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Abstract

Numerical experiments by Werness, Lee and the third author suggested

that dessin d’enfants associated to large trivalent trees approximate the de-

veloped deltoid introduced by Lee, Lyubich, Makarov and Mukherjee. In this

paper, we confirm this conjecture. As a side product of our techniques, we give

a new proof of a theorem of Bishop which says that “true trees are dense.” We

also exhibit a sequence of trees whose conformally natural shapes converge to

the cauliflower, the Julia set of z 7→ z2 + 1/4.

1 Introduction

A finite tree T in the plane is called a conformally balanced tree or a true tree if

(TT1) Every edge has the same harmonic measure as seen from infinity.

(TT2) Harmonic measures on the two sides of every edge are identical.

Conformally balanced trees are in one-to-one correspondence with Shabat poly-

nomials: any conformally balanced tree is the pre-image of the segment [−1, 1] under

an essentially unique polynomial p with critical values ±1. (The polynomial p(z) is

uniquely determined up to multiplication by −1.)

We say that two trees T1, T2 in the plane are equivalent if there is an orientation-

preserving homeomorphism of the plane which takes T1 onto T2. It is well-known
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that every finite tree T in the plane is equivalent to a conformally balanced tree T ,

which is unique up to affine transformations. A proof of these facts will be sketched

in Section 4.1.

It is natural to ask if infinite trees also have a natural shape. In [10], the second

and third authors developed the theory of Gehring trees and showed that the Aldous

continuum random tree possesses a natural conformal structure. In this paper, we

consider the infinite trivalent tree T . To come up with a natural shape for T , we

truncate it at level n, form the conformally balanced tree Tn and take n→ ∞.

Figure 1: The developed deltoid and some approximating true trees.

In order for the finite trees Tn to converge, we need to normalize them in some

way. Throughout the rest of the paper, we use the hydrodynamic normalization: we

ask that each conformal map φn : Ĉ \D → Ĉ \Tn has the expansion z → z +O(1/z)

near infinity.
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Our main theorem states:

Theorem 1.1. The trees Tn converge in the Hausdorff topology to an infinite triva-

lent tree union a Jordan curve T∞ ∪ ∂Ω. The domain Ω enclosed by ∂Ω is the

developed deltoid. The Shabat polynomials pn converge to F ◦ R−1 where F is a

modular function invariant under the (3, 3,∞) triangle group and R : H → Ω is the

Riemann map.

The developed deltoid will be defined in Section 1.1 below. We now give an

intuitive explanation of the above theorem. As n → ∞, the number of edges of Tn

tends to infinity. Since each edge has the same harmonic measure, it is natural to

expect that the lengths of the edges tend to 0. However, a quick look at Figure 1

shows that something unexpected happens: as n → ∞, the edges of Tn converge to

real-analytic arcs instead of shrinking.

Recall that harmonic measure is the probability distribution which describes

where Brownian motion, starting at infinity, first hits Tn. Evidently, to make up

for the fact that the harmonic measures of individual edges tend to 0, edges of high

generation need to screen edges of small generation. This intuitively explains why

the branches of the tree appear to close up to form horoball-like regions: for Brow-

nian motion to hit a long edge, it needs to pass through a very narrow gate. The

proof of Theorem 1.1 involves providing a rigorous explanation for this phenomenon.

The choice of truncation is important: by considering other truncations of the

infinite trivalent tree, one can obtain different limit sets. In fact, in Appendix A,

we will show that any compact connected set in the plane can be approximated in

the Hausdorff topology by conformally balancing finite truncations of the infinite

trivalent tree, thereby giving another proof of a theorem of Bishop [3].

1.1 The developed deltoid

The deltoid △ ⊂ C is a remarkable domain in the plane bounded by a Jordan curve

with three outward pointing cusps. This curve can be described as the curve traversed

by a point on a circle of radius 1/3 as it rolls around in the interior of a circle of

radius 1. Alternatively, one can describe the exterior of the deltoid △e = Ĉ \△ as

the image of De = Ĉ \D under the conformal map z → z + 1
2z2

.
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The exterior of the deltoid is part of a somewhat mysterious family of domains

called quadrature domains. Quadrature domains have several equivalent definitions

such as possessing a Schwarz reflection, which is an anti-holomorphic function σ :

△e → C that is the identity on ∂△e. For other characterizations of quadrature

domains, see [1, Lemma 2.3] or [9, Lemma 3.1].

By repeatedly reflecting the deltoid in its sides, one obtains the developed deltoid

Ω =
⋃
k≥0

σ−k(△),

depicted in Figure 1 above. The developed deltoid was first studied by S-Y. Lee,

M. Lyubich, N. G. Makarov and S. Mukherjee [8], who showed that it fuses Fuchsian

dynamics with anti-holomorphic dynamics:

Theorem 1.2. (i) The boundary of the developed deltoid ∂Ω is the unique Jordan

curve that realizes the mating of the group Γ generated by the reflections in the sides

of an ideal triangle and z → z2.

(ii) The developed deltoid Ω is a John domain. In particular, ∂Ω is conformally

removable.

We now define the terms in the above theorem: A bounded domain Ω ⊂ C is a

John domain if there is a distinguished point z0 ∈ Ω, called the John center, and a

constant C > 0 so that every point z ∈ Ω can be joined to z0 by a rectifiable curve

γ(t) so that

dist(γ(t), ∂Ω) ≥ C|γ(t)− z|

for all t. A set E ⊂ Ĉ is conformally removable if every conformal map h : Ĉ \E →
Ĉ \F which extends continuously to the Riemann sphere is a Möbius transformation.

By [6, Corollary 1], boundaries of John domains are conformally removable.

Dynamics on De. In the exterior of the unit disk, we consider the dynamical

system z → z2.

Dynamics on D. Let △hyp ⊂ D be the ideal triangle in the unit disk with

vertices at 1, ω, ω2, where ω = e2πi/3 is a third root of unity. Consider the group
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Γ = ⟨Rs1 , Rs2 , Rs3⟩ ⊂ Aut(D) generated by the reflections in the sides s1, s2, s3 of

△hyp. The images

{γ(△hyp) : γ ∈ Γ}

tessellate the unit disk. The Markov map ρ : D \ △hyp → D is defined as Rs1 on the

(hyperbolic) half-plane cut off by s1, Rs2 on the half-plane cut off by s2 and Rs3 on

the half-plane cut off by s3.

What it means to be a mating. A Jordan curve ∂Ω is a mating of z → z2 and

Γ if there exist conformal maps φ : D → Ω, ψ : De → Ωe that glue the dynamical

systems together, i.e. φ ◦ ρ ◦ φ−1 = ψ ◦ z2 ◦ ψ−1 on ∂Ω. In particular, this implies

that

σ(z) =

ψ ◦ z2 ◦ ψ−1, z ∈ Ωe

φ ◦ ρ ◦ φ−1, z ∈ Ω \ φ(△hyp)

is a Schwarz reflection for Ĉ \φ(△hyp), and hence Ĉ \φ(△hyp) is a quadrature domain.

1.2 Strategy of proof

The proof of Theorem 1.1 proceeds in four steps:

Step 1. We first show that any subsequential limit of the true trees Tn in the

Hausdorff topology is homeomorphic to an infinite trivalent tree union a Jordan

curve T∞ ∪ ∂Ω, with T∞ ⊂ Ω. Among our key tools are estimates for the diameters

of edges by means of conformal modulus estimates of certain curve families. A

notable difference to the setting of random trees is that in the truncated trivalent

tree, the diameters of a fixed edge do not shrink to zero as n → ∞. This step will

be carried out in Section 5.

Step 2. We then show that any subsequential limit ∂Ω realizes the mating of

z → z2 and the Fuchsian reflection group Γ from Theorem 1.2. The main effort is to

identify the Farey structure inside Ω and the z → z2 structure outside Ω. This step

will be carried out in Section 6.

At this point, to show the uniqueness of the subsequential limit, one can appeal

to Theorem 1.2 by Lee, Lyubich, Makarov and Mukerjee which implies that the
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developed deltoid is conformally removable. We prefer not to rely on Theorem 1.2

because the proof given in [8] uses the dynamical nature of the developed deltoid

in a crucial way. If one slightly changes the tree, then the resulting object will no

longer carry an anti-conformal dynamical system.

Step 3. To show that the limit of the Tn does not depend on the subsequence,

we prove “partial conformal removability.” Partial conformal removability is a much

less stringent property than full conformal removability and it is easier to check.

In essence, it asks that if h : Ĉ \E → Ĉ \F is a conformal map (which extends

continuously to the Riemann sphere) onto the complement of a set F which has

roughly the same geometry as E, then h is a Möbius transformation. This step will

be carried out in Sections 5.4 and 6.4.

Step 4. Finally in Section 6.5, we will show that the Shabat polynomials converge

and identify the limit as a modular function invariant under the (3, 3,∞) triangle

group.
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2 Preliminaries

In this section, we gather a number of useful facts that will be used throughout this

paper, dealing with moduli of curve families, convergence of Riemann maps, relative

harmonic measure and weak conformal removability.

2.1 Moduli of annuli and rectangles

It is well known that any doubly-connected domain A ⊂ C can be mapped onto a

round annulus A(0; r, R) = {z : r < |z| < R}. The number ModA := 1
2π

log R
r
is

called the modulus of A. Two doubly-connected domains are conformally equivalent

if and only if their moduli coincide.

A metric ρ(z) is a non-negative measurable function defined on a domain Ω ⊂ C.
One can use ρ(z) to measure lengths of rectifiable curves

ℓρ(γ) =

∫
γ

ρ(z)|dz|

and compute areas of shapes, for instance the total area of ρ is given by

A(ρ) =

∫
Ω

ρ(z)2|dz|2.

The metric ρ is said to be admissible for a family of rectifiable curves Γ contained

in Ω if the ρ-length of every curve γ ∈ Γ is at least 1. The modulus of the curve

family Γ is defined as

ModΓ := inf
ρ
A(ρ),

where the infimum is taken over all admissible metrics ρ. If one finds a conformal

metric ρ such that ℓρ(γ) ≥ L for any γ ∈ Γ, then ModΓ ≤ A(ρ)/L2.

The modulus of a doubly-connected domain is a special case of the above con-

struction: ModA is equal to the modulus of the family of curves Γ⟲ that separate

the two boundary components, while 1/ModA is equal to modulus of the family Γ↑

of curves that connect the opposite boundary components of A. Thus one uses Γ⟲

to give upper bounds for ModA while one uses Γ↑ go give lower bounds for ModA.

We will frequently use the following two simple rules for modulus, which easily

follow from the definitions, e.g. see [2, Chapter 4] or [4, Chapter IV.3]:
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1. (Monotonicity rule) If A1 ⊂ A is an essential doubly-connected subdomain, so

that Γ⟲(A1) ⊂ Γ⟲(A), then ModA1 ≤ ModA.

2. (Parallel rule) If a doubly-connected domain A = A1 ∪A2 can be represented

as a union of two essential doubly-connected domains, then

ModA1+ModA2 ≤ ModA.

We will also use the following standard estimates which essentially go back to

Loewner and express the fact that C is a Loewner space, e.g. see [5, Theorem 8.2]:

Lemma 2.1. Let Ω be a simply-connected domain in the plane.

(a) Suppose F is a compact connected set contained in Ω. If Mod(Ω \ F ) ≥ m is

bounded from below, then

dist(∂Ω, F ) ≥ c diamF,

for some c > 0 which depends only on m > 0. Furthermore, c → ∞ as m → ∞.

Conversely, if dist(∂Ω, F ) ≥ c diamF, then Mod(Ω \ F ) ≥ m(c).

(b) Suppose E ⊂ F are two compact connected sets contained in Ω. If

m1 ≤ Mod(Ω \ F ) ≤ Mod(Ω \ E) ≤ m2,

then diamE ≍ diamF . In fact, there exists a constant C = C(m1,m2) > 1 so that

F ⊂ B(e, C · diamE) for any point e ∈ E, where B(x, r) denotes the ball of radius

r centered at x.

A conformal rectangle R is a simply connected domain with four marked prime

ends z1, z2, z3, z4. In this paper, all conformal rectangles will be marked , i.e. equipped

with a distinguished pair of opposite sides. The Schwarz-Cristoffel formula provides

a conformal map from R onto a geometric rectangle [0,m]× [0, 1]. If one insists that

the marked sides of R are mapped onto the vertical sides of [0,m]× [0, 1], then the

number m ∈ (0,∞) is determined uniquely. The number m := ModR is known as

the modulus of R and is equal to the modulus of the curve family Γ↕ which separates

the distinguished pair of opposite sides.

For further properties of conformal modulus, we refer the reader to [4, Chapter

4] and [12, Chapter 2].
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2.2 On convergence of Jordan domains

We say that a sequence of Jordan curves γn converges strongly to a Jordan curve

γ, if there exists a sequence of homeomorphism hn : ∂D → γn which converges to a

homeomorphism h : ∂D → γ. One can similarly define strong convergence for Jordan

arcs. The following lemma provides useful intuition, although we will only use the

equivalence of (1) and (3) in this paper.

Lemma 2.2. Suppose γn is a sequence of Jordan curves which separate 0 and ∞ in

Ĉ. Assume that the γn converge in the Hausdorff topology to another Jordan curve

γ that separates 0 and ∞ in Ĉ. For each n = 1, 2, . . . , let φn : D → Interior(γn) be

the conformal map with φn(0) = 0 and φ′n(0) > 0. Similarly, let φ : D → Interior(γ)

be the conformal map with φ(0) = 0 and φ′(0) > 0. The following statements are

equivalent:

(1) The curves γn converge strongly to γ.

(2) The curves γn converge to γ without backtracking.

(3) The conformal maps φn → φ converge uniformly on the closed unit disk D.

We now explain the no backtracking condition. As is standard in complex analy-

sis, we orient the Jordan curves γn and γ counter-clockwise. We say that γn converges

to γ with backtracking if after passing to a subsequence, there exist two sets of arcs

α1
n, α

2
n : [0, 1] → γn that have the same orientation as γn and converge in the Haus-

dorff topology to the same arc α = [a, b] ⊂ γ so that

α1
n(0) → a, α1

n(1) → b,

α2
n(0) → b, α2

n(1) → a.

In other words, the arc α1
n passes by α in one direction, while α2

n passes by α in the

other direction.

The equivalence of (1) and (2) is elementary and is left as an exercise to the

reader. For (1) ⇒ (3), we refer the reader to [14, Theorem 2.11]. The direction

(3) ⇒ (1) is trivial.
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2.3 Relative harmonic measure

Suppose that U is a Jordan domain and p ∈ ∂U . While it does not make sense to

talk about the harmonic measure of an arc I ⊂ ∂U as viewed from p, one can talk

about the relative harmonic measure of two arcs I, J ⊂ ∂U that do not contain p :

ωU,p(I, J) = lim
z→p

ωU,z(I)

ωU,z(J)
.

From the definition, it is clear that relative harmonic measure is a conformal in-

variant: if φ : U → U ′ is a conformal map onto another Jordan domain, then

ωU ′,p′(I
′, J ′) = ωU,p(I, J), where p

′ = φ(p), I ′ = φ(I) and J ′ = φ(J).

Example. When U = H, p = ∞ and J = [0, 1], the relative harmonic measure

ωH,∞(·, [0, 1]) is just Lebesgue measure on the real line.

The following lemma says that the quantity ωU,p(I, J) varies continuously pro-

vided that p stays away from I ∪ J :

Lemma 2.3. If a sequence of Jordan quadruples (Un, pn, In, Jn) converges strongly

to a Jordan quadruple (U, p, I, J), then

ωUn,pn(In, Jn) = lim
n→∞

ωU,p(I, J).

Proof. According to the definition of strong convergence in Section 2.2, there exist

parameterizations of ∂Un which converge to a parameterization of ∂U . Lemma 2.2

implies that a sequence of conformal maps Rn : D → Un converges to a conformal

map R : D → U uniformly on the closed unit disk. The lemma now follows from the

conformal invariance of relative harmonic measure.

2.4 Weak conformal removability

Lemma 2.4. Suppose X and X ′ are two compact sets in the complex plane and

φ : Ĉ \X → Ĉ \X ′

is a conformal map that extends continuously to a homeomorphism of the sphere.

Assume that there is a countable exceptional set E ⊂ X and a countable collection of
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closed subsets s1, s2, . . . of X, called shadows, such that every point in X \E belongs

to infinitely many sets si. If
∞∑
i=1

diam2 si <∞,

∞∑
i=1

diam2 φ(si) <∞, (2.1)

then φ is a Möbius transformation.

The term shadow is inspired by the following construction: let Ω ⊂ C be a Jordan

domain in the plane and z0 be a point in Ω. Given a set K ⊂ Ω \ {z0}, the shadow

s(K) is the union of the endpoints of hyperbolic geodesic rays emanating from z0

that pass through K.

In a beautiful work, P. Jones and S. Smirnov [6] showed that when the sets si

are shadows cast by Carleson boxes, then the first condition
∑∞

i=1 diam
2 si < ∞ is

already sufficient for φ to extend conformally to the Riemann sphere, the second

assumption
∑∞

i=1 diam
2 φ(si) <∞ is not needed.

The lemma above can be viewed as a slight variation of [6, Proposition 1] and the

proof below follows the argument in [6] very closely. On one hand, the assumptions

of Lemma 2.4 are more general since we allow the si to be arbitrary closed sets;

however, we get a weaker conclusion because we also impose a restriction on the

images of the shadows.

Proof. For convenience, we write s′i = φ(si). Since φ is a homeomorphism, all but

countably many points in X ′ are covered by infinitely many shadows s′i. By condition

(2.1), X and X ′ have 2-dimensional Lebesgue measure 0.

Call a direction v good if for almost every line ℓ pointing in the direction of v, the

set φ(ℓ∩X) has linear Lebesgue measure 0. One says that φ is absolutely continuous

on lines (ACL) if the directions parallel to the coordinate axes are good. It is well

known that if X has 2-dimensional Lebesgue measure zero and φ ∈ W 1,2
loc (C \X) is

ACL, then φ ∈ W 1,2
loc (C). Weyl’s lemma then guarantees that φ is conformal on the

Riemann sphere, and therefore, a Möbius transformation. Below, we will show that

every direction is good.

Instead of showing that a set has zero 1-dimensional Lebesgue measure m1, we

may instead show that it has zero 1-dimensional content m∞1 . The definition of 1-

dimensional content is similar to that of 1-dimensional measure, but allows covers
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by balls of arbitrary size. Therefore, the lemma reduces to showing that for almost

every line ℓ parallel to a given direction v, the 1-dimensional content of φ(ℓ ∩X) is

0.

Since E is countable, almost every line ℓ parallel to v misses E. For such a line,

m∞1 (φ(ℓ ∩X)) ≤
∑

si∩ℓ̸=∅, i>N

diam s′i. (2.2)

The last equation holds for any N ≥ 1 since any point in X \ E is contained in

infinitely many shadows, which allows us to avoid putting the first N − 1 shadows

in the cover. In other words,∑
si∩ℓ ̸=∅

diam s′i <∞ =⇒ m∞1 (φ(ℓ ∩X)) = 0. (2.3)

As ∫
ℓ||v

{ ∑
si∩ℓ̸=∅

diam s′i

}
dℓ ≤

∞∑
i=1

diam si · diam s′i

≤ 1

2

( ∞∑
i=1

diam2 si + diam2 s′i

)
< ∞,

the integrand must be finite for a.e. ℓ parallel to v. In the first inequality above,

we used that the summand diam s′i participates in a set of lines of linear measure at

most diam si. This completes the proof.

3 The Farey tesellation

Let △hyp ⊂ D be the ideal triangle in the unit disk with vertices 1, ω = e2πi/3 and

ω = e4πi/3. Repeatedly reflecting △hyp in its sides, one obtains a tessellation of the

unit disk by ideal triangles. The dual graph (which joins centers of the triangles by

hyperbolic geodesics) is called the Farey tree. We designate the center of △hyp as the

root vertex. Throughout this paper, we view the Farey tree as an explicit embedded

tree in the plane, depicted in Figure 2 below.
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Figure 2: The Farey tesselation and Farey tree

The Farey tree partitions the unit disk into regions which we call Farey horoballs.

We will usually index Farey horoballs by the point p ∈ ∂D where they touch the unit

circle. We refer to p as the cusp of Hp. If Hp is not one of the three Farey horoballs

that contain the root vertex, we can also label Hp = Hv by the vertex v of the tree

which is closest to the origin.

3.1 Diameters of triangles

Each non-root triangle△ can be labeled by a digit 1, 2, 3 followed by a finite sequence

of L’s and R’s, which indicates the path one travels from △hyp to △. For example,

in the word

2 L︸︷︷︸
k1=1

R︸︷︷︸
k2=1

LLL︸︷︷︸
k3=3

RR︸︷︷︸
k4=2

LL︸︷︷︸
k5=2

R︸︷︷︸
k6=1

LLLLL︸ ︷︷ ︸
k7=5

RR︸︷︷︸
k8=2

,

the digit 2 indicates that we start by walking along the dual tree from the root vertex

to its second child. After the first step, each vertex has two children and we have

to decide whether to turn left or right. The options are indicated by ‘L’ and ‘R’

respectively.
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Lemma 3.1. For a non-root triangle △ in the Farey tessellation,

log
1

diam△
≍

m∑
i=1

log(1 + ki).

Proof. It is easier and clearly equivalent to work in the upper half plane H where

△hyp has vertices 0, 1 and ∞ and in the first step, we walk down. Let

△0 = △hyp, △1 = (0, 1/2, 1), △2, . . . , △n = △

be the sequence of triangles from △hyp to △. Each triangle △j in this sequence has

three vertices on the real axis aj < bj < cj. To estimate diam△j, we keep track of

the ratio

r(△j) :=
bj − aj
cj − aj

,

which measures the distortion of the triangle △j. Each time we do an right turn

after a left turn or vice versa, the ratio is “reset” to a value in [1/3, 2/3]. After a

series of k consecutive left turns, r ≍ 1/k, while after a series of k consecutive right

turns, 1− r ≍ 1/k.

After making k left or right turns in a row, the diameter goes down by a factor

of roughly k + 1: for 1 ≤ k ≤ kj+1,

log
1

diam△k1+k2+···+kj+k

− log
1

diam△k1+k2+···+kj+1

≍ log(k + 1).

When we make a right turn after a series of kj left turns (or a left turn after a series

of kj left turns), the diameter goes down by a factor of kj + 1, i.e.

log
1

diam△k1+k2+···+kj+1

− log
1

diam△k1+k2+···+kj

≍ log(kj + 1).

The above equations give the desired bound for diam△.

3.2 Topology of the Farey tree

We write dF(·, ·) for the combinatorial distance between two vertices in the Farey

tree. By a branch of the Farey tree, we mean an infinite sequence of vertices
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[v0, v1, v2, v3, . . . ] with dF(vm, vroot) = m. We can also label a branch of F by a

digit 1, 2, 3 followed by an infinite sequence of L’s and R’s which encodes the direc-

tions from the root vertex.

Lemma 3.2. (i) Any branch v = [v0, v1, v2, v3, . . . ] has a well-defined limit point:

pv = limm→∞ vm exists and belongs to the unit circle.

(ii) The set of limit points of all branches of the Farey tree is the whole unit circle.

(iii) Two distinct branches v = [v0, v1, v2, v3, . . . ] and w = [w0, w1, w2, w3, . . . ]

have the same limit point on the unit circle if and only if v = XLR∞ and w = XRL∞

or vice versa. In other words, v and w follow the same initial word X and then

v takes a right turn and infinitely many left turns, while w takes a left turn and

infinitely many right turns.

3.3 Shadows in the Farey tree

We denote the subtree which consists of v ∈ F and its descendants by F(v). To a

non-root vertex v ∈ F , we associate the shadow

sv = F(vLR) ∪ F(vRL) ∩ ∂D.

It is not difficult to see that every point on the unit circle, which is not a cusp of one

of the horoballs, is contained in infinitely many shadows sv.

Lemma 3.3. For a non-root vertex v ∈ F , we have

diam sv ≍ diamHv ≍ 1− |v|.

There exists a constant c > 0, independent of v, so that the Farey horoball Hv

contains a Euclidean ball of radius c(1− |v|).

Remark. At first glance, it may seem more natural to define sv as F(v)∩∂D. However,
if the path from the root vertex to v ends on a lot of left or right turns, then diamF(v)

will be a lot larger than 1− |v|.
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4 Background on true trees

In this section, we discuss the relation between true trees and Shabat polynomials,

i.e. polynomials with critical values ±1. We then describe the local geometry of

true trees whose vertices have bounded valence. Finally, we define the notions of

shortcuts and obstacles, which will help in providing moduli estimates to control the

global geometry of true trees.

4.1 True trees and Shabat polynomials

Let T ⊂ C be a finite tree in the plane. To find a conformally balanced tree T with

the same combinatorics as T , we label the sides of edges of T in counter-clockwise

order: e⃗1, e⃗2, . . . , e⃗2N . For each half-edge e⃗i, we form an equilateral triangle △(e⃗i,∞)

with unit-length sides, one of which is labelled e⃗i and the vertex opposite this side

is labelled ∞.

We first glue these equilateral triangles together to form a 2N -gonD2N with sides

labeled counter-clockwise by e⃗i, and central vertex labeled ∞. We then glue e⃗i with

e⃗j whenever e⃗i, e⃗j are opposite sides of the same edge e ∈ T , to obtain a topological

sphere XT = D2N/∼ which has a flat structure except at the cone points located at

the vertices of the triangles. Uniformizing XT
∼= Ĉ so that the central vertex of D2N

is placed at ∞ ∈ Ĉ produces the desired tree T ⊂ Ĉ.

Remark. The conformally balanced tree T resulting from the above construction is

uniquely defined up to an affine transformation z → Az + B. To obtain a unique

tree, we will usually normalize T so that the conformal map φ : Ĉ \D → Ĉ \T has

the expansion z → z +O(1/z) near infinity.

Given a conformally balanced tree T , we construct a polynomial p(z) with critical

values ±1 such that T = p−1([−1, 1]). For this purpose, we colour each triangle

△(e⃗i,∞) ⊂ Ĉ \ T black or white, so that adjacent triangles have opposite colours.

On each black triangle △(e⃗i,∞), we define p(z) to be the conformal map onto the

upper half-plane H which takes e⃗i → [−1, 1] and ∞ → ∞. Similarly, on each white

triangle △(e⃗i,∞), we define p to be the conformal map onto the lower half-plane L
which takes e⃗i → [−1, 1] and ∞ → ∞.
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Since T is a true tree, p extends to a continuous function on the Riemann sphere.

As T is made up of real-analytic arcs, p is meromorphic on the Riemann sphere,

and hence a rational function. As the only pole of p is at infinity, it is a polyno-

mial. Finally, since p is N : 1 at infinity, p is a polynomial of degree N . From the

construction, it is readily seen that p has critical values ±1 and T = p−1([−1, 1]).

To define the Shabat polynomial uniquely, we need to specify which vertices are

sent to +1 and which vertices are sent to −1. A different choice would correspond

to multiplying p(z) by −1. If T has a distinguished vertex vroot, then it is natural to

choose the Shabat polynomial so that p(vroot) = 1.

4.2 Trees of bounded valence

We now present some general results on true trees whose vertices have bounded

valence. We write dT (v, w) for the graph distance between v and w.

Lemma 4.1. Let d ≥ 2 be an integer. Suppose e = v1v2 is an edge in a true tree T
with deg v1 ≤ d and deg v2 ≤ d. There is a simply connected neighbourhood U ⊃ e

with Mod(U \ e) ≥ m(d) such that only edges adjacent to e can intersect U .

Lemma 4.2. Fix an integer d ≥ 2. Let v be a vertex of a conformally balanced tree

T . If the degrees of all vertices in {w : dT (v, w) ≤ 1} are ≤ d, then the diameters

of the edges vvi emanating from v are comparable (with the comparison constant

depending on d).

The proofs use the concept of a star of a vertex in a true tree. For a vertex v of

T , we define ⋆v as the union of the triangles △(e⃗,∞) that contain v. We enumerate

the 2 deg v triangles in ⋆v counter-clockwise: △1,△2, . . . ,△2 deg v.

Now, decompose the unit disk D into 2 deg v sectors σ1, σ2, . . . , σ2 deg v using 2 deg v

equally-spaced radial rays. For each i = 1, 2, . . . , 2 deg v, let ψi be the conformal

map from σi to △i which takes vertices to vertices, with 0 mapping to v. By

Carathéodory’s theorem, ψi extends to a homeomorphism of the closed regions. Since

T is a true tree, the maps ψi agree on the radial boundaries of the sectors σi and

glue together to form a continuous map ψv on the unit disk. As the union of finitely
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many radial rays is conformally removable, ψv defines a conformal map from D to

⋆v.

On an edge ei = vvi of T emanating from v, we mark the points ai, bi such

that the segments vai, aibi, bivi have equal length in the equilateral triangle model of

△(e⃗i,∞), i.e. in D2N/∼. Note that the points ai, bi do not depend on which one of

the two sides of ei is used.

Applying Koebe’s distortion theorem to ψv tells us that the diameters of the

2 deg v segments {
vai, aibi : i = 1, 2, . . . , deg(v)

}
are comparable. By considering stars centered at the neighbouring vertices vi, we

see that {
aibi, bivi : i = 1, 2, . . . , deg(v)

}
.

are also comparable. Putting these estimates together proves Lemma 4.2.

Lemma 4.1 follows from Lemma 2.1 (a) after applying Koebe’s distortion theorem

to ψv1 and ψv2 . Similar reasoning shows:

Lemma 4.3. Suppose {Tn}∞n=0 is an infinite sequence of hydrodynamically-normalized

conformally balanced trees whose vertices have uniformly bounded degrees. Any sub-

sequential Hausdorff limit of a sequence of edges e(n) ⊂ Tn is either a point or a

real-analytic arc. In the latter case, the convergence is in the strong topology.

Proof. Suppose the edge e(n) connects the vertices v
(n)
1 and v

(n)
2 . As above, we mark

the points a(n) and b(n) which trisect the edge e(n). We pass to a subsequence so that

the maps ψ
(n)
v1 and ψ

(n)
v2 converge uniformly on compact subsets of the unit disk.

If the limiting maps ψv1 = limn→∞ ψ
(n)
v1 and ψv2 = limn→∞ ψ

(n)
v2 are constant,

then the edges e(n) collapse to a point. Otherwise, the limiting edge e = lim e(n)

is covered by two compatible real-analytic arcs v1b = limn→∞ v
(n)
1 b(n) and av2 =

limn→∞ a(n)v
(n)
2 , and the conformal maps provide the requisite uniformly converging

parametrizations.
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4.3 Shortcuts and obstacles

Let T be a conformally balanced tree in the plane, normalized so that the Riemann

map φ : Ĉ \ D → Ĉ \ T satisfies φ(z) = z +O(1/z) as z → ∞.

To control the geometry of T , we estimate conformal moduli of various path

families Γ contained in doubly-connected domains A ⊂ C. An instructive example is

the family of closed curves surrounding an edge of the tree, which will be discussed

in detail in Section 4.4.

Since we will only estimate moduli in the setting of finite balanced trees, we will

not have to worry about the possibility that the area of T might be positive.

By conformal invariance, we may estimate the modulus in any of the three con-

formally equivalent models Ĉ \T , D2N/∼ or (Ĉ \D)/∼. In the latter model, the

equivalence relation on ∂D is given by the identifications of φ and the family φ−1(Γ)

consists of sets φ−1(γ) that may be disconnected: if a curve γ ∈ Γ crosses an edge

e ∈ T , then φ−1(γ) enters one side of φ−1(e), teleports through the identification

provided by φ, and exits on the other side of φ−1(e).

We will construct admissible metrics of the form

ρ = α0

(
ρ0 +

∑
e∈T

αeρe

)
, (4.1)

where the background metric ρ0 = 1φ−1(A) serves the purpose of controlling the

length of curves γ that do not intersect T , while the obstacles ρe have the purpose

of penalizing teleportation so that shortcuts are not worthwhile. The constant α0 is

chosen so that curves that do not intersect T have length ≥ 1 under α0ρ0.

We build the obstacles ρe so that they assign length ≥ 1 to all curves γ that

intersect e (and are not confined to the union of the triangles that are incident to

e). It is easiest to describe the construction in D2N/∼, which is a surface composed

of 2N equilateral triangles △(e⃗i,∞) of side length 1: namely, we define ρe as three

times the characteristic function of the 1/3-neighborhood of e in the flat metric, i.e.

ρe = 3× 1B1/3(e),

where B1/3(e) is the set of points of distance at most 1/3 from e.
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We denote the conformal transport of this metric to Ĉ\D again by ρe. Since any

point z ∈ Ĉ \ D can be in the support of at most D = maxv∈T deg(v) obstacles, it

can be in at most D + 1 of the sets supp ρ0 ∪ {supp ρe}, and the area of ρ can be

estimated by

A(ρ) = α2
0

∫
Ĉ \D

(
ρ0(z) +

∑
e∈T

αeρe(z)
)2

|dz|2

≤ (D + 1)2α2
0

∫
Ĉ \D

(
ρ0(z)

2 +
∑
e∈T

α2
e · ρe(z)2

)
|dz|2

≲ α2
0

(
A(ρ0) +

∑
e∈T

α2
e

)
, (4.2)

where in the second step, we used the elementary inequality (
∑n

i=1 xi)
2 ≤ n(

∑n
i=1 x

2
i ),

and in the third step, we absorbed (D + 1)2 into the implicit constant.

For an edge e in T , we denote by T (e) ⊂ T the subtree consisting of the edge

e and its descendants (as measured from the root vertex). It is easy to see that

S(e) = φ−1(T (e)) is an arc in the unit circle ∂D. We define the outer shortcut of e

as the Euclidean length of S(e):

s(e) = length(S(e)) = 2π · ωĈ \T ,∞(S(e)).

We define T −(e) = T (e) \ e as the union of all the descendants of e. Naturally, we

define the inner shortcut of e as

s−(e) = length(S−(e)) = 2π · ωĈ \T ,∞(S
−(e)),

where S−(e) = φ−1(T −(e)). Unless e is a boundary edge, the difference between the

outer and inner shortcuts s(e)− s−(e) = π/N is not significant.

4.4 A lower bound for the diameters of edges

Let T be a true tree and Ω2 ⊂ C be the simply-connected domain bounded by

the equipotential curve φ
(
{z : |z| = 2}

)
. The hydrodynamic normalization of the

conformal map φ implies that diam T ≥ c0 > 0 is bounded from below by a universal

constant (the sharp value c0 = 2 is irrelevant for our purpose).
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In view of Lemma 2.1, to give a lower bound for the diameter of an edge e0 in T ,

it is enough to give an upper bound for the modulus of the family of curves Γ⟲(A)

that separate the boundary components of A = Ω2 \ e0. Denoting A(0; 1, 2) = {z :

1 < |z| < 2}, we will now show that the metric

ρ =
1

s−(e0)

(
1A(0;1,2) +

∑
e∈T −(e0)

s(e)ρe

)
is admissible for φ−1(Γ⟲(A)), where the summation is over the descendants of e0.

Consider a curve γ ∈ Γ⟲(A). If we pull γ back by φ−1, we get a path in the

annulus A(0; 1, 2) which may teleport from x ∈ ∂D to y ∈ ∂D if φ(x) = φ(y) ∈ T \e0.
Below, we denote the radial projection on the unit circle by πrad(z) = z/|z|. If γ

does not pass through any edge in T −(e0), then πrad(φ
−1(γ)) contains S−(e0) and

the metric ρ0 = 1A(0;1,2) assigns length ≥ s−(e0) to φ
−1(γ). In general, the inclusion

S−(e0) ⊂ πrad(φ
−1(γ)) ∪

⋃
e∈T −(e0)
γ∩e̸=∅

S(e)

implies that ∫
φ−1(γ)

(
1A(0;1,2) +

∑
e∈T −(e0)

s(e)ρe

)
|dz| ≥ s−(e0),

thereby establishing the admissibility of ρ. Combined with (4.2), this shows the

upper bound

M(Γ⟲(A)) ≤ A(ρ) ≲
1

s−(e0)2

[
1 +

∑
e∈T −(e0)

s(e)2
]
,

where the implicit constant depends on D, the maximum over the degrees of vertices

in T . As a consequence of the above estimate and Lemma 4.3, we obtain the following

theorem:

Theorem 4.4. Let {Tn}∞n=0 be an increasing sequence of hydrodynamically-normalized

conformally balanced trees whose vertices have uniformly bounded degrees. Suppose

the sums Sn =
∑

e∈Tn s(e)
2 are uniformly bounded. If e

(n)
0 ⊂ Tn is a sequence of

edges with inf s(e
(n)
0 ) > 0, then any subsequential Hausdorff limit of the e

(n)
0 is a real-

analytic arc. Furthermore, the edges e
(n)
0 converge without backtracking (see Section

2.2 for the definition).
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We now apply the above theorem to the sequence of the finite truncations {Tn}
of the infinite trivalent tree. Inspection shows that for an edge e ∈ Tn,

s(e) ≍ 2−dTn (vroot,e).

As the number of edges v ∈ Tn with dTn(vroot, e) = m is ≍ 2m, the sums

Sn =
∑
e∈Tn

s(e)2

are uniformly bounded in n = 1, 2, . . . . Fix an edge e ⊂ T in the infinite tree. For

n > dist(vroot, e), let e
(n) denote the corresponding edge in Tn. Since

s−(e(n)) ≍ 2−dT∞ (vroot,e), n > dist(vroot, e) + 1,

the theorem above implies that the diameters of the edges e(n) are bounded from

below.

On the other hand, if Tn is a random conformally balanced tree with n edges,

chosen uniformly among all of them, then one can show that

E[Sn] =
∑
e∈Tn

E[s(e)2] → ∞,

as n → ∞, suggesting that the diameters of the edges tend to zero. This is indeed

the case: it is proved in [10] that with high probability, the diameter of every edge

is at most 1/nα for some α > 0.

5 Structure of a subsequential limit

Let Tn be the hydrodynamically-normalized conformally balanced trivalent tree of

depth n. In this section, we show that any subsequential limit of the Tn has the right

topological type:

Theorem 5.1. For any subsequential Hausdorff limit of the Tn, one can find a

homeomorphism of the plane which takes it onto the Farey tree F (defined in Section

3) union the unit circle ∂D.
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Remark. Theorem 5.1 holds in the slightly more general setting of Appendix A, with

the same proof, where T ′1 is an arbitrary finite trivalent tree and T ′n+1 is obtained

from T ′n by adding two edges to each boundary vertex.

We first pass to a subsequence so that every edge in the infinite trivalent tree has

a limit along this sequence. In the previous section, we saw that the limit of each

edge is a real-analytic arc. We write T∞ for the union of the Hausdorff limits of the

individual edges. We pass to a further subsequence so that the finite trees Tn also

possess a Hausdorff limit, which we denote by T∞⊔Λ. We refer to Λ as the limit set.

The proof of Theorem 5.1 is based on a number of moduli estimates, which control

the geometry of the finite trees Tn. With the help of these moduli estimates, we prove

the following assertions:

(SL1) T∞ is dense in the Hausdorff limit of the finite trees Tn.

(SL2) For any branch [v0, v1, v2, v3, . . . ] of T∞ with dT∞(vm, vroot) = m, limm→∞ vm

exists.

(SL3) Given two branches [v0, v1, v2, v3, . . . ], [w0, w1, w2, w3, . . . ], limm→∞ vm =

limm→∞wm if and only if the limits of the corresponding branches in the

Farey tree are the same.

We then show the following two topological assertions:

(SL4) The limit set Λ is a Jordan curve ∂Ω which encloses T∞.

(SL5) There is a natural correspondence between the complementary regions of

T∞ ∪ ∂Ω and F ∪ ∂D.

Assuming the facts above, the proof of Theorem 5.1 runs as follows:

Proof of Theorem 5.1. Let h be a homeomorphism of T∞ onto the Farey tree F ,

which takes vertices to the corresponding vertices. In view of Lemma 3.2, the prop-

erties (SL1), (SL2) and (SL3) imply that h extends to a homeomorphism of the

closures: T∞ ∪ ∂Ω and F ∪ ∂D. Since the complementary regions are Jordan do-

mains, by (SL4) and (SL5), we can extend h to a homeomorphism of the plane.
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5.1 Shrinking of diameters

Given a vertex v ∈ Tn, we denote the subtree which consists of v and its descendants

by Tn(v). To prove (SL1) and (SL2), we show:

Lemma 5.2. (i) For every ε > 0, there exists d0(ε) > 0 sufficiently large so that

diam Tn(v) < ε,

for any n ≥ 1 and v ∈ Tn with dTn(vroot, v) ≥ d0(ε).

(ii) For every ε > 0, there exists k0(ε) > 0 sufficiently large so that

diam Tn(vLR
k) ∪ Tn(vRL

k) < ε,

for any n ≥ 1, v ∈ Tn and k ≥ k0(ε).

As in the case of the Farey tree F ⊂ D, the diameter of Tn(v) depends on the

nature of the word representing v. If the path joining vroot to v switches between left

and right turns regularly, then the diameters of Tn(v) decrease exponentially quickly.

On the other hand, if the word for v has long sequences of consecutive L’s and R’s,

then the diameters of Tn(v) shrink at a polynomial rate. This dichotomy is reflected

in the two types of estimates below.

5.1.1 Hyperbolic decay

At an interior vertex v ∈ Tn, the domain Ĉ \Tn has three prime ends. Assuming that

v ̸= vroot is not the root vertex, we can name the three prime ends as left, right and

middle. The left prime end lies between vparentv and vvL, while the right prime end

lies between vparentv and vvR. Naturally, the middle prime end lies between vvL and

vvR.

Let γ(v) denote the hyperbolic geodesic in Ĉ \ Tn which joins the left and right

prime ends at v and V (v) be the domain enclosed by γ(v), see Figure 3. With this

definition, a vertex w is contained in V (v) if and only if w is represented by a word

which begins with v. Moreover, if v2 is a descendant of v1, then V (v2) ⊂ V (v1).

Lemma 5.3. Suppose v is an interior vertex of Tn, other than the root vertex. Then,

ModV (v) \ V (vLR) ≍ 1 and ModV (v) \ V (vRL) ≍ 1.
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i
Figure 3: To a non-root vertex v ∈ Tn, we associate the domain V (v), bounded by

the curve γ(v).

It is enough to examine the modulus of A = V (v) \ V (vLR) as the situation

for ModV (v) \ V (vRL) is entirely symmetric. To prove the lemma, we need to give

uniform upper bounds for the moduli of the curve families Γ⟲(A) and Γ↑(A), which

are independent of n and v ∈ Tn.

To deal with the first curve family, we simply note that every γ ∈ Γ⟲(A) intersects

at least one of the two edges vvL and vLvLR so that the sum of the two obstacles

ρ = ρvvL + ρvLvLR
is an admissible metric of area A(ρ) = O(1).

To deal with the second curve family, by conformal invariance, we may give an

upper bound for the modulus of the curve family φ−1(Γ↑(A)) in φ−1(A) ⊂ Ĉ \D
which allows teleportation, as we did before in Section 4.4. Cutting A along the

tree, we obtain a conformal rectangle R = A \Tn whose vertices are the prime

ends where γ(v) and γ(vLR) meet Tn. Its pre-image R̂ = φ−1(R) ⊂ Ĉ \D is a

conformal rectangle whose vertices are the points where the geodesics φ−1(γ(v)) and

φ−1(γ(vLR)) meet the unit circle. We label the vertices z1, z2, z3, z4 in counter-

clockwise order such that z1 corresponds to the right prime end of v. Due to the

“left-right” turn between v and vLR, the distances between the points zi, 1 ≤ i ≤ 4,

are comparable:

|z1 − z2| ≍ |z2 − z3| ≍ |z3 − z4| ≍ 2−d, d = dTn(vroot, v).

Hence, the background metric ρ0 = 1φ−1(A) assigns length ≳ 2−d to every curve in
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φ−1(Γ↑(A)) that does not teleport.

Arguing as in Section 4.4 shows that the metric

ρ = C02
d
(
ρ0 +

∑
e∈V (v)

s(e)ρe

)
(5.1)

is admissible if C0 is sufficiently large (independent of n and v). More precisely, while

the set φ−1(γ) may be disconnected,

σ = φ−1(γ) ∪
⋃

e∩γ ̸=∅

S(e)

is connected and intersects both geodesics φ−1(γ(v)) and φ−1(γ(vLR)). Inspection

shows that the integral
∫
σ
ρ0(z)|dz| computes the Euclidean length of σ\∂D, whereas∫

σ

(∑
e∈V (v) s(e)ρe

)
|dz| is bounded below by the Euclidean length of σ ∩ ∂D. As a

result, ∫
σ

{
ρ0 +

∑
e∈V (v)

s(e)ρe

}
|dz|

is greater or equal to the Euclidean distance between the geodesics φ−1(γ(v)) and

φ−1(γ(vLR)), which is comparable to 2−d. Consequently, the factor C02
d in (5.1)

makes the metric ρ admissible.

From s(e) ≍ 2−dTn (vroot,e), it is clear that
∑

e∈V (v) s(e)
2 ≲ 2−2d. The area bound

A(ρ) = O(1) now follows from (4.2). Putting the above information together shows

the desired modulus bound.

5.1.2 Parabolic decay

We continue to assume that v ∈ Tn is an interior vertex, other than the root vertex.

For each 0 ≤ j ≤ n − 1 − dTn(vroot, v), we connect the vertices vLRj and vRLj by

two hyperbolic geodesics αj, βj ⊂ Ĉ \Tn, with the inner geodesic αj joining

(vLRj)right with (vRLj)left

and the outer geodesic βj joining

(vLRj)left with (vRLj)right.
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Figure 4: The region Wj = Wj(v) is associated to a non-root vertex v ∈ Tn and an

integer j ≥ 0. It is bounded by the hyperbolic geodesics αj and βj.

We then define Wj = Wj(v) as the simply-connected domain bounded by the Jordan

curve αj ∪ βj. See Figure 4.

Lemma 5.4. Suppose v is an interior vertex of Tn, other than the root vertex. Then,

Mod W0(v) \Wk(v) ≍ log(1 + k),

for any 1 ≤ k ≤ n− 1− dTn(vroot, v).

Since the annulus V (v) \ V (vLRk) ⊃ W0 \Wk, its modulus is strictly larger. In

particular, the lemma implies that ModV (v) \ V (vLRk) ≳ log(1 + k).

Proof. For brevity, we write A = W0 \Wk. To show the upper bound for ModA, we

need to estimate the modulus of the family of curves Γ⟲ which separate the boundary

components of A. The tree Tn splits A into two conformal rectangles Rα and Rβ,

with ∂Rα ⊃ α0 ∪ αk and ∂Rβ ⊃ β0 ∪ βk. Since a curve in Γ⟲(A) contains a crossing

that joins the Tn-sides of Rα, ModΓ⟲(A) ≤ ModRα. The latter modulus may be

computed in the exterior unit disk: ModRα = Modφ−1(Rα) ≍ log(1+k) as desired.

We now turn to the lower bound. For this purpose, we decompose A into a union

of shells:

A =
k⋃

j=1

Aj =
k⋃

j=1

Wj−1 \Wj.
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By the parallel rule, it is enough to show that ModΓ↑(Aj) ≲ j, for each j =

1, 2, . . . , k. As usual, we estimate the modulus of the family

φ−1(Γ↑(Aj)) ⊂ φ−1(Aj) ⊂ Ĉ \D.

The pre-image φ−1(Aj) = R̂β,j ∪ R̂α,j consists of two conformal rectangles in Ĉ \D,
with R̂α,j bounded by α̂j−1, α̂j and the unit circle, and R̂β,j bounded by β̂j−1, β̂j and

the unit circle.

Let ρα,0(z) be the extremal metric on the conformal rectangle R̂α,j for the family

of curves contained in R̂α,j that connect α̂j−1 and α̂j. It is easy to see that A(ρα,0) ≍
j + 1. As in the proof of Lemma 5.3, there is a metric ρβ,0 of the form (5.1) with

A(ρβ,0) ≍ 1 which assigns length ≥ 1 to every curve γ in R̂β,j that connects β̂j−1 and

β̂j with or without teleportation. More precisely, since the four marked endpoints of

β̂j−1 and β̂j have mutually comparable distances ≍ 2−dTn (vroot,v)−j, the reasoning in

the proof of Lemma 5.3 shows that the metric

ρβ,0 = C02
dTn (vroot,v)+j

(
1R̂β,j

+
∑

e∈V (v
LRj−1 )∪V (v

RLj−1 )

s(e)ρe

)
(5.2)

is admissible if C0 is sufficiently large.

A path in φ−1(Γ↑(Aj)) connects α̂j−1 ∪ β̂j−1 with α̂j ∪ β̂j, where one is allowed

to take shortcuts by teleporting from x ∈ ∂D to y ∈ ∂D if φ(x) = φ(y) ∈ Tn. Such

a path is either contained in R̂α,j, or contained in R̂β,j, or intersects one of the two

edges e1 = [vLRj−1, vLRj] and e2 = [vRLj−1, vRLj]. To obtain a metric admissible

for φ−1(Γ↑(Aj)), we modify ρ0(z) = ρα,0(z) + ρβ,0(z) by adding two obstacles along

the edges e1 and e2 which make it impractical for a path to teleport from R̂β,j to

R̂α,j:

ρ = (ρα,0 + ρβ,0) + ρe1 + ρe2 .

As each obstacle has area O(1), the area A(ρ) ≍ j + 1, which gives the desired

modulus bound.

5.1.3 Conclusion

We are now ready to show Lemma 5.2:
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Proof of Lemma 5.2. Let v ∈ Tn be an interior vertex, other than the root vertex.

We have seen that Tn(v) ⊂ V (v). Let

[vroot, v] = [v0 = vroot, v1, v2, v3, . . . , vm = v]

be the path in Tn joining vroot to v. In view of the hydrodynamic normalization,

V (v1) ⊂ Ω2 ⊂ B(0, 8) is contained in a ball of fixed size. Consequently, to prove (i),

it is enough to show that ModV (v1) \ V (v) is large when dTn(vroot, v) is large.

There are two cases to consider. If the path [vroot, v] frequently switches between

left and right turns, then ModV (v1) \ V (v) will be large by Lemma 5.3 and the

parallel rule. If we turn left many times or turn right many times without switching,

then ModV (v1) \ V (v) will be large by Lemma 5.4. By considering the cases where

the number of switches is ≥
√
m or ≤

√
m, one gets the quantitative estimate

ModV (v1) \ V (v) ≳ logm.

By Lemma 2.1(a), diamV (v) → 0 uniformly in n as m = dTn(vroot, v) → ∞, which

shows (i). To prove (ii), we note that

Tn(vLR
k) ∪ Tn(vLR

k) ⊂ Wk(v) ⊂ V (v)

and appeal to Lemmas 5.4 and 2.1(a).

Remark. In conjunction with Lemma 3.1, a more careful reading of the above proof

shows the estimate

log
1

diam Tn(v)
≲ log

1

diamFn(v)
.

With a little more work, one can show that the two quantities are comparable, but

since we will not need this fact, we will not give the proof.

5.2 The limit set is a Jordan curve

Our next objective is to show (SL3) and (SL4). For two boundary vertices v1, v2 ∈ Tn,

we denote by dω(v1, v2) the harmonic measure as seen from infinity of the shorter arc

on the unit circle with endpoints φ−1(v1) and φ−1(v2). The following lemma says

that if the harmonic measure between two boundary vertices v1, v2 is small, then the

Euclidean distance |v1 − v2| is also small:

29



Lemma 5.5. For any ε > 0, there exists an η > 0, such that if v1, v2 ∈ Tn are two

boundary vertices for which dω(v1, v2) < η, then the Euclidean distance |v1 − v2| < ε.

Before explaining the proof, we examine an analogous situation: Consider the

dyadic tree whose vertices are dyadic intervals in [0, 1], with the root vertex being the

whole interval [0, 1], and a vertex corresponding to a dyadic interval I is connected to

its two dyadic children IL and IR by edges. For two points x1, x2 ∈ [0, 1], consider the

minimal dyadic interval I containing them. There are two scenarios when |x1 − x2|
is small: either I is a short interval or there exists a large integer k ≥ 1 so that

x1 ∈ ILRk and x2 ∈ IRLk (or vice versa). Note that in the first case, |I| ≍ |x1 − x2|,
while in the second case, |ILRk | = |IRLk | ≍ |x1 − x2|.

Proof. Let v be the last common ancestor of v1 and v2 so that v1, v2 ∈ Tn(v) and

v1 = vLX, v2 = vRY (or vice versa) for some sequencesX, Y . Suppose that dω(v1, v2)

is small. There are two non-mutually exclusive possibilities:

1. v is a vertex of high generation (i.e. far away from the root),

2. v1 ∈ Tn(vLR
k) and v2 ∈ Tn(vRL

k), where k ≥ 1 is large integer.

In the first case, Tn(v) ⊂ V (v) has small diameter by Lemma 5.2(i). In the second

case, Tn(vLR
k) ∪ Tn(vRL

k) ⊂ Wk(v) has small diameter by Lemma 5.2(ii). Since

v1, v2 are contained in the above regions, in both cases, |v1 − v2| is small.

Remark. We enumerate the boundary vertices of Tn in the order that they appear as

one walks counter-clockwise around Tn. The above proof shows that for any ε > 0,

when n ≥ n0(ε) is sufficiently large, hyperbolic geodesics connecting consecutive

boundary vertices have diameter less than ε. Indeed, any such geodesic is contained

in regions of the form V (v) and Wk(v), one of which is guaranteed to have small

diameter.

We now show the converse to Lemma 5.5, namely, if the harmonic measure be-

tween two boundary vertices in Tn is bounded below, then so is their Euclidean

distance:
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Lemma 5.6. For any ε > 0, there exists an η > 0, such that if v, w ∈ Tn are two

boundary vertices for which dω(v, w) > η, then the Euclidean distance |v − w| > ε.

Proof. Let [v0 = vroot, v1, v2, v3, . . . , vn = v] be the path in Tn joining vroot to v and

[w0 = vroot, w1, w2, w3, . . . , wn = w] be the path joining vroot to w. The assumption

implies that there exists an n0 = n0(η) ≥ 1 sufficiently large so that the harmonic

measure between E = [vn0 , vn0+1, . . . , v] and F = [wn0 , wn0+1, . . . , w] is at least η/2.

Recall that in Section 4.4, we showed that the diameters of E and F are bounded

from below. To show that E and F are a definite distance apart, it is enough to

give an upper bound for the modulus of the family of curves ΓE↔F that connect E

to F in Ω2 = φ
(
{z : |z| = 2}

)
. By conformal invariance, we may instead estimate

the modulus φ−1(ΓE↔F ) in A(0; 1, 2) where teleportation is allowed between the

pre-images of points in Tn. An argument similar to the one in Section 4.4 shows that∫
φ−1(γ)

(
1A(0;1,2) +

∑
e∈Tn

s(e)ρe

)
|dz| ≥ η/2, γ ∈ ΓE↔F ,

i.e. 2/η times the integrand is an admissible metric ρ with A(ρ) = O(1/η2).

Comparing Lemmas 5.5 and 5.6 with the topological description of the Farey

tree given in Lemma 3.2 shows (SL3). These lemmas also imply that Λ = ∂Ω is a

Jordan curve: By joining consecutive boundary vertices of Tn by hyperbolic geodesics,

we obtain a sequence of Jordan curves Λn. If we parametrize these curves by the

harmonic measure from infinity, then they converge uniformly to a continuous curve

Λ by the remark following Lemma 5.5. Lemma 5.6 guarantees that this limit curve is

simple, while Lemma 4.1 implies that it is disjoint from T∞. As T∞ is a bounded set,

it must be contained in the interior of Λ. This completes the verification of (SL4).

5.3 Formation of Ω-horoballs

We now turn to showing (SL5). Let v0 ̸= vroot be a vertex of the infinite trivalent

tree. For j ≥ 1, set

vj = v0LR
j−1 and v−j = v0RL

j−1.
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By (SL3), the limits

lim
j→+∞

vj and lim
j→−∞

vj

exist and are equal. We refer to their common value p as a cusp or parabolic point .

By Lemma 4.1, p /∈ T∞. The union of the edges

∞⋃
j=−∞

vjvj+1 ⊂ T∞,

together with p, defines a Jordan curve. We denote the region bounded by this

curve as Ωp. At the root vertex, one can similarly construct three Jordan domains

Ωp1 ,Ωp2 ,Ωp3 . We refer to the regions {Ωpi} as Ω-horoballs.

Lemma 5.7. The regions {Ωpi} enumerate the bounded components of C \ lim Tn.

Proof. We approximate the regions Ωpi by Jordan domains Ω
(n)
pi constructed using

the finite approximating trees Tn as follows: Each finite tree Tn contains only finitely

many corresponding vertices {vj}mj=−m, where m = n− d(vroot, v0). The union of the

edges
⋃m−1

j=−m vjvj+1 ⊂ Tn is a Jordan arc. To form ∂Ω
(n)
pi , we close this Jordan arc

with the hyperbolic geodesic α
(n)
pi ⊂ Ĉ \Tn that connects the leaves v−m, vm ∈ Tn.

In view of Lemma 5.4, diamα
(n)
pi → 0 and Ωpi = limΩ

(n)
pi . Since Ω

(n)
pi is disjoint

from the tree Tn, the regions Ωpi = limΩ
(n)
pi are indeed bounded components of the

complement C \ lim Tn.

Can there be any more complementary components? If O is any connected com-

ponent of C \ lim Tn, then ∂O ⊂ T∞ ∪ Λ. If ∂O intersects one of the edges of T∞,
then O is one of the four Ω-horoballs that form a neighborhood of this edge. If ∂O

does not intersect T∞, then ∂O ⊂ Λ, and since Λ is a Jordan curve, O must be the

unbounded component of C \ Λ.

Remark. For future reference, we note that the convergence of

∂Ω(n)
pi

= α(n)
pi

∪
m−1⋃
j=−m

e
(n)
j → ∂Ωpi , as n→ ∞,

takes place in the strong topology, where e
(n)
j = v

(n)
j v

(n)
j+1 and m = n − d(vroot, v0)

as before. Indeed, the strong convergence of the individual edges was established in
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Lemma 4.3, while by Lemma 5.2, the diameters of

α(n)
pi

∪
⋃

j≤−N

e
(n)
j ∪

⋃
j≥N

e
(n)
j

are uniformly small when N and n are large.

Having established Properties (SL1)–(SL5), the proof of Theorem 5.1 is complete.

5.4 An estimate related to the uniqueness of the limit

For a non-root vertex v ∈ T , we define the shadow sv ⊂ ∂Ω as the arc of ∂Ω of smaller

diameter which joins vLRL∞ = limm→∞ vLRL
m and vRLR∞ = limm→∞ vRLR

m.

A brief inspection of the homeomorphic picture of the Farey tree F ⊂ D shows

that any point on ∂Ω that is not a cusp of an Ω-horoball is contained in infinitely

many shadows. In Section 6.4, we will use the following estimate in conjunction with

Lemma 2.4 to show that the Hausdorff limit of the true trees Tn is unique:

Lemma 5.8. Recall that V (v) ⊂ C is the largest domain bounded by a hyperbolic

geodesic in Tn that joins two of the three prime ends at v, depicted in Figure 3. The

sums ∑
v∈Tn, v ̸=vroot

{
diam2 V (vRL) + diam2 V (vLR)

}
(5.3)

are uniformly bounded above, independent of n.

Since sv is contained in the Hausdorff limit as n→ ∞ of V (vRL)∪ V (vLR), the

above lemma implies that ∑
v∈T∞, v ̸=vroot

diam2 sv <∞.

In particular, ∂Ω has zero area.

Proof. For a hyperbolic geodesic γ̂ ⊂ {z ∈ C : 1 < |z| < 2} ⊂ Ĉ \ D, let zγ̂ be

the Euclidean midpoint of γ̂ and Bγ̂ ⊂ Ĉ \ D be the ball of hyperbolic radius 1/10

centered at
1+|zγ̂ |

2
· zγ̂. In view of the restriction on γ̂, the ball Bγ̂ is contained in the

bounded domain enclosed by γ̂ and the unit circle.
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Recall that Ω2 ⊂ C is the domain bounded by the Jordan curve φ({|z| = 2})
where φ is the conformal map from the exterior unit disk to the exterior of the

developed deltoid, in hydrodynamic normalization.

Similarly, to a hyperbolic geodesic γ ⊂ Ω2 ⊂ Ĉ \ Tn, we can associate the topo-

logical disk Bγ := φ(Bφ−1γ). By Koebe’s distortion theorem, Bγ is approximately

round in the sense that its area is comparable to its diameter squared.

We apply the above construction to the geodesics γ(v) = ∂V (v) ⊂ Ω2 from

Section 5.1, where v ranges over interior vertices of Tn, other than the root vertex.

From the construction, it is clear that Bγ(v) ⊂ V (v).

To prove the estimate (5.3), it is enough to show that

diamV (vLR) ≍ diamBγ(vLR), (5.4)

as the topological disks Bγ(vLR) are disjoint and are contained in a bounded set. In

view of Lemma 2.1, to prove (5.4), we may show the following two moduli estimates:

1. ModV (v) \ V (vLR) is bounded below.

2. ModV (v) \Bγ(vLR) is bounded above.

The first estimate was already established in Lemma 5.3. The second estimate is

automatic from Koebe’s distortion theorem.

Remark. One can show that the set sv in the lemma above and the Jones-Smirnov

shadow (defined in Section 2.4) of the closed ball of hyperbolic radius 1 centered at

v with respect to vroot ∈ Ω have comparable diameters.

6 Convergence

In this section, we show that the Hausdorff limit T∞ ∪ ∂Ω of the finite trees Tn is

unique. The main step is to prove that any subsequential Hausdorff limit realizes

the mating of z → z2, acting on the exterior unit disk De, and the Markov map

z → ρ(z) associated to the reflection group of an ideal triangle △hyp, acting on the

unit disk D. (The Markov map has been defined in Section 1.1). The proof involves

identifying the Farey structure inside Ω and the z → z2 structure outside Ω.
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6.1 Farey horoballs

Recall from Section 3 that the Farey tree F partitions the unit disk D into regions

called Farey horoballs Hpi , which are indexed by the point where they touch the

unit circle. We label the vertices on ∂Hpi in counter-clockwise order by vj(Hpi), for

j ∈ Z, with v0(Hpi) being the vertex with the smallest combinatorial distance to

vroot. Since the Farey tree is invariant under the group generated by reflections in

the sides of △hyp, Farey horoballs enjoy the following two properties:

(F1) Any two edges e1, e2 ⊂ ∂Hpi have the same relative harmonic measure as

viewed from pi, i.e.

ωHpi ,pi
(e1, e2) = 1.

(F2) If an edge e belongs to two neighbouring Farey horoballs Hpi and Hpj , then

the relative harmonic measures are the same from both sides:

ωHpi ,pi
(I, e) = ωHpj ,pj

(I, e), I ⊆ e.

6.2 Interior Structure of Ω

In Section 5, we saw that any subsequential Hausdorff limit T∞ ∪ ∂Ω of the Tn is

ambiently homeomorphic to the union of the Farey tree F and the unit circle ∂D.
Recall that the connected components of Ω \ T∞ are called Ω-horoballs. As with

Farey horoballs, we index Ω-horoballs by the point where they touch ∂Ω and label

the vertices on ∂Ωpi in counter-clockwise order by vj(Ωpi), for j ∈ Z, with v0(Hpi)

being the vertex with the smallest combinatorial distance to vroot.

Remark. With an eye towards Appendix A, we note that the notion of Ω-horoballs

as well as the Lemmas and proofs of this section apply to the slightly more general

setting described in the remark after Theorem 5.1.

Lemma 6.1. The Ω-horoballs also enjoy the properties (F1) and (F2).

Proof. Since the arguments are very similar, we only present the proof of the second

property and leave the proof of the first property to the reader.
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We approximate Ωpi by Jordan domains Ω
(n)
pi as in the proof of Lemma 5.7. Pick

an arbitrary point p
(n)
i ∈ α

(n)
pi . As the diameters of α

(n)
pi tend to 0, the points p

(n)
i → pi.

Suppose two neighbouring Ω-horoballs Ωpi and Ωpj meet along an edge e. Given an

arc I ⊂ e, we can approximate it in the Hausdorff topology by arcs In ⊂ e(n) ⊂ Tn.

By the remark after Lemma 5.7, Ω
(n)
pi strongly converges to Ωpi as n → ∞. Hence

Lemma 2.3 shows that ωΩpi ,pi
(I, e) = limω

Ω
(n)
pi

,p
(n)
i
(In, e

(n)). Consequently, to verify

(F2), it is enough to show that

ω
Ω

(n)
pi

,p
(n)
i
(In, e

(n)) ∼ ω
Ω

(n)
pj

,p
(n)
j
(In, e

(n)), as n→ ∞. (6.1)

An intuitive albeit somewhat informal explanation of (6.1) is as follows: Run

Brownian motion from ∞ until it hits Tn. If it is to hit the arc In ⊂ e(n) from the

side of Ωpi , denoted by In |Ω(n)
pi , then it must pass through the gate α

(n)
pi . Since the

diameter of the gate α
(n)
pi is very small,

ω
Ω

(n)
pi

,p
(n)
i
(In, e

(n)) ∼
ωĈ\Tn,∞(In |Ω

(n)
pi )

ωĈ\Tn,∞(e
(n) |Ω(n)

pi )
=

ωĈ\Tn,∞(In |Ω
(n)
pj )

ωĈ\Tn,∞(e
(n) |Ω(n)

pj )
∼ ω

Ω
(n)
pj

,p
(n)
j
(In, e

(n)).

The equality in the middle reflects the fact that the harmonic measures on the two

sides of every edge e in a true tree are identical.

To rigorously justify these asymptotic equalities, notice that the pre-images of

the approximate Ω-horoballs Ω
(n)
pi and Ω

(n)
pj under the hydrodynamically-normalized

Riemann maps φn : Ĉ \D → Ĉ \Tn are of the form

φ−1n (Ω(n)
pi

) = De ∩Bn,

where the Bn are small disks with centers near ∂De and φ−1n (p
(n)
i ) ∈ ∂Bn. By the

conformal invariance of relative harmonic measure, we have

ω
Ω

(n)
pi

,p
(n)
i
(In, e

(n)) = ωH,∞
(
fn(φ

−1
n (In)), [0, 1]

)
=

length(fn(φ
−1
n (In)))

length([0, 1])
.

As the modulus of the annulus Bn \φ−1n (e(n)) tends to infinity, the Koebe distortion

theorem implies that the above quantity is

∼ length(φ−1n (In))

length(φ−1n (e(n)))
=

ωĈ\Tn,∞(In |Ω
(n)
pi )

ωĈ\Tn,∞(e
(n) |Ω(n)

pi )
,

which is what we wanted to show.
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Since ∂D∪F and ∂Ω∪T are ambiently homeomorphic, one has a correspondence

between the bounded complementary components of ∂D ∪ F (Farey horoballs) and

those of ∂Ω∪T (Ω-horoballs). For each pair of corresponding complementary regions,

form the conformal mapping φi : Hi → Ωi which takes

p(Hi) → p(Ωi), v0(Hi) → v0(Ωi), v1(Hi) → v1(Ωi).

(As Farey horoballs and Ω-horoballs are Jordan domains, by Carathéodory’s theorem,

the maps φi extend to homeomorphisms between the closures.)

Since both Farey and Ω-horoballs satisfy the property (F1), φi maps vj(Hi) →
vj(Ωi) for any j ∈ Z. Additionally, as both Farey and Ω-horoballs satisfy the property

(F2), if two Farey horoballs Hi and Hj share a common edge e, then φi|e = φj|e.
Consequently, the mappings φi : Hi → Ωi glue together to form a homeomorphism

φ : D → Ω, which maps F onto T . Since the edges of F are analytic arcs and

the homeomorphism φ is conformal on D \ F , φ extends analytically across the

open edges. As the vertices are isolated points, they are removable singularities.

Summarizing the above discussion, we have proved the following lemma:

Lemma 6.2 (Interior structure lemma). The mappings φi : Hi → Ωi glue up to form

a conformal mapping φ : D → Ω, which maps F onto T .

6.3 Exterior Structure of Ω

By definition, the harmonic measure ωĈ\Tn,∞ is supported on Tn. From Koebe’s

1/4 theorem, we know that the true trees Tn ⊂ B(0, 8) are contained in a fixed

compact set, so that any subsequential weak-∗ limit ω of the ωĈ\Tn,∞ is a probability

measure supported on the Hausdorff limit T∞∪∂Ω. As the harmonic measure of any

individual edge tends to zero, the support of the limiting measure ω is contained in

∂Ω. Finally, since ∂Ω is uniformly perfect, being a Jordan curve, ω = ωΩe,∞ is the

harmonic measure on ∂Ω as seen from infinity.

Consider the map f(z) = z2 acting on the unit circle. It has fixed points at 1,

ω = e2πi/3 and ω2 = e4πi/3, which divide the circle into three equal arcs. We call this

partition Π0. For k = 1, 2, . . . , the partition Πk = f−k(Π0) divides the circle in 3 · 2k

equal arcs.
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We now define an analogous sequence of partitions of ∂Ω. We define the order of

an Ω-horoball Ωp as

ordΩp = min
v∈∂Ωp

dT∞(vroot, v).

There are three Ω-horoballs of order 0, which contain vroot. Inspection shows that

for k ≥ 1, there are 3 · 2k−1 Ω-horoballs of order k and thus

3 + 3 + 6 + · · ·+ 3 · 2k−1 = 3 · 2k

Ω-horoballs of order at most k. For k = 1, 2, . . . , we define Ψk as the partition of ∂Ω

into 3 · 2k arcs by the cusps of order ≤ k, i.e. the points where Ω-horoballs of order

≤ k meet ∂Ω. The harmonic measures of each arc in Ψk are equal since every arc in

Ψk subtends approximately the same number of edges of Tn.

We now give a more precise explanation using the notation from the proof of

Lemma 5.7: Let α = [p, p′] be a counter-clockwise arc in ∂Ω bounded by two cusps.

For n ≥ max(ord p, ord p′), we define Tn(α) ⊂ Tn as the part of the tree one encoun-

ters while traversing Tn counter-clockwise from v0(p)R
n−deg v0(p) to v0(p

′)Ln−deg v0(p).

From the construction, it is clear that the trees Tn(α) accumulate onto the closed arc

α ⊂ ∂Ω while Tn \ Tn(α) accumulate onto ∂Ω \ α ⊂ ∂Ω. By the weak-∗ convergence

of the harmonic measures, ωĈ \Tn,∞(Tn(α)) → ωΩe,∞(α). Inspection shows that when

α = [p, p′] is an arc in Ψk, the subtree Tn(α) contains 2
n−k + O(n) edges. Since Tn

is a true tree, the harmonic measure of Tn(α) is proportional to the number of edges

in Tn(α):

ωĈ \Tn,∞(Tn(α)) = 1/(3 · 2k) + o(1), as n→ ∞.

Taking the limit as n → ∞, we see that ωΩe,∞(α) = 1/(3 · 2k) as desired. We have

therefore proved:

Lemma 6.3 (Exterior structure lemma). There is a conformal mapping

ψ : (Ĉ \ D,∞) → (Ĉ \ Ω,∞)

which takes Πk to Ψk for any k ≥ 0.
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6.4 Uniqueness of the Hausdorff limit

The interior and exterior structure lemmas (Lemmas 6.2 and 6.3) show that any

subsequential limit ∂Ω realizes the mating of z → z2 and the Markov map ρ(z) of

the reflection group of an ideal triangle (see Section 1.1): Indeed, φ maps the cusps

of the Farey horoballs of order ≤ k to the corresponding cusps of the Ω-horoballs by

Lemma 6.2, and these are mapped to the endpoints of the partition Πk by ψ−1 as

stated in Lemma 6.3. Inspection shows that the welding homeomorphism h = ψ−1◦φ
conjugates the action of ρ : Ψk → Ψk to that of z2 : Πk → Πk, i.e. h ◦ ρ = z2 ◦ h. As⋃∞

k=0 Πk and
⋃∞

k=0Σk are dense in the unit circle, we conclude that h conjugates ρ

to z → z2 on ∂D. This allow us to glue the maps

ψ ◦ z2 ◦ ψ−1 : Ωe → Ωe and φ ◦ ρ ◦ φ−1 : Ω \ φ(△hyp) → Ω \ φ(△hyp)

on ∂Ω to form the Schwarz reflection σ : Ĉ \φ(△hyp) → Ĉ, thereby verifying the

definition of the mating.

The structure lemmas also show that Hausdorff limit of the Tn is unique. Indeed,

if T ′∞ ∪ ∂Ω′ was another subsequential limit of Tn, in addition to T∞ ∪ ∂Ω, we could

conformally map each complementary region in Ĉ \ (T∞ ∪ ∂Ω) to the corresponding

complementary region in Ĉ \ (T ′∞ ∪ ∂Ω′). Lemmas 6.2 and 6.3 guarantee that these

conformal mappings patch together to form a continuous self-map of the sphere

h : Ĉ → Ĉ which is conformal on Ĉ \ (T∞ ∪ ∂Ω). The tree T∞ is conformally

removable as it is locally a finite union of real analytic arcs. Thus, h is conformal on

Ĉ \ ∂Ω. By Lemmas 2.4 and 5.8, h is a Möbius transformation.

6.5 Convergence of the Shabat polynomials

We subdivide each Ω-horoball Ωp into triangles △(e⃗i, p) by connecting the vertices of

T∞ on ∂Ωp to p by hyperbolic geodesics of Ωp. We colour the triangles △(e⃗i, p) ⊂ Ω

black and white, so that adjacent triangles have opposite colours.

We conformally map each black triangle △(e⃗i, p) onto the upper half-plane H so

that e⃗i → [−1, 1], pj → ∞ and each white triangle △(e⃗i, p) onto the lower half-plane

L so that e⃗i → [−1, 1], p→ ∞. Properties (F1) and (F2) from Section 2.3 guarantee

that these conformal maps glue together to form a holomorphic function h defined on
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Ω. By choosing the colouring scheme appropriately, we can ensure that h(vroot) = 1

rather than −1.

From the description of the Shabat polynomials pn for the true trees Tn given in

Section 4.1, it is not difficult to see that pn → h, uniformly on compact subsets of

Ω: By the strong convergence ∂Ω
(n)
p → ∂Ωp as n → ∞, discussed in remark after

Lemma 5.7, it follows that the edges of Tn converge to the corresponding edges of T∞.
Additionally, the pieces of the hyperbolic geodesics in Ĉ \Tn connecting the vertices

of Tn to ∞, which lie in Ω
(n)
p , converge to the hyperbolic geodesics connecting the

vertices of T∞ to p in Ωp. As a result, the triangles △(e⃗i,∞) ⊂ Ĉ, defined in Section

4.1, converge to the corresponding triangles △(e⃗i, p) ⊂ Ωp in the Carathéodory

topology. As pn and h are conformal maps from these triangles to the upper or lower

half-planes, this tells us that pn → h uniformly on compact subsets of any triangle

△(e⃗i, p) ⊂ Ω. Applying similar reasoning to a pair of triangles that have a common

edge shows that pn → h uniformly on compact subsets of the union of these two

triangles. Consequently, pn → h uniformly on compact subsets of Ω away from the

vertices of T∞. Finally, by examining the behaviour of the maps pn and h on the stars

⋆v, which were defined in Section 4.2, we conclude that p → h in a neighbourhood

of each vertex v ∈ T∞.
If R is the Riemann map from H → Ω, then F = h ◦ R is a function on the

upper half-plane which is invariant under a subgroup Γ′ < PSL(2,Z) of index 2. A

fundamental domain for Γ′ is depicted in Figure 5.

Alternatively, Γ′ is the index 2 subgroup of orientation-preserving elements of the

group generated by reflections in the sides of a (3, 3,∞) triangle, i.e. a hyperbolic

triangle with angles 2π/3, 2π/3 and 0. Let XΓ′ be the Riemann surface obtained by

compactifying the quotient (H − S)/Γ′, where S = Γ′(eπi/3) ∪ Γ′(1 + eπi/3) ⊂ H is

the set of points in the upper half-plane that have a non-trivial stabilizer under the

action of Γ′. Inspection shows that compactification adds three points to the quo-

tient, corresponding to the vertices of a (3, 3,∞) triangle, and the resulting Riemann

surface XΓ′ is a Riemann sphere.

Since F is invariant under Γ′, it descends to a function on XΓ′ , which we denote

by f . From the description of F in terms of Riemann maps on triangles, it is clear

that f is injective on XΓ′ and the image of f is all of Ĉ. In other words, f is a
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Figure 5: One can construct a fundamental domain for Γ′ from two copies of the

fundamental domain for PSL(2,Z). The function h sends the blue part of the funda-

mental domain to the upper half-plane and the orange part to the lower half-plane.

conformal map from XΓ′ to Ĉ.

Lemma 6.4. The modular function F in Theorem 1.1 is a Hauptmodul for Γ′,

which means that F generates the field of meromophic functions on the upper half-

plane invariant under Γ′.

Proof. Equivalently, the lemma states that f generates the field of meromophic func-

tions on XΓ′ . This is straightforward as any Möbius transformation generates the

field of meromorphic functions on the Riemann sphere.

Remark. (i) The Hauptmodul is unique up to post-composing F with a Möbius

transformation.

(ii) The Hauptmodul for the (2, 3,∞) triangle group or PSL(2,Z) is the Klein

j-invariant. Consequently, one may think of F as an analogue of the j-invariant for

the (3, 3,∞) triangle group.

A Trivalent true trees are dense

In this appendix, we show that one can approximate any connected compact set K

in the plane in the Hausdorff topology by finite trivalent true trees, thereby giving

another proof of Bishop’s theorem [3]:
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Theorem A.1 (Bishop). For any compact connected set K ⊂ C and ε > 0, there is

a conformally balanced tree T such that the Hausdorff distance dH(K, T ) < ε.

Figure 6: Unbalanced truncations of the infinite trivalent tree.

A.1 Generalized developed deltoids

Start with a finite trivalent tree T ′1 , for instance with the tree on the left side of Figure

6 which consists of five edges. In each step, add two edges to each boundary vertex.

This gives us a sequence of true trees {T ′n}∞n=1. The arguments presented in this paper

(see the remark after Theorem 5.1) show that the finite trees T ′n converge in the

Hausdorff topology to an infinite trivalent tree union a Jordan curve: T ′∞ ∪ ∂Ω′. We

refer to the family of Jordan domains Ω′ arising in this way as generalized developed

deltoids . We will prove the following strengthening of Bishop’s theorem:

Theorem A.2. For any compact connected set K ⊂ C and ε > 0, one can choose

the starting tree T ′1 so that the Hausdorff distance

dH(L ◦ T ′n, K) < ε,

for any n ≥ 1 sufficiently large and some linear mapping L(z) = az + b in AutC.

The strategy of our proof is as follows: We first reduce the theorem to the problem

of approximating a given Jordan curve γ (chosen to approximate K) by a general-

ized developed deltoid ∂Ω′. Next, we observe that every Jordan curve γ can be
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approximated by the image f(∂Ω) of the developed deltoid under a quasiconformal

map that is conformal on Ω. Finally, to show that any such curve ∂Ω̃ = f(∂Ω) can

be approximated by a generalized developed deltoid ∂Ω′, we consider the relations

between the welding homeomorphisms h of ∂Ω, h′ of ∂Ω′ and h̃ of f(∂Ω). A key ob-

servation is that h′◦h−1 is piecewise-linear and that such homeomorphisms are dense

in the set of all quasisymmetric homeomorphisms in the appropriate topology, so in

particular, they can approximate h̃◦h−1. Summarizing, our chain of approximations

is K ≈ γ ≈ f(∂Ω) ≈ ∂Ω′.

A.2 Reductions

 

Do

Figure 7: Approximating the unit circle and the unit disk in the Hausdorff topology

by thin Jordan domains.

Reduction 1. To prove the theorem, it is enough to show that up to a linear

rescaling, any Jordan curve γ is the Hausdorff limit of generalized developed deltoids.

To explain the reduction, we first approximate the compact connected set K ⊂ C
in the Hausdorff topology by Jordan curves γk that are (1/k)-thin, i.e. any point in

the domain Γk enclosed by γk lies within 1/k of γk. This ensures that as k → ∞,

both the curves γk and the closed domains Γk converge in the Hausdorff topology to

K. See Figure 7 above for examples.

We then approximate each γk by a generalized developed deltoid Lk ◦∂Ω′k within

Hausdorff distance 1/k. As the curves Lk ◦ ∂Ω′k are (2/k)-thin, both Lk ◦ ∂Ω′k and

Lk ◦ Ω′k converge to K. Therefore, if T ′k,l, l = 1, 2, . . . is a sequence of finite trees
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associated to a generalized developed deltoid Ω′k, then dH(Lk ◦ T ′k,l, γk) ≤ 4/k for all

sufficiently large l ≥ l0(k). A diagonal argument produces a sequence of finite trees

which converges to K.

Reduction 2. It is enough to show that up to a linear rescaling, the image of

the boundary of the developed deltoid ∂Ω under a quasiconformal map f : C → C,
which is conformal on Ω, is the Hausdorff limit of a sequence of generalized developed

deltoids.

The reduction will be explained in Section A.4. It relies on the following lemma,

which says that one can approximate Jordan curves by quasiconformal images of a

fixed Jordan curve:

Lemma A.3. Let Ω ⊂ C be a bounded Jordan domain. For any Jordan curve γ and

ε > 0, one can find a quasiconformal map f : C → C, which is conformal on Ω and

takes ∂Ω onto a Jordan curve ∂Ω̃ for which the Hausdorff distance dH(∂Ω̃, γ) < ε.

Proof. Fix a smooth curve γε surrounding γ such that dH(γ, γε) < ε. Similarly,

approximate Ω from the outside by the smoothly bounded domains

Ωδ = ψ
(
{|z| > 1 + δ}

)
, δ > 0,

where ψ is the conformal map from De to Ωe as before. Let fδ be the conformal

map from Ωδ onto the region Γε enclosed by γε, normalized to map a point z0 ∈ Ω

to a point w0 ∈ Γε. Since Ωδ converges to Ω in the Carathéodory topology, as

δ → 0, the inverse maps f−1δ converge uniformly on compacta to a conformal map

f−1 : Γε → Ω. For small δ > 0, the curve f−1δ (γ) will be compactly contained in Ω,

and so fδ(∂Ω) will be contained in the doubly-connected region bounded by γ and

γε. Consequently, any smooth extension of fδ|Ω to the sphere, fixing ∞, will fulfill

the conclusion of the lemma.

A.3 Trivalent tree weldings

In this section, we discuss conformal weldings of generalized developed deltoids and

show that they can approximate every quasisymmetric homeomorphism.
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Recall that any non-root vertex in the trees Tn and T∞ can be labeled by a digit

1, 2, 3 followed by a sequence of left and right turns. In order to label the vertices of

T ′n and T ′∞ in a similar fashion, we designate a vertex in T ′1 as the root vertex and

select one of the adjacent vertices as the vertex labeled 1.

Let φ : (D, 0, 1) → (Ω, vroot, pΩ) and ψ : (De,∞, 1) → (Ωe,∞, pΩ) be conformal

mappings to the interior and exterior of the developed deltoid respectively, where

pΩ = lim
k→∞

v1Rk = lim
k→∞

v3Lk

is one of the three cusps of the developed deltoid of order 0. The composition

h = ψ−1 ◦ φ : ∂D → ∂D defines a homeomorphism of the unit circle, which is called

the welding homeomorphism of (∂Ω, vroot,∞, pΩ). Form the analogous mappings

φ′, ψ′ and h′ for (∂Ω′, v′root,∞, p′Ω).

Inspection shows that the weldings h and h′ are related by a piecewise linear

homeomorphism F of the unit circle: h′ = F ◦ h. For instance, in the example

depicted in Figure 6, to describe F , we divide the unit circle into three equal arcs

and map these onto arcs of lengths π, π/2, π/2 respectively, which corresponds to the

fact that one third of the tree has the same number of edges as the other two thirds.

Let TPL1 = {F = h′ ◦ h−1 : T ′1 finite, trivalent} denote the collection of piecewise

linear homeomorphisms of the unit circle that arise in this way as T ′1 ranges over all

finite trivalent trees.

Lemma A.4. For any quasisymmetric homeomorphism of the unit circle F ∈ QS1

which fixes 1 ∈ ∂D, there is a sequence of homeomorphisms Fk ∈ TPL1 which con-

verge to F uniformly on the unit circle and whose quasisymmetry constants are uni-

formly bounded. (In fact, one may choose the homeomorphisms Fk so that their

quasisymmetry constants are comparable to the quasisymmetry constant of F .)

Proof. Recall the partition Πn of S1 into 3 · 2n equal arcs from Section 6.3. Since F

is a quasisymmetry, there is a bound K (comparable to the quasisymmetry constant

of F ) such that
1

K
≤ |F (α)|

|F (α′)|
≤ K

for all n ≥ 1 and all pairs of adjacent arcs α, α′ ∈ Πn, and this set of inequalities

characterizes quasisymmetry. For a given ε = 1/k > 0, we will construct a trivalent
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tree T ′1 whose associated piecewise linear homeomorphism Fk satisfies∣∣∣∣ |F (α)||Fk(α)|
− 1

∣∣∣∣ ≤ ε, α ∈ Πk, (A.1)

and
1

C(K)
≤ |Fk(α)|

|Fk(α′)|
≤ C(K), (A.2)

for all pairs of adjacent arcs α, α′ ∈ Πn with n > k. The quasisymmetry of F

and (A.1) ensure the quasisymmetry of Fk on large scales, while (A.2) guarantees

quasisymmetry on small scales. Furthermore, (A.1) implies the convergence of Fk →
F or equivalently of F−1k ◦ F to the identity.

As usual, let Tk be the regular trivalent tree of depth k. Each leaf vertex v ∈ Tk

corresponds to an arc α(v) ∈ Πk−1. We approximate the stretch factors λ(v) =

|F (α)|/|α| by choosing (possibly very large) positive integers n(v) such that∣∣∣∣ n(v)n(v′)
− λ(v)

λ(v′)

∣∣∣∣ ≤ ε, (A.3)

for any pair of leaf vertices v, v′ ∈ Tk. We construct the tree T ′1 by attaching ñ(v) =

2n(v) − 2 vertices to each leaf vertex v ∈ Tk, in such a way that v has n(v) leaf

descendants in T ′1 , all at distance ℓ or ℓ + 1 from v, where 2ℓ ≤ ñ(v) < 2ℓ+1. (The

relation between n(v) and ñ(v) comes from trivalence.) In the example depicted

Figure 6 above, for k = 1, the three stretch factors are 1/2, 1/4, 1/4, and the choice

n(v) = 4, 2, 2, i.e. ñ(v) = 6, 2, 2, satisfies (A.3) exactly, i.e. with ε = 0.

Recall that the sequence of trees {T ′n}∞n=1 is built inductively from T ′1 by attaching

two edges to each boundary vertex at each step, while the Hausdorff limit of the T ′n
consists of an infinite tree T ′∞ together with a Jordan curve ∂Ω′. By construction,

each vertex v ∈ T ′n at distance k from the root has 2n · n(v) leaf descendants in T ′n,
and hence a total of 2n+1 · n(v)− 2 of descendants in T ′n. An argument analogous to

the one in the proof of Lemma 6.3 shows

ωΩ′
e,∞(ψ

′(α(v)))

ωΩ′
e,∞(ψ

′(α(v′)))
=
n(v)

n(v′)
,

for two vertices v, v′ with d(vroot, v) = d(vroot, v
′) = k. Together with (A.3), the

above identity implies (A.1).
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Finally, (A.2) follows from the fact that the stretch factors associated to adjacent

leaf vertices v, v′ ∈ Tk are comparable. More precisely, let n > k and α = α(vn), α
′ =

α(v′n) ∈ Πn be adjacent arcs, corresponding to vertices vn, v
′
n ∈ T ′∞ a distance n− 1

away from the root. If vn, v
′
n are children of the same leaf vertex v ∈ Tk, then

1

2
≤ |Fk(α)|

|Fk(α′)|
≤ 2.

If instead vn, v
′
n are children of adjacent leaf vertices v, v′ ∈ Tk, then

1

2

n(v)

n(v′)
≤ |Fk(α)|

|Fk(α′)|
≤ 2

n(v)

n(v′)
,

as desired. The proof is complete.

A.4 Conclusion of the proof

Suppose Ω̃ = f(Ω) is the image of the developed deltoid under a quasiconfor-

mal mapping of the plane that is conformal on Ω. As in Section A.3, we de-

note the welding map associated to the developed deltoid by h = ψ−1 ◦ φ, where
φ : (D, 0, 1) → (Ω, vroot, pΩ) and ψ : (De,∞, 1) → (Ωe,∞, pΩ) are the normalized

conformal mappings to the interior and exterior of the developed deltoid respec-

tively. Similarly, we denote the welding homeomorphism of ∂Ω̃ by h̃ = ψ̃−1 ◦ φ̃,
where φ̃ : (D, 0, 1) → (f(Ω), f(vroot), f(pΩ)) and ψ̃ : (De,∞, 1) → (f(Ωe),∞, f(pΩ))

are the normalized conformal maps to the interior and exterior regions bounded by

∂Ω̃. Since f is conformal on Ω, we have φ̃ = f ◦ φ on D. As

F̂ = ψ̃−1 ◦ f ◦ ψ

is a quasiconformal automorphism of De, it extends to a quasisymmetric homeomor-

phism of the unit circle ∂D that fixes 1, which we denote by F . Consequently, on

∂D, we have

h̃ = ψ̃−1 ◦ φ̃ = ψ̃−1 ◦ f ◦ φ = F ◦ h.

Conversely, given a quasisymmetric homeomorphism F ∈ QS1(∂D), let F̂ be an

arbitrary quasiconformal extension to the exterior unit disk which fixes the point
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at infinity and ψ∗µF̂ be the pushforward of the Beltrami coefficient of F̂ under the

conformal map ψ : De → Ωe. Inspection shows that any solution fµ̂ : C → C of the

Beltrami equation with dilatation µ̂ = ψ∗µF̂ in Ωe and µ̂ = 0 on Ω maps ∂Ω to a

Jordan curve with welding F ◦ h.
Let Fk ∈ TPL1 be the piecewise-linear approximations of F given by Lemma

A.4. With help of the Ahlfors-Beurling extension, it is not hard to construct qua-

siconformal extensions F̂k of Fk and F̂ of F to the exterior unit disk, such that

the Beltrami coefficients µF̂k
converge to the Beltrami coefficient µF̂ uniformly on

compact subsets of De and have uniformly bounded dilatation. (Alternatively, using

an argument similar to the one in [16], one can construct a quasiconformal self-map

of the exterior unit disk F̂k which agrees with Fk on the unit circle and with F̂ on

Ĉ \B(0, rk), for some radius rk slightly larger than 1. In this case, µF̂k
= µF̂ outside

the disc of radius rk.)

Consequently, if one normalizes the solutions fk = fµ̂k
of the Beltrami equation

(with dilatations µ̂k = ψ∗µF̂k
in Ωe and µ̂k = 0 on Ω) such that

fk(vroot) = f(vroot), fk(pΩ) = f(pΩ), fk(∞) = f(∞) = ∞,

then the curves fk(∂Ω) converge in the Hausdorff sense to ∂Ω̃ = f(∂Ω). From the

discussion above, it follows that for any k = 1, 2, . . . , the four-tuple(
fk(∂Ω), fk(vroot),∞, fk(pΩ)

)
has welding homeomorphism Fk ◦ h. In light of Reduction 2 from Section A.2, to

complete the proof of Theorem A.2, it remains to explain that the curves fk(∂Ω)

are linear rescalings of the generalized developed deltoids ∂Ω′k with weldings Fk ◦ h.
This crucially relies on the conformal removability of the boundary of the developed

deltoid, proved in [8]. Namely, the conformal removability of ∂Ω implies that the Jor-

dan curve with welding Fk ◦h is uniquely determined up to a Möbius transformation

(and in fact, up to a linear map, given our normalization at infinity).
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B True tree approximation of cauliflower

In this appendix, we describe a sequence of true trees whose limit set is the cauliflower,

the Julia set of f(z) = z2 + 1/4.
 

i

Figure 8: A sequence of planar trees given by an inductive construction.

Let T1 be a planar tree which consists of a root vertex vroot and four edges

vrootv↑, vrootv→, vrootv↓, vrootv←,

labeled counter-clockwise. The arrows indicate the positions of the vertices relative

to the root vertex. For instance, the vertex v↑ is located above vroot. We colour

the edges vrootv↑, vrootv↓ blue and vrootv←, vrootv→ red. To obtain Tn+1 from Tn, we

attach additional edges at each leaf vertex:

• If a leaf edge is red, we attach another red edge at the leaf vertex.

• If a leaf edge is blue, we attach three edges, coloured blue-red-blue in counter-

clockwise order.

The trees T1 and T2 are depicted on Figure 8. From this description, it is easy to

see that Tn is made out of

4 + 8 + 16 + · · ·+ 2n+1 = 2n+2 − 4

edges, with the same number of red and blue edges.
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Figure 9: A sequence of true trees which approximates J (z2 + 1/4).

Let Tn be the hydrodynamically-normalized true tree representative of Tn. Note

that the colouring is only used to describe the combinatorics of Tn, it plays no role

in how the true tree Tn is constructed from Tn.

In order to state a result analoguous to Theorem 1.1, we recall two definitions

from complex dynamics. Let f be a rational map acting on the Riemann sphere.

The grand orbit of a point z ∈ Ĉ is the set of points which can be obtained from z

by means of forward and backward iteration. In other words, the grand orbit of z

consists of points w ∈ Ĉ such that f ◦m(w) = f ◦n(z) for some m,n ≥ 0.

It is well-known that if p is a parabolic fixed point of f and Ω is one of the

components of the immediate parabolic basin of attraction of p, then the quotient

Ω/(z ∼ f(z)) is a cylinder, and so is conformally equivalent to C/(w ∼ w + 1).

Lifting the conformal equivalence of the cylinders, we obtain a holomorphic map

ψ : Ω → C known as the Fatou coordinate which satisfies

ψ(f(z)) = ψ(z) + 1. (B.1)

From the construction, it is clear that the Fatou coordinate is determined uniquely

up to an additive constant. We refer the reader to [13, Section 10] for details.
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Theorem B.1. The trees Tn converge in the Hausdorff topoology to an infinite tree

union a Jordan curve T ∪∂Ω. The Jordan curve ∂Ω is the Julia set of z2+1/4, while

the set of vertices of T is the grand orbit of the critical point 0 of f(z) = z2 + 1/4.

Let ψ : Ω → C be the Fatou coordinate at the parabolic fixed point 1/2 ∈ J (f), with

ψ(0) = 0. The Shabat polynomials pn(z) of Tn, with pn(0) = 1, converge uniformly

on compact subsets of Ω to cos(π · ψ(z)).

The proof of the above theorem is similar to that of Theorem 1.1, but the moduli

estimates are more cumbersome. Rather than presenting a full proof, we provide a

few key insights to explain why Theorem B.1 holds.

B.1 Tile decomposition

As shown on the right side of Figure 9, the repeated pre-images of the line segment

[0, 1/2) separate Ω, the interior of the filled Julia set of f(z) = z2 + 1/4, into a

countable collection of tiles. The union of these curves constitutes a tree, which we

refer to as the skeleton of the cauliflower , whose vertices are points in the grand orbit

of the critical point 0. We designate the critical point 0 as the root vertex. Note

that [0, 1/2) is not a single edge but the union of countably many edges:

[0, 1/2) = [0, f(0)] ∪ [f(0), f ◦2(0)] ∪ [f ◦2(0), f ◦3(0)] ∪ . . . .

We label the tiles as Ωp,L or Ωp,R, where p ranges over the cusps in ∂Ω. Below,

we write X for one of the symbols L,R. We define the bi-tile Ωp as the union of

Ωp,L,Ωp,R and the arc in Ω that makes up the common boundary of the two tiles.

Under iteration, any tile is eventually mapped onto Ω1/2,L or Ω1/2,R. The tiles

Ω1/2,L and Ω1/2,R are invariant under f , and f restricts to a conformal automorphism

on both Ω1/2,L and Ω1/2,R. We record the following two properties of Ω, which come

from the dynamics of f and the symmetry of Ω with respect to the real axis:

(CT1) If Ωp,X is a tile, then each edge in ∂Ωp,X has the same relative harmonic

measure as viewed from p, i.e. if e1, e2 ⊂ Ωp,X , then

lim
z→p, z∈Ωp,X

ωz(e1)

ωz(e2)
= 1.
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(CT2) If e is an edge that belongs to two neighbouring tiles Ωp,X and Ωq,Y , then

the relative harmonic measures are the same from both sides. This means

that for any measurable subset E ⊂ e,

lim
z→p, z∈Ωp,X

ωz(E)

ωz(e)
= lim

z→q, z∈Ωq,Y

ωz(E)

ωz(e)
.

We may further decompose each tile Ωp,X ⊂ Ω into countably many triangles

△(e, p,X) by connecting the vertices in ∂Ωp,X to the cusp p ∈ ∂Ωp,X by hyperbolic

geodesics in Ωp,X . Given that f maps tiles to tiles, vertices to vertices and cusps to

cusps, it also maps triangles to triangles. (Since f maps the tile Ωp,X conformally

onto Ωf(p),X , it carries hyperbolic geodesics connecting p to the vertices on ∂Ωp,X

onto geodesics connecting f(p) to the vertices on ∂Ωf(p),X .)

We colour the triangles △(e, p,X) ⊂ Ω black and white, so that

△ = △
(
vrootf(vroot), 1/2, R

)
⊂ Ω1/2,R = Ω1/2 ∩H

is white and adjacent triangles have different colours. Inspection shows that f sends

triangles to triangles of opposite colour. Reflecting △ in the real line, we get a

triangle △ ⊂ Ω1/2,L = Ω1/2 ∩ L. The union △ ∪ vrootf(vroot) ∪ △ constitutes a

fundamental domain for the action of f on Ω.

B.2 Identifying the limit of the Shabat polynomials

Once the convergence of the finite true trees Tn to the skeleton of the cauliflower has

been established, the following lemma can be used to identify cos(πψ(z)) as the limit

of the Shabat polynomials:

Lemma B.2. The map z → cos(πψ(z)) takes each triangle △(e, p,X) ⊂ Ω confor-

mally onto the upper half-plane or the lower half-plane, with black triangles mapping

onto the upper half-plane H and white triangles mapping onto the lower half-plane

L. Furthermore, cos(πψ(z)) takes edges to [−1, 1], cusps to infinity and vroot to 1.

Proof. Step 1. Mapping properties of cos(πz). The lines {y = 0} and {x = n : n ∈ Z}
partition the complex plane into vertical half-strips {Sn,±} of width 1. These may

52



be coloured black and white so that adjacent half-strips have opposite colours, with

S0,+ = {z ∈ C : 0 < Re z < 1, 0 < Im z <∞}

being white. Inspection shows that z → cos(πz) takes each black half-strip confor-

mally onto the upper half-plane and each white half-strip conformally onto the lower

half-plane. Furthermore, the horizontal side of each Sn,± is mapped to the interval

[−1, 1], while the vertical sides are mapped to the intervals (−∞,−1] and [1,∞).

Step 2. Mapping properties of the Fatou coordinate. Recall from the statement

of Theorem B.1 that we normalize the Fatou coordinate ψ so that ψ(vroot) = 0. It is

not difficult to show that ψ maps the bi-tile Ω1/2 conformally onto C \ (−∞, 0]. By

symmetry considerations, ψ maps Ω1/2,R conformally to H and Ω1/2,L conformally

to L. Since ψ : Ω1/2,R → H takes 1/2 to infinity, it carries geodesics in Ω1/2,R

emanating from 1/2 onto vertical rays in H. In view of the normalization on ψ(vroot),

ψ maps the geodesic connecting 1/2 to vroot in Ω1/2,R to {iy : 0 < y < ∞}. By the

functional equation (B.1), ψ sends geodesics connecting 1/2 to the vertices on ∂Ω1/2,R

to the vertical rays {n + iy : 0 < y < ∞} with n ∈ Z. Consequently, ψ maps the

triangles △(e, 1/2, R) conformally onto vertical half-strips Sn,± of the same colour.

By symmetry, the same is true for the triangles △(e, 1/2, L). By invariance, the

same applies to any triangle △(e, p,X) which makes up Ω.

The lemma follows after composing the mappings from Steps 1 and 2.
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