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Abstract

Numerical experiments by Werness, Lee and the third author suggested

that dessin d’enfants associated to large trivalent trees approximate the de-

veloped deltoid introduced by Lee, Lyubich, Makarov and Mukherjee. In this

paper, we confirm this conjecture. As a side product of our techniques, we give

a new proof of a theorem of Bishop which says that “true trees are dense.” We

also exhibit a sequence of trees whose conformally natural shapes converge to

the cauliflower, the Julia set of z 7→ z2 + 1/4.

1 Introduction

A finite tree T in the plane is called a conformally balanced tree or a true tree if

(TT1) Every edge has the same harmonic measure as seen from infinity.

(TT2) Harmonic measures on the two sides of every edge are identical.

Conformally balanced trees are in one-to-one correspondence with Shabat polyno-

mials: any conformally balanced tree is the pre-image of the segment [−1, 1] by an

essentially unique polynomial p with critical values ±1. (The polynomial p(z) is

uniquely determined up to multiplication by −1.)

We say that two trees T1, T2 in the plane are equivalent if there is an orientation-

preserving homeomorphism of the plane which takes T1 onto T2. It is a classic fact
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that every finite tree T in the plane is equivalent to a conformally balanced tree T ,

which is unique up to post-composition with affine maps. A proof of these facts will

be sketched in Section 3.1.

It is natural to ask if infinite trees also have a natural shape. In [5], the second-

and third author developed the theory of Gehring trees and showed that the Aldous

continuum random tree possesses a natural conformal structure. In this paper, we

consider the infinite trivalent tree T , which exhibits a different and surprising be-

haviour. To come up with a natural shape for T , we truncate it at level n, form the

conformally balanced tree Tn and take n→∞.

In order for the finite trees Tn to converge, we need to normalize them in some

way. Throughout the rest of the paper, we use the hydrodynamic normalization: we

ask that each conformal map ϕn : Ĉ \D→ Ĉ \Tn has the expansion z → z +O(1/z)

near infinity.

Our main theorem states:

Theorem 1.1. The trees Tn converge in the Hausdorff topology to an infinite triva-

lent tree union a Jordan curve T∞ ∪ ∂Ω. The domain Ω enclosed by ∂Ω is the

developed deltoid. The Shabat polynomials pn converge to F ◦R−1 where F is a mod-

ular function invariant under an index 2 subgroup of PSL(2,Z) and R : D → Ω is

the Riemann map.

Figure 1: The developed deltoid and its approximating conformally balanced tree.
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Remark. The choice of truncation is important: by considering other truncations

of the infinite trivalent tree, one can obtain different limit sets. In fact, any com-

pact connected set in the plane can be approximated in the Hausdorff topology by

conformally balancing finite truncations of the infinite trivalent tree, thereby giving

another proof of a theorem of Bishop [1]. See Appendix A.

1.1 The developed deltoid

The deltoid 4 ⊂ C is a remarkable domain in the plane bounded by a Jordan curve

with three outward pointing cusps. It can be described as the curve traversed by a

point on a circle of radius 1/3 as it rolls around in the interior of a circle of radius 1.

Alternatively, one can describe the exterior of the deltoid 4e = C \ 4 as the image

of De = Ĉ \D under the conformal map z → z + 1
2z2

.

The exterior of the deltoid is part of a somewhat mysterious family of domains

called quadrature domains. Quadrature domains have several equivalent definitions

such as possessing a Schwarz reflection which is an anti-holomorphic function σ :

4e → C that is identity on ∂4e. By repeatedly reflecting the deltoid in its sides,

one obtains the developed deltoid

Ω =
⋃
k≥0

σ−k(4),

see Fig. 1. The developed deltoid was first studied by S-Y. Lee, M. Lyubich,

N. G. Makarov and S. Mukherjee [3], who showed that it fuses Fuchsian dynam-

ics with anti-holomorphic dynamics:

Theorem 1.2. (i) The boundary of the developed deltoid ∂Ω is the unique Jordan

curve that realizes the mating of the ideal triangle group and z → z2.

(ii) The developed deltoid Ω is a John domain. In particular, ∂Ω is conformally

removable.

We now describe their result in detail:

Dynamics on De. In the exterior of the unit disk, we consider the dynamical

system z → z2.
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Dynamics on D. Let 4hyp ⊂ D be the ideal triangle in the unit disk with

vertices at 1, ω, ω2, where ω = e2πi/3 is a third root of unity. Consider the group

Γ = 〈Rρ1 , Rρ2 , Rρ3〉 ⊂ Aut(D) generated by the reflections in the sides s1, s2, s3 of

4hyp. The images

{γ(4hyp) : γ ∈ Γ}

tessellate the unit disk. The Markov map ρ : D \ 4hyp → D is defined as Rρ1 on the

(hyperbolic) half-plane cut off by s1, Rρ2 on the half-plane cut off by s2 and Rρ3 on

the half-plane cut off by s3.

What it means to be a mating. A Jordan curve γ = ∂Ω is a mating of z → z2 and

Γ if there exist conformal maps ϕ : D → Ω, ψ : De → Ωe that glue the dynamical

systems together, i.e. ϕ ◦ ρ ◦ ϕ−1 = ψ ◦ z2 ◦ ψ−1 on ∂Ω. In particular, this implies

that

σ(z) =

ψ ◦ z2 ◦ ψ−1, z ∈ Ωe

ϕ ◦ ρ ◦ ϕ−1, z ∈ Ω \ ϕ(4hyp)

is a Schwarz reflection for Ĉ \ϕ(4hyp), and hence Ĉ \ϕ(4hyp) is a quadrature domain.

A set E is called conformally removable if every conformal map h : Ĉ \E → Ĉ \F
which extends continuously to the Riemann sphere is a Möbius transformation.

1.2 Strategy of proof

Our proof of Theorem 1.1 proceeds in three steps:

Step 1. We first show that any subsequential limit of the true trees Tn in the

Hausdorff topology is homeomorphic to an infinite trivalent tree union a Jordan

curve T∞ ∪ ∂Ω, with T∞ ⊂ Ω. Among our key tools are estimates for the diameters

of edges by means of conformal modulus estimates of certain curve families. A

notable difference to the setting of random trees is that in the truncated trivalent

tree, the diameters of a fixed edge do not shrink to zero as n → ∞, see also the

remark at the end of Section 3.4.

Step 2. We then show that any subsequential limit ∂Ω realizes the mating of

z → z2 and Γ. At this point, one can appeal to the uniqueness of the mating [3]
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to complete the proof of Theorem 1.1. However, appealing to [3] feels somewhat

unsatisfactory since it relies on a priori knowledge of the deltoid, while ideally, one

would want to “discover” the deltoid from the infinite trivalent tree.

Step 3. To show that the limit of the Tn does not depend on the subsequence,

we prove “partial conformal removability.” Partial conformal removability is a much

less stringent property than full conformal removability and it is easier to check.

In essence, it asks that if h : Ĉ \E → Ĉ \F is a conformal map (which extends

continuously to the Riemann sphere) onto the complement of a set F which has

roughly the same geometry as E, then h is a Möbius transformation.
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2 Preliminaries

In this section, we gather a number of useful facts that will be used in this paper.

We also describe the Farey tessellation and discuss weak conformal removability.
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2.1 Moduli of annuli and rectangles

It is well known that any doubly-connected domain A ⊂ C can be mapped onto

a round annulus {z : r < |z| < R}. The number Mod A := 1
2π

log R
r

is called the

modulus of A. Two doubly-connected domains are conformally equivalent if and only

if their moduli coincide.

A metric ρ(z) is a non-negative measurable function defined on a domain Ω ⊂ C.

One can use ρ(z) to measure lengths of rectifiable curves

`ρ(γ) =

∫
γ

ρ(z)|dz|

and compute areas of shapes, for instance the total area of ρ is given by

A(ρ) =

∫
Ω

ρ(z)2|dz|2.

The metric ρ is said to be admissible for a family of rectifiable curves Γ contained

in Ω if the ρ-length of every curve γ ∈ Γ is at least 1. The modulus of the curve

family Γ is defined as

Mod Γ := inf
ρ
A(ρ),

where the infimum is taken over all admissible metrics ρ. If one finds a conformal

metric ρ such that `ρ(γ) ≥ L for any γ ∈ Γ, then Mod Γ ≤ A(ρ)/L2.

The modulus of a doubly-connected domain is a special case of the above con-

struction: Mod A is equal to the modulus of the family of curves Γ	 that separate

the two boundary components, while 1/Mod A is equal to modulus of the family Γ↑

of curves that connect the opposite boundary components of A. Thus one uses Γ	

to give upper bounds for Mod A while one uses Γ↑ go give lower bounds for Mod A.

We will frequently use the following two simple rules for modulus, which follow

from the definitions:

1. (Monotonicity rule) If A1 ⊂ A is an essential doubly-connected subdomain, so

that Γ	(A1) ⊂ Γ	(A), then Mod A1 ≤ Mod A.

2. (Parallel rule) If a doubly-connected domain A = A1 ∪A2 can be represented

as a union of two essential doubly-connected domains, then

Mod A1 + Mod A2 ≤ Mod A.
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We will also use the following standard estimates:

Lemma 2.1. Let Ω be a simply-connected domain in the plane.

(a) Suppose F is a compact connected set contained in Ω. If Mod(Ω \ F ) ≥ m is

bounded from below, then

dist(∂Ω, F ) ≥ c diamF,

for some c > 0 which depends only on m > 0. Furthermore, c → ∞ as m → ∞.
Conversely, if dist(∂Ω, F ) ≥ c diamF, then Mod(Ω \ F ) ≥ m(c).

(b) Suppose E ⊂ F are two compact connected sets contained in Ω. If

m1 ≤ Mod(Ω \ E) ≤ Mod(Ω \ F ) ≤ m2,

then diamE � diamF. In fact, there exists a constant C = C(m1,m2) > 1 so that

F ⊂ B(e, C · diamE) for any point e ∈ E, where B(x, r) denotes the ball of radius

r centered at x.

A conformal rectangle R is a simply connected domain with four marked prime

ends z1, z2, z3, z4. In this paper, all conformal rectangles will be marked , i.e. equipped

with a distinguished pair of opposite sides. The Schwarz-Cristoffel formula provides

a conformal map from R onto a geometric rectangle [0,m]× [0, 1]. If one insists that

the marked sides of R are mapped onto the vertical sides of [0,m]× [0, 1], then the

number m ∈ (0,∞) is determined uniquely. The number m := Mod R is known as

the modulus of R and is equal to the modulus of the curve family Γl which separates

the distinguished pair of opposite sides.

For further properties of conformal modulus, we refer the reader to [2, Chapter

4] and [8, Chapter 2].

2.2 Farey tesellation

Let 4hyp ⊂ D be the ideal triangle in the unit disk with vertices 1, ω = e2πi/3 and

ω = e4πi/3. Repeatedly reflecting 4hyp in its sides, one obtains a tessellation of the

unit disk by ideal triangles. The dual graph (which joins centers of the triangles by

hyperbolic geodesics) is called the Farey tree F , see Figure 2.

7



Figure 2: The Farey tesselation and Farey tree

We designate the center of 4hyp as the root vertex. Each non-root triangle 4
can be labeled by a digit 1, 2, 3 followed by a finite sequence of L’s and R’s, which

indicates the path one travels from 4hyp to 4. For example, in the word

2 L︸︷︷︸
k1=1

R︸︷︷︸
k2=1

LLL︸︷︷︸
k3=3

RR︸︷︷︸
k4=2

LL︸︷︷︸
k5=2

R︸︷︷︸
k6=1

LLLLL︸ ︷︷ ︸
k7=5

RR︸︷︷︸
k8=2

,

the digit 2 indicates that we start by walking along the dual tree from the root vertex

to its second child. After the first step, each vertex has two children and we have

to decide whether to turn left or right. The options are indicated by ‘L’ and ‘R’

respectively.

Lemma 2.2. For a non-root triangle 4 in the Farey tessellation,

log
1

diam4
�

m∑
i=1

log(1 + ki).

Proof. It is easier and clearly equivalent to work in the upper half plane H where

4hyp has vertices 0, 1 and ∞ and in the first step, we walk down. Let

40 = 4hyp, 41 = (0, 1/2, 1), 42, . . . , 4n = 4
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be the sequence of triangles from 4hyp to 4. Each triangle 4j in this sequence has

three vertices on the real axis aj < bj < cj. To estimate diam4j, we keep track of

the ratio

r(4j) :=
bj − aj
cj − aj

,

which measures the distortion of the triangle 4j. Each time we do an right turn

after a left turn or vice versa, the ratio is “reset” to a value in [1/3, 2/3]. After a

series of k consecutive left turns, 1 − r � 1/k, while after a series of k consecutive

right turns, r � 1/k.

After making k left or right turns in a row, the diameter goes down by a factor

of roughly k + 1: for 1 ≤ k ≤ kj+1,

log
1

diam4k1+k2+···+kj+k
− log

1

diam4k1+k2+···+kj+1

� log(k + 1).

When we make a right turn after a series of kj left turns (or a left turn after a series

of kj left turns), the diameter goes down by a factor of kj + 1, i.e.

log
1

diam4k1+k2+···+kj+1

− log
1

diam4k1+k2+···+kj
� log(kj + 1).

The above equations give the desired bound for diam4.

2.3 Weak conformal removability

Suppose X and X ′ are two compact sets in the complex plane and ϕ : Ĉ \X → Ĉ \X ′

is a conformal map that extends continuously to a homeomorphism of the sphere.

We describe a condition which guarantees that ϕ is a Möbius transformation:

Lemma 2.3. Suppose that there is a countable exceptional set E ⊂ X and a countable

collection of closed subsets s1, s2, . . . of X, called shadows, such that every point in

X \ E belongs to infinitely many sets si. If

∞∑
i=1

diam2 si <∞,
∞∑
i=1

diam2 ϕ(si) <∞, (2.1)

then ϕ is a Möbius transformation.
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For convenience, we write s′i = ϕ(si). Note that (2.1) implies that X and X ′ have

2-dimensional Lebesgue measure 0.

Proof. Call a direction v good if for almost every line ` pointing in the direction of

v, the set ϕ(` ∩ X) has linear Lebesgue measure 0. One says that ϕ is absolutely

continuous on lines (ACL) if the directions parallel to the coordinate axes are good.

It is well known that if ϕ ∈ W 1,2
loc (C \X) is ACL, then ϕ ∈ W 1,2

loc (C). Weyl’s lemma

then guarantees that ϕ is conformal on the Riemann sphere, and therefore, a Möbius

transformation. Below, we will show that every direction is good.

Instead of showing that a set has zero 1-dimensional Lebesgue measure m1, we

may instead show that it has zero 1-dimensional content m∞1 . The definition of 1-

dimensional content is similar to that of 1-dimensional measure, but allows covers

by balls of arbitrary size. Therefore, the lemma reduces to showing that for almost

every line ` parallel to v, the 1-dimensional content of ϕ(` ∩X) is 0.

Since the set E is countable, almost every line ` parallel to v misses E. For such

a line,

m∞1 (ϕ(` ∩X)) ≤
∑

si∩`6=∅, i>N

diam s′i. (2.2)

The last equation holds for any N ≥ 1 since any point in X \ E is contained in

infinitely many shadows, which allows us to avoid putting the first N − 1 shadows

in the cover. In other words,∑
si∩ 6̀=∅

diam s′i <∞ =⇒ m∞1 (ϕ(` ∩X)) = 0. (2.3)

As ∫
`||v

{ ∑
si∩` 6=∅

diam s′i

}
d` ≤

∞∑
i=1

diam si · diam s′i

≤ 1

2

( ∞∑
i=1

diam2 si + diam2 s′i

)
< ∞,

the integrand must be finite for a.e. `. This completes the proof.
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3 Background on true trees

In this section, we discuss the link between true trees and Shabat polynomials. We

then describe the local geometry of true trees whose vertices have bounded valence.

Finally, we define shortcuts and obstacles that will be used to give moduli estimates

to control the global geometry of trees.

3.1 True trees and Shabat polynomials

Let T be a finite tree in the plane. To find its conformally balanced shape T , label

the sides of edges of T in counter-clockwise order: ~e1, ~e2, . . . , ~e2N . For each half-edge

~ei, form an equilateral triangle 4(~ei,∞) whose sides have unit length.

We first glue these equilateral triangles into a 2N -gon D2N with sides ~ei, labeled

counter-clockwise, and central vertex ∞. We then glue ~ei with ~ej whenever ~ei, ~ej

are opposite sides of the same edge e ∈ T . This construction produces a topological

sphere which has a flat structure away from the cone points at the vertices of the

triangles. Uniformizing this sphere produces the desired tree T ⊂ Ĉ.

Associated to a true tree T is a Shabat polynomial p(z) with critical values ±1

such that T = p−1([−1, 1]). To construct p, colour each triangle 4(~ei,∞) ⊂ Ĉ \ T
black or white, so that adjacent triangles have opposite colours. On each black

triangle 4(~ei,∞), define p(z) to be the conformal map onto the upper half-plane H
which takes ~ei → [−1, 1] and ∞ → ∞. Similarly, on each white triangle 4(~ei,∞),

define p to be the conformal map onto the lower half-plane L which takes ~ei → [−1, 1]

and ∞→∞.

Since T is a true tree, p extends to a continuous function on the Riemann sphere.

As T is made up of real-analytic arcs, p is meromorphic on the Riemann sphere,

and hence a rational function. As the only pole of p is at infinity, it is a polyno-

mial. Finally, since p is N : 1 at infinity, p is a polynomial of degree N . From the

construction, it is readily seen that p has critical values ±1 and T = p−1([−1, 1]).

In order to define the Shabat polynomial uniquely, we need to specify which

vertices are sent to +1 and which vertices are sent to −1. Making a different choice

amounts to multiplying p(z) by −1. If T has a distinguished vertex vroot, then it is

natural to choose the Shabat polynomial so that p(vroot) = 1.
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3.2 Trees of bounded valence

We now present some general results on the local behaviour of true trees. The

following lemmas say that true trees whose vertices have bounded valence are well-

behaved: neighbouring edges have comparable size and the relative distance between

non-adjacent edges is bounded below.

Lemma 3.1. Let d ≥ 2 be an integer. Suppose e = v1v2 is an edge in a true tree T
with deg v1 ≤ d and deg v2 ≤ d. There is a simply connected neighbourhood U ⊃ e

with Mod(U \ e) ≥ m(d) such that only edges adjacent to e can intersect U .

Lemma 3.2. Fix an integer d ≥ 2. Let v be a vertex of a conformally balanced tree

T . If the degrees of all vertices in {w : dT (v, w) ≤ 2} are ≤ d, then the diameters

of the edges vvi emanating from v are comparable (with the comparison constant

depending on d).

The proofs use the concept of a star of a vertex in a true tree. For a vertex v of

T , we define ?v as the union of the triangles 4(~e,∞) that contain v. We enumerate

the 2 deg v triangles in ?v counter-clockwise: 41,42, . . . ,42 deg v.

Now, decompose the unit disk D into 2 deg v sectors σ1, σ2, . . . , σ2 deg v using 2 deg v

equally-spaced radial rays. For each i = 1, 2, . . . , 2 deg v, let ψi be the conformal map

from σi to 4i which takes vertices to vertices, with 0 mapping to v. Since T is a

true tree, the maps ψi glue along radial rays to form a conformal map ψv : D→ ?v.

On an edge ei = vvi of T emanating from v, we mark the points ai, bi such

that the segments vai, aibi, bivi have equal length in the equilateral triangle model of

4(~ei,∞). Note that the points ai, bi do not depend on which one of the two sides of

ei is used.

Applying Koebe’s distortion theorem to ψv tells us that the diameters of the

2 deg v segments {
vai, aibi : i = 1, 2, . . . , deg(v)

}
are comparable. By considering stars centered at the neighbouring vertices vi, we

see that {
aibi, bivi : i = 1, 2, . . . , deg(v)

}
.

are also comparable. Putting these estimates together proves Lemma 3.2.
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Lemma 3.1 follows from Lemma 2.1 (a) after applying Koebe’s distortion theorem

to ψv1 and ψv2 . Similar reasoning shows:

Lemma 3.3. Suppose {Tn}∞n=0 is an infinite sequence of conformally balanced trees

whose vertices have uniformly bounded degrees. Then any subsequential Hausdorff

limit of a sequence of edges e(n) ⊂ Tn is either a point or a real-analytic arc.

Proof. Suppose the edge e(n) connects the vertices v
(n)
1 and v

(n)
2 . As above, we mark

the points a(n) and b(n) which trisect the edge e(n). We pass to a subsequence so that

the maps ψ
(n)
v1 and ψ

(n)
v2 converge uniformly on compact subsets of the unit disk.

If the limiting maps ψv1 = limn→∞ ψ
(n)
v1 and ψv2 = limn→∞ ψ

(n)
v2 are constant,

then the edges e(n) collapse to a point. Otherwise, the limiting edge e = lim e(n)

is covered by two compatible real-analytic arcs v1b = limn→∞ v
(n)
1 b(n) and av2 =

limn→∞ a(n)v
(n)
2 .

3.3 Shortcuts and obstacles

Let T be a conformally balanced tree in the plane, normalized so that the Riemann

map ϕ : Ĉ \ D→ Ĉ \ T satisfies ϕ(z) = z +O(1/z) as z →∞.

To control the geometry of T , we estimate conformal moduli of various path

families Γ contained in doubly-connected domains A ⊂ C. An instructive example is

the family of closed curves surrounding an edge of the tree, which will be discussed

in detail in Section 3.4.

The idea behind our estimates is as follows: since we will only estimate moduli

in the setting of finite balanced trees, we will not have to worry about the possibility

that the area of T might be positive. By conformal invariance, we may estimate

the modulus in any of the three conformally equivalent models Ĉ \T , D2N/∼ or

(Ĉ \D)/∼. In the latter model, the equivalence relation on ∂D is given by the identi-

fications of ϕ and the family ϕ−1(Γ) consists of sets ϕ−1(γ) that may be disconnected:

if a curve γ ∈ Γ crosses an edge e ∈ T , then ϕ−1(γ) enters one side of ϕ−1(e), teleports

through the identification provided by ϕ, and exits on the other side of ϕ−1(e).

We will construct admissible metrics of the form

ρ = α0

(
ρ0 +

∑
e∈T

αeρe

)
, (3.1)
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where the background metric ρ0 = 1ϕ−1(A) serves the purpose of controlling the

length of curves γ that do not intersect T , while the obstacles ρe have the purpose

of penalizing teleportation so that shortcuts are not worthwhile. The constant α0 is

chosen so that curves that do not intersect T have length ≥ 1 under α0ρ0.

We build the obstacles ρe so that they assign length ≥ 1 to all curves γ that

intersect e (and are not confined to the union of the triangles that are incident to

e). It is easiest to describe the construction in D2N/∼, which is a surface composed

of 2N equilateral triangles 4(~ei,∞) of side length 1: namely, we define ρe as three

times the characteristic function of the 1/3-neighborhood of e in the flat metric, i.e.

ρe = 3× 1B1/3(e),

where B1/3(e) is the set of points of distance at most 1/3 from e.

We denote the conformal transport of this metric to Ĉ\D again by ρe. Since any

point z ∈ Ĉ \ D can be in the support of at most D = maxv∈T deg(v) obstacles, it

can be in at most D + 1 of the sets supp ρ0 ∪ {supp ρe}, and the area of ρ can be

estimated by

A(ρ) ≤ (D + 1)2 α2
0

(
A(ρ0) +

∑
e

α2
e · A(ρe)

2
)
. α2

0

(
A(ρ0) +

∑
e

α2
e

)
. (3.2)

For an edge e in T , we denote by T (e) ⊂ T the subtree consisting of the edge

e and its descendants (as measured from the root vertex). It is easy to see that

S(e) = ϕ−1(T (e)) is an arc in the unit circle ∂D. We define the outer shortcut of e

as the Euclidean length of S(e):

s(e) = length(S(e)).

We define T −(e) = T (e) \ e as the union of all the descendants of e. Naturally,

we define S−(e) = ϕ−1(T −(e)) and s−(e) = length(S−(e)) = s(e) − π/N . Unless

e is a boundary edge, the difference between the outer and inner shortcuts is not

significant.

3.4 A lower bound for the diameters of edges

Let T be a true tree and Ω2 ⊂ C be the simply-connected domain bounded by

the equipotential curve ϕ
(
{z : |z| = 2}

)
. The hydrodynamic normalization of the

14



conformal map ϕ implies that diam T ≥ c0 > 0 is bounded from below by a universal

constant (the sharp value c0 = 2 is irrelevant for our purpose).

In view of Lemma 2.1, to give a lower bound for the diameter of an edge e0 in T ,

it is enough to give an upper bound for the modulus of the family of curves Γ	(A)

that separate the boundary components of A = Ω2 \ e0. We will now show that the

metric

ρ =
1

s−(e0)

(
1A(0;1,2) +

∑
e∈T −n (e0)

s(e)ρe

)
is admissible for ϕ−1(Γ	(A)), where the summation is over the descendants of e0.

Consider a curve γ ∈ Γ	(A). If we pull γ back by ϕ−1, we get a path in the annulus

A(0; 1, 2) = {z : 1 ≤ |z| < 2},

which may teleport from x ∈ ∂D to y ∈ ∂D if ϕ(x) = ϕ(y) ∈ Tn \ e0. If γ does

not pass through any edge in T −n (e0), then the radial projection of ϕ−1(γ) onto ∂D
contains S−(e0) and the metric ρ0 = 1A(0;1,2) assigns length ≥ s−(e0) to ϕ−1(γ).

In general, the inclusion

S−(e0) ⊂ πrad(ϕ−1(γ)) ∪
⋃

e∈T −n (e0)
γ∩e6=∅

ϕ−1(T (e))

shows that ∫
ϕ−1(γ)

(
1A(0;1,2) +

∑
e∈T −n (e0)

s(e)ρe

)
|dz| ≥ s−(e0),

which proves the admissibility of ρ. Together with (3.2), this shows the upper bound

M(Γ	(A)) ≤ A(ρ) .
1

s−(e0)2

[
1 +

∑
e∈T −n (e0)

s(e)2

]
.

We have thus proved the following theorem:

Theorem 3.4. Suppose {Tn}∞n=0 is an infinite sequence of conformally balanced trees

whose vertices have uniformly bounded degrees, for which the sums Sn =
∑

e∈Tn s(e)
2

are uniformly bounded. If e
(n)
0 ⊂ Tn is a sequence of edges with inf s(e

(n)
0 ) > 0, then

any subsequential Hausdorff limit of the edges e
(n)
0 is a real-analytic arc.
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We now apply the above theorem to the sequence of the finite truncations {Tn}
of the infinite trivalent tree. Inspection shows that

s(e) � 2−dTn (vroot,e).

As the number of edges v ∈ Tn with dTn(vroot, e) = m is � 2m, the sums

Sn =
∑
e∈Tn

s(e)2

are uniformly bounded in n = 1, 2, . . . . If e ⊂ T is an edge in the infinite tree, then

its representative e(n) ⊂ Tn has s(e(n)) � 2−dT∞ (vroot,e). By the theorem above, the

diameters of the edges e(n) are bounded from below.

Remark. If Tn is a random conformally balanced trivalent tree with n edges, chosen

uniformly among all of them, then it is not hard to show that the expectation

E[Sn] =
∑
e∈Tn

E[s(e)2]

tends to ∞ as n → ∞, suggesting that the diameters of the edges tend to zero.

Indeed, it is known [5] that the diameters tend to zero with a power of 1/n, with

high probability.

4 Structure of a subsequential limit

Let Tn be the conformally balanced trivalent tree of depth n. In this section, we

show that any subsequential limit of the Tn has the right topological type:

Theorem 4.1. For any subsequential Hausdorff limit of the Tn, one can find a

homeomorphism of the plane which takes it onto the Farey tree F of Section 2.2

union the unit circle ∂D.

We first pass to a subsequence so that every edge in the infinite trivalent tree has

a limit along this sequence. In the previous section, we saw that the limit of each

edge is a real-analytic arc. We write T∞ for the union of the Hausdorff limits of the
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individual edges. We pass to a further subsequence so that the finite trees Tn also

possess a Hausdorff limit, which we denote by T∞tΛ. We refer to Λ as the limit set.

The proof of Theorem 4.1 is based on a number of moduli estimates, which control

the geometry of the finite trees Tn. With the help of these moduli estimates, we prove

the following assertions:

(SL1) T∞ is dense in the Hausdorff limit of the finite trees Tn.

(SL2) For any branch [v0, v1, v2, v3, . . . ] of T∞ with dT∞(vm, vroot) = m, limm→∞ vm

exists.

(SL3) Given two branches [v0, v1, v2, v3, . . . ], [w0, w1, w2, w3, . . . ], limm→∞ vm =

limm→∞wm if and only if the limits of the corresponding branches in the

Farey tree are the same.

We then show the following two topological assertions:

(SL4) The limit set Λ is a Jordan curve ∂Ω which encloses T∞.

(SL5) There is a natural correspondence between the complementary regions of

T∞ ∪ ∂Ω and F ∪ ∂D.

From here, the proof of Theorem 4.1 runs as follows:

Proof of Theorem 4.1. Let h be a homeomorphism of T∞ onto the Farey tree F ,

which takes vertices to the corresponding vertices. The above properties imply that

h extends to a homeomorphism of the closures: T∞ ∪ ∂Ω and F ∪ ∂D. Since the

complementary regions are Jordan domains, we can extend h to a homeomorphism

of the plane.

4.1 Shrinking of diameters

For a vertex v ∈ Tn, we denote the subtree which consists of v and its descendants

by Tn(v). To prove (SL1) and (SL2), we show:
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Lemma 4.2. (i) The diameters of Tn(v) tend to zero as dTn(vroot, v)→∞, uniformly

in n.

(ii) The diameters of Tn(vLRk)∪Tn(vRLk) tend to zero if either dTn(vroot, v)→∞
or k →∞, again uniformly in n.

As in the case of the Farey tree F in the unit disk, the diameter of Tn(v) depends

on the nature of the word representing v. If the path joining vroot to v switches

between left and right turns regularly, then the diameters of Tn(v) decrease exponen-

tially quickly. On the other hand, if the word for v has long sequences of consecutive

L’s and R’s, then the diameters of Tn(v) shrink at a polynomial rate. This dichotomy

is reflected in the two types of estimates below.

Hyperbolic decay. At an interior vertex v ∈ Tn, the domain Ĉ \Tn has three

prime ends. Assuming that v 6= vroot is not the root vertex, we can name the three

prime ends as left, right and middle. The left prime end lies between vparentv and

vvL, while the right prime end lies between vparentv and vvR. Naturally, the middle

prime end lies between vvL and vvR.

Let γ(v) denote the hyperbolic geodesic in Ĉ \ Tn which joins the left and right

prime ends at v and V (v) be the domain enclosed by γ(v), see Fig. 3. With this

definition, a vertex w is contained in V (v) if and only if w is represented by a word

which begins with v. Moreover, if v2 is a descendant of v1, then V (v2) ⊂ V (v1).

Lemma 4.3. Suppose v is an interior vertex of Tn, other than the root vertex. Then,

ModV (v) \ V (vLR) � 1 and ModV (v) \ V (vRL) � 1.

It is enough to show the statement regarding Mod A for A = V (v) \ V (vLR) as

the situation with ModV (v) \ V (vRL) is entirely symmetric. To prove the lemma,

we need to give uniform upper bounds for the moduli of the curve families Γ	(A)

and Γ↑(A), which are independent of n and v ∈ Tn.

To deal with the first curve family, simply note that every γ ∈ Γ	(A) intersects

at least one of the two edges vvL and vLvLR so that the sum of the two obstacles

ρ = ρvvL + ρvLvLR is an admissible metric of area A(ρ) = O(1).

To deal with the second curve family, by conformal invariance, we may give an

upper bound for the modulus of the curve family ϕ−1(Γ↑(A)) in ϕ−1(A) ⊂ Ĉ \D
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i

Figure 3: To a non-root vertex v ∈ Tn, we associate the domain V (v), bounded by

the curve γ(v).

which allows teleportation, as we did before in Section 3.4. Cutting A along the

tree, we obtain a conformal rectangle R = A \Tn whose vertices are the prime

ends where γ(v) and γ(vLR) meet Tn. Its pre-image R̂ = ϕ−1(R) ⊂ Ĉ \D is a

conformal rectangle whose vertices are the points where the geodesics ϕ−1(γ(v)) and

ϕ−1(γ(vLR)) meet the unit circle. We label the vertices z1, z2, z3, z4 in counter-

clockwise order such that z1 corresponds to the right prime end of v. Due to the

“left-right” turn between v and vLR, the distances between the points zi, 1 ≤ i ≤ 4,

are comparable:

|z1 − z2| � |z2 − z3| � |z3 − z4| � 2−d, d = dTn(vroot, v).

Hence, the background metric ρ0 = 1ϕ−1(A) assigns length & 2−d to every curve in

ϕ−1(Γ↑(A)) that does not teleport.

Arguing as in Section 3.4 shows that the metric

ρ = C02d
(
ρ0 +

∑
e∈V (v)

s(e)ρe

)
(4.1)

is admissible if C0 is sufficiently large (independent of n and v). More precisely, while

the set ϕ−1(γ) may be disconnected,

σ = ϕ−1(γ) ∪
⋃

e∩γ 6=∅

S(e)
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is connected and intersects both geodesics ϕ−1(γ(v)) and ϕ−1(γ(vLR)). Inspection

shows that the integral
∫
σ
ρ0|dz| computes the Euclidean length of σ \ ∂D, whereas∫

σ

(∑
e∈V (v) s(e)ρe

)
|dz| is bounded below by the Euclidean length of σ ∩ ∂D. As a

result, ∫
σ

{
ρ0 +

∑
e∈V (v)

s(e)ρe

}
|dz|

is greater or equal to the Euclidean distance between the geodesics ϕ−1(γ(v)) and

ϕ−1(γ(vLR)), which is comparable to 2−d. Consequently, the factor C02d in (4.1)

makes the metric ρ admissible.

From s(e) � 2−dTn (vroot,e), it is clear that
∑

e∈V (v) s(e)
2 . 2−2d. The area bound

A(ρ) = O(1) now follows from (3.2). Putting the above information together shows

the desired modulus bound.

Parabolic decay. We continue to assume that v ∈ Tn is an interior vertex, other

than the root vertex. For each 0 ≤ j ≤ n− 1− dTn(vroot, v), we connect the vertices

vLRj and vRLj by two hyperbolic geodesics αj, βj ⊂ Ĉ \Tn, with the inner geodesic

αj joining

(vLRj)right with (vRLj)left

and the outer geodesic βj joining

(vLRj)left with (vRLj)right.

We then define Wj = Wj(v) as the simply-connected domain bounded by the Jordan

curve αj ∪ βj. See Fig. 4.

Lemma 4.4. Suppose v is an interior vertex of Tn, other than the root vertex. Then,

Mod W0(v) \Wk(v) � log(1 + k),

for any 1 ≤ k ≤ n− 1− dTn(vroot, v).

Since the annulus V (v) \ V (vLRk) ⊃ W0 \Wk, its modulus is strictly larger. In

particular, the lemma implies that ModV (v) \ V (vLRk) & log(1 + k).
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Figure 4: The region Wj = Wj(v) is associated to a non-root vertex v ∈ Tn and an

integer j ≥ 0. It is bounded by the hyperbolic geodesics αj and βj.

Proof. For brevity, we write A = W0 \Wk. To show the upper bound for Mod A, we

need to estimate the modulus of the family of curves Γ	 which separate the boundary

components of A. The tree Tn splits A into two conformal rectangles Rα and Rβ,

with ∂Rα ⊃ α0 ∪ αk and ∂Rβ ⊃ β0 ∪ βk. Since a curve in Γ	(A) contains a crossing

that joins the Tn-sides of Rα, Mod Γ	(A) ≤ Mod Rα. The latter modulus may be

computed in the exterior unit disk: Mod Rα = Modϕ−1(Rα) � log(1+k) as desired.

We now turn to the lower bound. For this purpose, we decompose A into a union

of shells:

A =
k⋃
j=1

Aj =
k⋃
j=1

Wj−1 \Wj.

By the parallel rule, it is enough to show that Mod Γ↑(Aj) . j, for each j =

1, 2, . . . , k. As usual, we estimate the modulus of the family

ϕ−1(Γ↑(Aj)) ⊂ ϕ−1(Aj) ⊂ Ĉ \D.

The pre-image ϕ−1(Aj) = R̂β,j ∪ R̂α,j consists of two conformal rectangles in Ĉ \D,

with R̂α,j bounded by α̂j−1, α̂j and the unit circle, and R̂β,j bounded by β̂j−1, β̂j and

the unit circle.

Let ρα,0(z) be the extremal metric on the conformal rectangle R̂α,j for the family

of curves contained in R̂α,j that connect α̂j−1 and α̂j. It is easy to see that A(ρα,0) �
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j + 1. As in the proof of Lemma 4.3, there is a metric ρβ,0 of the form (4.1) with

A(ρβ,0) � 1 which assigns length ≥ 1 to every curve γ in R̂β,j that connects β̂j−1 and

β̂j with or without teleportation. More precisely, since the four marked endpoints of

β̂j−1 and β̂j have mutually comparable distances � 2−dTn (vroot,v)−j, the reasoning in

the proof of Lemma 4.3 shows that the metric

ρβ,0 = C02dTn (vroot,v)+j

(
ρ0 +

∑
e∈V (v

LRj−1 )∪V (v
RLj−1 )

s(e)ρe

)
(4.2)

is admissible where ρ0 = 1R̂β,j
and C0 is sufficiently large.

A path in ϕ−1(Γ↑(Aj)) connects α̂j−1 ∪ β̂j−1 with α̂j ∪ β̂j, where one is allowed

to take shortcuts by teleporting from x ∈ ∂D to y ∈ ∂D if ϕ(x) = ϕ(y) ∈ Tn. Such

a path is either contained in R̂α,j, or contained in R̂β,j, or intersects one of the two

edges e1 = [vLRj−1, vLRj] and e2 = [vRLj−1, vRLj]. To obtain a metric admissible

for ϕ−1(Γ↑(Aj)), we modify ρ0(z) = ρα,0(z) + ρβ,0(z) by adding two obstacles along

the edges e1 and e2 which make it impractical for a path to teleport from R̂β,j to

R̂α,j:

ρ = (ρα,0 + ρβ,0) + ρe1 + ρe2 .

As each obstacle has area O(1), the area A(ρ) � j + 1, which gives the desired

modulus bound.

Putting this together. We are now ready to show Lemma 4.2:

Proof of Lemma 4.2. Let v ∈ Tn be an interior vertex, other than the root vertex.

From the definitions, it is clear that Tn(v) ⊂ V (v). Let

[vroot, v] = [v0 = vroot, v1, v2, v3, . . . , vm = v]

be the path in Tn joining vroot to v. In view of the hydrodynamic normalization,

V (v1) ⊂ Ω2 ⊂ B(0, 8) is contained in a ball of fixed size. Consequently, to prove (i),

it is enough to show that ModV (v1) \ V (v) is large when dTn(vroot, v) is large.

There are two cases to consider. If the path [vroot, v] frequently switch between

left and right turns, then ModV (v1) \ V (v) will be large by Lemma 4.3 and the

parallel rule. If we turn left many times or turn right many times without switching,
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then ModV (v1) \ V (v) will be large by Lemma 4.4. In both cases, diamV (v) → 0

uniformly in n as dTn(vroot, v)→∞. To prove (ii), we note that

Tn(vLRk) ∪ Tn(vLRk) ⊂ Wk(v) ⊂ V (v)

and appeal to Lemma 4.4.

4.2 The limit set is a Jordan curve

Our next objective is to show (SL3) and (SL4). For two vertices v1, v2 ∈ Tn, we

denote by dω(v1, v2) the harmonic measure as seen from infinity of the shortest arc

on the unit circle that contains a point of ϕ−1(v1) and a point of ϕ−1(v2). The

following lemma says that if the harmonic measure between two boundary vertices

v1, v2 is small, then the Euclidean distance |v1 − v2| is also small:

Lemma 4.5. For any ε > 0, there exists an η > 0, such that if v1, v2 ∈ Tn are two

boundary vertices for which dω(v1, v2) < η, then the Euclidean distance |v1− v2| < ε.

We explain the proof via an analogy: if x1, x2 are two points on the unit circle,

then either x1, x2 are contained in a single dyadic arc of length comparable to |x1−x2|
or they are contained in the union of two adjacent dyadic arcs whose lengths are

comparable to |x1 − x2|. Similarly, in the trivalent tree, one has two non-mutually

exclusive possibilities: Denote v the last common ancestor of v1 and v2 so that

v1, v2 ∈ Tn(v) and v1 = vLX, v2 = vRY (or vice versa) for some sequences X, Y .

Then at least one of the following statements is true:

1. ωĈ \Tn,∞(Tn(v)) � dω(v1, v2),

2. For the maximal integer k ≥ 1 so that v1 ∈ Tn(vLRk) and v2 ∈ Tn(vRLk), we

have ωĈ \Tn,∞
(
Tn(vLRk) ∪ Tn(vRLk)

)
� dω(v1, v2).

In either case, one may use Lemma 4.2 to show that the Euclidean distance |v1− v2|
is small if dω(v1, v2) is small.

The same argument shows that for any ε > 0, there exists an η > 0, such that for

any two boundary vertices v1, v2 ∈ Tn with dω(v1, v2) < η, the union of the geodesics
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that join consecutive boundary vertices of Tn between v1 and v2 has diameter < ε.

Indeed, these geodesics are contained in the region V (v) in the first case above and

in the region Wk(v) in the second case.

We now show the converse to Lemma 4.5, namely, if the harmonic measure be-

tween two boundary vertices in Tn is bounded below, then so is their Euclidean

distance:

Lemma 4.6. For any ε > 0, there exists an η > 0, such that if v, w ∈ Tn are two

boundary vertices for which dω(v, w) > η, then the Euclidean distance |v − w| > ε.

Proof. Let [v0 = vroot, v1, v2, v3, . . . , vn = v] be the path in Tn joining vroot to v and

[w0 = vroot, w1, w2, w3, . . . , wn = w] be the path joining vroot to w. The assumption

implies that there exists an n0 = n0(η) ≥ 1 sufficiently large so that the harmonic

measure between E = [vn0 , v] and F = [wn0 , w] is at least η/2.

Recall that in Section 3.4, we showed that the diameters of E and F are bounded

from below. To show that E and F are a definite distance apart, it is enough to give

an upper bound for the modulus of the family of curves ΓE↔F that connect E to F in

Ω2. By the conformal invariance, we may instead estimate the modulus ϕ−1(ΓE↔F )

in A(0; 1, 2) where teleportation is allowed between the pre-images of points in Tn.

An argument similar to the one in Section 3.4 shows that∫
ϕ−1(γ)

(
1A(0;1,2) +

∑
e∈Tn

s(e)ρe

)
|dz| ≥ η/2, γ ∈ ΓE↔F ,

i.e. 2/η times the integrand is an admissible metric ρ with A(ρ) = O(1/η2).

Lemmas 4.5 and 4.6 imply that Λ = ∂Ω is a Jordan curve: Indeed, joining

consecutive boundary vertices of Tn by hyperbolic geodesics, we obtain a sequence of

Jordan curves Λn. If we parametrize these curves by harmonic measure from infinity,

then they converge uniformly to a continuous limit curve by Lemma 4.5, and this

limit curve is simple by Lemma 4.6. Furthermore, it is disjoint from T∞ by Lemma

3.1.
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4.3 Formation of Ω-horoballs

We now turn to showing (SL5). Let v0 6= vroot be a vertex of the infinite trivalent

tree. For j ≥ 1, set

vj = v0LR
j−1 and v−j = v0RL

j−1.

From (SL3), the limits

lim
j→+∞

vj and lim
j→−∞

vj

exist and are equal. We refer to their common value p as a cusp or parabolic point .

In particular, the union of the edges

∞⋃
j=−∞

vjvj+1 ⊂ T∞

defines a Jordan curve, which we denote ∂Ωp. At the root vertex, one can similarly

construct three Jordan domains Ωp1 ,Ωp2 ,Ωp3 . We refer to the regions {Ωpi} as Ω-

horoballs.

Lemma 4.7. The regions {Ωpi} enumerate the bounded components of C \ lim Tn.

Proof. We approximate the regions Ωpi by Jordan domains Ω
(n)
pi constructed using

the finite approximating trees Tn as follows: Each finite tree Tn contains only finitely

many corresponding vertices {vj}mj=−m, where m = n− d(vroot, v0). The union of the

edges
⋃m−1
j=−m vjvj+1 ⊂ Tn is a Jordan arc. To form ∂Ω

(n)
pi , we close this Jordan arc

with the hyperbolic geodesic α
(n)
pi ⊂ Ĉ \Tn that connects the leaves v−m, vm ∈ Tn.

In view of Lemma 4.4, diamα
(n)
pi → 0 and Ωpi = lim Ω

(n)
pi . Since Ω

(n)
pi is disjoint

from the tree Tn, the regions Ωpi = lim Ω
(n)
pi are indeed bounded components of the

complement C \ lim Tn.

Can there be any more complementary components? If O is any connected com-

ponent of C \ lim Tn, then ∂O ⊂ T∞ ∪ Λ. If ∂O intersects one of the edges of T∞,
then O is one of the four Ω-horoballs who form a neighborhood of this edge. If ∂O

does not intersect T∞, then ∂O ⊂ Λ, and since Λ is a Jordan curve, O must be the

unbounded component of C \ Λ.

Having established Properties (SL1)–(SL5), the proof of Theorem 4.1 is complete.
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4.4 Uniqueness of the limit

For a non-root vertex v ∈ T , we define the shadow sv ⊂ ∂Ω as the shorter arc

of ∂Ω which joins vLRL∞ = limm→∞ vLRL
m and vRLR∞ = limm→∞ vRLR

m. A

brief inspection of the homeomorphic picture of the Farey tree F ⊂ D shows that

any point on ∂Ω that is not a cusp of an Ω-horoball is contained in infinitely many

shadows. The following estimate will be used in Section 5.5 in conjunction with

Lemma 2.3 to show that the Hausdorff limit of the true trees Tn is unique:

Lemma 4.8. The sums∑
v∈Tn, v 6=vroot

{
diam2 V (vRL) + diam2 V (vLR)

}
(4.3)

are uniformly bounded above, independent of n.

Since sv is the Hausdorff limit as n→∞ of (V (vRL)∪V (vLR))∩ ∂Ω, the above

lemma implies that
∑

v∈T∞, v 6=vroot diam2 sv <∞. In particular, ∂Ω has area zero.

Proof. For a hyperbolic geodesic γ̂ ⊂ {z ∈ C : 1 < |z| < 2} ⊂ Ĉ \ D, let zγ̂ be

the Euclidean midpoint of γ̂ and Bγ̂ ⊂ Ĉ \ D be the ball of hyperbolic radius 1/10

centered at
1+|zγ̂ |

2
· zγ̂. In view of the restriction on γ̂, the ball Bγ̂ is contained in the

bounded domain enclosed by γ̂ and the unit circle.

Similarly, to a hyperbolic geodesic γ ⊂ Ω2 ⊂ Ĉ \ Tn, we can associate the topo-

logical disk Bγ := ϕ(Bϕ−1γ). By Koebe’s distortion theorem, Bγ is approximately

round in the sense that its area is comparable to its diameter squared.

We apply the above construction to the geodesics γ(v) = ∂V (v) ⊂ Ω2 from

Section 4.1, where v 6= vroot ranges over interior vertices of Tn, other than the root

vertex. From the construction, it is clear that Bγ(v) ⊂ V (v).

To prove the estimate (4.3), it is enough to show that

diamV (vLR) � diamBγ(vLR), (4.4)

as the topological disks Bγ(vLR) are disjoint and are contained in a bounded set. In

view of Lemma 2.1, to prove (4.4), we may show the following two moduli estimates:

1. ModV (v) \ V (vLR) is bounded below.
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2. ModV (v) \Bγ(vLR) is bounded above.

The first estimate was already established in Lemma 4.3. The second estimate is

automatic from Koebe’s distortion theorem.

Remark. Let Ω ⊂ C be a Jordan domain, K ⊂ Ω be a compact set and z0 ∈ Ω be an

interior point. In the work of Jones and Smirnov [7], the shadow of K with respect

to z0 ∈ Ω is defined as the set of endpoints of hyperbolic rays emanating from z0

which pass through K. It is not difficult to show that the set sv described above

and the Jones-Smirnov shadow of the closed ball of hyperbolic radius 1 centered at

v with respect to vroot ∈ Ω intersect and have comparable diameters.

5 Convergence

In this section, we show that the Hausdorff limit T∞ ∪ ∂Ω of the finite trees Tn is

unique. The main step is to prove that it realizes the mating of z → z2, acting on the

exterior unit disk De, and the Markov map ρ(z) associated to the reflection group of

an ideal triangle 4hyp, acting on the unit disk D.

5.1 Relative harmonic measure

Suppose that U is a Jordan domain and p ∈ ∂U . While it does not make sense to

talk about the harmonic measure of an arc I ⊂ ∂U as viewed from p, one can talk

about the relative harmonic measure of two arcs I, J ⊂ ∂U that do not contain p :

ωU,p(I, J) = lim
z→p

ωU,z(I)

ωU,z(J)
.

It is easy to see that the quantity ωU,p(I, J) varies continuously provided that p stays

away from I ∪ J . More precisely, if a sequence of Jordan quadruples (Un, pn, In, Jn)

converges in the Hausdorff topology to a Jordan quadruple (U, p, I, J), then

ωUn,pn(In, Jn) = lim
n→∞

ωU,p(I, J).

Example. When Ω = H, p = ∞ and J = [0, 1], the relative harmonic measure

ωH,∞(·, [0, 1]) is just Lebesgue measure on the real line.
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5.2 Farey horoballs

The Farey tree F partitions the unit disk D into regions which we call Farey horoballs

Hpi . We index the Farey horoballs by the point where they touch the unit circle. We

label the vertices on ∂Hpi in counter-clockwise order by vj(Hpi), j ∈ Z, with v0(Hpi)

being the vertex with the smallest combinatorial distance to vroot.

By construction, the Farey tree is invariant under the group generated by re-

flections in the sides of 4hyp. As such, Farey horoballs enjoy the following two

properties:

(F1) Any two edges e1, e2 ⊂ ∂Hpi have the same relative harmonic measure as

viewed from pi, i.e.

ωHpi ,pi(e1, e2) = 1.

(F2) If an edge e belongs to two neighbouring Farey horoballs Hpi and Hpj , then

the relative harmonic measures are the same from both sides:

ωHpi ,pi(I, e) = ωHpj ,pj(I, e), I ⊆ e.

5.3 Interior Structure of Ω

In Section 4, we saw that any Hausdorff limit T∞ ∪ ∂Ω of the Tn is ambiently home-

omorphic to the Farey tree F union the unit circle ∂D. Recall that the connected

components of Ω\T∞ are called Ω-horoballs and are labeled by the point where they

meet ∂Ω.

Lemma 5.1. The Ω-horoballs also enjoy properties (F1) and (F2).

Proof. Since the arguments are very similar, we only present the proof of the second

property and leave the proof of the first property to the reader.

We approximate Ωpi by Jordan domains Ω
(n)
pi as in the proof of Lemma 4.7. Pick

an arbitrary point p
(n)
i ∈ α

(n)
pi . As the diameters of α

(n)
pi tend to 0, the points p

(n)
i → pi.

Suppose two neighbouring Ω-horoballs Ωpi and Ωpj meet along an edge e. Given

an arc I ⊂ e, we can approximate it in the Hausdorff topology by arcs In ⊂ e(n) ⊂
Tn. By the aforementioned continuity of the relative harmonic measure, we have
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ωΩpi ,pi
(I, e) = limω

Ω
(n)
pi
,p

(n)
i

(In, e
(n)) so that it is enough to show ω

Ω
(n)
pi
,p

(n)
i

(In, e
(n)) ∼

ω
Ω

(n)
pj
,p

(n)
j

(In, e
(n)).

An intuitive albeit somewhat informal proof of (F2) is as follows: Run Brownian

motion from ∞ until it hits Tn. If it is to hit the arc In ⊂ e(n) from the side of Ωpi ,

denoted by In |Ω(n)
pi , then it must pass through the gate α

(n)
pi . Since the diameter of

the gate α
(n)
pi is very small,

ω
Ω

(n)
pi
,p

(n)
i

(In, e
(n)) ∼

ωĈ\Tn,∞(In |Ω(n)
pi )

ωĈ\Tn,∞(e(n) |Ω(n)
pi )

=
ωĈ\Tn,∞(In |Ω(n)

pj )

ωĈ\Tn,∞(e(n) |Ω(n)
pj )
∼ ω

Ω
(n)
pj
,p

(n)
j

(In, e
(n)).

Here, we have used that the harmonic measures on the two sides of every edge e in

a true tree are identical. The lemma follows after taking n→∞.

For a rigorous justification of these asymptotic equalities, notice that the pre-

images of the approximate Ω-horoballs Ω
(n)
pi and Ω

(n)
pj under the hydrodynamically

normalized Riemann maps ϕn : Ĉ \D→ Ĉ \Tn are of the form

ϕ−1
n (Ω(n)

pi
) = De ∩Bn,

where the Bn are (small) disks with centers near ∂De and ϕ−1
n (p

(n)
i ) ∈ ∂Bn. The

conformal maps fn of Bn ∩ De onto the upper half-plane H that send p
(n)
i to ∞

and ϕ−1
n (e(n)) to [0, 1] extend by reflection to Bn. As the modulus of the annulus

Bn \ ϕ−1
n (e(n)) tends to infinity, by the Koebe distortion theorem,

ω
Ω

(n)
pi
,p

(n)
i

(In, e
(n)) = length(fn(ϕ−1

n (In))) ∼ length(ϕ−1
n (In))

length(ϕ−1
n (e(n)))

=
ωĈ\Tn,∞(In |Ω(n)

pi )

ωĈ\Tn,∞(e(n) |Ω(n)
pi )

,

which is what we wanted to show.

Since ∂D∪F and ∂Ω∪T are ambiently homeomorphic, one has a correspondence

between the bounded complementary components of ∂D ∪ F (Farey horoballs) and

those of ∂Ω∪T (Ω-horoballs). For each pair of corresponding complementary regions,

form the conformal mapping ϕi : Hi → Ωi which takes

p(Hi)→ p(Ωi), v0(Hi)→ v0(Ωi), v1(Hi)→ v1(Ωi).

29



(As Farey horoballs and Ω-horoballs are Jordan domains, by Carathéodory’s theorem,

the maps ϕi extend to homeomorphisms between the closures.)

Since Farey and Ω-horoballs possess the property (F1), ϕi maps vj(Hi)→ vj(Ωi)

for any j ∈ Z. Moreover, as Farey and Ω-horoballs possess the property (F2), we

have:

Lemma 5.2 (Interior structure lemma). The mappings ϕi : Hi → Ωi glue up to form

a conformal mapping ϕ : D→ Ω. In other words, if Hi and Hj share a common edge

e, then ϕi|e = ϕj|e.

Indeed, since the edges of F are analytic arcs and the homeomorphism ϕ is

conformal on D \F , it follows that ϕ extends analytically across the open edges. As

the vertices are isolated points, they are removable singularities.

5.4 Exterior Structure of Ω

By definition, the harmonic measure ωĈ\Tn,∞ is supported on Tn. From Koebe’s

1/4 theorem, we know that the true trees Tn ⊂ B(0, 8) are contained in a fixed

compact set, so that any subsequential weak-∗ limit ω of the ωĈ\Tn,∞ is a probability

measure supported on the Hausdorff limit T∞∪∂Ω. As the harmonic measure of any

individual edge tends to zero, the support of the limiting measure ω is contained in

∂Ω. Finally, since ∂Ω is uniformly perfect, being a Jordan curve, ω = ωΩe,∞.

Consider the map f(z) = z2 acting on the unit circle. It has fixed points at 1,

ω = e2πi/3 and ω2 = e4πi/3, which divide the circle into three equal arcs. We call this

partition Π0. For k = 1, 2, . . . , the partition Πk = f−k(Π0) divides the circle in 3 · 2k

equal arcs.

We now define an analogous sequence of partitions of ∂Ω. We define the order of

an Ω-horoball Ωp as

ord Ωp = min
v∈∂Ωp

dT∞(vroot, v).

There are three Ω-horoballs of order 0, which contain vroot. Inspection shows that

for k ≥ 1, there are 3 · 2k−1 Ω-horoballs of order k and thus

3 + 3 + 6 + · · ·+ 3 · 2k−1 = 3 · 2k
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Ω-horoballs of order at most k. For k = 1, 2, . . . , we define Λk as the partition of ∂Ω

into 3 · 2k arcs by the cusps of order ≤ k, i.e. the points where Ω-horoballs of order

≤ k meet ∂Ω. Since each arc in Λk subtends the same number of edges of Tn up to

an additive error of O(k), the harmonic measures of each arc in Λk are equal and we

have:

Lemma 5.3 (Exterior structure lemma). There is a conformal mapping

ψ : (Ĉ \ D,∞)→ (Ĉ \ Ω,∞)

which takes Πk to Λk for any k ≥ 0.

5.5 Uniqueness of the Hausdorff limit

The interior and exterior structure lemmas (Lemmas 5.2 and 5.3) show that any

subsequential limit ∂Ω realizes the mating of z → z2 and the Markov map ρ(z) of

the reflection group of an ideal triangle (see Section 1.1).

The structure lemmas also show that Hausdorff limit of the Tn is unique. Indeed,

if T ′∞ ∪ ∂Ω′ was another subsequential limit of Tn, in addition to T∞ ∪ ∂Ω, we could

conformally map each complementary region in Ĉ \ (T∞ ∪ ∂Ω) to the corresponding

complementary region in Ĉ \ (T ′∞ ∪ ∂Ω′). Lemmas 5.2 and 5.3 guarantee that these

conformal mappings patch together to form a continuous self-map of the sphere

h : Ĉ → Ĉ which is conformal on Ĉ \ (T∞ ∪ ∂Ω). The tree T∞ is conformally

removable as it is a union of real analytic arcs. Thus, h is conformal on Ĉ \ ∂Ω. By

Lemmas 2.3 and 4.8, h must be a Möbius transformation.

5.6 Convergence of the Shabat polynomials

We subdivide each Ω-horoball Ωpj into triangles 4(~ei, pj) by connecting the ver-

tices of T∞ on ∂Ωpj to pj by hyperbolic geodesics of Ωpj . We colour the triangles

4(~ei, pj) ⊂ Ω black and white, so that adjacent triangles have opposite colours.

We conformally map each black triangle 4(~ei, p) onto the upper half-plane H so

that ~ei → [−1, 1], pj →∞ and each white triangle 4(~ei, p) onto the lower half-plane

L so that ~ei → [−1, 1], pj →∞. Properties (F1) and (F2) from Section 5.1 guarantee
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that these conformal maps glue together to form a holomorphic function h defined on

Ω. By choosing the colouring scheme appropriately, we can ensure that h(vroot) = 1

rather than −1.

From the description of the Shabat polynomials pn for the true trees Tn given in

Section 3.1, it is not difficult to see that the pn → h, uniformly on compact subsets

of Ω. Indeed, the Hausdorff convergence of Tn to T∞ implies that the triangles

4(~ei,∞) ⊂ Ĉ defined in Section 3.1 converge to the corresponding triangle4(~ei, p) ⊂
Ωp in the Carathéodory topology. As pn and h are conformal maps from these

triangles to the upper or lower half-planes, this tells us that pn → h uniformly on

compact subsets of any triangle 4(~ei, p) ⊂ Ω. By considering a pair of triangles that

have a common edge, one obtains that pn → h uniformly on compact subsets of the

union of these two triangles, which shows that pn → h uniformly on compact subsets

of Ω away from the vertices of the trees. Finally, one may use a similar argument

to obtain the uniform convergence in a neighbourhood of each vertex v ∈ T∞ by

examining the behaviour of the maps pn and h on the stars ?v, which were defined

in Section 3.2.

If R is the Riemann map from D → Ω, then h ◦ R is a function on the unit

disk whose fundamental domain consists of two copies of the fundamental domain

for PSL(2,Z), see Figure 5.

A Trivalent true trees are dense

Let K be a connected compact set in the plane. In this appendix, we show that one

can approximate K in the Hausdorff topology by finite trivalent true trees, thereby

giving another proof of Bishop’s theorem.

Start with a finite trivalent tree T ′1 , for instance, with the tree on the left side of

Fig. 6 which consists of five edges. At each step, add two edges to each boundary

vertex. This gives us a sequence of true trees {T ′n}∞n=1. The arguments presented in

this paper show that the finite trees T ′n converge in the Hausdorff topology to an

infinite trivalent tree union a Jordan curve: T ′∞ ∪ ∂Ω′.

Our objective is to show that for any compact connected set K ⊂ C and ε > 0,
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Figure 5: The fundamental domain for the function h, drawn in the upper half-plane

instead of the disk, is twice as big as the fundamental domain for H/PSL(2,Z). The

blue part of the fundamental domain is sent to the upper half-plane H, while the

orange part is send to the lower half-plane L.

one can choose the starting tree T ′1 appropriately so that the Hausdorff distance

dH(L ◦ T ′n, K) < ε,

for some linear mapping L(z) = az + b in AutC. (The linear mapping compensates

for the fact that the conformal map to C \ T ′n is hydrodynamically normalized.) We

now make two reductions.

Reduction 1. It is enough to show that for any Jordan curve γ, one can choose

the starting tree T ′1 so that dH(L ◦ ∂Ω′, γ) < ε.

Indeed, one can approximate any compact connected set K ⊂ C in the Hausdorff

topology by Jordan curves γk that are (1/k)-thin, i.e. any point in the domain Γk

enclosed by γk lies within 1/k of γk. This ensures that the domains Γk converge in

the Hausdorff topology to K. See Fig. 7 above for examples.

Therefore, if T ′k,l is a sequence of infinite trees such that dH(Lk,l ◦ ∂Ω′k,l, γk)→ 0,

then dH(Lk,l ◦ T ′k,l, γk) ≤ 2/k for all sufficiently large l ≥ l0(k). A diagonal argument

produces a sequence of infinite trees which converges to K after linear rescaling.

Reduction 2. We may assume that K = ∂Ω̃ is the image of the boundary of the

developed deltoid ∂Ω under a quasiconformal map f : C → C, which is conformal
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Figure 6: Unbalanced truncations of the infinite trivalent tree.
 

DM

Figure 7: Approximating the unit circle and the unit disk in the Hausdorff topology

by thin Jordan domains.

on Ω.

It is well known that quasiconformal images of the unit circle (quasicircles) are

dense in the collection of Jordan curves. It turns out that quasiconformal images of

any fixed Jordan curve are also dense. An anti-symmetrization argument from [4, 9]

allows one to choose f to be conformal on Ω. See Lemma A.2 below.

A.1 Trivalent tree weldings

Recall that any non-root vertex in the trees Tn and T∞ can be labeled by a digit

1, 2, 3 followed by a sequence of left and right turns. In order to label the vertices of
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T ′n and T ′∞ in a similar fashion, we designate a vertex in T ′1 as the root vertex and

select one of the adjacent vertices as the vertex labeled 1.

Let ϕ : (D, 0, 1) → (Ω, vroot, p1) and ψ : (De,∞, 1) → (Ωe,∞, p1) be conformal

mappings to the interior and exterior of the developed deltoid respectively, where

p1 = lim
k→∞

v1Rk = lim
k→∞

v3Lk

is one of the three cusps of the developed deltoid of order 0. The composition

h = ψ−1 ◦ ϕ : ∂D→ ∂D defines a homeomorphism of the unit circle, which is called

the welding homeomorphism of (∂Ω, vroot, p1,∞). Form the analogous mappings ϕ′, ψ′

and h′ for (∂Ω′, v′root, p
′
1,∞). Inspection shows that the weldings h and h′ are related

by a piecewise linear homeomorphism F of the unit circle: h′ = F ◦ h.

For instance, in the example depicted in Fig. 6, to describe F , we divide the unit

circle into three equal arcs and map these onto arcs of lengths π, π/2, π/2 respectively,

which indicates the fact that one third of the tree has the same number of edges as the

other two thirds. Let TPL1 denote the collection of piecewise linear homeomorphisms

of the unit circle that arise in this way and T W = {F ◦ h : F ∈ TPL1} be the

collection of all trivalent tree weldings.

It is not difficult to see that for any quasisymmetric homeomorphism of the

unit circle F ∈ QS1 which fixes 1 ∈ ∂D, there is a sequence of homeomorphisms

Fk ∈ TPL1 whose quasisymmetry constants are uniformly bounded such that

F−1
k ◦ F : ∂D→ ∂D

tend uniformly to the identity. (One may choose the homeomorphisms Fk so that

their quasisymmetry constants are comparable to the quasisymmetry constant of F .)

A.2 An overview of the proof

The curve K = ∂Ω̃ divides the Riemann sphere Ĉ into an interior domain Ω̃ and an

exterior domain Ω̃e. Composing f with conformal maps ψ : (De,∞, 1)→ (Ωe,∞, p1)

and ψ̃−1 : (Ω̃e,∞, f(p1)) → (De,∞, 1), we get a quasiconformal self-mapping of the

exterior unit disk

F = ψ̃−1 ◦ f ◦ ψ.
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The following lemma (whose proof will be presented in Section A.4) allows us to

approximate F by quasiconformal self-maps Fk of De with Fk|∂D ∈ TPL1:

Lemma A.1. Let F be a quasiconformal self-map of the exterior of the unit disk

which fixes 1 and∞. We can approximate F by quasiconformal maps Fk : (De, 1,∞)→
(De, 1,∞) so that:

1. Fk = F on {z > 1 + 1/k}.

2. The dilatations ‖µFk‖∞ < c < 1 are uniformly bounded.

3. Restricted to the unit circle, Fk is one of the piecewise linear homeomorphisms

described above that relates the welding of the “genuine” developed deltoid Ω

and a “generalized” developed deltoid Ω′k.

By Properties 1 and 2, we can select quasiconformal maps fk : C→ C which tend

to f , are conformal on Ω and have dilatations ψ∗µFk on Ωe. (Since ∂Ω has area zero

by Lemma 4.8, the quasiconformal map fk is uniquely specified by its dilation off

∂Ω up to post-composition with a Möbius transformation.) We set ∂Ω̃k = fk(∂Ω).

Property 3 tells us that
(
∂Ω̃k, fk(vroot), fk(p1),∞

)
has welding homeomorphism hk =

Fk ◦ h ∈ T W .

Let Ω′k be the generalized developed deltoid with welding hk ∈ T W . We now use

partial conformal removability techniques to show that Ω̃k = L(Ω′k) for some linear

map L ∈ AutC. Since ∂Ω̃k and ∂Ω′k realize the same welding homeomorphism, the

conformal map

φ :
(
Ĉ \∂Ω̃k, fk(vroot), fk(p1),∞

)
→
(
Ĉ \∂Ω′k, v

′
root;k, p

′
1;k,∞

)
extends continuously to a homeomorphism on the Riemann sphere. We claim that

φ is conformal on the whole Riemann sphere (and therefore, a linear mapping since

it fixes infinity).

As in Section 4.4, for each non-root vertex v of T ′∞ ∼= T∞, one can define the

shadow s′v ⊂ ∂Ω′ as the shorter arc of ∂Ω′ between vLRL∞ and vRLR∞. Then,

each point of ∂Ω′ which is not a cusp lies in infinitely many shadows and∑
v 6=vroot

diam2 s′v <∞. (A.1)
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We can also define a collection of shadows {s̃v} for Ω̃k by taking the images of

the shadows for the developed deltoid Ω under the quasiconformal map fk. Since

in each case, the shadows are defined in terms of the combinatorics of the infinite

trivalent tree, φ takes s̃v onto s′v for each vertex v 6= vroot. Recall that in Section 4.4,

to each shadow sv ∈ ∂Ω, v 6= vroot, we associated a round set Bv with

AreaBv � diam2Bv, diamBv � diam sv, dist(Bv, sv) . diam sv,

so that {Bv} are disjoint and contained in a bounded set. From the quasisymmetry

of fk, we deduce that ∑
v 6=vroot

diam2 s̃v <∞. (A.2)

In view of Lemma 2.3, the inequalities (A.1) and (A.2) show that φ is a Möbius

transformation. This completes the proof of Bishop’s theorem, modulo the technical

Lemmas A.1 and A.2 which will be proved below.

A.3 Quasiconformal images of Jordan curves

In the following lemma, we explain how to approximate Jordan curves by quasicon-

formal images of a given Jordan curve:

Lemma A.2. Let Ω ⊂ C be a bounded Jordan domain. For any Jordan curve γ and

ε > 0, one can find a quasiconformal map f : C→ C, which is conformal on Ω and

takes ∂Ω onto a Jordan curve ∂Ω̃ for which the Hausdorff distance dH(∂Ω̃, γ) < ε.

Before proving the above lemma, we first make a preliminary observation:

Lemma A.3. Let γ ⊂ C be a smooth Jordan curve. For any δ, ε > 0, one can

express γ as the image of the unit circle under a quasiconformal map f : C → C
such that f(A(0; 1− δ, 1 + δ)) contains an ε-neighbourhood of γ.

Proof. It is not difficult to express γ as the image of the unit circle under a smooth

quasiconformal map f1 : C → C. Pick ρ > 0 so that f1(A(0; ρ, 1/ρ)) contains an

ε-neighbourhood of γ. The desired quasiconformal map can be obtained by a radial

reparametrization of f1:

f(reiθ) := f1(φ(r)eiθ),
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where φ : [0,∞)→ [0,∞) is a homeomorphism which is identity outside [ρ, 1/ρ] and

takes [ρ, 1/ρ] to [1− δ, 1 + δ].

Proof of Lemma A.2. Since smooth Jordan curves are dense in the set of all Jordan

curves, one can find two smooth quasiconformal maps f1, f2 : C → C such that

dH(f1(∂D), ∂Ω) < ε/2 and dH(f2(∂D), γ) < ε/2. Anti-symmetrizing as in [4, 9], one

may assume that f1, f2 are conformal on the unit disk. The idea is to take f = f2◦f−1
1

and ∂Ω̃ = f2 ◦ f−1
1 (∂D).

To make this argument work, one has to be slightly careful when choosing the

maps f1 and f2. Here is the precise construction:

1. We first choose f2 so that dH(f2(∂D), γ) < ε/2.

2. We then choose δ > 0 sufficiently small so that f2(A(0; 1−δ, 1+δ)) is contained

in an ε/2-neighbourhood of f2(∂D), and thus in an ε-neighbourhood of γ.

3. Finally, we use Lemma A.3 to select a quasiconformal map f1 so that

f−1
1 (∂Ω) ⊂ A(0; 1− δ, 1 + δ).

It is clear from the construction that the composition f = f2 ◦ f−1
1 maps ∂Ω into the

ε-neighbourhood of γ.

A.4 Piecewise-linear approximations

In the following lemma, we explain how to extend quasisymmetric maps from the

boundary of a horizontal strip to the interior. This is a special case of a result of

Väisälä, see [10].

Lemma A.4. Let S = {(x, y) ∈ R2 : 0 < y < 1} be a horizontal strip of width 1.

Suppose φ0, φ1 : R → R are k-quasisymmetric maps which move points a bounded

distance, i.e. |φi(x) − x| < C, i = 0, 1. There exists a k1-quasiconformal map

Φ : S → S which takes (x, 0)→ (φ1(x), 0) and (x, 1)→ (φ2(x), 1), with k1 depending

only on k and C.
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Proof. We begin by defining Φ on ∂S by (x, 0)→ (φ0(x), 0) and (x, 1)→ (φ1(x), 1).

We can partition S into a union of squares {Sn} using the vertical segments {`n}n∈Z
which connect (n, 0) and (n, 1). Similarly, we can partition S into a union of con-

formal rectangles {S̃n} using the line segments {˜̀n}n∈Z which connect (φ0(n), 0) to

(φ1(n), 1). We first extend Φ to the vertical segments {`n}n∈Z, so that it is linear on

each segment `n and takes `n to ˜̀
n. For each n ∈ Z, we extend Φ from ∂Sn → ∂S̃n

to Φ : Sn → S̃n using the Beurling-Ahlfors extension. (The assumption on the maps

φ0 and φ1 guarantees that ∂S̃n are uniform quasicircles.)

We now show how to approximate quasiconformal self-maps of De by ones that

are piecewise-linear on the unit circle. In the proof below, we will use a variant of

the above lemma for the annulus A(0; 1, 1 + 1/k) :

Proof of Lemma A.1. The idea is to define Fk = F ◦ Φk by composing F with a

quasiconformal homeomorphism Φk : De → De which is identity on |z| > 1 + 1/k.

Let Λk ∈ TPL1 be a piecewise linear map whose quasisymmetric constant is

comparable to that of F such that φk = F−1 ◦Λk moves points on the unit circle by

O(1/k). By Lemma A.4, φk admits a quasiconformal extension Φk to the exterior

unit disk which is identity on {z > 1 + 1/k}. From the construction, it is clear that

Fk = F ◦ Φk satisfies Properties 1–3 as desired.

B True tree approximation of cauliflower

In this appendix, we describe a sequence of true trees, whose limit is the cauliflower,

the Julia set of f(z) = z2 + 1/4. Since the arguments are similar to the ones for

the finite truncations of the infinite trivalent tree, we only give a brief sketch of the

proofs, with an emphasis on the differences.

Let T1 be a planar tree which consists of a root vertex vroot and four edges

vrootv↑, vrootv→, vrootv↓, vrootv→,

labeled counter-clockwise. We colour the edges vrootv↑, vrootv↓ blue and vrootv←, vrootv→

red. To form Tn+1 from Tn, we attach additional edges at each leaf vertex:
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Figure 8: A sequence of true trees given by an inductive construction.

• If a leaf edge is red, we attach another red edge at the leaf vertex.

• If a leaf edge is blue, we attach three edges, coloured blue-red-blue in counter-

clockwise order.

The trees T1 and T2 are depicted on Fig. 8. From this description, it is easy to

see that Tn is made out of

4 + 8 + 16 + · · ·+ 2n+1 = 2n+2 − 4

edges, with the same number of red and blue edges.

Let Tn be the true tree representative of Tn. Note that the colouring is only

used to describe the combinatorics of Tn, it plays no role in how the true tree Tn is

constructed from Tn.

Theorem B.1. The trees Tn converge in the Hausdorff topoology to an infinite tree

union a Jordan curve T ∪∂Ω. The Jordan curve ∂Ω is the Julia set of z2 +1/4, while

the set of vertices of T is the grand orbit of the critical point 0 of f(z) = z2 + 1/4.

Let ψ : Ω→ C be the Fatou coordinate at the parabolic fixed point 1/2 ∈ J (f), with

ψ(f(z)) = ψ(z) + 1, ψ(0) = 0.

The Shabat polynomials pn(z) of Tn, with pn(0) = 1, converge uniformly on compact

subsets of Ω to cos(π · ψ(z)).
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Figure 9: A sequence of true trees which approximates J (z2 + 1/4).

B.1 Topology of a subsequential limit

We first show that any Hausdorff limit of the trees Tn is ambiently homeomorphic

to the set depicted on the right side of Fig. 9. Since each vertex of Tn has at most 4

neighbours and the sums

Sn =
∑
e∈Tn

s(e)2 (B.1)

are uniformly bounded above, we are in the setting of Theorem 3.4. For any blue

edge e0, the numbers s(e0) are uniformly bounded below, so the blue edges do not

shrink. By Lemma 3.2, the red edges also do not shrink. Therefore, any subsequential

Hausdorff limit of Tn contains an infinite tree T∞ whose edges are real-analytic arcs.

Let Bn ⊂ Tn be the subtree consisting of blue edges. Arguing as in Section 4.1,

one can show that the subsequential limit of the subtrees Bn is an infinite tree union

a Jordan curve ∂Ω.

Perhaps the new feature of the trees Tn are the red edges, so we discuss their

behaviour in more detail. The red edges are naturally grouped into twigs. There are

two twigs emanating from the root vertex, which we denote twvroot,← and twvroot,→,

while a single twig twv emanates from each degree 4 vertex v, other than the root
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vertex, which we denote by twv.

The following lemma says that each twig connects a degree 4 vertex in Tn to

a cusp in ∂Ω, where it meets the two enclosing blue branches, without protruding

outside of Ω :

Lemma B.2. Let tw
(n)
v be a twig in Tn.

(i) Any Hausdorff limit of tw
(n)
v is contained in Ω.

(ii) Any Hausdorff limit of tw
(n)
v connects v ∈ T∞ to the cusp pv ∈ ∂Ω.

 

Figure 10: The twigs are enclosed by the hyperbolic geodesics γ
(n)
m .

Sketch of proof. We explain the argument for the twig twvroot,→ as the general case is

similar. We pass to a subsequence so that Bn and twvroot,→ converge in the Hausdorff

topology as n→∞. We denote the associated cusp by

pvroot,→ = lim
m→∞

(↑Rm−1) = lim
m→∞

(↓Lm−1) ∈ ∂Ω.

(i) For 1 ≤ m ≤ n− 1, we construct hyperbolic geodesics γ
(n)
m ⊂ Ĉ\Tn connecting

↑Rm−1 and ↓Lm−1 as in Figure 10. By construction, tw
(n)
vroot,→ ⊂ Tn is contained in

the subdomain of Ĉ \ Bn enclosed by γ
(n)
m .

For any m ≥ 1, the Hausdorff limit of the geodesics γ
(n)
m as n→∞ is composed

of three pieces: two pieces γm,1, γm,3 are hyperbolic geodesics in the tiles that make
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up Ω, while the middle piece is a hyperbolic geodesic γm,2 in Ĉ \ Ω which connects

two cusps p−m, pm ∈ ∂Ω. Therefore, the Hausdorff limit of the twigs tw
(n)
vroot,→ is

contained in Ω union the subdomain of Ĉ \ Ω enclosed by γm,2.

Since the points p−m, pm tend to the cusp pvroot,→ ∈ ∂Ω as m → ∞, the subdo-

mains of Ĉ\Ω enclosed by γm,2 shrink down to pvroot,→. It follows that the Hausdorff

limit of the twigs tw
(n)
vroot,→ is contained in Ω as desired.

(ii) Fig. 10 depicts a decreasing sequence of simply-connected domains

W
(n)
1 ⊃ W

(n)
2 ⊃ . . . ⊃ W

(n)
m−1,

which contain the set Tn(v→m)∪
{
↑Rm−1, ↓Lm−1

}
. A moduli estimate similar to the

one in Section 4.1 shows that

Mod
(
W

(n)
j \W (n)

j+1

)
& 1/j, j = 1, 2, . . . ,m− 2.

By the parallel rule,

Mod
(
W

(n)
1 \W (n)

m−1

)
& 1 + 1/2 + · · ·+ 1/(m− 2) � logm.

Since the initial domain W
(n)
1 is contained in a ball B(0, R0) where R0 > 0 is a uni-

versal constant, Lemma 2.1 implies that the diameter of Tn(v→m)∪
{
↑Rm−1, ↓Lm−1

}
is small, which means that the red twig and the two blue branches come together at

pvroot,→ ∈ ∂Ω.

B.2 Tile decomposition

As shown on the right side of Fig. 9, the repeated pre-images of the line segment

[−1/2, 1/2] separate Ω, the interior of the filled Julia set of f(z) = z2 + 1/4, into a

countable collection of tiles. The union of these curves forms a tree whose vertices

are points in the grand orbit of the critical point 0. We designate the critical point 0

as the root vertex. Note that [0, 1/2] is not a single edge but the union of countably

many edges:

[0, 1/2] = [0, f(0)] ∪ [f(0), f ◦2(0)] ∪ [f ◦2(0), f ◦3(0)] ∪ . . .
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We label the tiles as Ωp,L or Ωp,R, where p ranges over the cusps in ∂Ω. A bi-tile Ωp

is a horoball-like region formed by taking the interior of the closure of Ωp,L ∪ Ωp,R.

Thus, Ω is organized into a union of bi-tiles, as well as a union of tiles.

Under iteration, any tile is eventually mapped onto Ω1/2,L or Ω1/2,R. The tiles

Ω1/2,L or Ω1/2,R are invariant under f , and f restricts as a conformal automorphism

on Ω1/2,L and Ω1/2,R. We record the following two properties of Ω, which come from

the dynamics of f and the symmetry of Ω with respect to the real axis:

(CT1) If Ωp,X is a tile, then each edge in ∂Ωp,X has the same relative harmonic

measure as viewed from p, i.e. if e1, e2 ⊂ Ωp,X , then

lim
z→p, z∈Ωp,X

ωz(e1)

ωz(e2)
= 1.

(CT2) If e is an edge that belongs to two neighbouring tiles Ωp,X and Ωq,Y , then

the relative harmonic measures are the same from both sides. This means

that for any measurable subset E ⊂ e,

lim
z→p, z∈Ωp,X

ωz(E)

ωz(e)
= lim

z→q, z∈Ωq,Y

ωz(E)

ωz(e)
.

Arguing as in Section 5, one can show that the true trees Tn converge to an

infinite tree union the Julia set of z2 + 1/4.

B.3 Limit of Shabat polynomials

We write X for one of the symbols L,R. We may further decompose each tile

Ωp,X ⊂ Ω into countably many triangles 4(e, p,X) by connecting the vertices in

∂Ωp,X to the cusp p ∈ ∂Ωp,X by hyperbolic geodesics in Ωp,X . We colour the triangles

4(e, p,X) ⊂ Ω black and white, so that

4 = 4
(
vrootf(vroot), 1/2, R

)
⊂ Ω1/2,R = Ω1/2 ∩H

is white and adjacent triangles have different colours. Reflecting 4 in the real line,

we get a triangle 4 ⊂ Ω1/2,L = Ω1/2 ∩L. The union 4∪ vrootf(vroot)∪4 constitutes

a fundamental domain for the action of f on Ω.
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Mapping properties of the cosine. To describe the mapping properties of

κ(z) = cos(πz), we draw the lines {y = 0} and {x = n : n ∈ Z} in the com-

plex plane. These lines divide C into vertical half-strips {Sn,±} of width 1. These

may be coloured black and white so that adjacent half-strips have opposite colours,

with

S0,+ = {z ∈ C : 0 < Re z < 1, 0 < Im z <∞}

being white. The map κ takes each black half-strip conformally onto the upper half-

plane and each white half-strip conformally onto the lower half-plane. The horizontal

side of each Sn,± is mapped to the interval [−1, 1], while the vertical sides are mapped

to the intervals (−∞,−1] and [1,∞).

Mapping properties of the Fatou coordinate. The Fatou coordinate at the

parabolic fixed point 1/2 ∈ J (z2 + 1/4) provides a conformal bijection between the

quotient cylinder Ω/(z ∼ f(z)) and C/Z, which is uniquely determined up to adding

a constant in C/Z. Recall from the statement of Theorem B.1 that we use the

normalization ψ(vroot) = 0.

Lemma B.3. The Fatou coordinate ψ is a holomorphic function on Ω which maps

triangles 4(e, p,X) conformally onto half-strips of the same colour.

Proof. Define ψ1 : 4∪ vrootf(vroot)∪4 → C to be conformal map which takes 4 to

S0,+ and 4 to S0,− with

vroot → 0, f(vroot)→ 1, 1/2→∞.

The map ψ1 extends to Ω using the functional equation ψ1(f(z)) = ψ1(z) + 1. Since

ψ1 possesses the properties that uniquely determine ψ, the two functions must be

equal.

Composing the above mappings, we get:

Corollary B.4. The map z → cos(πψ(z)) takes each triangle4(e, p,X) ⊂ Ω confor-

mally onto the upper half-plane or the lower half-plane, with black triangles mapping

onto the upper half-plane H and white triangles mapping onto the lower half-plane

L. Furthermore, cos(πψ(z)) takes edges to [−1, 1], cusps to infinity and vroot to 1.
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Considerations similar to the ones in Section 5.6 show that the the limit h(z) of

the Shabat polynomials pn(z) has the same description as the function cos(πψ(z))

described in Corollary B.4. This completes the proof of Theorem B.1.

References

[1] C. Bishop, True trees are dense, Invent. Math. 197 (2014), 433–452.

[2] J. B. Garnett, D. E. Marshall, Harmonic Measure, New Mathematical Mono-

graphs 2, Cambridge University Press, 2005.

[3] S-Y. Lee, M. Lyubich, N. G. Makarov, S. Mukherjee, Dynamics of Schwarz

reflections: the mating phenomena, Adv. Math 385 (2021), paper 107766.
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Figure 11: A sequence of trees converging to the union of an infinite trivalent tree

and the boundary of the developed deltoid.
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Figure 12: A sequence of true trees converging to the union of the Julia set J (z2+1/4)

and an infinite tree whose vertex set is the grand orbit of the critical point 0.
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