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Dimensions of Quasicircles

Find D(k), the maximal dimension of a k-quasicircle, the image of
S1 under a k-quasiconformal mapping of the plane,

homeomorphism, ∂wµ(z) = µ(z) · ∂wµ(z), ‖µ‖∞ ≤ k .

Theorem: (Becker-Pommerenke, 1987)

D(k) ≤ 1 + 36 k2 +O(k3).

Astala’s conjecture: (proved by Smirnov)

D(k) ≤ 1 + k2, for 0 < k < 1.



Bloch functions

Let b be a Bloch function on D, i.e. a holomorphic function
satisfying

sup
z∈D

(1− |z |2)|b′(z)| <∞.

Examples:
log f ′, f : D→ C conformal

Pµ =
1

π

ˆ
C

µ(w)

(1− zw)2
|dw |2, µ ∈ L∞(D).

Lacunary series:
z + z2 + z4 + z8 + . . .



Asymptotic variance

For a Bloch function, define its asymptotic variance by

σ2(b) = lim sup
r→1−

1

2π| log(1− r)|

ˆ
|z|=r
|b(z)|2 |dz |.

Set
Σ2 := sup

|µ|≤χD

σ2(Pµ).

(AIPP) 0.879 ≤ Σ2 ≤ 1, (Hedenmalm) Σ2 < 1,

D(k) = 1 + k2 Σ2 +O(k8/3−ε),

(Prause – Smirnov) D(k) < 1 + k2 for all 0 < k < 1.
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McMullen’s identity

Suppose µ is a dynamical Beltrami coefficient on the disk, either

I invariant under a co-compact Fuchsian group Γ,

I or eventually invariant under a Blaschke product f (z).

Then,

2
d2

dt2

∣∣∣∣
t=0

M. dim w tµ(S1) = σ2
(

d

dt

∣∣∣∣
t=0

log(w tµ)′
)
,

= σ2(Pµ),

= ‖µ‖2WP,

where ‖ · ‖2WP is the Weil-Petersson metric.



Fractal approximation (AIPP)

To show Σ2 ≥ 0.879, we studied J (z20 + tz) with t small.

One argument to prove Σ2 ≤ 1:

Σ2 = sup
|µ|≤χD, µ∈MI

σ2(Pµ),

where
MI =

⋃
d≥2

MI(d), (zd)∗µ = µ

in some neighbourhood of S1.

Theorem: Fuchsian approximation does not work: Σ2
F < 2/3.



Fractal approximation (AIPP)

To show Σ2 ≥ 0.879, we studied J (z20 + tz) with t small.

One argument to prove Σ2 ≤ 1:

Σ2 = sup
|µ|≤χD, µ∈MI

σ2(Pµ),

where
MI =

⋃
d≥2

MI(d), (zd)∗µ = µ

in some neighbourhood of S1.

Theorem: Fuchsian approximation does not work: Σ2
F < 2/3.



Fractal approximation (AIPP)

To show Σ2 ≥ 0.879, we studied J (z20 + tz) with t small.

One argument to prove Σ2 ≤ 1:

Σ2 = sup
|µ|≤χD, µ∈MI

σ2(Pµ),

where
MI =

⋃
d≥2

MI(d), (zd)∗µ = µ

in some neighbourhood of S1.

Theorem: Fuchsian approximation does not work: Σ2
F < 2/3.



Extremals are Gaussians

Theorem: Suppose µ is close to an extremal,

1

2π| log(1− r)|

ˆ
|z|=r
|Pµ(z)|2 |dz | ≥ Σ2 − δ, r ≈ 1.

Then, as a random variable in θ ∈ [0, 2π),

Pµ(re iθ)√
log 1

1−r

≈ NC(0,Σ2),

up to an additive error ε.

In other words, extremality invokes fractal structure.



Riemann Mapping Theorem

Let D∗ = {z : |z | > 1} be the exterior unit disk.

D∗ Ωϕ

“Complexity of the boundary ∂Ω” is manifested in the “complexity
of the Riemann map”.



Makarov’s theorem

In the 1980s, Makarov proved the following remarkable result:

Theorem: Suppose Ω is any simply connected domain, bounded by
a Jordan curve. Then, the harmonic measure on ∂Ω has Hausdorff
dimension 1.

(Law of large numbers)

Makarov’s principle: If ∂Ω is a regular fractal, then log |f ′| behaves
like a Gaussian random variable

N(t) =
1

σ
√

2π

ˆ t

−∞
e−

(x−µ)2

2σ2 dx .
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Characteristics measuring σ2

For b = log f ′, define its asymptotic variance by

σ2(b) = lim sup
r→1−

1

2π · log 1
1−r

ˆ
|z|=r
|b(z)|2 |dz |,

and LIL constant C 2
LIL(b) = ess supθ∈[0,2π) C 2

LIL(b, θ) where

CLIL(b, θ) = lim sup
r→1−

|b(re iθ)|√
log 1

1−r log log log 1
1−r

.



Integral means spectra

For a conformal map f : D→ Ω, the integral means spectrum is
given by

βf (p) = lim sup
r→1−

log
´
|z|=r |f

′(z)p| |dz |
log 1

1−r
, p ∈ C.

Problem: Find the universal integral means spectrum

B(p) := sup
f
βf (p),

Kraetzer’s conjecture. Is it |p|2/4, for |p| ≤ 2 ?

B(−2) = 1 ? B(1) = 1/4 ? Probably false.



Equality of Characteristics

Przytycki, Urbański, Zdunik, Makarov, Binder, McMullen...

Dynamical setting: If ∂Ω is a regular fractal, e.g. a Julia set or a
limit set of a quasi-Fuchsian group, then

2
d2

dp2

∣∣∣∣
p=0

βf (p) = σ2(log f ′) = C 2
LIL(log f ′).

Set

h(t) = t exp

{
C

√
log

1

t
log log log

1

t

}
, 0 < t < 10−7.

Then, ω << Λh(t) for C ≥
√
σ2 and ω ⊥ Λh(t) for C <

√
σ2.



Universal Teichmüller space

By definition,

T (D∗) :=
⋃

0≤k<1

Σk ,

where Σk = {ϕ : admit a k-quasiconformal extension to C}.

D∗ Ω

µ

ϕ = wµ



Equality of Characteristics

Theorem: (partly joint with I. Kayumov)

2
d2

dp2

∣∣∣∣
p=0

Bk(p) = sup
ϕ∈Σk

σ2(logϕ′) = sup
ϕ∈Σk

C 2
LIL(logϕ′),

where Σ2(k)/k2 is a convex non-decreasing function of k ∈ [0, 1).

Additionally, ω << Λh(t) for C ≥
√

Σ2(k). For any C <
√

Σ2(k),
there exists a domain Ω such that ω ⊥ Λh(t).

Theorem: (AIPP; Hedenmalm, Shimorin, Kayumov)

0.93 < Σ2(1−) < 1.242.
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Bloch Martingales

Let b be a Bloch function on D, satisfying

sup
z∈D

(1− |z |2)|b′(z)| <∞.

Identify S1 ∼ R/Z in the usual way. For a dyadic interval I , define

BI = lim
r→1

1

|I |

ˆ
I

b(re iθ)dθ.

This is clearly a martingale, that is, if I = I1 ∪ I2, then

BI =
BI1 + BI2

2
.



Bloch Martingales (cont.)

The local variance is defined as

VarnI =
1

n · 2n
2n∑
j=1

|∆j(x)|2.

where ∆j = BIj (x)− BI (x) and {Ij} ranges over generation n of
children of I .

VarnI =

 
�n

I

∣∣∣∣2b′

ρ
(z)

∣∣∣∣2 |dz |2

1− |z |
+O(1/

√
n).

Universal bounds: If b = Pµ, |µ| ≤ χD, then

 
≤ Σ2 +O(1/n).

Dynamical coefficients: σ2 − ε ≤ VarnI ≤ σ2 + ε if n is large.
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Thank you for your attention!


