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Abstract

Let J be the set of inner functions whose derivative lies in the Nevanlinna

class. In this paper, we discuss a natural topology on J where Fn → F if

the critical structures of Fn converge to the critical structure of F . We show

that this occurs precisely when the critical structures of the Fn are uniformly

concentrated on Korenblum stars. The proof uses Liouville’s correspondence

between holomorphic self-maps of the unit disk and solutions of the Gauss

curvature equation. Building on the works of Korenblum and Roberts, we

show that this topology also governs the behaviour of invariant subspaces of a

weighted Bergman space which are generated by a single inner function.

1 Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk and S1 = {z ∈ C : |z| = 1} be the

unit circle. An inner function is a holomorphic self-map of the unit disk such that

for almost every θ ∈ [0, 2π), the radial limit limr→1 F (reiθ) exists and has absolute

value 1. Let Inn denote the set of all inner functions and J ⊂ Inn be the subset

consisting of inner functions which satisfy

lim
r→1

1

2π

∫ 2π

0

log+ |F ′(reiθ)|dθ <∞, (1.1)

that is, with F ′ in the Nevanlinna class. The work of Ahern and Clark [1] implies that

if F ∈J , then F ′ belongs to the Smirnov class and hence admits an “inner-outer”
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decomposition F ′ = InnF ′ · OutF ′. Intuitively, InnF ′ = BS describes the “critical

structure” of the map F – the Blaschke factor records the locations of the critical

points of F in the unit disk, while the singular inner factor describes the “boundary

critical structure.” In [10], the author proved the following theorem, answering a

question posed in [6]:

Theorem 1.1. Let J be the set of inner functions whose derivative lies in the

Nevanlinna class. The natural map

F → Inn(F ′) : J /Aut(D)→ Inn / S1

is injective. The image consists of all inner functions of the form BSµ where B is

a Blaschke product and Sµ is the singular factor associated to a measure µ whose

support is contained in a countable union of Beurling-Carleson sets.

The above theorem says that an inner function F ∈ J is uniquely determined

up to a post-composition with a holomorphic automorphism of the disk by its critical

structure and describes all possible critical structures of inner functions. We need

to quotient Inn by the group of rotations since the inner part is determined up to

a unimodular constant. To help remember this, note that Frostman shifts or post-

compositions with elements of Aut(D) do not change the critical set of a function

while rotations do not change the zero set.

By definition, a Beurling-Carleson set E ⊂ S1 is a closed subset of the unit circle

of zero Lebesgue measure whose complement is a union of arcs
⋃
k Ik with

‖E‖BC =
∑
|Ik| log

1

|Ik|
<∞.

We say that E ∈ BC(N) if ‖E‖BC ≤ N . We denote the collection of all Beurling-

Carleson sets by BC.
We will also need the notion of a Korenblum star which is the union of Stolz

angles emanating from a Beurling-Carleson set E ⊂ S1:

KE = B(0, 1/
√

2) ∪
{
z ∈ D : 1− |z| ≥ dist(ẑ, E)

}
.

Here, ẑ = z/|z| while dist denotes the Euclidean distance. With the above definition,

KE ⊂ D is a closed set. We say that the Korenblum star has entropy or norm ‖E‖BC.
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We endow J with the topology of stable convergence where Fn → F if the Fn

converge uniformly on compact subsets of the disk to F and the Nevanlinna splitting

is preserved in the limit: InnF ′n → InnF ′, OutF ′n → OutF ′. Loosely speaking,

our main result says that this occurs if and only if the critical structures of Fn are

“uniformly concentrated” on Korenblum stars. A precise statement will be given

later in the introduction. As observed in [10], in general, some part of the critical

structure may disappear in the limit:

InnF ′(z) ≥ lim sup
n→∞

InnF ′n(z), z ∈ D. (1.2)

Examples. (i) If Fn is a finite Blaschke product of degree n+1 which has a critical

point at 1 − 1/n of multiplicity n, and is normalized so that Fn(0) = 0, F ′n(0) > 0,

then the Fn stably converge to the unique inner function Fδ1 with critical structure

Sδ1 = exp
(
z+1
z−1

)
. More generally, if Fn has n critical points (of multiplicity one) at

ck = (1 − 1/n)eikθn , k = 1, 2, . . . , n, and nθn log 1
θn
→ 0, then the Fn still stably

converge to Fδ1 .

(ii) If nθn log 1
θn
→ ∞ but nθn → 0, then the Fn converge to the identity even

though the critical structures InnF ′n → Sδ1 .

(iii) For any 0 < c < 1, one can choose θn appropriately so that the Fn converge

to Fcδ1 , the unique inner function with critical structure Scδ1 . In this case, nθn log 1
θn

must be bounded away from 0 and ∞.

We will examine this example more thoroughly in Section 4.4.

1.1 The Korenblum topology

A simple “normal families” argument [8, Lemma 7.6] shows that BC(N) is compact

in the Hausdorff topology. For convenience of the reader, we give a brief sketch of

the argument. Given a sequence of sets {En} ⊂ BC(N), let I
(1)
n denote the longest

complementary arc in S1 \En (in case of a tie, we choose I
(1)
n to be one of the longest

arcs). We pass to a subsequence so that the I
(1)
n converge to a limit I(1). Since there

is a definite lower bound for the length
∣∣I(1)
n

∣∣, these arcs cannot shrink to a point. We

then pass to a further subsequence along which the second longest arcs I
(2)
n → I(2)

converge. Continuing in this way, and diagonalizing, we obtain a subsequence of
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{En} which converges to a set E ∈ BC(N). Note that if E is a finite set, this process

would terminate in finitely many steps. The above argument gives the inequality

‖E‖BC ≤ lim inf
n→∞

‖En‖BC. (1.3)

However, (1.3) could be a strict inequality if a definite amount of entropy gets trapped

in smaller and smaller sets. To state this phenomenon precisely, we define the local

entropy of a Beurling-Carleson E ⊂ S1 with threshold η > 0 as

‖E‖BCη =
∑
|I|<η

|I| log
1

|I|
,

where we sum over the connected components of S1 \ E whose length is less than

η. Then, (1.3) is a strict inequality if and only if lim infn→∞ ‖En‖BCη > c > 0 is

bounded below by a constant independent of η.

Topology on Beurling-Carleson sets

We define the Korenblum topology on BC by specifying that En → E if En converges

to E in the Hausdorff sense and ‖E‖BC = limn→∞ ‖En‖BC. In this case, we say the

sequence of sets {En} is concentrating (the terminology is inspired by the work of

Marcus and Ponce [15]).

Topology on measures on the unit circle

Let MBC(N)(S1) denote the collection of finite positive measures that are supported

on a Beurling-Carleson set of norm ≤ N and MBC(S1) denote the collection of mea-

sures supported on a countable union of Beurling-Carleson sets. Roughly speaking,

a (weakly-convergent) sequence of measures µn → µ converges in the Korenblum

topology on MBC(S1) if up to arbitrarily small error, suppµn ⊆ En for a concentrat-

ing sequence of Beurling-Carleson sets En. More precisely, we require that for any

ε > 0, there exists an N > 0 and a “dominated” sequence νn → ν such that for all

n sufficiently large,

(i) 0 ≤ νn ≤ µn,
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(ii) νn ∈MBC(N)(S1),

(iii) supp νn → supp ν in BC,

(iv) (µn − νn)(S1) < ε and (µ− ν)(S1) < ε.

Diffuse sequences

We call a (weakly-convergent) sequence of measures µn → µ diffuse if for any ε > 0,

there exists a δ > 0 such that for any threshold η > 0, we have

‖E‖BCη < δ =⇒ µn(E) < ε, n ≥ n0(δ, ε, η), E ∈ BC .

It is not difficult to see that a sequence is concentrating if and only if it does not

dominate any diffuse sequence with non-zero limit. This allows one to decompose

any weakly convergent sequence µn → µ into concentrating and diffuse components,

that is, to write µn = νn + τn with νn → ν concentrating and τn → τ diffuse. Even

though there are infinitely many choices for the sequences {νn} and {τn}, the limits

ν and τ are uniquely determined by {µn}. We leave the verification to the reader.

Topology on the closed unit disk

We say that a finite positive measure µ on the closed unit disk belongs to MBC(N)(D)

if its support is contained in a Korenblum star of norm ≤ N , while µ ∈MBC(D) if it

is supported on a countable union of Korenblum stars. Since any compact subset of

the unit disk is contained in some Korenblum star, this is the same as asking that

the restriction µ|S1 ∈MBC(S1).

We define the Korenblum topology on MBC(D) by specifying that a sequence of

measures µn → µ converges if it does so weakly, and up to arbitrarily small error,

suppµn ⊆ KEn for a concentrating sequence of Beurling-Carleson sets En. Similarly,

we say that a sequence of measures µn → µ in MBC(D) is diffuse if for any ε > 0,

there exists a δ > 0 such that for any threshold η > 0, we have

‖E‖BCη < δ =⇒ µn(KE) < ε, n ≥ n0(δ, ε, η), E ∈ BC .
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1.2 Two embeddings of inner functions

To an inner function I, we associate the measure

µ(I) =
∑

(1− |ai|)δai + σ(I) ∈ M(D), (1.4)

where the sum ranges over the zeros of I (counted with multiplicity) and σ(I) is the

singular measure on the unit circle associated with the singular factor of I. This

gives an embedding Inn / S1 → M(D). We say that the measure µ records the zero

structure of I and write Iµ := I. Clearly, the function Iµ is uniquely determined up

to a rotation.

We can also embed J /Aut(D) → MBC(D) by taking F → µ(InnF ′). This

embedding records the critical structure of F . We use the symbol Fµ to denote an

inner function with InnF ′µ = Iµ and Fµ(0) = 0 (again, such a function is unique up

to a rotation).

We can now state our main result:

Theorem 1.2. The embedding J /Aut(D) → MBC(D) is a homeomorphism onto

its image when J /Aut(D) is equipped with the topology of stable convergence and

MBC(D) is equipped with the Korenblum topology.

1.3 Connections with the Gauss curvature equation

We now give an alternative (and slightly more general) perspective of our main

theorem in terms of conformal metrics and nonlinear differential equations. Given a

conformal pseudometric λ(z)|dz| on the unit disk, its Gaussian curvature is given by

the expression

kλ = −∆ log λ

λ2
,

where the Laplacian is taken in the sense of distributions. An easy computation

shows that the Poincaré metric λD(z) = 1
1−|z|2 has constant curvature −4.

The importance of Gaussian curvature to complex analysis comes from Gauss

Theorema Egregium [14, Theorem 2.5] which says that curvature is a conformal

invariant: if F ∈ Hol(D,D) is a holomorphic self-map of the unit disk, then

λF := F ∗λD =
|F ′|

1− |F |2
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has curvature −4 on D\ crit(F ) where crit(F ) is the critical set of F . On the critical

set, λF = 0 while its curvature has δ-masses. Its logarithm uF = log λF satisfies the

Gauss curvature equation

∆u = 4e2u + 2πν̃, (1.5)

where ν̃ =
∑

c∈crit(F ) δc is an integral sum of point masses. A theorem of Liouville

[14, Theorem 5.1] states that any solution of Gauss curvature equation with integral

singularities arises in this way. In other words, the correspondence F → uF is a

bijection between

Hol(D,D) /Aut(D) ⇐⇒
{

solutions of (1.5) with ν̃ integral
}
.

In principle, Liouville’s theorem allows one to translate questions about holomorphic

self-maps of the disk to problems in PDE and vice versa. In practice, however, it is

difficult to find questions that are simultaneously interesting in both settings.

Ahlfors showed that uD = log λD is the maximal solution of (1.5) in the sense

that it dominates every solution of (1.5) pointwise with any ν̃ ≥ 0. It turns out that

the question of describing inner functions with derivative in the Nevanlinna class

is related to studying the Gauss curvature equation with nearly-maximal boundary

values {
∆u = 4e2u + 2πν̃, in D,
uD − u = µ, on S1,

(1.6)

where we allow ν̃ ∈M(D) to be any positive measure on the unit disk which satisfies

the Blaschke condition ∫
D
(1− |z|)dν̃(z) <∞, (1.7)

and µ ∈ M(S1) to be any finite positive measure on the unit circle. We say that u

has singularity 2πν̃ and deficiency µ.

The first equality in (1.6) is understood weakly in the sense of distributions: we

require u(z) and e2u(z) to be in L1
loc(D), and ask that for any test function φ ∈ C∞c (D),

compactly supported in the disk,∫
D
u∆φ |dz|2 =

∫
D

4e2u∆φ |dz|2 + 2π

∫
D
φdν̃, (1.8)
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while the second equality expresses the fact that the measures (uD−u)(dθ/2π)|{|z|=r}
converge weakly to µ as r → 1. As we shall see, it is natural to combine µ and ν̃

into a single measure:

ω(z) = µ(z) + ν(z) := µ(z) + ν̃(z)(1− |z|) ∈M(D). (1.9)

Theorem 1.3. Given a measure ω = µ + ν ∈ MBC(D), the equation (1.6) admits

a unique solution, which we denote uµ,ν or uω. The solution uω is decreasing in ω,

that is, uω1 > uω2 if ω1 < ω2. If ω /∈MBC(D), then no solution exists.

We endow the space of solutions of (1.6) with the stable topology where uωn → uω

if ωn → ω and uωn → uω weakly. Similar to what happens for inner functions in J ,

for general sequences of measures ωn → ω, some part of the “mass” can disappear

in the limit, see Lemma 2.8. In the setting of nearly-maximal solutions of the Gauss

curvature equation, our main theorem states:

Theorem 1.4. The stable topology on the space of solutions with nearly maximal

boundary values corresponds to the Korenblum topology on MBC(D).

In fact, Theorem 1.2 is the restriction of Theorem 1.4 to integral measures (we

say that a measure ω = µ+ ν ∈M(D) is integral if ν̃ is an integral sum of δ-masses,

while µ can be anything). The connection comes from [10, Lemma 3.3] which says

that if Fω ∈J is an inner function with critical structure ω, then

uω = log λFω = log
|F ′ω|

1− |Fω|2
.

We spend a moment to check that the embedding F → uF is a homeomorphism

onto its image. This follows from the following lemma:

Lemma 1.5. A sequence of functions {Fn} ⊂ Hol(D,D) /Aut(D) converges to F

uniformly on compact subsets if and only if uFn → uF weakly on the disk.

Proof. Suppose the Fn converge uniformly on compact subsets of the disk to a map

F ∈ Hol(D,D). Since Fn(0) cannot escape to the unit circle (otherwise F would be

constant), we can normalize the Fn and the limiting map F to fix the origin.
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As log 1
1−|Fωn |2

remain uniformly bounded on compact sets, they converge in

L1
loc(D) to log 1

1−|Fω |2 . To see that log |F ′n| → log |F ′| also converge in L1
loc(D), note

that the critical sets of the Fn converge to the critical set of Fn, and the singularity at

each critical point is integrable. The result follows since L1
loc(D) convergence implies

weak convergence.

Conversely, suppose that uFn → uF weakly. We normalize the Fn so they fix

the origin. Let G be a subsequential limit of the Fn. By the direct implication,

uF = uG. Liouville’s theorem tells us that F = G up to post-composition with an

automorphism of the disk.

1.4 Invariant subspaces of Bergman space

For a fixed α > −1 and 1 ≤ p < ∞, consider the weighted Bergman space Apα(D)

which consists of holomorphic functions on the unit disk satisfying the norm bound-

edness condition

‖f‖Apα =

(∫
D
|f(z)|p · (1− |z|)α|dz|2

)1/p

<∞. (1.10)

For a function f ∈ Apα, let [f ] denote the (closed) z-invariant subspace generated by

f , that is the closure of the set {p(z)f(z)}, where p(z) ranges over polynomials. In

the book [19, p. 34], Nikol’skii equipped subspaces of Apα(D) with the strong topology

where Xn → X if any x ∈ X can be obtained as a limit of a converging sequence of

xn ∈ Xn and vice versa.

We focus our attention on a small but important subclass of invariant subspaces

which are generated by a single inner function (here, we mean a usual Hardy-inner

function rather than a Bergman-inner function). Following [7], we refer to such

subspaces as of κ-Beurling-type. According to a classical theorem of Korenblum [11]

and Roberts [22], the equality [BSµ1 ] = [BSµ2 ] holds if and only if µ1 − µ2 does

not charge Beurling-Carleson sets. Comparing with Theorem 1.1, we see that the

subspaces of κ-Beurling-type are in bijection with elements of J /Aut(D). We show

that this bijection is a homeomorphism:

Theorem 1.6. For any α > −1 and 1 ≤ p < ∞, the strong topology on subspaces

of κ-Beurling-type agrees with the Korenblum topology on MBC(D).
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In the work [13], Kraus proved that the critical sets of Blaschke products coincide

with zero sets of functions in A2
1. It is therefore plausible that inner functions modulo

Frostman shifts are in bijection with the collection of z-invariant subspaces of A2
1

satisfying the index one property dim(E 	 zE) = 1. The work of Shimorin [23] on

approximate spectral synthesis is likely to be of use here.

2 The Gauss curvature equation

We say that u is a (weak) solution of Gauss curvature equation

∆u = 4e2u + 2πν̃, ν̃ ≥ 0, (2.1)

if for any non-negative function φ ∈ C∞c (D),∫
D
u∆φ |dz|2 =

∫
D

4e2uφ |dz|2 + 2π

∫
D
φdν̃. (2.2)

By analogy with subharmonic functions, we say that u is a (weak) subsolution if one

has ≥ in (2.2) while the word supersolution indicates the sign ≤.

Theorem 2.1 (Perron method). Suppose u is a function on the unit disk which is

a subsolution of the Gauss curvature equation (2.1) with free boundary, where ν̃ ≥ 0

is a locally finite measure on the unit disk. There exists a unique minimal solution

Λν̃ [u] which exceeds u. If u is a supersolution with u ≥ u then u ≥ Λν̃ [u].

Theorem 2.2. Given a finite measure ν̃ ≥ 0 on the unit disk and a measurable

function h : S1 → R that is bounded above, the Gauss curvature equation{
∆u = 4e2u + 2πν̃, in D,
u = h, on S1,

(2.3)

admits a unique solution. If u1 and u2 are two solutions with h1 ≤ h2 and ν̃1 ≥ ν̃2

then u1 ≤ u2 on D.

The boundary data h in (2.3) is interpreted in terms of weak limits of measures:

we require that h dθ is the weak limit of u dθ|{|z|=r} as r → 1. The uniqueness
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and monotonicity statements of Theorem 2.2 can be easily deduced from Kato’s

inequality [21, Proposition 6.9] which states that if u ∈ L1
loc and ∆u ≥ f in the

sense of distributions with f ∈ L1
loc, then ∆u+ ≥ f · χu>0. As usual, u+ = max(u, 0)

denotes the positive part of u.

Proof of Theorem 2.2: uniqueness and monotonicity. Since ν̃1 ≥ ν̃2,

∆(u1 − u2) ≥ 4e2u1 − 4e2u2

in the sense of distributions. By Kato’s inequality,

∆(u1 − u2)+ ≥ (4e2u1 − 4e2u2) · χ{u1>u2} ≥ 0

is a subharmonic function. However, the inequality h1 ≤ h2 implies that (u1 − u2)+

has zero boundary values. The maximal principle shows that (u1 − u2)+ ≤ 0 or

u1 ≤ u2. The same argument also proves uniqueness.

In order to not interrupt the presentation, we defer the existence statement in

Theorem 2.2 to Appendix B and instead explain how to derive Theorem 2.1 from

Theorem 2.2.

Suppose u is a subsolution of (2.1). For 0 < r < 1, we use the symbol Λν̃
r [u] to

denote the unique solution of (2.1) on Dr = {z : |z| < r} which agrees with u on

∂Dr. (The function u is bounded above on ∂Dr since it is subharmonic on the disk.)

It may alternatively be described as the minimal solution which dominates u on Dr.

With this definition, Λν̃
r [u] does not depend on ν̃|D\Dr .

Proof of Theorem 2.1. As r → 1, the Λν̃
r [u] form an increasing family of solutions

(defined on an increasing family of domains) which are bounded above by uD, and

therefore they converge to a solution, see Lemma 2.3 below. From the construction,

it is clear that Λν̃
r [u] = limr→1 Λν̃ [u] is the Perron hull we seek.

Suppose that u ≥ u is a dominating supersolution. To show that u ≥ Λν̃ [u],

it suffices to show u ≥ Λν̃
r [u] on Dr for any 0 < r < 1. Consider the difference

v = Λν̃
r [u]− u. Since ∆v ≥ 4e2Λν̃r [u] − 4e2u, by Kato’s inequality, we have

∆v+ ≥ (4e2Λν̃r [u] − 4e2u) · χ{Λν̃r [u]>u} ≥ 0.
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Hence, v+ is a subharmonic function on Dr with zero boundary values. The maximal

principle shows that v+ ≤ 0 in Dr and hence must be identically 0. The proof is

complete.

Lemma 2.3. Suppose {un} is a sequence of solutions of (2.1) with measures {ν̃n}.
If un → u and ν̃n → ν̃ weakly on the unit disk, then u is a solution of (2.1) with

measure ν̃.

Proof. Since the un ≤ uD are locally uniformly bounded above, the exponentials e2un

converge weakly to e2u. It is now a simple matter to examine the definition of a weak

solution (2.2) and apply the dominated convergence theorem.

Corollary 2.4. Suppose {un} is a sequence of subsolutions of (2.1) with measures

{ν̃n}. If un → u and ν̃n → ν̃ weakly on the unit disk, then for any 0 < r < 1,

lim inf
n→∞

Λν̃n
r [un] ≥ Λν̃

r [u].

The same statement also holds with Λ in place of Λr.

2.1 Generalized Blaschke products

We say that a measure ν̃ on the unit disk satisfies the Blaschke condition if∫
D
(1− |a|)dν̃(a) <∞. (2.4)

In this case, ν(a) := (1−|a|)ν̃(a) is a finite measure. It will be convenient to use both

symbols ν and ν̃. We define the generalized Blaschke product with zero structure ν

as

Bν(z) = exp

(∫
D

log
z − a
1− az

dν̃(a)

)
, (2.5)

cf. (1.4). While Bν(z) may not be a single-valued function on the unit disk, its

absolute value and hence zero set are well-defined. Multiplying Bν by a singular

inner function Sµ, we obtain the generalized inner function Iω = BνSµ with zero

structure ω = µ + ν. Note that log 1/|Sµ| is just the Poisson extension of µ, while

log 1
|Bν | is the Green integral of 2πν̃ (it has zero boundary values on the unit circle

and ∆ log 1
|Bν | = 2πν̃, for more information, see Appendix B).

The following lemma is well known:
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Lemma 2.5. (i) For ν ∈M(D), the measures (log 1/|Bν |)(dθ/2π)
∣∣
{|z|=r} tend weakly

to the zero measure as r → 1.

(ii) If µ ∈ M(S1) is a singular measure, then (log 1/|Sµ|)(dθ/2π)
∣∣
{|z|=r}→ µ as

r → 1.

We will also need:

Lemma 2.6. Suppose measures ωn ∈M(D) converge weakly to ω. Then,

log
1

|Iωn|
→ log

1

|Iω|

weakly on the unit disk in the sense of distributions.

We leave the proof as an exercise for the reader.

2.2 Nearly-maximal solutions

We now prove Theorem 1.3 which identifies the space of nearly-maximal solutions

of the Gauss curvature equation with MBC(D). The heavy-lifting has been done in

[10] where Theorem 1.3 was proved in the case when ν̃ = 0. Here, we explain the

extension to general measures ν̃ ≥ 0 satisfying the Blaschke condition (2.4).

Proof of Theorem 1.3. Observe that uD− log 1
|Iω | is a subsolution of ∆u = 4e2u+2πν̃.

We claim that if uω is a nearly-maximal solution of the Gauss curvature equation

with data ω = µ+ ν ∈MBC(D), then

uω = Λν̃

[
uD − log

1

|Iω|

]
. (2.6)

Since (2.6) gives an explicit formula for uω, the nearly-maximal solution with data

ω is unique. In view of the monotonicity properties of Λ, the fundamental identity

(2.6) also shows that uω is decreasing in ω.

Consider the function

h = uD − uω − log
1

|Iω|
.
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Since ∆h = 4e2uD−4e2uω ≥ 0, h is subharmonic. By Lemma 2.5, as r → 1, h(reiθ)dθ

tends weakly to the zero measure on the unit circle, so that h is negative in the unit

disk. By the definition of the Perron hull,

uω ≥ u∗ := Λν̃

[
uD − log

1

|Iω|

]
≥ uD − log

1

|Iω|
.

Some rearranging gives

uD − uω ≤ uD − u∗ ≤ log
1

|Iω|
.

Taking the weak limit as r → 1 shows that u∗ has deficiency µ on the unit circle,

that is, (uD − u∗)(dθ/2π)|{|z|=r} → µ weakly as r → 1. Since u∗ has singularity 2πν̃,

it is also a nearly-maximal solution of the Gauss curvature equation with data ω. To

see that u∗ = uω, notice that the difference uω − u∗ is a non-negative subharmonic

function which tends to the zero measure on the unit circle (and therefore must

vanish identically). This proves the claim.

Let uµ be the nearly-maximal solution of the Gauss curvature equation ∆u = 4e2u

with deficiency µ ∈ MBC(S1). The existence of uµ was proved in [10] using the

connection with complex analysis provided by the Liouville correspondence. For any

Blaschke measure ν̃ ≥ 0 on the unit disk, the Perron method finds the least solution

of ∆u = 4e2u + 2πν̃ satisfying uµ ≥ u ≥ uµ − log 1
|Bν | . By Lemma 2.5, u has the

correct boundary behaviour in order to solve (1.6), thereby proving the existence of

uµ,ν .

Conversely, suppose that µ /∈ MBC(D). It was proved in [10] that uµ does not

exist in this case. To show that uµ,ν does not exist for any ν ∈ M(D), we argue

by contradiction: we use the existence of uµ,ν to construct uµ. To this end, we

notice that Λ0(uµ,ν) is a solution of the Gauss curvature ∆u = e2u which is squeezed

between uµ,ν ≤ Λ0(uµ,ν) ≤ uµ,ν + log 1
|Bν | , and so must be uµ by Lemma 2.5.

In the proof above, we saw the importance of the formula (2.6). In the next

lemma, we give a slight generalization of this identity:
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Lemma 2.7. Given two measures ωi = µi + νi ∈MBC(D), i = 1, 2, we have

uω1+ω2 = Λν̃1+ν̃2

[
uω1 − log

1

|Iω2|

]
, (2.7)

= Λν̃1+ν̃2

[
Λν̃1

[
uD − log

1

|Iω1|

]
− log

1

|Iω2|

]
. (2.8)

Proof. Not surprisingly, the proof of (2.7) is similar to that of (2.6). Since the

quantity on the right side (2.7) is a solution of the Gauss curvature equation with

“singularity” 2π(ν̃1 + ν̃2), we simply need to check that it has the correct “deficiency”

on the unit circle. To see this, we observe that it is squeezed by quantities with

deficiency µ1 + µ2 :

uω1+ω2 ≥ Λν̃1+ν̃2

[
uω1 − log

1

|Iω2|

]
≥ uω1 − log

1

|Iω2|
.

We leave it to the reader to justify the first inequality by checking that uω1+ω2 ≥
uω1 − log 1

|Iω2 |
using the argument from the proof of (2.6). To obtain (2.8), one only

needs to substitute (2.6) into (2.7).

2.3 Sequences of nearly-maximal solutions

We now present three useful lemmas concerning sequences of nearly-maximal solu-

tions. The first lemma says that mass can only disappear in the limit, cf. (1.2):

Lemma 2.8. Suppose ωn is a sequence of measures in MBC(D) which converges

weakly to ω. If the nearly-maximal solutions uωn also converge weakly, then limuωn =

uω∗ for some 0 ≤ ω∗ ≤ ω.

Proof. According to (2.6), uωn ≥ uD − log 1
|Iωn |

. Taking weak limits gives uω∗ ≥
uD − log 1

|Iω | . Since uω = Λν̃
[
uD − log 1

|Iω |

]
, uω∗ ≥ uω as desired.

The second lemma says that modification by a sequence with zero limit does not

change the limiting solution:

Lemma 2.9. In the setting of Lemma 2.8, if ω′n → 0 weakly, then limuωn+ω′n =

limuωn.
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Proof. By Lemma 2.7, uωn ≥ uωn+ω′n ≥ uωn − log 1
|Iω′n |

. The statement follows from

the weak convergence log 1
|Iω′n |
→ 0.

The third and last lemma says that any sequence dominated by a stable sequence

is also stable:

Lemma 2.10. Suppose ωn → ω and ω′n → ω′ are two weakly convergent sequences

of measures in MBC(D). If uωn+ω′n → uω+ω′ then uωn → uω′.

Proof. Passing to a subsequence, we may assume that uωn converges weakly to a

nearly-maximal solution uω∗ with ω∗ ≤ ω. By Lemma 2.7,

(uD − uωn+ω′n)− (uD − uωn) = uωn − uωn+ω′n ≤ log
1

|Iω′n|
.

Taking n → ∞ and examining the boundary data, we arrive at (ω + ω′) − ω∗ ≤ ω′

which implies that ω∗ = ω.

3 Concentrating sequences

In this section, we study concentrating sequences of inner functions. We show:

Theorem 3.1. Suppose {Fωn} is a sequence of inner functions. If the measures ωn ∈
MBC(D) converge to ω in the Korenblum topology, then the Fωn converge uniformly

on compact subsets to Fω.

Actually, we give two proofs of the above theorem. The first proof uses hyperbolic

geometry to estimate the derivative of a Blaschke product whose critical structure is

supported on a Korenblum star. The second proof uses PDE techniques and applies

to arbitrary sequences of nearly-maximal solutions.

For a Beurling-Carleson set E ⊂ S1 and parameters α ≥ 1, 0 < θ ≤ 1, we define

the generalized Korenblum star of order α as

Kα
E(θ) = B(0, 1/

√
2) ∪

{
z ∈ D : 1− |z| ≥ θ · dist(ẑ, E)α

}
. (3.1)

If α = 1 and θ = 1, the above definition reduces to the one given earlier: KE = K1
E(1).

By default we take θ = 1, i.e. we write Kα
E = Kα

E(1).

16



Lemma 3.2. Suppose F ∈J with F (0) = 0 whose “critical structure” µ(InnF ′) is

supported on a Korenblum star KE of order 1 and “critical mass” µ(InnF ′)(D) < M .

Then,
1− |F (z)|

1− |z|
≤ C(M) · dist(z, E)−4, z ∈ D \K4

E, (3.2)

where dist denotes Euclidean distance.

Under the assumptions of the above lemma, we have:

Corollary 3.3. The set {z ∈ D : |F (z)| < 1/2} is supported on a higher-order

Korenblum star K4
E(θ) where θ is a parameter which depends on M . In particular,

by Schwarz reflection, F extends to a bounded analytic function on C \ r(K4
E(θ))

where r(z) = 1/z denotes the reflection in the unit circle.

Corollary 3.4. For a point ζ ∈ S1 on the unit circle,

|F ′(ζ)| ≤ C(M) · dist(ζ, E)−4.

In particular, if I is a connected component of S1 \ E, then∫
I

log |F ′n|dθ .
∫
I

log
1

dist(x, ∂I)
dθ � |I| log

1

|I|
.

Proof of Theorem 3.1. Special case. We first prove the theorem in the special case

when each measure ωn is supported on a Korenblum star KEn and the sets En → E

converge in BC.
To simplify the notation, let us write Fn instead of Fωn . By a normal families

argument and Corollary 3.3, we may assume that Fn → F converge locally uniformly

on C \ r(K4
E(θ)), where the domains of definition C \ r(K4

En
(θ)) are changing but

converge to C \ r(K4
E(θ)). In this case, the derivatives F ′n → F ′ also converge locally

uniformly.

According to [10, Section 4], to show that the sequence {Fn} is stable, it is enough

to check that the outer factors converge at the origin:

lim
n→∞

∫
S1

log |F ′n|dθ =

∫
S1

log |F ′|dθ.
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The proof will be complete if we can argue that the functions log |F ′n| are uniformly

integrable on the unit circle. This means that for any ε > 0, there exists a δ > 0

so that
∫
A

log |F ′n|dθ < ε for any n, whenever A ⊂ S1 is a measurable set with

m(A) < δ. This estimate is provided by Corollary 3.4 above and the definition of a

concentrating sequence of Beurling-Carleson sets.

General case. According to the definition, ωn → ω in the Korenblum topology if

for any ε > 0, one can find a concentrating sequence ωNn → ωN in MBC(N)(D) with

0 ≤ ωNn ≤ ωn, (ωn − ωNn )(D) < ε and (ω − ωN)(D) < ε. Lemma 2.7 tells us that

log
1

|Iωn−ωNn |
≥ uωNn − uωn ≥ 0, n = 1, 2, . . .

and

log
1

|Iω−ωN |
≥ uωN − uω ≥ 0.

By the triangle inequality,

|uω − uωn| ≤ log
1

|Iω−ωN |
+ |uωN − uωNn |+ log

1

|Iωn−ωNn |
.

From the special case of the theorem, we know that uωNn converge weakly to uωN .

Lemma 2.6 implies that uωn → uω weakly. Finally, by Lemma 1.5, this is equivalent

to the uniform convergence of Fωn → Fω on compact subsets of the unit disk.

3.1 Blaschke products as approximate isometries

To prove Lemma 3.2, we use the following principle: away from the critical points,

an inner function is close to a hyperbolic isometry. Our discussion is inspired by

the work of McMullen [18, Section 10] which deals with finite Blaschke products of

fixed degree. Here, we require “degree independent” estimates. To this end, given

an inner function F (z), we consider the quantity

γF (z) = log
1

| InnF ′(z)|
(3.3)

which measures how much F deviates from a Möbius transformation near z. The

quantity γF satisfies the Möbius invariance relation

γM1◦F◦M2(z) = γF (M2(z)), M1,M2 ∈ Aut(D), (3.4)
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which follows from the identity Inn
[
(M1 ◦ F ◦M2)′

]
= InnF ′ ◦M2. Let G(z, w) =

log
∣∣1−wz
z−w

∣∣ denote the Green’s function of the unit disk. If the singular measure σ(F ′)

is trivial (e.g. if F is a finite Blaschke product), the above definition reduces to

γF (z) =
∑

c∈crit(F )

G(z, c). (3.5)

For two points x, y ∈ D, we write dD(x, y) for the hyperbolic distance and denote

the segment of the hyperbolic geodesic that joins x and y by [x, y]. There is a

convenient way to estimate hyperbolic distance. Let z ∈ [x, y] be the point closest

to the origin. If z = x or z = y, then dD(x, y) = dD(|x|, |y|) +O(1) is essentially the

“vertical distance” from x to y. If z lies strictly between x and y, then dD(x, y) =

dD(|x|, |z|) + dD(|z|, |y|) +O(1).

Lemma 3.5 (cf. Proposition 10.9 of [18]). Suppose F ∈J . At a point z ∈ D which

is not a critical point of F , the 2-jet
(
F (z), F ′(z), F ′′(z)

)
of F matches the 2-jet of

a hyperbolic isometry with an error of O(γF (z)).

Proof. By Möbius invariance (3.3), it suffices to consider the case when z = F (z) = 0

and F ′(0) > 0. Set δ = γF (0). To prove the lemma, we need to show that 1−F ′(0) =

|F ′′(0)| = O(δ). Since 1− t ≤ log(1/t) for 0 ≤ t ≤ 1, 1− |(InnF ′)(0)| ≤ δ. Applying

[10, Lemma 2.3] gives the desired estimate for the first derivative:

F ′(0) = λF (0) ≥ |(InnF ′)(0)| · λD(0) ≥ 1− δ.

By the Schwarz lemma applied to F (z)/z, we have dD
(
F (z)/z, F ′(0)

)
= O(1) for

z ∈ B(0, 1/2). Taking note of the location of F ′(0) ∈ D, this estimate can be written

as |F (z) − z| = O(δ) for z ∈ B(0, 1/2). Cauchy’s integral formula now gives the

estimate for the second derivative.

Corollary 3.6 (cf. Theorem 10.11 and Corollary 10.7 of [18]). Suppose F (z) is a

finite Blaschke product and [z1, z2] is a segment of a hyperbolic geodesic. If for each

z ∈ [z1, z2], γF (z) < δ is sufficiently small, then F (z1) 6= F (z2). In fact, for any

ε > 0, we can choose δ(ε) > 0 small enough to guarantee that

(1− ε) · dD(z1, z2) ≤ dD
(
F (z1), F (z2)

)
≤ dD(z1, z2). (3.6)
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Sketch of proof. If we choose δ > 0 small enough, then F |[z1,z2] is so close to an

isometry that the geodesic curvature of its image is nearly 0. But a path in hyperbolic

space with geodesic curvature less than 1 (the curvature of a horocycle) cannot cross

itself, so F (z1) 6= F (z2). Similar reasoning gives the second statement.

Remark. If γF (z) decays exponentially along [z1, z2], i.e. satisfies a bound of the form

γF (z) < M exp
(
−dD(z, z1)

)
, for some M > 0, then McMullen’s argument gives the

stronger conclusion

dD(F (z1), F (z2)) = dD(z1, z2) +O(1).

See the proof of [18, Theorem 10.11].

Lemma 3.7. Suppose I is an inner function whose zero structure µ(I) is contained

in a Korenblum star KE and its zero mass µ(I)(D) < M . Then, |I(z)| > c(M) > 0

is bounded from below on D \K2
E. More precisely,

log
1

|I(z)|
.M exp

(
−dD(z,K2

E)
)
, z ∈ D \K2

E.

For a point z ∈ D and an integer n ≥ 1 such that z /∈ Kn
E, let zn denote the

unique point of intersection of [0, z] and ∂Kn
E. Elementary hyperbolic geometry

shows that for w ∈ Kn
E, dD(z, w) = dD(z, zn) + dD(zn, w) − O(1). In particular,

dD(z, ∂Kn
E) = dD(z, zn)−O(1).

Proof. We may assume that I is a finite Blaschke product as the general case follows

by approximating I by finite Blaschke products whose zero sets are contained in KE.

Let a be a zero of I. By the triangle inequality, the hyperbolic distance

dD(z, a) = dD(z, z1) + dD(z1, a)−O(1),

≥ dD(z, z1) + dD(0, a)− dD(0, z1)−O(1),

≥ dD(z, z2) + dD(0, a)−O(1).

In other words, the Green’s function

G(z, a) . G(0, a) exp
(
−dD(z, z2)

)
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decays exponentially quickly in the hyperbolic distance dD(z, z2). For a ∈ B(0, 1/2),

we have the “trivial” estimate G(z, a) � G(z, 0) . exp
(
−dD(z, z2)

)
. Combining the

two inequalities, we get

G(z, a) . G∗(0, a) exp
(
−dD(z, z2)

)
where G∗(z, w) := min

(
G(z, w), 1

)
is the truncated Green’s function. Summing over

the zeros of I gives

log
1

|I(z)|
=

∑
a∈zeros(I)

G(z, a) .M exp
(
−dD(z, z2)

)
�M exp

(
−dD(z,K2

E)
)
,

where in the second step we made use of
∑

a∈zeros(I) G
∗(0, a) � µ(I)(D) ≤ M . This

proves the lemma.

Corollary 3.8. Suppose F is an inner function which satisfies the hypotheses of

Lemma 3.2. For z ∈ D \K2
E, the characteristic γF (z) .M exp

(
−dD(z,K2

E)
)
.

With these preparations, we can now prove Lemma 3.2:

Proof of Lemma 3.2. Suppose z ∈ D \ K4
E. Divide [0, z] into two parts: [0, z2] and

[z2, z]. By the Schwarz lemma,

dD(F (0), F (z2)) ≤ dD(0, z2).

However, since F restricted to [z2, z] is close to a hyperbolic isometry,

dD(F (z2), F (z)) ≥ dD(z2, z)−O(1). (3.7)

The triangle inequality gives

dD(F (0), F (z)) ≥ dD(z4, z)−O(1),

which is equivalent to (3.2).

21



3.2 Concentrating sequences of solutions

We now prove the generalization of Theorem 3.1 for concentrating sequences of

nearly-maximal solutions:

Theorem 3.9. Suppose the measures ωn → ω converge in the Korenblum topology.

Then, the associated nearly-maximal solutions of the Gauss curvature equation uωn →
uω converge weakly on the unit disk.

The proof of Theorem 3.9 rests on three simple observations:

Lemma 3.10. If E ⊂ S1 is a Beurling-Carleson set and α ≥ 1 then∫
Kα
E

|dz|2

1− |z|
� α · ‖E‖BC. (3.8)

If the sets En → E in BC, then∫
Kα
En

|dz|2

1− |z|
→
∫
Kα
E

|dz|2

1− |z|
. (3.9)

We leave the verification to the reader.

Lemma 3.11. Suppose u is a nearly-maximal solution of the Gauss curvature equa-

tion and ω ∈MBC(D). Then, u = uω if and only if

(uD − u)(z) = log
1

|Iω(z)|
− 1

2π

∫
D
Ju(z, w) |dw|2. (3.10)

where

Ju(z, w) = 4
(
e2uD(w) − e2u(w)

)
G(z, w).

The lemma follows after applying the Poisson-Jensen formula for subharmonic

functions on Dr and taking r → 1.

Lemma 3.12. Suppose the functions hn : D → R converge pointwise to h and are

locally uniformly bounded. Then, they converge weakly to h in the sense of distribu-

tions, that is, for any test function φ ∈ C∞c (D),
∫
D hnφ |dz|

2 →
∫
D hφ |dz|

2.

This is immediate from the dominated convergence theorem.
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Proof of Theorem 3.9. To prove the theorem, we show that if a sequence of solutions

un = uωn converges weakly to a solution u, then u = uω where ω is the weak limit

of the ωn. The reduction described in the proof of Theorem 3.1 allows us to assume

that each measure ωn is supported on a Korenblum star KEn with En → E in BC.
By Lemma 3.11, for each n = 1, 2, . . . , we know that

uD(z)− un(z)− log
1

|Iωn(z)|
= − 1

2π

∫
D
Jun(z, w) |dw|2. (3.11)

We claim that if we take the weak limit of (3.11) as n→∞, we will end up with

uD(z)− u(z)− log
1

|Iω(z)|
= − 1

2π

∫
D
Ju(z, w) |dw|2, (3.12)

which would mean that u = uω.

By assumption, the un converge weakly to u, while by Lemma 2.6, log 1
|Iωn (z)|

converge weakly to log 1
|Iω(z)| . It remains to show that

1

2π

∫
D
Jun(z, w) |dw|2 → 1

2π

∫
D
Ju(z, w) |dw|2 (3.13)

also converge weakly. For this purpose, we will use the following bounds on the

integrands Jn(z, w) = Jun(z, w):

• If dD(w, z) ≤ 1, we use the bound Jn(z, w) ≤ C1(z) · G(z, w). Note that the

singularity of the Green’s function is integrable.

• For w ∈ K2
En

with dD(w, z) > 1, we use the coarse estimate

Jn(z, w) ≤ e2uD(w)G(z, w) ≤ C2(z) · 1

1− |w|
.

• For w ∈ D \K2
En

with dD(w, z) > 1, we use the fine estimate

Jn(z, w) ≤ C2(z) · 1

1− |w|
·
(
1− e−2(uD−un)(w)

)
≤ C3(z) · 1

1− |w|
· log

1

|Iωn(w)|

≤MC3(z) · 1

1− |w|
· exp

(
−dD(w,K2

En)
)
,
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where M = supn≥1 ωn(D). The second inequality follows from (2.6) while the

third inequality is provided by Lemma 3.7 (which also holds for generalized

Blaschke products with the same proof).

In view of the “area convergence” (3.9), the second estimate on Jn and the weak

convergence of un → u show

1

2π

∫
K2
En

Jun(z, w) |dw|2 → 1

2π

∫
K2
E

Ju(z, w) |dw|2.

For 0 < θ1 < θ2 ≤ 1, let K2
E(θ1, θ2) denote K2

E(θ2) \ K2
E(θ1). A similar argument

implies that

1

2π

∫
K2
En

(e−(k+1),e−k)

Jun(z, w) |dw|2 → 1

2π

∫
K2
E(e−(k+1),e−k)

Ju(z, w) |dw|2,

for any k ≥ 0. However, by the third estimate on Jn, these integrals decay exponen-

tially in k, which proves the pointwise convergence in (3.13).

Since C1(z), C2(z), C3(z) can be taken to be continuous in z ∈ D, the functions

z → 1
2π

∫
D Jun(z, w) |dw|2 are locally uniformly bounded, which allows us to use

Lemma 3.12 to upgrade pointwise convergence to weak convergence. This completes

the proof.

4 Diffuse sequences

In this section, we show the converse to Theorem 3.9, thereby completing the proof

of Theorem 1.4:

Theorem 4.1. If a weakly-convergent sequence of measures µn → µ does not con-

verge in the Korenblum topology, then the associated nearly-maximal solutions uµn
do not converge weakly to uµ.

Combining the above theorem with Lemma 2.8, we see that if a sequence of

measures {µn} is not concentrating, then some mass is lost in the limit. One may

be inclined to believe that if the sequence {µn} is diffuse (has no concentrating

component), then uµn → uD, however, in Section 4.4 we will give a counterexample.
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In order to guarantee that uµn → uD, we need to assume a stronger condition on the

sequence {µn}. We say that {µn} is totally diffuse if for any N > 0,

sup
E∈BC(N)

µn(KE)→ 0, as n→∞.

Theorem 4.2. For any totally diffuse sequence of measures {µn} ⊂ MBC(D) whose

masses µn(D) are uniformly bounded above, the associated nearly-maximal solutions

of the Gauss curvature equation uµn converge weakly to uD.

4.1 Roberts decompositions

Our main tool is a variant of the Roberts decomposition [22] for measures on the

closed unit disk. The decomposition depends on two parameters: a real number

c > 0 and an integer j0 ≥ 2. Set nj := 22j+j0 and rj := 1 − 10/nj. The factor

“10” may appear somewhat artificial but it will save us some headache later on (any

constant larger than 2π will do).

For an arc I ⊂ S1 of the unit circle, we write

�I,r,R := {z ∈ D : z/|z| ∈ I, r ≤ |z| ≤ R},

with the convention that we include the left edge into �I,r,R but not the right edge.

We write �S1,r,R for the annulus {z ∈ D : r ≤ |z| ≤ R}.

Theorem 4.3. Given a finite measure µ ∈ M(D) on the closed unit disk, one can

write it as

µ = µ+ νcone = (µ2 + µ3 + µ4 + . . . ) + νcone (4.1)

where each measure µj, j ≥ 2, satisfies

suppµj ⊂ �S1,rj−1,1 (4.2)

and

µj(�I,rj−1,1) ≤ 2(c/nj) log nj, ∀I ⊂ S1, |I| = 2π/nj; (4.3)

while the cone measure νcone is supported on a Korenblum star KEcone of norm

‖Econe‖BC ≤ N
(
c, j0, µ(D)

)
.
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It will be important for us that the measure µ admits infinitely many decompo-

sitions with different parameters c and j0.

Proof. We obtain the decomposition by means of an algorithm which sorts out the

mass of µ into various components. For each j = 2, 3, . . . , we consider a partition Pj

of the unit circle into nj equal arcs. Since nj divides nj+1, each next partition can

be chosen to be a refinement of the previous one.

As Step 1 of our algorithm, we move µ|B(0,r1) into νcone. (We remove this mass

from µ.)

In Step j, j = 2, 3, . . . , we consider all intervals in the partition Pj. Define an

interval to be light if µ(�I,0,1) ≤ (c/nj) log nj and heavy otherwise. We do one of the

following three operations:

L. If I is light, we move the mass µ|�I,0,1 into µj.

H1. If I is heavy, we look at the box �I,rj−1,rj . If µ(�I,rj−1,rj) ≥ (c/nj) log nj, we

move µ|�I,rj−1,rj
into νcone.

H2. If µ(�I,rj−1,rj) < (c/nj) log nj, we move µ|�I,rj−1,rj
to µj. We also move some

mass from µ|�I,rj ,1 to µj so that µj(�I,0,1) = (c/nj) log nj.

After we followed the above instructions for j = 2, 3, . . . , it is possible that the

measure µ has not been exhausted completely: some “residual” mass may remain on

the unit circle. We move this remaining mass to νcone.

From the construction, it is clear that the conditions (4.2) and (4.3) are satisfied.

The factor of 2 in (4.3) is due to the fact that any interval I ⊂ S1 of length 2π/nj is

contained in the union of two adjacent intervals from the partition Pj.

Let Λ be the collection of light intervals (of any generation) which are maximal

with respect to inclusion. Define Econe := S1 \
⋃
I∈Λ Int I as the complement of the

interiors of these intervals. Since the measure νcone|S1 is supported on the set of points

which lie in heavy intervals at every stage, supp νcone|S1 ⊂ KEcone . Observe that if

I is an interval of generation j, then the box �I,rj−1,rj is contained in the union of

two Stolz angles emanating from the endpoints of I. If I is heavy, these endpoints
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are contained in Econe, from which we see that supp νcone|D is also contained in the

Korenblum star KEcone .

To check that Econe is a Beurling-Carleson set, we follow the computation from

Roberts [22]. The relation log nj+1 = 2 log nj shows

∑
I∈Λ

|I| log
1

|I|
≤
∑
I∈P2

|I| log
1

|I|
+ 2

∑
heavy

|J | log
1

|J |
. 2j0 +

µ(D)

c
, (4.4)

where we have used the fact that a maximal light interval of generation j ≥ 3 is

contained in a heavy interval of the previous generation.

Remark. The above proof shows that if we take the threshold η = π/n2 = π/222+j0 ,

then the local entropy

‖Econe‖BCη .
µ(D)

c
,

can be made arbitrarily small by asking for c > 0 to be large. Crucially, this estimate

is independent of j0. Hence, if µn → µ is a diffuse sequence of measures, then for

sufficiently large n, most of the mass of µn falls into the series µn = µ2 + µ3 + . . . .

4.2 Estimating nearly-maximal solutions

For 0 < r ≤ 1, C > 0, let ur,C denote the unique solution of ∆u = 4e2u defined on

Dr with constant boundary values u|∂Dr ≡ C. It is easy to write down the solution

explicitly: ur,C(z) = log L
1−|Lz|2 where L > 0 is chosen so that log L

1−(Lr)2
= C. Our

current objective is to show the following theorem:

Theorem 4.4. Suppose µ ∈MBC(D) is a finite measure on the closed unit disk which

can be expressed as a countable sum

µ = µ2 + µ3 + µ4 + . . . ,

where each piece satisfies (4.2) and (4.3) and c∗ > 0 is sufficiently small so that (4.5)

below holds. Then, uµ ≥ ur0,(4/5)uD on Dr0.

Since ur0,(4/5)uD → uD uniformly on compact subsets of the unit disk as j0 →∞,

the above theorem tells us that if j0 ≥ 1 is large, then uµ is close to the maximal
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solution uD. As the proof of Theorem 4.4 is similar to that of [10, Theorem 1.10],

we only give a sketch the argument and refer the reader to [10, Section 6] for the

details. We will need the following lemma:

Lemma 4.5. Suppose µ ∈ M(D) is a finite measure on the closed unit disk which

satisfies suppµ ⊂ �S1,1−1/n,1 and

µ(�I,1−1/n,1) ≤ 2c · |I| log
1

|I|
, ∀I ⊂ S1, |I| = 2π/n.

Then,

|Iµ(z)| > 1

(1− |z|2)c′
, |z| < 1− 2/n,

for some c′ � c.

The lemma is well known when suppµ ⊆ S1, e.g. see [22, Lemma 2.2]. The same

proof applies to the general case. We choose c∗ in Theorem 4.4 so that c′ < 1/10,

i.e.

|Iµj(z)| > 1

(1− |z|2)1/10
, for z ∈ Drj−2

. (4.5)

Sketch of proof of Theorem 4.4. To simplify notation, let us write Λr := Λ0
r. As uµ =

limj→∞ uµ2+µ3+µ4+···+µj , it suffices to prove the theorem when µ = µ2+µ3+µ4+· · ·+µj
is a finite sum. By construction, the function

ũ := Λr0

[
. . .Λrj−3

[
Λrj−2

[
uD − log

1

|Iµj |

]
− 1

|Iµj−1
|

]
· · · − log

1

|Iµ2|

]
(4.6)

solves the Gauss curvature equation ∆u = 4e2u on the disk Dr0 . By the monotonicity

properties of Λ and the repeated use of Lemma 2.7,

ũ ≤ Λµ̃2+µ̃3+···+µ̃j

[
. . .Λµ̃j−1+µ̃j

[
Λµ̃j

[
uD − log

1

|Iµj |

]
− 1

|Iµj−1
|

]
· · · − log

1

|Iµ2 |

]
,

= Λµ̃2+µ̃3+···+µ̃j
[
uD − log

1

|Iµ2+µ3+···+µj |

]
,

= uµ

on Dr0 , where we made use of the fact that suppµj ∩ Drj−2
= ∅. To show that

ũ > ur0,uD−log 2 on Dr0 , we estimate ũ by recursively unwinding the definition (4.6):
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0. We begin with uD − log 2.

1. We subtract log 1
|Iµj |

. By the estimate (4.5),

uD − log 2− log
1

|Iµj |
≥ (4/5)uD, on ∂Drj−2

.

2. We form the solution urj−2,(4/5)uD . By the computation in [10, Section 6],

urj−2,(4/5)uD > uD − log 2 on ∂Drj−3
.

Repeating this process gives the desired estimate.

4.3 Diffuse sequences lose mass

We now prove Theorems 4.1 and 4.2:

Proof of Theorem 4.1. We split µn = νn + τn so that νn → ν is concentrating and

τn → τ is diffuse. Since the sequence {µn} does not converge in the Korenblum

topology, the diffuse part is non-trivial, i.e. τ 6= 0. Form the Roberts decompositions

µn = µn,j0 + νn,j0,cone = (µn,j0,2 + µn,j0,3 + µn,j0,4 + . . . ) + νn,j0,cone.

By the remark following the proof of Theorem 4.3, when the threshold η(j0) =

π/n2 = π/222+j0 , the local entropy

‖En,j0,cone‖BCη(j0) .
µn(D)

c
. (4.7)

By the definition of a diffuse sequence, we can choose c > 0 so that for any given

j0 ≥ 2, µn,j0(KEn,j0,cone
) < τn(D)/2 for all sufficiently large n ≥ n0(j0), in which

case, a definite chunk of τn will fall into µn. Diagonalizing, we obtain a sequence

j0(n) → ∞ with lim infn→∞ µn,j0(n)(D) ≥ τ(D)/2. By Theorem 4.4, u(c∗/c)µn → uD.

Since (c∗/c)µn have definite mass, Lemma 2.10 prevents uµn from converging to uµ.

The proof is complete.

Proof of Theorem 4.2. For each n = 1, 2, . . . , consider the Roberts decomposition

µn = µn + νn,cone = (µn,2 + µn,3 + µn,4 + . . . ) + νn,cone
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with c = c∗ being the constant from Theorem 4.4. Since the sequence {µn} is totally

diffuse, for any fixed j0 ≥ 2, νn,j0,cone(D) → 0 as n → ∞. Diagonalizing allows us

to choose j0(n) → ∞ so that νn,j0(n),cone(D) → 0 as n → ∞. By Theorem 4.4,

uµn,j0(n) → uD. Lemma 2.9 guarantees that uµn → uD as well.

4.4 An instructive example

GivenM > 0, consider the sequence of probability measures µn,M = (1/n)
∑n

k=1 δeikθn ,

where θn is chosen so that nθn log 1
θn

= M . We show:

Lemma 4.6. For M > 0 sufficiently large, the nearly-maximal solutions un,M =

uµn,M converge to uD. For M > 0 sufficiently small, the un,M do not converge to uD.

Proof. We assume that n is sufficiently large so that nθn < π. Since any arc I ⊂ S1

of length θn/2 contains at most one of the points {eikθn}nk=1,

µn,M(I) ≤ 1/n = (1/M) · θn log
1

θn
≤ (3/M) · |I| log

1

|I|
.

For the first assertion, it is enough to request that 3/M < c∗ where c∗ is the constant

from Theorem 4.4. If the second assertion were false, a diagonalization argument

would produce a sequence unj ,Mj
→ uD with nj → ∞ and Mj → 0. But this

diagonal sequence is concentrating, so by Theorem 3.9, its limit should be uδ1 , which

is a contradiction.

Corollary 4.7. There exists a 0 < k < 1 and a sequence of measures µn ∈ MBC(D)

such that uµn 6→ uD but uk·µn → uD.

Proof. By the second statement of Lemma 4.6, we can choose M > 0 so that the

uµn,M do not converge to uD. If k = (M/3)c∗, then for any arc I ⊂ S1 of length θn/2,

k · µn,M(I) ≤ c∗|I| log 1
|I| , which implies that uk·µn,M tends to uD as n→∞.

Remark. Actually, for any 0 < k < 1, there exists a sequence of measures µn ∈
MBC(D) such that uµn 6→ uD but uk·µn → uD. To see this, one simply needs to scale

the sequence from Corollary 4.7 by an appropriate constant.
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5 Invariant subspaces of Bergman spaces

For a fixed α > −1 and 1 ≤ p <∞, consider the weighted Bergman space Apα(D) of

holomorphic functions satisfying the norm boundedness condition (1.10). Let {In}
be a sequence of inner functions which converge uniformly on compact subsets of

the disk to an inner function I. Assume that the measures µ(In) and µ(I) are in

MBC(D). Let [In] ⊂ Apα be the z-invariant subspace generated by In. In this section,

we prove Theorem 1.6 which says that limn→∞[In] = [I] if and only if the measures

µ(In) converge to µ(I) in the Korenblum topology. Note that the inclusion

[I] ⊆ lim inf
n→∞

[In] (5.1)

is automatic since lim infn→∞ [In] is an invariant subspace which contains I.

5.1 Concentrating sequences: special case

Theorem 5.1. Suppose In → I is a sequence of inner functions which converges

uniformly on compact subsets of the unit disk. If the zero structure of In belongs to

a Korenblum star KEn and the En → E converge in BC then [In]→ [I].

The proof of the above theorem is based on the arguments of Korenblum [12]. For

a Beurling-Carleson set E, one can construct an outer function ΦE(z) ∈ C∞(D) which

vanishes precisely on E and does so to infinite order. Examining the construction in

[8, Proposition 7.11], we may assume that ΦE enjoys two extra properties:

1. The function ΦE(z) varies continuously with the Beurling-Carleson set E, in

the sense that ΦEn → ΦE uniformly on compact subsets of the disk if En → E

and ‖En‖BC → ‖E‖BC.

2. For each N ≥ 0,

|ΦE(z)| · dist(z, E)−N ≤ CE(N)

is bounded by a constant which depends continuously on E. It is convenient

to take CE(0) = 1 so that |ΦE(z)| ≤ 1 on the disk.
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A brief sketch of the construction will be provided in Appendix C. The central

idea in Korenblum’s vision is the following division principle:

Theorem 5.2 (Korenblum’s division principle). Suppose I is an inner function with

zero structure suppµ(I) ⊂ KE and f ∈ [I]. For any δ > 0,

f δ(z) := (Φδ
E/I)f(z) ∈ Apα, (5.2)

with the norm estimate ‖f δ‖Apα ≤ CE‖f‖Apα where CE = CE
(
δ, µ(I)(D)

)
depends

continuously on E, δ and µ(I)(D).

Assuming Theorem 5.2, the proof of Theorem 5.1 runs as follows:

Proof of Theorem 5.1. Suppose that a sequence of functions fn ∈ [In] converges to

f in Apα. Norm convergence implies that the fn converge to f uniformly on compact

subsets of D. By Korenblum’s division principle, for a fixed δ > 0, the functions

gn = (Φδ
n/In) · fn(z) have bounded Apα norms and converge uniformly on compact

subsets to

g = (Φδ/I) · f(z).

Fatou’s lemma implies that g ∈ Apα and therefore Φδ · f = Ig ∈ [I]. Taking δ → 0

shows that f ∈ [I] and therefore [I] ⊇ lim supn→∞ [In]. By (5.1), the other inclusion

is automatic.

Since the exact statement of Theorem 5.2 is not present in Korenblum’s work

[12], we give a proof below.

Proof of Korenblum’s division principle (Theorem 5.2). We first consider the case

when I is a finite Blaschke product and E is a finite set. Afterwards, we will deduce

the general case by a limiting argument. If I is a finite Blaschke product, it is clear

that f δ ∈ Apα. We need to give a uniform estimate on its norm.

Recall that K2
E denotes the generalized Korenblum star of order 2, see (3.1) for the

definition. According to Lemma 3.7, |1/I(z)| ≤ C
(
µ(I)(D)

)
is uniformly bounded

on D \K2
E so that |f δ(z)| ≤ C|f(z)| there.
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To estimate f δ on K2
E, we examine its values on the boundary ∂K2

E. It is well

known that a function in Bergman space does not grow too rapidly:

|f(z)| ≤ C2‖f‖Apα(1− |z|)−β, z ∈ D, (5.3)

for some β = β(p, α) > 0. However, the C∞ decay of the outer function Φδ cancels

out this grows rate on ∂K2
E and we end up with

|f δ(z)| ≤ C3‖f‖Apα , z ∈ ∂K2
E.

Since f δ ∈ Apα, we can use the Phragmén-Lindelöf principle to conclude that this

bound extends to the interior of K2
E. Putting the above estimates together completes

the proof when I is a finite Blaschke product.

For the general case, we approximate I uniformly on compact subsets by finite

Blaschke products In whose zeros are contained in KE. Using the semicontinuity

property (5.1), we may then approximate f ∈ [I] by fn ∈ [In] in the Apα-norm. By

the finite case of the lemma, f δn = (Φδ
E/In)fn(z) ∈ Apα with ‖f δn‖Apα bounded above.

By Fatou’s lemma, ‖f δ‖Apα ≤ lim infn→∞ ‖f δn‖Apα as desired.

5.2 Concentrating sequences: general case

Suppose I is an inner function with µ(I) ∈MBC(D) and IN → I is an approximating

sequence of inner functions such that µ(IN) ≤ µ(I) is supported on a Korenblum

star of norm ≤ N . We claim that
⋂∞
N=1[IN ] = [I]. The “⊇” inclusion is trivial. For

the converse, note that if f ∈
⋂∞
N=1[IN ] then f(I/IN) ∈ [I] for any N . Since [I] is a

closed subspace, f ∈ [I], which proves the claim.

Theorem 5.3. Suppose In → I is a sequence of inner functions which converges

uniformly on compact subsets of the disk. If the associated measures µ(In) ∈MBC(D)

converge in the Korenblum topology, then [In]→ [I].

Proof. By the definition of the Korenblum topology, there exist “approximations”

INn → IN supported on Korenblum stars of norm ≤ N . By Theorem 5.1,

lim sup
n→∞

[In] ⊆ lim sup
n→∞

[INn ] = [IN ] →N→∞ [I].

The other inclusion follows from (5.1).
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5.3 Diffuse sequences

To complete the proof of Theorem 1.6, we need to show:

Theorem 5.4. If Iµn → Iµ is a sequence of inner functions whose zero structures

µ(In) ∈MBC(D) do not converge in the Korenblum topology to µ(I) ∈MBC(D), then

the invariant subspaces [Iµn ] do not converge to [Iµ].

We will also show:

Theorem 5.5. Suppose In → I is a convergent sequence of inner functions such

that the associated measures µ(In) are totally diffuse. Then, [In]→ [1].

The proofs of Theorems 5.4 and 5.4 are similar to their counterparts in Section 4,

except that the estimates on solutions of the Gauss curvature equation are replaced

with the use of corona theorem. We begin by describing an analogue of Theorem

4.4 in this setting. Let µ = µ2 + µ3 + µ4 + . . . be a measure on the closed unit

disk where the individual pieces satisfy (4.2) and (4.3). In [22], Roberts explained

how to estimate d(1, [Iµ]), the distance of the constant function 1 to the invariant

subspace generated by Iµ in Apα. To be honest, Roberts only considered singular

inner functions (in which case, the measures µj are supported on the unit circle),

but his argument extends to general inner functions almost verbatim. We give only a

brief outline of his argument and leave it to the interested reader to fill in the details.

Lemma 5.6 (cf. Lemma 2.3 of [22]). Fix β > 0 so that ‖zn‖Apα ≤ n−β for n ≥ 2.

Suppose I is an inner function which enjoys the estimate

|I(z)| ≥ n−γ, |z| ≤ 1− 1/n. (5.4)

If 0 < γ < (β/3)K where K is the constant from the corona theorem and n ≥ N(γ)

is sufficiently large, then there exists a function g ∈ H∞(D) with

‖g‖∞ ≤ nβ/3, ‖1− gI‖Apα ≤ n−2β/3. (5.5)

Roberts introduced the characteristic D[{n1, n2, . . . , nk}] which is defined recur-

sively by D[∅] = 0 and D[{n1, n2, . . . , nk}] = n
β/3
1 D[{n2, n3, . . . , nk}]+n−2β/3

1 . In view
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of monotonicity, this definition naturally extends to infinite sequences. He noticed

that if j0(β) ≥ 1 is large, then the sequence of integers nj = 22j+j0 in the Roberts

decomposition (Theorem 4.3) is sufficiently sparse to ensure that D[{nj}] is small.

Theorem 5.7 (cf. Lemma 2.4 of [22]). Let 0 < γ < (β/3)K as in Lemma 5.6.

Suppose I0, I1, . . . , Ik−1 are inner functions such that

|Ij(z)| ≥ n−γj , |z| ≤ 1− 1/nj, j = 0, 1, . . . , k − 1. (5.6)

Assume that min(n0, n1, . . . , nk−1) ≥ N(γ). If I =
∏k−1

j=0 Ij then d(1, [I]) ≤ D[{nj}].

By Lemma 4.5, if the parameter c > 0 of the Roberts series µ = µ2 +µ3 +µ4 + . . .

is sufficiently small, then Ij = Iµj+2
verifies the condition (5.6) with 0 < γ < (β/3)K,

which allows us to apply the above theorem to estimate d(1, [Iµ]). In order to be

able to use the strategy outlined in Section 4.3 to prove Theorem 5.4, it is enough

to establish an analogue of Lemma 2.10 in the current setting:

Lemma 5.8. Suppose Iτn → Iτ and Iνn → Iν are two sequences of inner functions

with τ ∈MBC(D). If [Iνn+τn ] converge to [Iν+τ ], then [Iτn ] converge to [Iτ ].

Proof. Clearly, lim infn→∞[Iτn ] ⊇ [Iτ ]. For the reverse inclusion, note that any f ∈
lim supn→∞[Iτn ] can be approximated by elements of the form Iτnpn in Apα. Since

Iνn+τnpn → Iνf in Apα, the assumption of the lemma tells us that Iνf ∈ [Iν+τ ]. Using

Korenblum’s division principle, it is easy to see that f ∈ [Iτ ] as desired.

Similarly, to show Theorem 5.5, it is enough to prove the analogue of Lemma 2.9

for invariant subspaces of Apα:

Lemma 5.9. Suppose Iµn → Iµ is a convergent sequence of inner functions. Assume

that the invariant subspaces [Iµn ] converge to [Iµ∗ ]. If νn is a sequence of measures

converging to 0, then [Iµn+νn ] also converge to [Iµ∗ ].

Proof. Clearly, lim supn→∞[Iµn+νn ] ⊆ [Iµ∗ ]. For the reverse inclusion, we approximate

a function f ∈ [Iµ∗ ] by functions fn ∈ [Iµn ] in Apα and notice that fnIνn ∈ [Iµn+νn ]

also converge to f in Apα.
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Remark. In the special case of the weighted Bergman space A2
1, we can give an

alternative proof of Theorem 5.5. By the Korenblum-Roberts theorem, we may

assume that µ(In) ∈ MBC(D). For each In, we may form an inner function Fn with

Fn(0) = 0, F ′n(0) > 0 and InnF ′n = In. According to Theorem 4.2, Fn → z uniformly

on compact subsets. However, the bound ‖Fn‖H∞ ≤ 1 implies that ‖Fn‖H2 ≤ ‖z‖H2

which forces Fn → z to converge in the H2-norm. The Littlewood-Paley formula

‖Fn‖H2 =
1

π

∫
D
|F ′n|2 log

1

|z|2
|dz|2 � ‖F ′n‖A2

1

then shows that F ′n → 1 in the A2
1-norm. Since F ′n ∈ [In],

lim inf
n→∞

[In] ⊃ lim inf
n→∞

[F ′n] ⊃ [1] = A2
1.

A Entropy of universal covering maps

Let m be the Lebesgue measure on the unit circle, normalized to have unit mass. It

is well known that if F is an inner function with F (0) = 0, then m is F -invariant,

i.e. m(E) = m(F−1(E)) for any measurable set E ⊂ S1. In the work [5], M. Craizer

showed that if F ∈J , then the integral∫
|z|=1

log |F ′(z)|dm

has the dynamical interpretation as the measure-theoretic entropy of m. It is there-

fore of interest to compute it in special cases. For finite Blaschke products, one may

easily compute the entropy using Jensen’s formula:

Theorem A.1. Suppose F is a finite Blaschke product with F (0) = 0 and F ′(0) 6= 0.

We have

1

2π

∫
|z|=1

log |F ′(z)|dθ =
∑

crit(F )

log
1

|ci|
−

∑
zeros(F )\{0}

log
1

|zi|
, (A.1)

In this appendix, we discuss a complementary example:
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Theorem A.2 (Pommerenke). Let P be a relatively closed subset of the unit disk

not containing 0. Let UP : D → D \ P be the universal covering map, normalized

so that UP (0) = 0 and U ′P (0) > 0. Then UP ∈ J if and only if P is a Blaschke

sequence, in which case

1

2π

∫
|z|=1

log |U ′P (z)|dθ =
∑
pi∈P

log
1

|pi|
−

∑
zeros(F )\{0}

log
1

|zi|
. (A.2)

A theorem of Frostman says that UP is an inner function if and only if the set

P has logarithmic capacity 0, see [4, Chapter 2.8]. In particular, UP is inner if P is

countable. For brevity, we will write F = UP . While Pommerenke did not explicitly

state (A.2), in the work [20], he proved the equivalent statement

InnF ′(z) =
k∏
i=1

Fpi(z) =
k∏
i=1

F (z)− pi
1− piF (z)

, (A.3)

so we feel that it is appropriate to name the above theorem after him. Actually,

Pommerenke worked in the significantly greater generality of Green’s functions for

Fuchsian groups of Widom type, so this is only a special case of his result. Below, we

give a direct proof of Theorem A.2 based on stable approximation by finite Blaschke

products.

A.1 Preliminaries

We first recall a well known property of Nevanlinna averages:

Lemma A.3. If f ∈ N is a function in the Nevanlinna class and is not identically

0, then

1

2π

∫
|z|=1

log |f(z)|dθ − lim
r→1

{
1

2π

∫
|z|=r

log |f(z)|dθ
}

= σ(f)(S1). (A.4)

See [10, Section 3] for a proof. For x ∈ D, let Fx = Tx ◦ F denote the Frostman

shift of F with respect to x, where Tx(z) = z−x
1−xz . Frostman showed that if x avoids

an exceptional set E of capacity zero, then Fx is a Blaschke product, in which case

σ(Fx) = 0. We will also need:
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Lemma A.4. Let F be an inner function with F (0) = 0. For any x ∈ D \ {0},

log
1

|x|
=

∑
F (y)=x

log
1

|y|
+ σ(Fx)(S1). (A.5)

Proof. Taking f = Fx in Lemma A.3 gives

0 = lim
r→1

1

2π

∫
|z|=r

log |Fx(z)|dθ + σ(Fx)(S1).

The lemma follows after applying Jensen’s formula and taking r → 1.

In the case when F ∈ J , Ahern and Clark [1] observed that the exceptional

set E of F is at most countable and that the singular masses of different Frostman

shifts Fx are mutually singular. More precisely, they showed that the measure σ(Fx)

is supported on the set of points on the unit circle at which the radial limit of F is

x. Since the singular inner function SingFx divides F ′x, it must also divide its inner

part InnF ′x = InnF ′. This shows that

σ(F ′) ≥
∑
x∈E

σ(Fx). (A.6)

In other words, InnF ′ is divisible by the product
∏

x∈E SingFx.

A.2 Proof of Theorem A.2 when P is a finite set

We first prove Theorem A.2 when P = {p1, p2, . . . , pk} is a finite set. In the formula

(A.1), one considers the sum
∑

crit log 1
|ci| over critical points. It appears that the

identity (A.5) allows one to sum over the “critical values” p1, p2, . . . , pk instead. To

make this rigorous, we will construct a special approximation Fn → F by finite

Blaschke products with critical values sets {p1, p2, . . . , pk}.
Assuming the existence of such an approximating sequence, the argument runs

as follows: since the entropy can only decrease after taking limits [10, Theorem 4.2],

1

2π

∫
|z|=1

log |F ′(z)|dθ ≤ lim inf
n→∞

1

2π

∫
|z|=1

log |F ′n(z)|dθ,

≤ lim inf
n→∞

{
log |F ′n(0)|+

k∑
i=1

∑
Fn(qi)=pi

log
1

|qi|

}
,
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= log |F ′(0)|+
k∑
i=1

log
1

|pi|
.

However, by (A.6), the other direction is automatic:

1

2π

∫
|z|=1

log |F ′(z)|dθ = lim
r→1

1

2π

∫
|z|=r

log |F ′(z)|dθ + σ(F ′)(S1),

≥ log |F ′(0)|+
k∑
i=1

σ(Fpi)(S1),

= log |F ′(0)|+
k∑
i=1

log
1

|pi|
.

Logic dictates that the sequence Fn → F is stable and the formula (A.2) holds.

A.3 Construction of the approximating sequence

For the construction of the approximating sequence, we employ the gluing technique

of Stephenson [24], also see the paper of Bishop [2]. For each puncture pi, choose

a real-analytic arc which joins pi to a point on the unit circle, so that the arcs are

disjoint and do not pass through the origin. Define a tile or sheet to be the shape

D \ ∪ki=1γi. Let Γ = 〈g1, g2, . . . , gk〉 be the free group on k generators. Consider the

countable collection {Tg}g∈Γ of tiles indexed by elements of Γ. We form a simply-

connected Riemann surface S by gluing the lower side of γi in Tg to the upper side

of γi in Tgig. The surface S comes equipped with a natural projection to the disk D
which sends a point in a tile Tg to its representative in the model D \ ∪ki=1γi. We

may uniformize S ∼= D by taking 0 in the base tile Te to 0. In this uniformizing

coordinate, the projection F becomes a holomorphic self-map of the disk. Since all

the slits have been glued up, F is an inner function, and a little thought shows that

it is the universal covering map of D \ {p1, p2, . . . , pk}.
We now give a slightly different description of the above construction. For this

purpose, we need the notion of an ∞-stack : a countable collection of tiles {Tj}j∈Z,

where the lower side of γi in Tj is identified with the upper side of γi in Tj+1. To

highlight the dependence on the curve γi, we say that the ∞-stack is glued over γi.
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Similarly, by an n-stack , we mean a set of n tiles with the above identifications made

modulo n. Now, to construct S, we begin with the base tile Te ∼= D \ ∪ki=1γi, and at

each slit γi ⊂ Te, we glue an∞-stack (i.e. we add the tiles {Tj}j∈Z\{0} and treat Te as

T0). We refer to the tiles that were just added as the tiles of generation 1. To each

of the k − 1 unglued slits in each tile of generation 1, we glue a further ∞-stack of

tiles, which we call tiles of generation 2. Repeating this construction infinitely many

times gives the Riemann surface S from before.

For the finite approximations, we slightly modify the above procedure. We begin

with a base tile Te ∼= D \ ∪ki=1γi with k slits. At each of these k slits, we glue in

an n-stack of sheets (sheets of generation 1). At each of the k − 1 unresolved slits

of sheet of generation 1, we glue in a further n-stack (sheets of generation 2). We

repeat for n generations. Finally, at sheets of generation n, we resolve the slits by

simply sowing their edges together. This gives us a Riemann surface Sn and a finite

Blaschke product Fn with critical values p1, p2, . . . , pk.

Since the Riemann surfaces Sn → S converge in the Carathéodory topology, the

maps Fn → F converge uniformly on compact sets. With the construction of the

special approximating sequence, the proof of Theorem A.2 is complete (when the

number of punctures is finite).

A.4 Proof of Theorem A.2 when P is infinite

We handle the infinite case by reducing it to the finite case. This is achieved by the

following lemma:

Lemma A.5. Suppose that UP is an inner function. Then,

1

2π

∫
|z|=1

log |U ′P (z)|dθ ≥ 1

2π

∫
|z|=1

log |U ′Q(z)|dθ, (A.7)

for any Q ⊆ P .

Proof. Topological considerations allow us to factor UP = UQ ◦ h, where h is a

holomorphic map of the disk. The normalizations UP (0) = UQ(0) = 0 imply that

h(0) = 0. Since UP is inner, h must also be inner. The chain rule and the h-invariance
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of Lebesgue measure give

1

2π

∫
|z|=1

log |U ′P (z)|dθ =
1

2π

∫
|z|=1

log |U ′Q(z)|dθ +
1

2π

∫
|z|=1

log |h′(z)|dθ

Since h is inner and h(0) = 0, |h′(z)| ≥ 1 for z ∈ S1, see e.g. [17, Theorem 4.15].

Dropping second term gives (A.7).

Proof of Theorem A.2 when P is infinite. The above lemma shows that if P is not a

Blaschke sequence, then UP cannot be an inner function of finite entropy. Conversely,

if P = {p1, p2, . . . } is a Blaschke sequence, then the integrals

1

2π

∫
|z|=1

log |U ′Pk(z)|dθ, Pk = {p1, p2, . . . , pk},

are increasing in k and

1

2π

∫
|z|=1

log |U ′P (z)|dθ ≥ lim
k→∞

1

2π

∫
|z|=1

log |U ′Pk(z)|dθ. (A.8)

Since the entropy can only decrease in the limit [10, Theorem 4.2], we must have

equality in (A.8). This completes the proof.

B Existence of Perron hulls

We now prove the existence statement in Theorem 2.2. The proof is a standard

application of Schauder’s fixed point theorem. Our exposition is inspired by [14,

Appendix].

Recall that G(z, ζ) = log
∣∣1−zζ
z−ζ

∣∣ denotes the Green’s function of the unit disk.

Below, we will make use of two properties of the Green’s function:

1. If µ is a finite measure on the unit disk, then

Gµ(z) =
1

2π

∫
D
G(z, ζ)dµ

solves the linear Dirichlet problem{
∆u = −µ, in D,
u = 0, on S1,

(B.1)

where the boundary condition is understood in terms of weak limits.
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2. The function

z →
∫
D
G(z, ζ)|dζ|2

is uniformly bounded on D and tends to 0 as |z| → 1.

Remark. One can check Property 2 by using the interpretation of the Green’s function

as the occupation density of Brownian motion. In fact, the quadratic scaling of

Brownian motion gives the stronger estimate∫
D
G(z, ζ)|dζ|2 ≤ C(1− |z|)2.

Proof of Theorem 2.2: existence. Let Ph denote the harmonic extension of h to the

unit disk. Since h : S1 → R is bounded above by assumption, Ph is bounded above

on the unit disk. Consider the closed convex set

Kh =
{
v ∈ L1(D, |dz|2), v ≤ Ph

}
⊂ L1(D, |dz|2)

and the operator

(Tv)(z) = Ph(z)− 1

2π

∫
D

(
4e2v(ζ)|dζ|2 + 2πdν̃ζ

)
G(z, ζ). (B.2)

Since νζ = 4e2v(ζ)|dζ|2+2πdν̃ζ is a finite measure, by Property 2, Gν(z) ∈ L1(D, |dz|2),

which shows that T maps Kh into itself.

By Property 1, every function in the image of T has boundary data h. In other

words, Tv is the unique solution of the linear Dirichlet problem{
∆u = 4e2v + 2πν̃, in D,
u = h, on S1.

(B.3)

In particular, u ∈ Kh is a fixed point of T if and only if u solves the Gauss curvature

equation (2.3) with data (2πν̃, h).

To see that the image T (Kh) is compact, note that by Property 2, the functions∫
D
e2v(ζ)G(z, ζ)|dζ|2, v ∈ Kh,

are uniformly continuous on the closed unit disk D, which allows one to extract

uniform subsequential limits using Arzelà-Ascoli. Since we have verified the assump-

tions of Schauder’s fixed point theorem, T has a fixed point u ∈ Kh. The proof is

complete.
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The reader who wishes to learn more about non-linear elliptic PDEs involving

measures can consult [21, 16].

C Carleson’s theorem on outer functions

We now briefly outline the construction of an outer function ΦE ∈ C∞(D) which

vanishes on a Beurling-Carleson set E to infinite order. In the literature, this fact is

known as Carleson’s theorem, even though the original construction due to Carleson

[3] only gave ΦE ∈ CN(D), where N ≥ 1 could be any positive integer. Here, we

follow the exposition from [8, Proposition 7.11], although we slightly modify the

construction to ensure that ΦE varies continuously with E.

For a closed subset K of the unit circle, we denote the collection of open arcs

that make up S1 \K by I(K). The construction begins by subdividing each interval

In ∈ I(E) into countably many pieces {Jn,k}k∈Z such that Jn,0 is the middle third

interval in In and

|Jn,k| = dist(E, Jn,k) =
1

3 · 2|k|
· |In|.

Inspection shows that F = S1 \
⋃
Jn,k is a Beurling-Carleson set and that the map

∆ : BC → BC which sends E to F is continuous, that is, if En → E and ‖En‖BC →
‖E‖BC then Fn → F and ‖Fn‖BC → ‖F‖BC. It is not difficult to see that there exists

a function λF : I(F )→ [1,∞) which satisfies

λF (J)→∞, |J | → 0, (C.1)

and ∑
λF (J) · |J | log

1

|J |
<∞. (C.2)

With help of λF , we define

ΦE(z) = exp

[
−
∑

J∈I(F )

λF (J) · |J | log 1
|J | · e

iθJ

aJ − z

]
, (C.3)

where eiθJ is the midpoint of J and aJ = rJe
iθJ is the point in C \ D from which J

is seen from a 60◦ angle (such a point exists since |J | ≤ 2π/3). Since the real part
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of each term in the sum is negative, |ΦE(z)| ≤ 1 on the disk. The condition (C.2)

ensures that ΦE(z) is not identically 0.

We now show that ΦE vanishes on E to infinite order, that is, |ΦE(z)| dist(z, E)−N

is bounded on the unit disk for any given N ≥ 1. Actually, it is enough to show that

|ΦE(z)| dist(z, E)−N is bounded on the unit circle: to extend the bound to the unit

disk we can apply the maximum-modulus principle to the functions ΦE(z)(ζ − z)−N

with ζ ∈ E.

For z ∈ S1 \ E, let Jz ∈ I(F ) denote an arc which contains z (if z is contained

in two arcs by virtue of being an endpoint of both, we may choose Jz to be either

one of these arcs). By the choice of aJ , |J |e
iθJ

aJ−z
is confined to a compact subset of

{Re z < 0}. It follows that

|ΦE(z)| ≤ 1

|J |c1·λF (J)
≤ dist(z, E)c2·λF (J)

where c1, c2 > 0 are universal constants. The condition (C.1) gives the required

decay.

For an interval J ∈ I(F ), we would like to define

λF (J) = max

{
1, log

1

hF (J)

}
where

hF (J) =
∑

J ′∈I(F ): |J ′|≤|J |

|J ′| log
1

|J ′|
.

With this definition, the sum (C.2) is finite and its tails converge to zero uniformly

as ∑
J∈I(F ): e−(k+1)≤hF (J)≤e−k

λF (J) · |J | log
1

|J |
≤ (k + 1)e−k, (C.4)

however, the hF (J), λF (J) will not depend continuously with respect to the Beurling-

Carleson set F , because they are sensitive to small changes in the lengths of the

intervals and the entropy of F .

To rectify this, we smoothen out the definitions of h(J) and λ(J), that is, we

define

hF (J) =
∑

J ′∈I(F ): |J ′|<2|J |

ψ

(
|J ′|
|J |

)
· |J ′| log

1

|J ′|
,
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where ψ : (0,∞) → [0, 1] is a smooth function such that ψ(t) = 1 for t < 1 and

ψ(t) = 0 for t > 2, and

λF (J) = φ

(
log

1

|J |

)
,

where φ is an increasing smooth function which satisfies φ(t) = t for t > 2 and

φ(t) = 1 for t < 1.

We leave it to the reader to check that ΦE enjoys the continuity properties de-

scribed in Section 5.1.
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Zürich, 2016.

46



[22] J. W. Roberts, Cyclic inner functions in the Bergman spaces and weak outer

functions in Hp, 0 < p < 1, Illinois J. Math. 29 (1985), 25–38.

[23] S. M. Shimorin, Approximate spectral synthesis in the Bergman space, Duke

Math. J. 101 (2000), no. 1, 1–39.

[24] K. Stephenson, Construction of an inner function in the little Bloch space,

Trans. Amer. Math. Soc. 308 (1988), no. 2, 713–720.

47


	Introduction
	The Korenblum topology
	Two embeddings of inner functions
	Connections with the Gauss curvature equation
	Invariant subspaces of Bergman space

	The Gauss curvature equation
	Generalized Blaschke products
	Nearly-maximal solutions
	Sequences of nearly-maximal solutions

	Concentrating sequences
	Blaschke products as approximate isometries
	Concentrating sequences of solutions

	Diffuse sequences
	Roberts decompositions
	Estimating nearly-maximal solutions
	Diffuse sequences lose mass
	An instructive example

	Invariant subspaces of Bergman spaces
	Concentrating sequences: special case
	Concentrating sequences: general case
	Diffuse sequences

	Appendix A. Entropy of universal covering maps
	Preliminaries
	Proof of Theorem A.2 when P is a finite set
	Construction of the approximating sequence
	Proof of Theorem A.2 when P is infinite

	Appendix B. Existence of Perron hulls
	Appendix C. Carleson's theorem on outer functions

