2

π

s0,0
s1,0

s2,0

Figure 4: A convenient representation of the dyadic grid in the Böttcher coordinates.
The horizontal axis is the external angle Arg(ψ−1(z)), and the vertical axis is the
equipotential |ψ−1(z)|, plotted on a log scale. The rightmost edge is glued to the
leftmost edge. Stations are marked in red, and the segments connecting adjacent
stations are tracks. An express track is a vertical segment, while a peripheral track
is a horizontal segment. The central station is highlighted in green. The bottom row
represents the Julia set J .

4 Transporting the tracks

For c ∈ ♡, the Julia set of fc : z 7→ z2+ c is a Jordan curve. The Böttcher coordinate

ψ = ψc is the unique conformal map D∗ → Exterior(Jc) which fixes ∞ and satisfies

the conjugacy relation

fc ◦ ψ = ψ ◦ f0.

The Böttcher coordinate ψ extends to a homeomorphism between the unit circle ∂D
and Jc by Carathéodory’s theorem. See [Mil06, Theorem 9.5] for a proof of existence,

relying on the explicit construction

ψ(z) = lim
n→∞

(f0)
◦(−n) ◦ f ◦n

c = lim
n→∞

(f ◦n
c )1/2

n

. (4.1)

We apply ψ to the tracks that we constructed in D∗ to obtain the corresponding

tracks in Exterior(Jc):

Definition 4.1.

1. The stations of fc are the points ψ(sn,k).

14



2. The tracks of fc are the curves of the form ψ(γs,s′), where γs,s′ is a track.

They are classified as express or peripheral according to the corresponding

classification of γs,s′ . Express tracks lie on the external rays of the filled Julia

set Kc, while peripheral tracks lie on the equipotentials of Kc.

3. The itinerary between a pair of points (z1, z2) on Jc is ηz1,z2 = ψ(ηζ1,ζ2), where

ζi = ψ−1(zi) are the corresponding points on ∂D∗.

Notice that by symmetry ψ((1,∞)) ⊆ R. In particular, the central station ψ(s0,0)

lies on the real axis.

We henceforth omit c and ψ from the notation for ease of reading. It will be clear

from the context whether we work in D∗ or in Exterior(J ).

5 Hyperbolic maps

In this section we prove the quasiconvexity of Exterior(J ) for parameters c in the

main cardioid ♡. For c ∈ ♡, the dynamics is hyperbolic since the critical point at 0

converges to an attracting fixed point under iteration.

Definition 5.1. A point z ∈ J is rectifiably accessible from Exterior(J ) if there is

a rectifiable curve γ : [0, 1) → Exterior(J ) such that γ(t) → z as t→ 1.

We are now ready to show quasiconvexity in the hyperbolic case:

Theorem 5.2. Let f : z 7→ z2 + c be a quadratic map with c ∈ ♡.

(i) Given z ∈ J decompose its central itinerary into tracks,

ηz = γ1 + γ2 + . . . .

We have the estimate

Length(γk) ≲ θk,

uniformly in z, for some constant θ = θ(c) < 1. In particular, any point on J
is rectifiably accessible.
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(ii) The domain Exterior(J ) is quasiconvex with the itineraries ηz1,z2 as certificates.

Proof. (i) For c = 0, this is a direct computation. Suppose c ̸= 0, and let P be the

post-critical set of f . Recall that f : Ĉ \ P → Ĉ \ P is expanding in the hyperbolic

metric by Theorem 2.9.

Let B(0, R) ⊂ C be a ball large enough that it contains every central itinerary.

By hyperbolicity, Exterior(J )∩B(0, R) is compactly contained in Ĉ\f(P), and there

is a constant θ < 1 such that ∥(f−1)′∥hyp < θ on Exterior(J ) ∩B(0, R). Therefore,

HypLength(γk) ≤ θ · HypLength(f(γk))
≤ . . .

≤ θk · HypLength(f ◦k(γk)),

≲ θk,

where the last inequality holds since f ◦k(γk) lies on the real axis in case γk is an

express track, or on the equipotential ψ
(
{|z| =

√
2}
)
otherwise.

As the Euclidean metric is bounded above by a constant multiple of the hyperbolic

metric, we conclude that Length(γk) ≲ θk as well. Thus any point on J can be

reached from the central station s0,0 by a curve of bounded length.

(ii) By (2.10), there exists an ϵ > 0 such that any two points are ϵ-apart under

some iterate of f . Let z1, z2 ∈ J (f). If |z1 − z2| ≥ ϵ, we are done since the length

of ηz1,z2 is uniformly bounded above by part (i). On the other hand, if |z1 − z2| < ϵ,

then there is an iterate f ◦n for which

|w1 − w2| := |f ◦n(z1)− f ◦n(z2)| ≥ ϵ, (5.1)

so that ηw1,w2 is a quasiconvexity certificate. As ηw1,w2 is contained in Exterior(J )∩
B(0, R), it is relatively separated from the post-critical set. By Lemma 2.6, ηz1,z2 is

also a quasiconvexity certificate.
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6 The Cauliflower

In this section, c = 1
4
and f = f1/4 : z 7→ z2 + 1

4
. Our goal is to prove the quasicon-

vexity of Exterior(J ). This is more complicated than the hyperbolic case, because

the post-critical set P ⊂ [0, 1/2]∪{∞} of f accumulates at the parabolic fixed point

p = 1
2
. One no longer has a uniform bound on the distortion of inverse iterates, and

we cannot immediately deduce the quasiconvexity of the itinerary ηz1,z2 from the qua-

siconvexity of ηw1,w2 using Koebe’s distortion theorem. As a substitute, we present

an analogue of the principle of the conformal elevator in this parabolic setting.

6.1 Itineraries have finite length

We first show that each itinerary ηz1,z2 has a finite length. We will in fact show

an exponential decay of the lengths of the constituent tracks. For this to hold it is

necessary to glue together consecutive express tracks: for example, the tracks in the

central itinerary that lies on the real axis, η1/2, have only a quadratic rate of length

decay. To fix this, we introduce:

Definition 6.1. The reduced decomposition of an itinerary η is the unique decom-

position η = γ1 + δ1 + . . . where each γi is a concatenation of express tracks and δi

consists of a single peripheral track.

Proposition 6.2. Let z ∈ J , and let ηz = γ1+δ1+ . . . be the reduced decomposition

of its central itinerary. Then Length(γk) ≲ θk and Length(δk) ≲ θk for some θ < 1.

Thus Length(ηz) is finite and uniformly bounded over z ∈ J , and all points z∈J are

rectifiably accessible.

For the proof, let U−1 be the Jordan domain enclosed by the Julia set J , the

rightmost itinerary starting from the pre-central station and the leftmost one. See

Figure 5. This domain is constructed so that it contains all itineraries that start at

the station s1,1 = ψ(−
√
2), the preimage of the central station under f . Notice that

U−1 is compactly contained in Ĉ\P , because the post-critical set P ⊂ [0, 1/2]∪{∞}
touches the Julia set J only at p = 1/2, which is not contained in U−1.

The crucial property of the domain U−1 is:
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−π −π
2

0 π
2

π

U−1 K3,4

s1,1s1,1

U−1

Figure 5: Using the dyadic representation from Figure 4, the domain U−1 is high-
lighted in green, and the domain K3,4 is highlighted in purple. The station s1,1 is
highlighted in orange; recall that points with external angle ±π appear twice in this
representation.

Lemma 6.3. Let γ = γ1 + δ1 + . . . be the reduced decomposition of an itinerary

γ. Then for every k > 1, there exist k − 1 iterates n1 < · · · < nk−1 such that

f ◦ni(γk) ⊂ U−1.

Proof. Every station s ̸∈ (0,∞) has a first iterate f ◦ns(s) lying on the negative real

axis (−∞, 0). For any i ∈ {2, . . . , k − 1}, let si be the first station of γi and take

ni := nsi . By the definition of U−1, the itinerary f ◦ni(γ) is contained in U−1 from

the station f ◦ni(si) onwards, and in particular f ◦ni(γk) ⊂ U−1.

Proof (Proposition 6.2). By Theorem 2.9, there is a uniform bound ∥(f−1)′∥hyp <
θ < 1 on U−1 with respect to the hyperbolic metric of the domain Ĉ \ P , for both

branches of f−1 defined in U−1.

In the notation of Lemma 6.3, we then have

HypLength(γk) ≤ HypLength(f ◦(n1−1)(γk))

≤ θ · HypLength(f ◦n1(γk))

≤ . . .

≤ θk · HypLength(f ◦nk(γk))

≲ θk.
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As the Euclidean metric is bounded above by a constant multiple of the hyperbolic

metric, we infer that Length(γk) ≲ θk.

6.2 Some estimates and notation

To estimate the length of express tracks, we introduce the notations sn := sn,0 and

ℓn := Length([sn, sn+1]) = sn − sn+1. (6.1)

From the definition of the stations sn, we have f(sn+1) = sn for all n ≥ 0. Since

the Cauliflower is symmetric with respect to the real line, the sn are positive real

numbers converging to the cusp at p = 1
2
.

Lemma 6.4. The lengths ℓn satisfy:

(i)
|p− sn|
ℓn

→ ∞, (6.2)

(ii)
ℓn
ℓn+1

→ 1. (6.3)

In particular, for any C > 0, there is a sufficiently large integer d such that

ℓm + . . .+ ℓn ≥ C(ℓm + ℓn)

whenever |m− n| ≥ d.

Sketch of proof. Recall that sn satisfy the recurrence

s2n+1 + 1/4 = f(sn+1) = sn. (6.4)

Equivalently, the sequence of positive numbers

an = sn −
1

2
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satisfies the recurrence

an = a2n+1 + an+1. (6.5)

An induction argument shows that an ≍ 1/n, and consequently, ℓn = an−an+1 =

a2n+1 ≍ 1/n2.

Lemma 6.5. There exists a constant k > 0 such that for any pair of points z1, z2 ∈
J , we have |f(z1)− f(z2)| ≤ k|z1 − z2|.

Proof. We have

|f(z1)− f(z2)| =
∣∣∣∣∫ z2

z1

f ′(z)dz

∣∣∣∣ ≤ k|z1 − z2| (6.6)

for k = maxz∈B |f ′(z)|, where B is any ball containing J .

Lemma 6.6. There exists an ϵ > 0 such that every pair of points z, w ∈ J has a

forward iterate f ◦n for which |f ◦n(z)− f ◦n(w)| > ϵ.

The proof is similar to that of Corollary 2.10. We leave the details to the reader.

6.3 Dynamics near the parabolic fixed point

The purpose of the following definition is to organize points on the Julia set J
according to their distance from the main cusp p = 1/2 in an f -invariant way. We

decompose the points of J according to the first departure : the first station at which

the central itinerary makes a turn.

Definition 6.7. Let n ∈ N. We define the n-th departure set In,D ⊂ ∂D∗ to be the

set of points ζ ∈ ∂D∗ whose central itinerary ηζ starts with n express tracks, followed

by a peripheral track. See Figure 7.

This decomposition is invariant under f0 in the sense that f0(In+1,D) = In,D,

because of the invariance of ηζ . Applying the Böttcher map ψ, we obtain a corre-

sponding departure decomposition In = ψ(In,D) of J that is invariant under f .
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Figure 6: The Cauliflower near the parabolic point p = 1/2.
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I1

I2

I2

I3

I3

Figure 7: First few parts of the departure decomposition Im of the circle.

We now use this decomposition to analyze the case where the points w1, w2 lie in

“well-separated cusps”. Namely, suppose that

w1 ∈ In, w2 ∈ Im, m− n > d, (6.7)

where d is a sufficiently large integer, to be chosen later. This will give some control

from below on |w1 − w2|. We represent the itinerary η = ηw1,w2 as a concatenation

of three paths: the radial segment γm,n = [sm,0, sn,0] and the two other components,

γm and γn. See Figure 8 for the picture in the exterior unit disk. Thus we have

Length(η) = Length(γm) + Length(γm,n) + Length(γn)

= Length(γm) + ℓm + · · ·+ ℓn−1 + Length(γn).
(6.8)

The condition m − n ≥ d prevents the line segment γm,n from being small in

comparison to γm and γn:
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γm

γn

γm,n

Figure 8: The three parts of an itinerary η.

Proposition 6.8. There exists a sufficiently large integer d so that for every pair of

points w1, w2 ∈ J satisfying w1 ∈ Im and w2 ∈ In with m− n ≥ d, we have

Length(γm,n) ≍ |w1 − w2|. (6.9)

Moreover, the itinerary ηw1,w2 is a quasiconvexity certificate.

We henceforth fix a value of d as in the proposition.

Proof. We first make two elementary observations. Koebe’s distortion theorem ap-

plied to the iterates of f−1 shows that Length(γm) ≍ ℓm. In particular,

Length(γm) ≤ Cℓm, (6.10)

for some constant C ≥ 0. Notice that (6.10) holds for m = 1 by Proposition 6.2,

which gives a uniform bound on the length of an itinerary.
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w1 w2

γm

ℓm γm,n
ℓn

γn

Figure 9: Schematic illustration of the proof of Proposition 6.8.

Meanwhile, by Lemma 6.4, there exists an integer d such that

C(ℓm + ℓn) ≤
Length(γm,n)

2
(6.11)

whenever m− n ≥ d.

By the triangle inequality, we have∣∣Length(γm,n)− |w1 − w2|
∣∣ ≤ Length(γm) + Length(γn)

≤ Length(γm,n)

2
,

which clearly implies (6.9) and thereby that ηw1,w2 is a certificate.

6.4 Three special cases

We now show that the itineraries ηw1,w2 are certificates in three special cases. To

state them, we introduce some notation.

6.4.1 Notation

For each n, we denote by αn the union of the two outermost tracks emanating from

the station sn,0. Notice that the curves αn are pairwise disjoint since this is true for

their pullbacks to the exterior unit disk.
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We define the constants C1, C2, ϵ as follows. We first choose C1 ≥ 2, then we let

C2 = C1 + d+ 2 and choose ϵ > 0 small enough so that we have

dist(αC2 , αC1) ≥ k · ϵ, (6.12)

where the constant k was defined in Lemma 6.5. The constant C2 was chosen so

that for any pair (m,n) of integers, we have at least one of the following three cases:

either m,n are both greater than C1, or both are smaller than C2, or |m− n| > d.

6.4.2 The special cases

In this section we treat the following special cases:

1. |w1 − w2| ≥ ϵ, |m− n| < d, 2 ≤ m,n < C2;

2. |w1 − w2| ≥ ϵ, |m− n| < d, m,n > C1;

3. |w1 − w2| ≤ kϵ, |m− n| ≥ d.

Notice that Case 2 overlaps with Case 1. We denote the domain enclosed by

αm, αn and J by Km,n, and the domain enclosed by J and αn by Kn,∞. See Figure 5.

Lemma 6.9. Let w1 ∈ Im and w2 ∈ In, for n ≥ m ≥ 2. Then the itinerary ηw1,w2 is

contained in the domain Km,n+1.

Proof. This follows from the combinatorics of the construction in the exterior unit

disk.

Lemma 6.10. Let n ≥ m be integers satisfying n − m ≤ d. The domain Km,n is

η-relatively separated from P, for some η = η(d) > 0 independent of m,n.

Proof. For convenience of exposition, we assume that n = m + 1. The general case

follows from the special case.

Let U ⊂ C \ P be any simply-connected domain which contains K1,2. Since U

is disjoint from the post-critical set, for any m ≥ 1, there exists a branch g of the

inverse of f ◦(m−1) which takes s1 to sm. Since the sets Km,m+1 have been defined

in an f -equivariant way, g takes K1,2 to Km,m+1. The lemma follows after applying

Koebe’s distortion theorem to g.
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Lemma 6.11. Let w1, w2 ∈ J . In Cases 1 and 2, ηw1,w2 is relatively separated from

the post-critical set P. In each of the three special cases, the itinerary ηw1,w2 is a

quasiconvexity certificate.

Proof. In Cases 1 and 2, the Euclidean distance |w1−w2| ≥ ε is bounded from below,

so that ηw1,w2 is a quasiconvexity certificate by Proposition 6.2.

Case 1. In this case, the itinerary is contained in the domain K2,C2+1. Since

dist(K2,C2+1,P) > 0, ηw1,w2 is relatively separated from P .

Case 2. Assuming without loss of generality that n ≥ m, the itinerary is contained

in Km,n+1. By Lemma 6.10, ηw1,w2 is relatively separated from the post-critical set.

Case 3 is the content of Proposition 6.8.

6.5 The general case

We apply a stopping time argument to promote the quasiconvexity of ηw1,w2 to the

quasiconvexity of ηz1,z2 :

Theorem 6.12. The domain Exterior(J ) is quasiconvex, with the itineraries ηz1,z2
as certificates.

Proof. (Parabolic Conformal Elevator on J ). Let (z1, z2) be a pair of points on J .

If |z1 − z2| ≥ ϵ, we are done since the length of ηz1,z2 is uniformly bounded above by

Proposition 6.2.

It remains to treat the case when |z1 − z2| ≤ ϵ. By Lemmas 6.5 and 6.6, we may

repeatedly apply f to (z1, z2) until either of the three special cases occurs. Denote by

wi = f ◦N(zi) the resulting points. We have already proved that the itinerary ηw1,w2

satisfies

Length(ηw1,w2) ≤ A|w1 − w2|,

for some A > 0. We now show that the original pair of points (z1, z2) enjoys a similar

estimate,

Length(ηz1,z2) ≤ C|z1 − z2|,

where C depends only on A.
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In Cases 1 and 2, we are done by Lemma 6.11. In Case 3, the itinerary ηw1,w2

is contained in K2,∞. Let K−2,∞ be the preimage of K2,∞ under f that contains the

negative preimage f−1(p) = −1
2
of the cusp p. As the domain K−2,∞ is relatively

separated from P and contains the curve f ◦(N−1)(ηz1,z2) = ηf−1(w1),f−1(w2), we may

use Koebe’s distortion theorem and Lemma 2.6 to conclude that

Length(ηz1,z2)

|z1 − z2|
≍

Length(ηf−1(w1),f−1(w2))

|f−1(w1)− f−1(w2)|
≍ Length(ηw1,w2)

|w1 − w2|
(6.13)

as desired.
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Nomenclature

αn The union of the two outermost tracks emanating from the station sn,0.

∆(γ,P) The relative distance to the post-critical set.
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ℓn Length([sn, sn+1]) = sn,0 − sn+1,0.

ηz1,z2 The itinerary connecting two points. When z1 and z2 are stations, ηz1,z2
coincides with γz1,z2 .

γs1,s2 The track connecting stations s1 and s2. It can be either angular (“periph-

eral”) or radial (“express”).

D∗ The exterior of the unit disk.

J The Julia set of f .

K The filled Julia set of f .

Km,∞ The domain enclosed by αm and J .

Km,n The domain enclosed by αm, αn and J .

Exterior(J ), A∞(f) The exterior of the Julia set of f .

P The post-critical set, the closure of the forward critical orbits. See Defini-

tion 2.8.

ψ The Böttcher coordinate D∗ → Exterior(J ) conjugating f0 and f .

C1, C2, ϵ Constants defined in Section 6.4.1.

d An integer for which itineraries connecting w1 ∈ Im with w2 ∈ In form−n ≥ d

are certificates. Defined in Proposition 6.8.

f, fc The map z 7→ z2 + c.

In The n-th departure set, see Definition 6.7.

k The constant guaranteed by Lemma 6.5.

sn,k A station in D∗ or its image under ψ.
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