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The Main Cardioid ⊂ Mandelbrot Set

Conjecture: The Weil-Petersson metric is incomplete and its
completion attaches the geometrically finite parameters.



Blaschke products

Let Bd =

{
Blaschke products of degree d

with an attracting fixed point

} /
AutD

e.g B2
∼= D:

a ∈ D : z → fa(z) = z · z + a

1 + az
.

All these maps are q.s. conjugate to each other on S1

and except for for the special map z → z2, are q.c. conjugate on
the entire disk.



a = 0.5



a = 0.95



Mating

Let fa, fb be Blaschke products.

Exists a rational map fa,b and a
Jordan curve γ s.t

I fa,b|Ω−
∼= fa,

I fa,b|Ω+
∼= fb.

fa,b, γ change continuously with a,b.

(
In degree 2, fa,b = z · z + a

1 + bz

)



McMullen’s paper on thermodynamics

Let fa(t) be a curve in Bd . Can form fa(0),a(t).

The function t → H. dim γ0,t satisfies:

H. dim γ0,0 = 1.

d

dt

∣∣∣∣
t=0

H. dim γ0,t = 0.

Definition (McMullen).

d2

dt2

∣∣∣∣
t=0

H. dim γ0,t =: ‖ḟa(t)‖2
WP.

f0

ft



McMullen’s paper on thermodynamics (ctd)

Let Ht denote the conformal conjugacy from D to Ω−(f0,t).
The initial map H0 is the identity. Let

v =
d

dt

∣∣∣∣
t=0

Ht

be the holomorphic vector field of the deformation.

McMullen showed that

‖ḟa(t)‖2
WP =

4

3
· lim
r→1

∫
|z|=r

∣∣∣∣v ′′′ρ2
(z)

∣∣∣∣2 dθ2π
.



Example: Weil-Petersson metric at z2

Lacunary series v ′ ∼ z + z2 + z4 + z8 + . . .

Can evaluate integral average explicitly due to orthogonality

1

2π

∫
S1

zkz ldθ = δkl .

Obtain Ruelle’s formula

H. dim J(z2 + c) ∼ 1 +
|c|2

16 log 2
+ O(|c |3).



Beltrami Coefficients

For an o.p. homeomorphism w : C→ C, we can compute its
dilatation

µ(w) =
∂w

∂w
.

I If ‖µ‖∞ < 1, we say w is quasiconformal.

I Conversely, given µ with ‖µ‖∞ < 1, there exists a q.c. map
wµ with dilatation µ.

Dynamics: Given f ∈ Ratd and µ ∈ M(D)f , can construct new
rational maps by:

f tµ(z) = w tµ ◦ f ◦ (w tµ)−1.



Upper bounds on quadratic differentials

Suppose µ is supported on the exterior unit disk, ‖µ‖∞ ≤ 1.
Then,

v ′′′(z) = − 6

π

∫
|ζ|>1

µ(ζ)

(ζ − z)4
· |dζ|2.

Theorem:

lim sup
r→1−

∫
|z|=r

∣∣∣∣v ′′′ρ2
(z)

∣∣∣∣2 dθ2π
. lim sup

R→1+

∣∣suppµ ∩ SR
∣∣

where SR is the circle {z : |z | = R}.



a = 0.5



a = 0.95



Incompleteness with a precise rate of decay

“Petal counting hypothesis” As a→ e(p/q) radially, the WP
metric is proportional to the petal count.

Renewal theory:

Given a point z ∈ D, let N (z ,R) be the number of w satisfying
f ◦k(w) = z , for some k ≥ 0, that lie in Bhyp(0,R). Then,

N (z ,R) ∼ 1

2
· log |1/z |

h(fa)
· eR as R →∞

where h(fa) =

∫
S1

log |f ′(z)| · dθ
2π

is the entropy of Lebesgue

measure.
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Incompleteness with a precise rate of decay (cont.)

If lim
r→1−

∫
|z|=r
|v ′′′/ρ2|2dθ was proportional to the number of

petals, then it would be asymptotically ∼ Cp/q ·
|da|

(1− |a|)3/4
.

WARNING!

We might have correlations∣∣∣∣∑
P 6=Q

v ′′′P
ρ2
·
v ′′′Q
ρ2

∣∣∣∣.
Schwarz lemma: The petals are separated in the hyperbolic metric.
Indeed, dD(P,Q) ≥ dD(P1,P2) & dD(0, a).
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Decay of Correlations

Fact: if dD(z , suppµ+) > R, then |v ′′′/ρ2| . e−R .

Triangle inequality: For any z ∈ D,

C (z) ≤
∣∣∣∣∑
P 6=Q

v ′′′P
ρ2

(z) ·
v ′′′Q
ρ2

(z)

∣∣∣∣ . e−R1 · e−R2 = e−R .

As e−dD(0,a) � 1− |a|, correlations decay like � 1− |a|.

REMARK!

This is neligible to the diagonal term ∼
√

1− |a|.



a→ −1



a→ −1



a→ e(1/3)



a→ e(1/3)



a→ 1 horocyclically



a→ 1 horocyclically



Rescaling Limits

“Critically centered versions” f̃a = mc,0 ◦ fa ◦m0,c

a→ 1 radially:

f̃a →
z2 + 1/3

1 + 1/3z2
.

In H, this is just w → w − 1/w .

a→ 1 along a horocycle:

f̃a → w − 1/w + T

with T > 0 (clockwise) and T < 0 (counter-clockwise).
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Rescaling Limits (ctd)

Amazingly, if a→ e(p/q) along a horocycle, then f̃ ◦qa converges to
the same class of maps, i.e

f̃ ◦qa → w − 1/w + T

Lavaurs-Epstein boundary:

The WP metric is asymptotically periodic along horocycles

“Lavaurs phase”

We attach a punctured disk to every cusp with the same analytic
and metric structure that models the limiting behaviour along
horocycles.
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a→ −1 horocyclically



a→ −1 horocyclically



A quasi-Blaschke product – Horizontal direction



A quasi-Blaschke product – Vertical direction



A quasi-Blaschke product – Vertical direction



Beyond degree 2: Spinning in B3


