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Abstract

We analyze rescaling limits of hyperbolic Blaschke products that have one critical

cluster. We show that under rescaling, horocyclic degenerations of hyperbolic Blaschke

products converge to parabolic Blaschke products indexed by the Epstein phase and

the configuration of critical points. We also also study rescaling limits on the level of

holomorphic motions, which forces us to pay attention to the Lavaurs phase. Using

rescaling limits, we endow the space of decorated parabolic Blaschke products with a

Weil-Petersson metric which we show to be incomplete.

1 Introduction

Let Bd be the space of hyperbolic Blaschke products of degree d ≥ 2 which have an

attracting fixed point at the origin:

z → fa(z) = z ·
d−1∏
i=1

z + ai
1 + aiz

, a1, a2, . . . , ad−1 ∈ D. (1.1)

Let a = f ′a(0) = a1a2 · · · ad−1. In this work, we are interested in extracting limits of

degenerating sequences {fn} ⊂ Bd for which |a| → 1. One way to do this would be to

simply take the limit of the maps fn themselves; however, this would be uninteresting

because the limiting maps would be Möbius transformations. By “rescaling” the fn,

i.e. by conjugating fn with elements of Aut(D), one can extract more elaborate limits

which have topological degree greater than 1.

Problem 1. (Rescaling limits – convergence of mappings) Understand the possible

limits of Mn ◦ fn ◦M−1
n or more generally of Mn ◦ f◦qn ◦M−1

n .

Problem 2. (Decorated rescaling limits – convergence of deformations) Find all

sequences {fn,Mn, µn} with Beltrami coefficients µn ∈M(D)fn so that:
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(i) limMn ◦ f◦qn ◦M−1
n = g exists,

(ii) the rescaled versions µ̃n := M∗n(µn) converges weakly in the sense of distribu-

tions to a Beltrami coefficient µ̃ ∈M(D)g.

Brief answers. The first problem leads to the space PBd of parabolic Blaschke

products of degree d while the answer to the second problem involves the space LEd of

decorated parabolic Blaschke products, which we also call the Lavaurs-Epstein space,

in honour of P. Lavaurs and A. Epstein.

Note. In Section 1.3, we will give an alternative formulation of Problem 2 in terms

of the convergence of the renormalized linearizing coordinates.

Applications and motivation

For a Beltrami coefficient µ with ‖µ‖∞ < 1, we use wµ to denote the solution of the

Beltrami equation ∂w = µ∂w, which fixes the points 0, 1,∞. The (weak) conver-

gence of Beltrami coefficients µ̃n → µ̃ implies the convergence of holomorphic motions

wtµ̃n
(z) → wtµ̃(z), where t ∈ D is a complex time parameter. In particular, the Julia

sets

wtµ̃n(S1) = J
(
wtµ̃n ◦

[
Mn ◦ f◦qn ◦M−1

n

]
◦ (wtµ̃n)−1

)
converge to wtµ̃(S1) in the Hausdorff topology as n→∞.

The convergence µ̃n → µ̃ can also be used to show that the Weil-Petersson metric

on Bd has asymptotic symmetries. This is reminiscent of the invariance of the classical

Weil-Petersson metric on Teichmüller space with respect to the mapping class group

Modg. However, unlike Teichmüller space, Bd does not possess an infinite mapping

class group, so these “symmetries” are necessarily asymptotic and we think of them

as ghosts of the mapping class group. Further, these considerations lead us to define a

Weil-Petersson metric on the space of decorated rescaling limits LEd.
We briefly recall the definition of the Weil-Petersson metric in complex dynamics

due to McMullen. As is well known, an invariant Beltrami coefficient µ ∈ M(D)f

defines a (possibly trivial) tangent vector in TfBd represented by the path

ft = wtµ ◦ f ◦ (wtµ)−1, t ∈ (−ε, ε), (1.2)

where wtµ is the quasiconformal map that has dilatation tµ on the unit disk and is

symmetric with respect to the unit circle. Following McMullen, the Weil-Petersson

metric on Bd is defined as

‖µ‖2WP :=
d2

dt2

∣∣∣∣
t=0

H.dimwtµ(S1). (1.3)

Actually, this definition does not cover all tangent vectors in TfBd when f has critical

relations. We refer to [McM1] for a more complete definition.
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In a previous work [Ivr], the author proved that the Weil-Petersson metric on Bd
is incomplete. We will use this to show that the Weil-Petersson metric on LEd is also

incomplete.

1.1 Generalities on rescaling limits

We now describe the basic ideas and definitions that will help illuminate Problem 1.

In order for the rescaling limit to be interesting, the limiting map must have at least

one critical point. Therefore, we must rescale fn at a “recurrent critical cluster.” For

a degenerating sequence of Blaschke products, a critical cluster is a maximal collection

of critical points

C(fn) =
{
c1(fn), c2(fn), . . . , ck(fn)

}
that stay within a bounded hyperbolic distance of each other. A critical cluster is

recurrent if for some q ≥ 1, the hyperbolic distance dD(C, f◦qn (C)) remains bounded as

n→∞.

The operation of rescaling at a critical cluster means that we use Möbius trans-

formations Mn = eiθ · z−Qn

1−Qnz
with Qn ∈ D and dD(Qn, C(fn)) bounded. We call two

rescaling limits equivalent if one can be obtained from the other by a Möbius conjugacy.

It is easy to see that choosing a different sequence Q′n with dD(Qn, Q
′
n) bounded can

only lead to an equivalent rescaling limit. In particular, the number of (inequivalent)

rescaling limits is bounded by the number of critical clusters.

Assumption. In this paper, we only consider rescaling limits that have one critical

cluster, i.e. rescaling limits of Blaschke products for which the critical points remain

within a bounded distance of each other.

Reductions. By passing to subsequences, we may assume that the clusters C(fn)

converge to a point on the unit circle and θn → θ0 in Mn = eiθ · z−Qn

1−Qnz
. Therefore, we

may restrict our attention to straight rescalings with θ = 0 and take Qn = c1(fn).

We will show that in the above setting, if the rescaling limit exists, then it is

necessarily a parabolic Blaschke product, i.e. a Blaschke product which has a fixed

point p on the unit circle with g′(p) = 1; in fact, p = limMn(0). As we shall see in

Section 4, parabolic Blaschke products are not uniquely determined (up go conjugacy)

by the locations of their critical points – one must also specify an additional real

parameter T ∈ R, which we call the Epstein phase. To see that this data may be

prescribed arbitrarily, we appeal to a beautiful theorem due to Heins:

Theorem 1.1 (Heins). Given a finite set C of points in the disk counted with multi-

plicity, there exists a Blaschke product fC of degree d = |C|+ 1 for which

C = {z ∈ D : f ′(z) = 0}.
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Furthermore, fC is unique up to post-composition with a Möbius transformation.

For a discussion of Heins’ theorem, see [KR]. Since our problem concerns Blaschke

products up to Möbius conjugacy, one has to translate Heins’ result carefully. We have:

Theorem 1.2. For any set C consisting of (d − 1) points in the disk counted with

multiplicity, and a number T ∈ R, there exists a unique parabolic Blaschke product

with critical set C and Epstein phase T . Furthermore, every parabolic Blaschke product

arises as a rescaling limit of some sequence of hyperbolic Blaschke products.

The parabolic fixed point p ∈ S1 of a parabolic Blaschke product may be either

singly-parabolic or doubly-parabolic. In terms of the expansion f(z) = z+ak(z−p)k+

. . . , p is singly-parabolic if the first non-zero coefficient is a2; and is doubly-parabolic

if the first non-zero coefficient is a3. The dichotomy between singly-parabolic and

doubly-parabolic Blaschke products will play an important role in this work. In the

singly-parabolic case (⇔ T 6= 0), the Epstein phase carries the same information as

the index of the parabolic fixed point.

1.2 Rescaling Limits in Degree 2

We now describe the answer to Problem 1 in degree 2. The answer has been first worked

out by A. Epstein [E] who worked in the generality of quadratic rational maps. Since

a holomorphic degree 2 self-map of the disk has a unique critical point, it is natural to

rescale there. We are therefore led to consider the “critically centered version” of fa:

f̃a := mc→0 ◦ fa ◦m0→c, (1.4)

where m0→c = z+c
1+cz and mc→0 = z−c

1−cz .

Degenerating a→ 1 through horocycles.

Suppose a→ 1 radially or along another path that is eventually contained in arbitrary

small horoballs which rest on 1 ∈ S1. In this case, the limit of f̃a(z) exists and is

equal to g0(z) = z2+1/3
1+1/3z2 . Conjugating g0(z) to the upper half-plane, we get the simple

expression w → G0(w) = w−1/w. During rescaling, all three fixed points of fa collide

to form a doubly-parabolic fixed point at infinity.

Degenerating a→ 1 along horocycles.

Consider a sequence of Blaschke products fn with an → 1 (asymptotically) along a

horocycle, i.e.

an = HtoD1(iyn + xn), with yn → y, xn → ±∞, (1.5)
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where HtoD1 is the conformal map (H, i,∞) → (D, 0, 1). When we rescale by an

automorphism of the disk, the attracting fixed points at 0 and ∞ continue to be

mirror images. As an → 1, they collide to form a parabolic fixed point. However,

this time, the third (repelling) fixed point does not collide with the other two, and the

rescaling limit is only a singly-parabolic Blaschke product. In the upper half-plane, a

singly-parabolic Blaschke of degree 2 has the form

GT (w) = w − 1/w + T, T ∈ R \ {0}.

Using the holomorphic index theorem (Theorem 3.1), one discovers that T 2 = 1/y. The

sign of T depends on whether a → 1 clockwise or counter-clockwise, and determines

whether∞ is attracting from the “positive” direction or from the “negative” direction.

While the maps GT and G−T are not conjugate as maps of the upper half-plane, there

is a symmetry: (G−T ,H) is conjugate to (GT ,H) via w → −w. Summarizing, one has

a bijection between horocycles and rescaling limits.

Degenerating a→ e(p/q).

When discussing degenerations with a → e(p/q), we instead consider limits of f̃◦qa .

Remarkably, the f̃◦qa converge to exactly the same class of degree 2 parabolic Blaschke

products. In particular, the degree drops in the limit (the degree of f̃◦qa is 2q). For a

point ζ ∈ S1, let HtoDζ be the conformal map (H, i,∞)→ (D, 0, ζ). For y ≥ 0, let

Hp/q(y) := HtoDe(p/q)
(
{w : Imw = y · q2}

)
.

With this natural parametrization of horocycles, the rescaling limits along the horocycles

Hp/q(y) with different p/q and same y coincide.

1.3 Generalities on decorated rescaling limits

We now give another perspective on Problem 2 in terms of the convergence of linearizing

maps. Suppose fa ∈ B2 is a Blaschke product for which the multiplier of the attracting

fixed point a 6= 0. In this case, one can define the linearizing coordinate

ϕa(z) := lim
n→∞

a−n · f◦na (z), z ∈ D, (1.6)

which conjugates fa with multiplication by a:

ϕa(fa(z)) = a · ϕa(z). (1.7)

In fact, (1.7) determines ϕa uniquely with the normalization ϕ′a(0) = 1. Consider the

domain Ωfa which is the unit disk with the grand orbits of the attracting fixed point
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and critical points removed. From the existence of the linearizing coordinate, it is easy

to see that the quotient ϕ̂a : Ω→ T×a := Ω/(fa) is a torus with at most d−1 punctures,

but there could be less in the presence of critical relations. Let Ta ⊃ T×a denote the

underlying closed torus.

Problem 2b. (Convergence of renormalized linearizing maps) Find all sequences

{fn} ⊂ Bd such that:

(i) limMn ◦ f◦qn ◦M−1
n = g exists,

(ii) the renormalized linearizing maps ψ̃n = Cn · ϕ̃
1

log a
q
n

n converge to a holomorphic

function ψ̃.

Above, ϕ̃n = ϕn ◦Mn is the linearizing map of f̃n, the exponent 1
log aqn

ensures that

ψ̃n(f̃◦q(z)) = e · ψ̃n(z), while Cn is chosen so that ψ̃n(c1) = 1.

In case of a doubly-parabolic rescaling limit, we have:

Theorem 1.3. Suppose fn is a sequence of Blaschke products with a doubly-parabolic

rescaling limit g0. Then, the ψ̃n converge to a non-vanishing holomorphic function ψ̃

which is uniquely determined by the conditions ψ̃(g0(z)) = e · ψ̃(z) and ψ̃(c1) = 1.

Here, the quotient Ωg0/(g0) is a cylinder with punctures and h = log ψ̃ is the Fatou

coordinate which is uniquely determined by the functional equation h(g0(z)) = h(z)+1

with the normalization h(c1) = 0, e.g. see [Mil1]. Therefore, eh is the only possible

accumulation point of ψ̃n. A normal families argument now gives the convergence.

Note that while the functions ψ̃n are multi-valued, branching over the grand orbit of

the attracting fixed point, their limit is single-valued on the entire disk. Indeed, during

rescaling, the grand orbit of the attracting fixed point is exiled to the unit circle.

The case of a singly-parabolic rescaling limit is more complicated because the con-

vergence is only subsequential. We prove the following theorem:

Theorem 1.4. Suppose fn is a sequence of Blaschke products with a singly-parabolic

rescaling limit gT . The following conditions are equivalent:

(i) The closed tori Tfn converge to X = C \ 〈1, τ〉 in the moduli space M1. The

imaginary part of τ is determined by the index of the parabolic fixed point p of gT .

(ii) There exist Nn → +∞ so that (a) f̃◦Nn
n converge to a non-constant holomorphic

function gX and (b) the semigroups 〈f̃◦qn 〉 converge geometrically to

G(gT , X) := {g◦kT , k ≥ 1} ∪ {g◦kT ◦ g◦`X , k ∈ Z, ` ≥ 1}. (1.8)

Note that we allow inverse iteration by gT provided we do at least one step by gX .

Under these assumptions, the ψ̃n converge to a non-vanishing holomorphic function

ψ̃ which is uniquely determined by the conditions

ψ̃(gT (z)) = e · ψ̃(z), ψ̃(gX(z)) = e′ · ψ̃(z), ψ̃(c1) = 1.
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Here, gX is called the Lavaurs map, it commutes with gT ; and extends to a holomorphic

function on S2 \ J (gX) whose Denjoy-Wolff point is also at p. The quotient of Ω(G),

the disk with the grand orbits of the critical points removed, by the action of G is also a

torus with punctures – after filling in the punctures, its representative in moduli space

is X.

We further note that any pair (g,X), consisting of a singly-parabolic Blaschke

product g and a torus X = C\〈1, τ〉 where τ has the correct imaginary part determined

by g, can be realized as a decorated rescaling limit of some sequence of hyperbolic

Blaschke products. We denote the space of such pairs by LE1.

The space LE1 = LE1,+∪LE1,− has two connected components associated to clock-

wise degenerations (T > 0) and counter-clockwise degenerations (T < 0) respectively.

These two components are canonically isomorphic and are trivial fiber bundles over

PB1 with fiber S1. Note that by Heins’ theorem, the base PB1 is contractible. We

may form the space LE by attaching the doubly-parabolic Blaschke products PB2 to

LE1,+, with (gn, X) → g0 if gn → g0 and the Epstein phase T (gn) → 0. Clearly,

LE is contractible since it retracts to PB2. We emphasize that the Lavaurs-Epstein

spaces constructed for different e(p/q) = lim an are identical since the correspondence

(gT , X)→ gX does not depend on e(p/q) ∈ S1.

Convergence of Beltrami coefficients

In order for sequences of rescaled Beltrami coefficients µ̃n to converge, they need to

be “systematically defined.” Suppose Λn are lattices in the plane converging to Λ.

Furthermore, assume that νn ∈ M(C)Λn are Beltrami coefficients, invariant under

translations by elements of Λn. For applications to complex dynamics, L∞ convergence

is much too strong, so we only require weak convergence:
´
C νnφ →

´
C νφ for φ ∈

C∞c (C). If Ψ̃n : Ωn → C are holomorphic mappings that converge to Ψ̃ : Ω → C
uniformly on compact sets, then the Beltrami coefficients µ̃n = (Ψ̃n)∗νn ∈ M(D)

converge weakly to µ = Ψ̃∗ν. More generally, we can assume that Ψ̃n are multi-valued

holomorphic mappings with periods in Λn.

However, this is precisely the setting of Theorem 1.4, where one needs only to

consider Ψn = logψn to create invariant Beltrami coefficients which have a rescaling

limit. Similar considerations with cylinders instead of tori provide converging sequences

of Beltrami coefficients in the doubly-parabolic case.

1.4 Visualizing Rescaling Limits in Degree 2

We now discuss one possible way to visualize the main theorems of this paper in de-

gree 2. For this purpose, we draw pictures of invariant sets called half-flower gardens
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Gp/q(fn) ⊂ D. Since we draw these pictures for intuition, we only give a loose descrip-

tion and refer the reader to [Ivr, Sections 3 – 5] for details.

In essence, one takes a simple closed curve of rotation number p/q in the quotient

torus, thickens it up to an annulus like in Figure 1, and lifts it to the unit disk. Note that

a Blaschke product has many gardens, but when studying degenerations a → e(p/q),

the garden Gp/q(fn) is the most appropriate. The flower is a forward-invariant region

which is the union of the q connected components which emanate from the origin; the

individual components are called petals. The garden is composed of the flower and its

inverse iterates or pre-flowers.

µ

Figure 1: Half of the quotient torus away from the critical point.

Figure 2: Gardens G0/1(fa) with a = 0.5 + 0.5eiθ for θ = 2π/8 and 2π/14.

By an optimal Beltrami coefficient in M(D), we mean a Teichmüller coefficient on

the closed quotient torus, lifted to the disk. To form the half-optimal coefficient, we

multiply the optimal coefficient by the characteristic function of the garden.

Consider the case when an → 1� clockwise along a horocycle, i.e. with an =

HtoD1(iy + xn), xn → −∞. For each fn, let µn be the half-optimal coefficient which

represents the clockwise direction tangent to the horocycle in TfnB2. As Figures 2

and 3 show, the half-petals P(f̃n) converge in the Hausdorff topology, giving a visual
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Figure 3: Critically-centered versions of the gardens above.

Figure 4: A garden G1/2(fa) with a ≈ −1, and its critically-centered version.

confirmation of Epstein’s theorem on rescaling limits. However, the limit set P(gT )

is disconnected (it has countably many components) since P(gT ) thins out near the

parabolic fixed point. Therefore, one cannot use the Carathéodory convergence theo-

rem to conclude the convergence of the rescaled half-optimal Beltrami coefficients µ̃n.

In fact, the convergence is only subsequential: we need to keep track of how the high

iterates f̃◦Nn
n pass through the thin part of P(f̃n). This is related to the phenomenon

of parabolic implosion which has to do with the fact that the Julia set J (gT (z)) is a

proper subset of the unit circle (it is a Cantor set).

For the convergence of Beltrami coefficients, we need the convergence of the quotient

tori T×an → X in moduli space, which occurs if σ := limxn (modπ−1) ∈ R/π−1Z exists.

Therefore, the Lavaurs-Epstein space LE1 ∼= H/π−1Z. This presentation endows LE1,+

with a complex structure and a Teichmüller-Kobayashi metric. More canonically, one

may describe the Lavaurs-Epstein space as the quotient of T1,1 by a Dehn twist with

respect to a simple closed curve of slope 0/1. In particular, LE1,+ is conformally
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equivalent to a punctured disk. One can associate to the puncture the doubly-parabolic

Blaschke product g0(z) = z2+1/3
1+(1/3)z2 . Since the Julia set J (g0(z)) is the entire circle,

the dynamics of g0(z) cannot be enriched by Lavaurs maps. If we fill in this puncture,

we obtain a disk LE := LE1,+ ∪ {z → g0(z)}. Needless to say, the results are identical

for counter-clockwise degenerations, except we work with LE1,− instead of LE1,+.

If we instead take an → e(p/q)� clockwise along a horocycle, i.e. if we consider

an = HtoDe(p/q)
(
(iy + xn)q2

)
, xn → −∞ and Tan → X ∈M1,

then the semigroups 〈f̃◦qan〉 converges to the same semigroup G(gT , X) = GT,σ that

was described in the an → 1 case. The Lavaurs-Epstein disk associated to horocyclic

degenerations with a → e(p/q) is naturally the quotient of T1,1 by a Dehn twist by a

simple closed curve of slope p/q. In particular, it has the same complex structure as

the Lavaurs-Epstein disk associated to horocyclic degenerations with a→ 1�.

1.5 Notes and references

In [E], Epstein studied rescaling limits of general degree 2 rational maps using normal

forms. His methods are algebraic in nature. Our approach to rescaling limits lever-

ages the hyperbolic geometry of Blaschke products, using the tools from [McM3] and

[McM4]. While we only work with Blaschke products, we do allow the degree to vary.

The theory of parabolic implosion began with the work of Lavaurs. See [Dou] for a

survey; another good reference is [S].

Acknowledgements. The author wishes to thank Curtis McMullen, Eva Uhre and

Adam Epstein for useful discussions. Part of this research was performed while the

author was a graduate student at Harvard University. While at University of Helsinki,

the research was supported by the Academy of Finland, project no. 271983.

2 Anatomy of a Blaschke Product

For a degree 2 Blaschke product fa ∈ B2, the critical point c is the midpoint of the

hyperbolic geodesic [0,−a]. In particular, (1 − |c|) ∼
√

2(1− |a|) as |a| → 1. The

following lemma says that Blaschke products for which the critical points are contained

in a ball of a fixed hyperbolic radius behave similarly to degree 2 Blaschke products:

Lemma 2.1. Suppose that fa ∈ Bd is a Blaschke product for which the set of critical

points lies within a disk of hyperbolic radius R. Let δc := 1 − minc∈C(fa) |c|. There

exists constants C,K0 ≥ 1, depending on R and d so that:

(i) The map fa(z) is injective on S2 \B(ĉ1,K0 · δc).
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(ii) The zeros and critical points of fa are contained in B(ĉ1,K0 · δc) and

1− |ai| � 1− |a| �
√
δc.

(iii) For K ≥ K0, we have the estimate

|fa(z)− az| ≤ (C/K)
√

1− |a|, z ∈ D \B(0, 1−K · δc).

(iv) On the unit circle, the derivative satisfies:{
|f ′a(ζ)| > 1 + ε, for ζ ∈ S1 ∩B(ĉ1,K0 · δc),
|f ′a(ζ)| − 1 � δ2c

|ζ−ĉ1|2 , for ζ ∈ S1 \B(ĉ1,K0 · δc).

The above lemma will be fundamental for proving results on rescaling limits and

decorated rescaling limits.

2.1 Derivatives of Blaschke Products

Before proving Lemma 2.1, we first gather some well known facts about Blaschke

products. We mostly cite McMullen’s works although the lemmas are classical. We

begin with a formula for the derivative of a Blaschke product on the unit circle:

Lemma 2.2 (Equation (3.1) of [McM3]). Given a Blaschke product fa ∈ Bd and a

point ζ on the unit circle,

|f ′a(ζ)| = 1 +

d−1∑
i=1

1− |ai|2

|ζ + ai|2
. (2.1)

The proof of (2.1) follows from logarithmic differentiation. The utility of Lemma

2.2 comes from the fact that it allows one to estimate the location of a point ζ ∈ S1

in terms of the derivative |f ′a(ζ)|. Inside the unit disk, the derivative of a Blaschke

product is controlled by its behaviour on the unit circle:

Lemma 2.3 (Proposition 3.2 in [McM3]). Given a Blaschke product f ∈ Bd, for a

point ζ ∈ S1, we have

max
0≤r≤1

|f ′(rζ)| ≤ 4|f ′(ζ)|. (2.2)

Let G(z) = log 1
|z| be the Green’s function of the disk with a pole at the origin. It

is uniquely characterized by three properties:

(i) G(z) is harmonic on the punctured disk,

(ii) G(z) tends to 0 as |z| → 1,

(iii) G(z)− log 1
|z| is harmonic near 0.
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Lemma 2.4. For a Blaschke product f ∈ Bd, we have∑
f(wi)=z

G(wi) = G(z), z ∈ D. (2.3)

In particular, the Lebesgue measure on the unit circle is invariant under f .

To prove (2.3), one can check that
∑
f(wi)=z

G(wi) also satisfies the three properties

above. We leave the verification to the reader. To deduce the invariance of Lebesgue

measure, fix a point x ∈ S1 and consider (2.3) with z = rx. Dividing both sides by

(1− r) and taking r → 1 gives
∑
f(y)=x |f(y)|−1 = 1 as desired.

Corollary 2.1 (Proposition 4.4 in [McM3]). A Blaschke product f ∈ Bd is injective

on the set

S1
thin := {ζ ∈ S1 : |f ′(ζ)| < 2}.

2.2 Approximate isometries

The next lemma says that a Blaschke product fa ∈ Bd is close to multiplication by a

in the “critical disk” B
(
0, 1−K

√
1− |a|

)
:

Lemma 2.5. Suppose fa(z) = z
∏ z+ai

1+aiz
∈ Bd with |a| = |f ′a(0)| > 1/2. For a point

z ∈ B
(
0, 1−K

√
1− |a|

)
with K ≥ 1, the hyperbolic distance dD(fa(z), az) < C/K2.

Proof. The map z → z+ai
1+aiz

takes the ball B
(
0, 1−K

√
1− |a|

)
inside the ball

B

(
ai, (C1/K) ·

√
1− |a| · 1− |ai|

1− |a|

)
.

Multiplying over i = 1, 2, . . . , d − 1, we see that
∏ z+ai

1+aiz
∈ B

(
a, (C2/K)

√
1− |a|

)
which shows that |fa(z)− az| ≤ (C/K)

√
1− |a| as desired.

Together with the argument principle, the above lemma implies that fa is injective

in a disk B
(
0, 1−K0

√
1− |a|

)
for some constant K0 ≥ 1 sufficiently large.

Applying Lemma 2.5 to mfa(z0)→z0 ◦ fa(z) where mfa(z0)→z0 is a Möbius transfor-

mation that takes fa(z0) to z0, it follows that Blaschke products are close to hyperbolic

isometries away from the critical points. This principle was formulated in a convenient

form in [McM4]:

Lemma 2.6 (Theorem 10.11 in [McM4]). There is a constant R > 0 such that for any

proper holomorphic map f : D→ D of degree d,

1. If dD([a, b], C(f)) > R, then dD(f(a), f(b)) = dD(a, b) +O(1).

2. If dD([a, b], f(C(f))) > R, then dD(f−1(a), f−1(b)) = dD(a, b) +O(1)

where f−1 is any branch of the inverse chosen continuously along [a, b].
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(We use the notation [a, b] to denotes the hyperbolic geodesic segment joining a

and b in the unit disk.)

Let us show that δc ≥
√

1− |a| for any Blaschke product f ∈ Bd, justifying our

definition of the critical disk. Consider the geodesic segment [0, zi] joining the origin

with the nearest zero of f . By Lemma 2.6, [0, zi] needs to pass by a critical point

before its midpoint so that its image under f can reverse direction.

Proof of Lemma 2.1. Lemma 2.6 gives part (i), which implies the statement (ii) on

the location of the zeros. Part (iv) now follows from Lemma 2.2. An examination

of the proof of Lemma 2.5 shows that in the setup of Lemma 2.1, one can replace

B
(
0, 1−K

√
1− |a|

)
with S1 \B(0, 1−K · δc), thus proving (iii).

3 Dynamics on the circle

In this section, we gather further preliminaries dealing with dynamics of Blaschke

products on the unit circle.

3.1 Simple Cycles

On the unit circle, a Blaschke product has many repelling periodic orbits or cycles.

Since all Blaschke products of degree d are quasisymmetrically conjugate on S1, we

can label the periodic orbits of f ∈ Bd by the corresponding periodic orbits of z →
zd. A cycle is simple if it f preserves its cyclic ordering. In this case, we say that

〈ξ1, ξ2, . . . , ξq〉 has rotation number p/q if f(ξi) = ξi+p (mod q).

Given a cycle 〈ξ1, ξ2, . . . , ξq〉 of period q, its multiplier is defined as (f◦q)′(ξ1). It is

easy to see that the multiplier is a positive real number (greater than 1) since Blaschke

products preserve the unit circle. Given a sequence of Blaschke products {fn} ⊂ Bd,
we say that a cycle degenerates if its multiplier tends to 1.

According to [McM3, Theorem 6.1], only simple cycles can degenerate; in fact, the

multiplier of a non-simple cycle is bounded from below by a constant Cd > 1 that only

depends on the degree d. Furthermore, the only way that the multiplier of a simple

cycle of rotation number p/q can approach 1 is if a→ e(p/q) through horocycles. We

will need the following lemma which is a variant of [McM3, Corollary 3.3]:

Lemma 3.1. Suppose {fn} is a degenerating sequence of Blaschke products, tending

pointwise to a rotation z → ωz, ω ∈ S1. If 〈ξ0, ξ1, ξ2, . . . , ξq−1〉 is a repelling periodic

orbit whose multiplier remains bounded as n→∞, then ξj(fn)/ξ0(fn)→ ωj as n→∞.

Proof. It suffices to check that ξj+1 ≈ ω · ξj . For this purpose, consider the geodesic

ray [0, ξj). By Lemma 2.5, f is approximately rotation by ω on [0, ξj(1−K · δc)]. We

13



can control the length of f
(
[ξj(1−K · δc), ξj)

)
using Lemma 2.3. Thus, f is nearly a

rotation on the complete ray [0, ξj) as desired.

3.2 Holomorphic Index Theorem

If g : U → C is a holomorphic map, and g(ζ) = ζ for some point ζ ∈ U , the fixed point

index of ζ is defined as

Iζ :=
1

2πi

ˆ
γ

dz

z − g(z)
, (3.1)

where γ is a small counter-clockwise loop around ζ. If the multiplier λ = g′(ζ) 6= 1,

then the above definition reduces to Iζ = 1
1−λ . The Residue theorem shows:

Theorem 3.1 (Holomorphic Index Theorem). Suppose R(z) is a rational function and

{ζi} is the set of its fixed points. Then,
∑
Iζi = 1.

For a Blaschke product f ∈ Bd, the holomorphic index theorem tells us that∑ 1

λ− 1
=

1− |a|2

|1− a|2
, (3.2)

where the sum ranges over the repelling fixed points on the unit circle.

4 Parabolic Blaschke Products

In this section, we define the Epstein phase of a parabolic Blaschke product and discuss

the dichotomy between singly-parabolic and doubly-parabolic Blaschke products, which

will play an important role in the study of horocyclic degenerations.

4.1 Normal form

It is easier to consider parabolic Blaschke products as endomorphisms of the upper half-

plane, with the parabolic fixed point normalized at infinity. We will use the convention

that lower case letters like f and g refer to Blaschke products that are self-maps of the

disk, while capital letters refer to self-maps of the upper half-plane.

One advantage of working in the upper half-plane is that it is easy to write down

the general expression for a parabolic Blaschke product, namely

F (w) = w −
d−1∑
i=1

ai
w − bi

+ T, (4.1)

where {bi} and T are real and {ai} are positive. To see why this is indeed the general

expression, consider the (finite) pre-images {bi} of infinity. In order for the upper half-

plane to be completely-invariant, each bi must lie on the real axis and be a simple pole
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with a negative residue. Clearly, any function of the form (4.1) is an endomorphism of

the upper half-plane, being the sum of endomorphisms.

Let us now show that a parabolic Blaschke product is determined by the set of its

critical points up to an additive constant. Indeed, if two Blaschke products F1, F2 are

of the form (4.1) and have the same critical points, then by Heins’ theorem from the

introduction,

F1 = L ◦ F2, where L(w) = Sw + T, S > 0, T ∈ R.

Since limw→∞ F ′i (w) = 1, i = 1, 2, we see that S = 1. Therefore, F1 = F2 + T as

desired.

Remark. Of course, if one interested in maps up to conjugacy, then (4.1) is a normal

only up to conjugation by

w → Aw +B, A ≥ 0, B ∈ R. (4.2)

4.2 Epstein phase

Write FT (w) = w+ T + c−1/w+ c−2/w
2 + . . . Using an affine conjugacy (4.2), we can

make c−1 = −1. In this case, we refer to T as the Epstein phase.

Inspection shows that a parabolic Blaschke product is singly-parabolic if T 6= 0 and

doubly-parabolic if T = 0. In the singly-parabolic case, a simple computation shows

that the index of the parabolic fixed point at infinity is 1− 1/T 2 ∈ (1,∞).

Thus, for singly-parabolic Blaschke products, the index of the parabolic fixed point

carries the same information as the Epstein phase.

Conversely, given a set of (d − 1) points in the upper half-plane and a number

T ∈ R, there is a unique parabolic Blaschke product with this set of critical points and

whose Epstein phase is T . This fact follows easily from the theorem of Heins.

4.3 The Dichotomy

The dichotomy between singly-parabolic and doubly-parabolic Blaschke products can

be expressed in terms of many different dynamical properties, for instance:

Theorem 4.1. For a parabolic Blaschke product F considered as a map from the upper

half-plane to itself, the following are equivalent:

(a) The Blaschke product F has a doubly-parabolic fixed point at infinity,

(b) The Julia set J(F ) = R := R ∪ {∞},

(c) The Lebesgue measure on R is ergodic under F ,
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(d) The parabolic Blaschke product F is rigid; i.e. given any other parabolic Blaschke

product G conjugate to F , the conjugacy is not absolutely continuous.

Proof. Under the dynamics of F , points outside the real line iterate towards∞, there-

fore the Julia J(F ) ⊆ R. However, it is possible that some points on the real line lie

in the basin of ∞ as well. This happens when ∞ is attracting from at least one side.

From the normal form (4.1), this happens precisely when T 6= 0, i.e. when the parabolic

fixed point is not degenerate. Thus, we have shown the equivalence (a)⇔ (b).

The equivalences (b)⇔ (c)⇔ (d) can be found in [H].

5 Horocyclic approach: a→ 1

Suppose {fn} ⊂ Bd is a degenerating sequence of Blaschke products with one critical

cluster for which f̃n := Mn ◦ fn ◦M−1
n → g. By Hurwitz’ theorem, the limiting map

g(z) cannot have any fixed points inside D since f̃n(z) − z is zero-free on any disk

B(0, r) ⊂ D, 0 < r < 1, for sufficiently large n. By the Denjoy-Wolff theorem, g must

have either an attracting or a parabolic fixed point on the unit circle.

Lemma 5.1. Suppose fn is a degenerating sequence of Blaschke products with one

critical cluster for which

Mn ◦ fn ◦M−1
n → g, Mn(z) =

z − c1
1− c1z

.

Then, an is eventually contained within some horoball resting on 1 ∈ S1, g(z) is a

parabolic Blaschke product, and its parabolic fixed point p = limMn(0). Furthermore,

the following dichotomy holds:

(i) If the sequence an is eventually contained in arbitrarily small horoballs resting on

1 ∈ S1, then the rescaling limit is doubly-parabolic.

(ii) Otherwise an is eventually contained in a region between two horocycles H1(η1),

H1(η2), and the rescaling limit is singly-parabolic. In this case, an → 1 clockwise

or counter-clockwise and the choice of access determines the attracting side of p

on the unit circle.

Sketch of proof. By Lemma 2.5, for z ∈ B(0, 1−Kδc), K ≥ 1, one has dD(fn(z), anz) <

C/K2. Consider the auxiliary point

cK1 := (1−Kδc) · ĉ1, ĉ1 := c1/|c1|. (5.1)

The existence of the rescaling limit implies that dD(c1, fn(c1)) is bounded as n → ∞.

For fixed K > 1, this is equivalent to the boundedness of

dD
(
cK1 , fn(cK1 )

)
≈ dD(cK1 , an · cK1 ). (5.2)
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In turn, this is equivalent to the boundedness of

sup
n

arg an√
1− |an|

<∞, (5.3)

i.e. an eventually lies within some horoball based at 1.

Under rescaling, mc1→0

(
B(0, 1 −Kδc)

)
converge to a horoball Hp resting on p =

limmc1→0(0). Therefore, up to small error in the hyperbolic metric,

g(z) ≈ mc1→0 ◦ (· a) ◦m0→c1(z), z ∈ Hp. (5.4)

The lemma now follows by examining the different possibilities for the multipliers an

and comparing them to the different possibilities for the local behaviour of g near p.

For instance, inspecting the relative locations of cK1 and fn(cK1 ) with K large, we see

that the local translation length lim infz→p dD(z, g(z)) = 0 and therefore, p must be a

parabolic fixed point. A finer examination reveals whether or not p is singly-parabolic

and so forth.

5.1 What is the parabolic index?

After rescaling, the attracting fixed points at Mn(0) and at Mn(∞) continue to be

mirror images and therefore are guaranteed to collide. Assuming that they are the

only fixed points that collide, they will form a parabolic fixed point of index

Ip = lim
n→∞

( 1

1− an
+

1

1− an

)
. (5.5)

Lemma 5.2. Suppose a ∈ H1(η). Then 1/(1− a) + 1/(1− a) = 1 + η.

Proof. The lemma follows from the observation that a → 1
1−a takes the unit disk to

the half-plane {w : Re w ≥ 1
2}, with the point 0 mapping to 1.

5.2 Do repelling fixed points participate?

Of course, we must decide whether repelling fixed points take part in the formation of

the parabolic during the rescaling limit.

Theorem 5.1. Suppose {fn} ⊂ Bd is a sequence of of Blaschke products with one

critical cluster and an → 1. If the rescaling limit g = lim f̃n exists, then either:

(i) A repelling fixed point collides with the two attracting fixed points if and only if

its multiplier tends to 1. In this case, an → 1 through horocycles, i.e. eventually

an lies in arbitrarily small horoballs and the rescaling limit is doubly-parabolic.
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(ii) Alternatively, if no repelling fixed point collides with the two attracting fixed

points, then an → 1 (asymptotically) along some horocycle H1(η) and the index of

the parabolic fixed point is 1+η. In this case, the rescaling limit is singly-parabolic.

Furthermore, in the first case, only a single repelling fixed point can take part in the

parabolic index.

Proof. For a fixed n, the critical cluster {c1, c2, . . . , ck} ⊂ B(ĉ1, C · δc). When we

rescale by Mn = mc1(fn)→0, the attracting fixed points Mn(0) and Mn(∞) will be

contained in B(−ĉ1, C · δc).
Suppose ξ is a repelling fixed point whose multiplier m = f ′(ξ) is bounded away

from 1. By Lemma 2.2, |ξ− ĉ1| ≤ C2 ·δc, which implies that Mn(ξ) is a definite distance

away from −ĉ1. Therefore, ξ cannot collide with Mn(0) and Mn(∞).

Suppose instead that for some repelling fixed point ξ, the multiplier m = f ′(ξ) tends

to 1. Since 1
1−m → −∞, the holomorphic index theorem implies that 1

1−a + 1
1−a →∞.

In other words, a→ 1 through horocycles. By reversing the reasoning, we see that the

converse is true: if a → 1 through horocycles, then the multiplier of some repelling

fixed point must tends to 1.

To see that at most one repelling fixed point can take part in the parabolic index,

note that by Lemma 2.1, f is injective on the arc

J = S1 \B(ĉ1, C3 · δc)

for C3 > 0 sufficiently large. Topological considerations show that f has at most one

fixed point on S1 \B(ĉ1, C3 · δc). However, by Lemma 2.2, on the complementary arc,

the derivative |f ′(ζ)| is bounded away from 1.

5.3 Realizing rescaling limits

From the above discussion, it follows that:

Theorem 5.2. A sequence f̃n of hyperbolic Blaschke products of degree d converges

uniformly on compact subsets of D to g ∈ PBd if and only if

(i) the attracting fixed points of f̃ converge to the parabolic fixed point of g,

(ii) the critical configurations C(f̃n)→ C(g) converge and

(iii) either an → 1 through horocycles, or asymptotically along a horocycle.

Conversely, one has:

Theorem 5.3. Every parabolic Blaschke product g is the limit of some sequence of

Blaschke products that have attracting fixed points in the unit disk.
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Proof. As mentioned earlier, the translation length of g is 0. For n ≥ 1, we choose a

point zn ∈ D such that dD(zn, g(zn)) < 1/n. Let gn(z) = mg(zn)→zn ◦ g(z) so that zn

is a fixed point of gn. Clearly, gn → g as desired.

The above proof shows that g is the rescaling limit of fn := mzn→0 ◦ gn ◦m0→zn .

6 Horocyclic approach: a→ e(p/q)

We now turn our attention to studying limits of f̃◦qa when a→ e(p/q) along a horocycle.

From the holomorphic index theorem (3.2) applied to f◦ra , it follows that multipliers

of all cycles of period r < q go to infinity. In fact, from Lemma 3.1, it follows that

multipliers of all cycles of period q that do not have rotation number p/q must also

go to infinity: otherwise, we would be able to extract a cycle 〈ξ0, ξ1, . . . , ξq−1〉 as a

subsequential limit, which would be invariant under the limiting map z → e(p/q)z, yet

by construction, its rotation number is not p/q. This is clearly absurd. With this in

mind, the holomorphic index theorem (3.2) applied to f◦qa tells us that

1

1− aq
+

1

1− aq
+
∑
C(p/q)

q

1− ri
≈ 1 (6.1)

where we sum over the multipliers of (p/q)-cycles. We have:

Theorem 6.1. Suppose {fn} ⊂ Bd is a sequence of of Blaschke products with one

critical cluster and an → e(p/q). If the rescaling limit g = lim f̃◦qn exists, then either:

(i) A repelling periodic orbit collides with the two attracting fixed points if and only if

its multiplier tends to 1. In this case, an → e(p/q) through horocycles, i.e. eventu-

ally an lies in arbitrarily small horoballs and the rescaling limit is doubly-parabolic.

(ii) Alternatively, if no repelling periodic orbit collides with the two attracting fixed

points, then an → e(p/q) (asymptotically) along some horocycle Hp/q(η) and the

index of the parabolic fixed point is 1 + η. In this case, the rescaling limit is

singly-parabolic.

In the first case, only a single repelling periodic orbit can take part in the parabolic

index. In this case, it is necessarily a simple cycle of rotation number p/q.

Plan. The proof of Theorems 6.1 is nearly identical to the proofs of Theorems

5.1 in the last section. Therefore, we only highlight the differences: we explain why

the degree drops under rescaling and how to compute the index of the parabolic fixed

point.
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6.1 Why does the degree drop?

While the degree of f̃◦qa is dq, the rescaling limit has degree only d. To see this, we

will show that the rescaling limit has (d − 1) critical points. The critical points of

f◦qa include the critical points of fa and their 1, 2, . . . , (q − 1)-fold pre-images. They

split into two groups: the dominant critical points and subordinate critical points.

The dominant critical points are the actual critical points ci = ci,0 of fa(z) and their

shadows : since the map fa is nearly a rotation z → e(p/q)z, there exist critical points

ci,j near ci · e(−j · p/q) for j = 1, 2, . . . , q − 1. We will refer to all remaining critical

points as the subordinate critical points.

Clearly, the shadows of the critical points are far away from the critical cluster at

which we rescale. From formula (2.3), it follows that the “heights” of the subordinate

critical points are insignificant compared to the heights of the dominant critical points.

This tells us that the subordinate critical points are also far away from the critical

cluster. Therefore, the rescaling limit will only have (d − 1) critical points, and so

has degree d. From this analysis, it follows that in order for the maps {fn} to have a

rescaling limit, it is necessary for the critical clusters of C(f̃n) to converge, in which

case, the critical cluster C(g) is the limit of C(f̃n).

6.2 Computing the parabolic index

We now compute the index of the parabolic fixed point provided that 1
1−aq + 1

1−aq
remains bounded as n → ∞. In this case, the multipliers of p/q-cycles are bounded

away from 1. In view of Lemma 3.1, if a sequence {fn} ⊂ Bd has one critical cluster,

we can order the repelling periodic orbit 〈ξ0, ξ1, ξ2, . . . , ξq−1〉 so that ξj ≈ ĉ1 · ωj . It

follows that ξ0 carries most of the multiplier of the repelling periodic orbit, i.e. |f ′(ξ0)| ≈
|(f◦q)′(ξ0)| while |f ′(ξi)| ≈ 1 for i 6= 0.

We now apply this observation to study rescaling limits. If the multiplier (f◦q)′(ξ0)

is bounded away from 1, when we rescale, ξ̃0(fn) stays a definite distance away from

−ĉ1 while the rest of the orbit collapses into the parabolic fixed point.

Therefore, the index of the parabolic fixed point equals to

Ip = lim

{
1

1− aq
+

1

1− aq
+
∑
C(p/q)

q − 1

1− ri

}
. (6.2)

Lemma 6.1. Suppose a→ e(p/q) along Hp/q(η). Then,

1

1− aq
+

1

1− aq
+
∑
C(p/q)

q − 1

1− ri
→ 1 + η. (6.3)

Proof. By Lemma 5.2,
1

1− aq
+

1

1− aq
→ 1 + q · η.
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Together with (6.1), this shows ∑
C(p/q)

1

1− ri
→ −η.

Hence,
1

1− aq
+

1

1− aq
+
∑
C(p/q)

q − 1

1− ri
→ 1 + η

as desired.

7 Lavaurs maps: a→ 1

We now turn to the second part of the paper, dealing with Problem 2. We explain

the procedure of “renormalizing the quotient torus” and use it to study the dynamics

of fa ∈ Bd in the critical disk B(0, 1 −K0δc). As before, we first examine horocyclic

degenerations with a→ 1, and discuss the modifications that need to be made for the

a→ e(p/q) case later.

7.1 Renormalizing the quotient torus

Without loss of generality, let us consider a sequence {an} ⊂ D which approaches 1�

clockwise along a horocycle, i.e. an = HtoD1(iy + xn) → 1 with xn → −∞. In this

case, arg a is positive and therefore multiplication by a is a counter-clockwise rotation.

(For counter-clockwise degenerations, multiplication by a is a clockwise rotation.) As

discussed in the introduction, even though the quotient tori Tan = C∗/(· an) diverge

in Teichmüller space, they are recurrent in moduli space.

One fundamental domain for (C∗, · a) is the annulus {z : |a| < |z| < 1}. We now

describe another fundamental domain for Tan = C∗/(· an). To construct it, pick an

arbitrary point z0 ∈ C and consider its orbit z0, z1, z2, . . . under multiplication by a.

Since a is close to 1 along a horocycle, multiplication by a looks like a rotation by

ei arg a, but there is also a small radial contraction. A simple calculation reveals that

when xn(y) is large,

arg a ∼ 2/x, 1− |a| ∼ 2y/x2.

In particular, it takes Na := d 2π
arg ae steps to make one complete revolution, plus a little

extra. In this time, the total contraction |zNa |/|z0| = |a|Na ∼ πy arg a is comparable

to the rotation of a single step. This suggests an alternative tiling of C∗/(· a) of the

form CeΛ where Λ = 〈τ,Naτ − 2πi〉, τ = log a. If one chooses the constant C so that

z0 is a corner of a tile, the sequence {zi}i∈Z describes the set of all corners. In Figure

5 below, we show a renormalized fundamental domain – a “parallelogram” with sides

(z0, az0) and (z0, a
Naz0).
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Scaling Λ by τ (i.e. switching to the CaΛ∗ representation), one obtains the lattice

Λ∗ = 〈1, τ∗〉 = 〈1, Na − 2πi
τ 〉. When xn is large, Λ∗ ≈

〈
1, iπy + dπxne − πxn

〉
. In

particular, these computations show that the tori C∗/(· a) converge in moduli space if

the renormalized excess rotation dπxne − πxn converges modulo 1. The parameter y

determines the height of the limiting quotient torus.

az0

aNz0

z0

Figure 5: A renormalized fundamental domain.

7.2 Strong linearization principle

Suppose {fn} ⊂ Bd is a sequence of Blaschke products with one critical cluster, with

an → 1� clockwise along a horocycle. One may suspect that in the ball B(0, 1−K0δc)

with K0 large, the iterate f◦j acts approximately as multiplication by aj . However, for

general 1 ≤ j ≤ Na, the error between f◦j(z) and ajz can be significant, for instance

| loga f
◦j(z) − loga a

jz| need not be O(1). Nevertheless, when n = Na = d2π/ arg ae,
aNaz approximates f◦Na(z) fairly accurately. This crucially uses the horocyclic nature

of a. In essence, one compares ϕ(f◦Na(z)) = aNa · ϕ(z) with ϕ(f(z)) = a · ϕ(z) and

uses |aNaz − z| � |az − z|. However, these computations are best performed in the

logarithmic coordinate, where the grid of Figure 5 becomes the lattice Λ∗n. We defer

the rigorous statement and proof to Section 8.

7.3 Canonical Cylinders

Our current objective is to prove the following theorem:

Theorem 7.1. Suppose {fn} ⊂ Bd is a sequence of Blaschke products with

an = HtoD1(iy + xn)→ 1, xn → −∞, f̃n → gT .
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If xn converge mod π−1 to σ ∈ R/π−1Z, then f̃
◦Nan
n → gσ.

The proof of Theorem 7.1 hinges on the main construction from the theory of

parabolic implosion. We first build two fundamental domains for gT : an “incoming”

fundamental domain U−(gT ) and an “outgoing” fundamental domain U+(gT ). The

incoming fundamental domain U−(gT ) has the property that any forward orbit of

gT passes through Ũ− exactly once. Further, we use the sequence {f̃n} of approxi-

mating hyperbolic Blaschke products to construct a conformal map of half-cylinders

∆̃ : U−(gT )/(gT )→ U+(gT )/(gT ).

1.01

1.01

U−

U+

Ũ+

Ũ−
a−

b−

b+

a+

c

ã−

b̃−

ã+

b̃+

f

1.01

1.01

U−

U+

Ũ+

Ũ−
a−

b−

b+

a+

c

ã−

b̃−

ã+

b̃+

f

Figure 6: Canonical cylinders.

For each n = 1, 2, . . . , we mark two points a− and a+ on the unit circle chosen so

that a+, ĉ1, a− ordered counter-clockwise and

|a+ − ĉ1| = |a− − ĉ1| = M · δc, (7.1)

where M > 0 is sufficiently large to guarantee that fn is injective on S2 \ B(ĉ1,Mδc).

By construction, mc1→0(a±) converges as n→∞. Set b− := fn(a−) and b+ := fn(a+).

We have thus constructed two intervals [a−, b−] and [a+, b+] on the unit circle. Let

U−(fn) be the region enclosed by the curves

[0, a), [a−, b−], f
(
[0, a)

)
and C−(fn) := U−/(fn) denote the quotient half-cylinder. We define U+ and C+(fn)

similarly. By construction, as n → ∞, the rescaled domains U±(f̃n) converge in the

Carathéodory topology to limiting domains U±(g̃T ).

The dynamics of fn determine a natural conformal equivalence between the half-

cylinders ∆n : C−(fn) → C+(fn). Namely, given a point z ∈ C−(fn), we lift it to

U−(fn), take the first iterate that lands in U+(fn), and then project down to C+(fn).
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Rescaling by mc→0 gives maps ∆̃n : C−(f̃n) → C+(f̃n). As n → ∞, these half-

cylinders converge in bulk C±(f̃n)→ C±(gT ). Since a map of half-cylinders is defined

up to an additive constant in R/Z, in order for the maps ∆̃n to converge, these con-

stants need to become aligned. To pinpoint this constant, we examine the angular

correspondence between U−(fn) and U+(fn) near the origin. The computation below

uses the strong linearization principle which provides the necessary uniformity needed

to make the argument rigorous.

Let θn be the counter-clockwise angle from α+ to α−. From the existence of an the

rescaling limit, we know that θn/ arg an → θ∗ converges as n→∞. It takes roughly

N ′an :=

⌈
2π − θn
arg an

⌉
steps to go from U−(fn) to U+(fn), at least near the origin. After N ′an steps, the

renormalized excess rotation from α− to α+ is

σ′n :=
N ′an arg an − (2π − θn)

arg an
∈ R/Z. (7.2)

It is of course more natural to consider the quantity

σn :=
Nan arg an − 2π

arg an
∈ R/Z, (7.3)

which is more canonical since it does not depend on choices of a− and a+. However,

σ − σ′ ≡ θ∗ modulo 1, and so σ and σ′ carry the same information.

Summarizing, the use of the half-cylinder maps shows that f
◦N ′an
n converge if and

only if the σ′n converge modulo 1. This occurs precisely when the σn converge modulo

1, which is the same as asking for the convergence of the compactified quotient tori Tfn

in the moduli space M1. Since Nan −N ′an = O(1), the convergence of f
◦N ′an
n implies

the convergence of f
◦Nan
n . We refer to gσ = limn→∞ f

◦Nan
n as a Lavaurs map.

7.4 Basic properties of Lavaurs maps

We briefly describe the basic properties of gσ. From the construction, it is clear

that gσ is an endomorphism of the unit disk which extends analytically to the arc

mc→0([a−, b−]). Using the fact that f and gσ commute, we see that gσ extends ana-

lytically to to the complement of the Julia set J (gT ). Since the Julia set J (gT ) has

measure 0, the boundary values of lim gT exist a.e. on the unit circle and have absolute

value 1, in other words, gσ defines an inner function.

Furthermore, p is the Denjoy-Wolff point of gσ. In fact, under iteration by gσ, the

forward orbit of any point z ∈ D is eventually contained in arbitrarily small horoballs

resting on p (like for a doubly parabolic Blaschke product). To see this, first note
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that for any K ≥ K0 and R > 0, one can find m ≥ 1 such that f◦m(Bhyp(z0, R)) ⊂
B(0, 1−Kδc), for all n ≥ n0 sufficiently large. As n→∞,

mc→0

(
B(0, 1−Kδc)

)
→ Hp,

tend to a horoball resting on p. These facts show that Hp is an absorbing region for

gσ, a furthermore,

g(z) ≈ mc1→0 ◦ (· aNa) ◦m0→c1(z), z ∈ Hp, (7.4)

up to small error in the hyperbolic metric, cf. (5.4). Inspecting the dynamics of (· aNa)

shows that the horoball parametr is contracted. In fact, a more careful reflection shows

the quotient T×G = ΩG/G is a torus whose closure is isomorphic to C \ Λ∗.

8 Logarithmic coordinate

The proof of the strong linearization principle uses the following lemma which one can

consider as the key estimate of the theory of parabolic implosion:

Lemma 8.1 (e.g. see [S]). Suppose Φ and v are holomorphic functions in a domain

U , with Φ injective in U and

• |v(w)− 1| < 1/4 for w ∈ U ,

• Φ(w + v(w)) = Φ(w) + 1 whenever w,Φ(w) ∈ U .

There exist universal constants C1, C2 and R0 such that

|Φ′(w)− 1/v| ≤ C2/R, (8.1)

whenever dist(w, ∂U) ≥ R > R0, where dist denotes the Euclidean distance.

This estimate will be applied in the logarithmic coordinate. We first note that by

Lemma 2.5, we may choose K0 > 1 sufficiently large so that in B(0, 1−K0δc),

(i) f(z) is injective,

(ii) thus ϕ(z) := limk→∞ f◦k(z)/ak is also injective, being the uniform limit of

univalent functions,

(iii) | loga f(z)− loga(az)| < C/K.

We are now ready to introduce the logarithmic coordinate w(z) = E−1(z). Let U be

the half-plane {w ∈ C : |aw| < 1}. By construction, it slopes downwards, i.e. is forward-

invariant under the translation w → w + 1. The map E is essentially aw, although for

convenience, we take E (w) := aw+w0 where (a) the translation w → w + w0 fixes U
and (b) one of the pre-images w1 ∈ E−1(c1) lies on the y-axis.
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By construction, multiplication by a becomes translation by 1. The functions f

and g = f
◦Nan
n become

F(w) := E−1 ◦ f ◦ E (w) = w + 1 + v(w), (8.2)

G(w) := F◦Nan (w)− 2πi

log a
. (8.3)

Here, in the definition of F, we use pick the branch E−1 so that v(w)→ 0 if dist(w, ∂U)→
∞. Note that F and G are genuine holomorphic functions on U . Next, we transfer the

“grid map”

Ψ =
logϕ(z)

log a
− logϕ(c1)

log a
=⇒ Ψ(w) = E−1 ◦Ψ ◦ E (w).

By construction,

Ψ(F(w)) = w + 1, (8.4)

Ψ(G(w)) = w + τ∗. (8.5)

We caution the reader that Ψ is multivalued over U ; however, given any ρ > 0 ar-

bitrarily large, Ψn is single-valued on Bhyp(w1, ρ) ⊂ U , provided n ≥ n(ρ) is suffi-

ciently large. By the observation (iii) above, there exists R0 sufficiently large so that

|v(w) − 1| < C1/R on UR for any R ≥ R0, where UR := {w ∈ U : dist(w, ∂U) ≥ R}.
Lemma 8.1 gives |Φ′(z)− 1| < C/R for z ∈ UR. In particular, the hyperbolic distance

dU
(
G(w), w + τ∗

)
< C2/R

2, w ∈ UR, R > R0, n > n0. (8.6)

Applying the triangle inequality gives

dU
(
G◦k(w), w + kτ∗

)
< C3/R, for any k ≥ 1. (8.7)

Since

Ψ(w) = lim
k→∞

(G◦k(w)− kτ∗), (8.8)

we deduce that for any ε > 0, exists R0 and n0 sufficiently large so that

|Ψ(w)− w| < ε, w ∈ UR, R > R0, n > n0. (8.9)

This is the desired uniformity which makes the argument counting work.

Taking n→∞ (optional)

As n → ∞, the domains Un converge to H. The theory of rescaling limits states the

assumptions which guarantee that the limit of the maps Fn(w) exists. At first glance,

this may look a little strange but if n is large, Fn(w) is nearly identical to the upper

half-plane rescaling DtoH ◦fn ◦ HtoD(w). The grid maps Ψn converge to the grid map

for the decorated rescaling limit.
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9 Lavaurs maps: a→ e(p/q)

We now briefly describe the rather minor modifications that need to be made when

an → e(p/q)� clockwise along a horocycle. Suppose {fn} ⊂ Bd is a sequence of

Blaschke products with

an = HtoDp/q(q
2 · (iy + xn)), xn → −∞,

such that f̃◦qn → gT and σ = limxn (modπ−1) exists. Our objective is to construct

the Lavaurs map gσ and show that it only depends on (gT , σ) and not on p/q.

Renormalizing the quotient tori

We first explain how to renormalize the quotient tori Tan = C∗/(· an). Fix an arbitrary

point z0 ∈ C∗ and consider the sector

Sz0 = {z ∈ C∗ : arg z0 < arg z < arg aqn · z0}. (9.1)

We define Nan as the first return time of z0 to Sz0 with respect to the action of (· an),

that is, Nan is the minimal positive integer k for which akn ·z0 ∈ S. From the definition,

Nan ≈
2π

q · [arg(a · e(−p/q))]
.

Consider the lattices Λn =
〈
log aqn, log a

Nan
n

〉
. Scaling Λn by log aqn, we obtain the

lattices

Λ∗n = 〈1, τ〉, τ =
log a

Nan
n

log aqn
.

With this scaling, the lattices converge, and Λ∗ = lim Λ∗n is independent of (p/q) – it

only depends on y and limxn (modπ−1).

Canonical cylinders

The construction of the canonical cylinders is nearly identical to the a → 1� case:

for each fn, we select a± according to (7.1), but this time we take b± := f◦q(a±).

Let U−(f◦qn ) be the region bounded by
{

[0, a−], [a−, b−], f◦q([0, a−])
}

and C−(f◦qn ) be

the half-cylinder obtained by identifying the two radial sides of U−(f◦qn ) by f◦qn . The

objects U+(f◦qn ), C+(f◦qn ) are defined similarly. From the construction, the rescaled

versions U−(f̃◦qn ) and U+(f̃◦qn ) converge to the same U−(gT ) and U+(gT ) from the

a→ 1� case.

27



Renormalized excess rotation

We define N ′n as the first hitting time of Sa+ where multiplication by a is started from

a−. Recall that Nn is the first hitting time of the sector Sa− . From the construction,

Nan > N ′an and Nan −N ′an = O(1). In fact, if θn is the counter-clockwise angle from

α+ to α− (where as before, α± = [0, α±]), from the existence of an the rescaling limit,

we know that θn/ arg aqn → θ∗ converges as n → ∞, and this limit depends only on g

(and crucially not on p/q). Thus, the renormalized excess rotation from α− to α+ is

given by

σ′n :=
arg a

N ′an
n − (2π − θ)

arg aqn
∈ R/Z. (9.2)

Like before, the Lavaurs phase

σn :=
arg a

Nan
n − 2π

arg aqn
∈ R/Z (9.3)

is more natural since it does not depend on the arbitrary choices involved in the con-

struction of the canonical cylinders. Furthermore, the Lavaurs phase σn is determined

by the closed torus X – it is independent of p/q.

Transfer maps

To define ∆n : C−(f◦qn )→ C+(f◦qn ), we follow the same recipe as before: given a point

z ∈ C−(fn), we lift it to U−(f◦qn ), take the first iterate that lands in U+(f◦qn ), and then

project down to C+(f◦qn ). The reader can check for 1 ≤ k ≤ N ′n, f◦k(U−(f◦qn )) are

disjoint from the sector enclosed by α+ and α− which contains the critical points of

fn, so that ∆n is a conformal equivalence. (This time, the iterates do quite a bit of

hopping, however, all the hops are injective.)

Since the space of half-cylinder maps coincides with the one from the a → 1�

setting, the possible limits of f
◦N ′n
n are the maps gσ from before. Since the strong

linearization principle holds for Nn, it holds for N ′n as well. Therefore, σ′n is exactly

the additive constant that specifies the half-cylinder map ∆n.

10 Mating decorated Blaschke products

11 Applications to the Weil-Petersson metric

TO BE WRITTEN
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