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Introduction

Consider a field L of characteristic p=0. Then for every positive integer n
which is not divisible by p there exists in the separable closure of L, L; a primitive
root of unity of order n, which is, by definition, an element ¢, for which # is the
smallest positive integer such that {}= 1. The adjunction of {, to L gives rise to
a Galois extension L, of L and there is a canonical monomorphism of the Galois
group %(L,/L) into (Z/nZ)* given by t+»i (modn) where i represents the con-
gruence class modulo n for which t({) =" It follows that [L,: L] divides ¢(n),
where @ is the Euler totient function. If L= @, then [L,: L] = o(n) for every n.
On the other hand if L is separably closed then [L,: LT= 1. If L is an intermediate
field, [L,: L] can obtain any value which divides ¢(n).

We consider in this note a ground field K of finite type, (i.e. flmtely generated
over its prime field) and study the function [K,(0), : K (0)], where (¢) = (o, ..., 7,)
is an e-tuple of elements of ¥(K,/K) and K,(o) is its fixed field in K,. We find
that the function [K(o),: K (o)] obtains some regularity if we neglect for every
e, a subset of e-tuples (o) of Haar measure 0. We find further that in the case e=1
the fields K (o) are much more closed to K, then in the case e=2, in the sense
that for e=1 K (o) contains infinitely many roots of unity, whereas in the case
ez 2 K (o) contains only finitely many. Moreover, we prove the following theo-
rem:

Let K be a field of finite type. Let e = 1. Then the following statements hold
for almost all (6) € 9(K,/K)*:

A} If e=1 then for every positive integer d there exist infinitely many primes
I'such that [K (o), : K (o)] =d.

B) If e=2 then }Lrglo [K(0),: Ki(0)] =0

ptn

* This work was done while the author was at Heidelberg University.
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The fundamental fact that sharpens the differences between the cases e = 1
and e=2 is that the harmonic series £n~¢ diverges for e=1 and converges for
e>1. Note that no difference was found between these cases with respect to
other important questions. Thus, it was proved in {9, Theorem 2.57 and in 4,
Theorem 9.1] that if K is not finite then for all ¢ = [ and for almost all (0)e 9(K /KY
K (o) has the following two properties:

(a) Every absolutely irreducible variety defined over K, (o) has a K (o)-rational
point.

(b) For every abelian variety A defined over K (o) the rank of the abelian
group A(K (o)) of all K(o)-rational points of 4 is infinity.

The reason for the distinction of the results may be that Properties (a) and
(b) have geometrical nature, whereas the question of roots of unity is more arith-
metical.

It is essential to prove the Theorem only for the prime field K of each charac-
teristic. We distinguish between two cases: p =0 and p>0. In the first case K = @).
In this case we can say more about the roots of unity of prime order.

Almost all (o) € 9(Q/Q)* have the following properties:

f 11 and for all but finitely many primes [

C) For every 0 <
e

[0@a): Q(o)]>(— 1.

Thus, the rate of divergence of [(f)(a), : (f)(cr)] increases as e increases.

D) For every positive integer d there exist infinitely many primes /= 1 (modd)
such that [Q(a), : (D(o)] = ~l—di

The analogue of C) for prime characteristic seems to be false since it clashes
with the hypotheses that there exist infinitely many Mersenne’s primes. The
analogue of D) for characteristic p includes Artin’s conjecture on the existence
of infinitely many primes / for which p is a primitive root, so that it is very difficult
to establish it.

In Section 9 we apply B) to linear algebraic groups and prove the following
Theorem:

E) Let K be a field of finite type and let e = 2. Then almost all (0)e 9(K /K)
have the following property:

For every linear algebraic group G defined over K (o) the order of the torsion
K (o)-rational points of G is bounded.

The author wishes to express his indebtedness to P, Roquette and W. D. Geyer for their encourage-
ment and advise.

Notation

We use lower case latin letters to denote rational integers. The letters ¢, I, p
will always stand for a positive integer,a prime and the characteristic of the field
in question respectively. IF, = the field with g elements. @ = the field of rational
numbers. Z = the ring of integers. Z, = the ring of l-adic integer, Z = HZ.
{ = the Riemann Zeta-function. .
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If K is a field then K, and K stand for the separable closure and the algebraic
closure of K. If M2 L 2K is a tower of Galois extensions and 4 C%(M/K) then
A|L is the set of all restrictions oL of the elements ¢ € A. If (6) € ¢(M/K) then

L(o) is the fixed field of (¢, ...,0,)in L. If g, ..., 0, are e elements of a pro-finite
group G then {o)=<{0y,...,0,) denotes the closed subgroup generated by
Ol nns O,

If o is an element of a group G then orda is the order of o« in G. If a, n are rela-
tively prime then ord, a is the order of a modulo n.
|A| = the cardinality of the set A.

1. The Haar Measure of a Galois Group

Let K be a field and let M be a Galois extension of K. It is well known that
the Galois group ¥(M/K) is compact with respect to its Krull topology. There
is therefore a unique way to define a Haar measure p on the Borel field of 4¢(M/K)
such that u(¥(M/K))=1. If L is a finite separable extension of K contained in
M, then (% (M/L))=[L: K], if Lis an infinite extension then u(%(M/L))=0. We
complete p by adjoining to the Borel field all the subsets of zero sets and denote
the completion also by p. More generally, for a positive integer e, we consider
the product space ¥(M/K)° and again denote by p the appropriate completion
of the power measure. It coincides with the completion of the Haar measure of
G(M/KY.

Our main measure theoretic device in this note is expressed in the following
Lemma.

Lemma 1.1 (Borel-Cantelli). Let {E;}2, be a sequence of measurable sets in a
probability space (X, ). Put
E={xe X|x belongs to infinitely many E;s}= () | E;,

n=11i=n

E={xe X|x belongs to almost all the Eis}= O ﬁ E,.

n=1i=n
Then »
a) If the sequence {E;}, is independent and if > W(E)= o then p(E) = 1.
oo _ i=1
b) 3, u(E)<oo=u(E)=0.

i=1

O 3 X —E)<co=u(E)=1,

i=1
Proof. Assume first that the sequence {E,} is independent and that £ u(E;) = oo.
Then [] (1 —p(E)) =0 for every n= 1. Hence

i=n

:“(O E,.) :1_ﬂ<ﬁ X_Ei>:1_ﬁ(1_/'t(Ei)):1’

i=n i=n i=n

since the sequence {X — E,} is also independent. It follows that u (E)=1.
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Assume now that X u(E;) < co. Then

;L(FZ)§;L<U Ei) < Y wE) forevery nzt.

i=n

The right hand side tends to 0 as n— co. Hence u(E) = 0.

The statement c} is only a reformulation of b). [

A sequence {K;/K}2, of field extensions is said to be linearly disjoint if K, ,
is linearly disjoint from K, ... K| for every i = 1. As an example of such a sequence
we can take any sequence of the form {@Q,/Q|/e L}, where L is a set of relatively
prime positive integers. We shall use this example later on. In [9, Lemma 1.9]
it was proved that if all the K are separable over K then the condition “{K /K },
is linearly disjoint” is equivalent to the condition “{%(K/K;)°}2, is independent
in the probabilistic sense”. Lemma 1.1 therefore implies the following Lemma

Lemma 1.2, Let {K,/K}{2, be a sequence of separable algebraic field exten-
sions. Put S = {(c)e 9(K/K)°|(0) belongs to infinitely many [K /K;ys}. Then

a) If the sequence {K,/K} is linearly disjoint and

ii W =00 then ,LL(S)Z 1.
©
02 TR Ky <P THE=0.

In the case where K /K are Galois extensions we can say more. First note that
if L/K is a finite Galois extension and C C 9 (L/K)° then
IC]

u({(o)e 9(K,/K)|(o|L)e C})= LK

Next we establish the following Lemma.
Lemma 1.3. Let {K/K}Z, be a linearly disjoint sequence of finite Galois
extensions. For every i 21 let A; be a subset of 9(K,/K)* and let

Ai={(0)e (K/K)|(a|K) € A;} .

Then the sequence {A;}2 | is independent in the space (K JK)".
Proof. We have to show that every finite subsequence of {4,} | is independent.

We do it, for example, for the first n sets.
Put L=K,...K,. Then

GLIK) = G(K JK) % - x G(K, /K.

For every n-tuple of e-tuples (g,...,0,) in %(K,/K)*x - x%4(K,/K) there
exists exactly one e-tuple (¢) in %(L/K) such that (¢{K,)=(0), i=1,...,n

n

Therefore, if we put A’ = (ﬂ A,.> | L then

i=1

4= 1114
i=1
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Hence
4] 1A "
A — = = (4,).
(ﬂl ) ikr — L keky = L
As a corollary of Lemmas 1.1 and 1.3 we have

Lemma 1.4. Notations as in Lemma 1.3. Put
S ={(0) e 9(K /K)|(0) belongs to infinitely many A;s}
S={(0)e % (K /K)|(c) belongs to almost all the A}s} .

Then
a) If the sequence {K,/K} is linearly disjoint and
§ [KIAIIQ‘ =00 then uS)=
b) Z.O: ——'Z—II{jw < Oj:>,u(§)=0.
) ;i%ﬂ <owo=u(§)=1.

We shall frequently use the fact that the intersection of a countable number
of measurable subsets of ¥(K /K)° of measure 1 is again a subset of measure 1.
Thus if
S1(0), S,(a), S5(0), ...

is a sequence of statements on the e-tuples (o) of #(K,/K)° then “For almost all
(0)e 9(K/K) all the statements S,(o), S,(c), S3(0),... hold” is equivalent to
“For every i = 1 and for almost all (¢) e 9(K,/K)* S;(0) holds”.

2. Jordan Totient Function

The Jordan totient function J, is defined for every positive integer n as the
number of the e-tuples (a,, ..., a,) of integers between 1 and »n for which
ged(ay, ..., a,,n)= 1. One can show that

Je(n)zn"n<1 _ 7) S u(d) ( )

{n dln

where p is the Mdbius function (cf. Le Veque [10, p. 897]). J, is the well known

Euler totient function ¢.
n

We are interested in an asymptotic formula for the sum ) J,(m). We start
with a preliminary asymptotic formula. met

Lemma 2.1. > ko= +0(n*"Y n-oo
k=

+n
+1 2

where the O depends on e.
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Proof. By Borevich and Shafarevich [2, p. 384]

Zn:-ke i <e+1) +1)e+1 i

=1 e+1
1

where B, is the i-th Bernoulli’s number, By =1{,B,= —1,

=e+1
ne+‘1 e

= 0(ne™1).
er1 T2 T

Lemma 2.2. If ¢ = 2 then

c=1 c c=1
n n e
3 uo) || =0m) —
c=1

I Y oo .
c=n+1

. [n].
Proof. 1) We can write |— in the form [E
¢ c

$ a2 = 5 u )ef(e“)(c)wi(—e)“

- $uo(2] "+

C

=0(n°) + O(n logn) + n=0(n°)
by Le Veque [10, p. 957]. The F ormula (1) is therefore established.

Tl oo

ev1 v HO|_ 7 d0 m .
VX | S0 e = =00,
Lemma 2.3. If e 2 2 then

n ne+1
Y Jm= e+ 0(n) n> o .

m=1 (e+1)C(e+1)

((n+1)e“~ —e;—i(n—i— 1+ +(e+ 1)Be(n+1))

(1)

@

3)

=~Z~——9whereO§0<1.Then
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Proof.
n n n [::_]
Yom=Y Y pod=Y u) Y d&.
m=1 m=1cd=m c=1 d=1
By Lemma 2.1
n 1 n e-+1 1 n e n e—1
- Sl e wo(E )
By Lemma 2.2
nz+1 n ,u(c) .
=i C; pres + 0(n°)
ne+1 0 ,U(C) ne+1 00 /,L(C) .
et Zl et et cf,.vil ot T,
By Lemma 2.2 and Le Veque [10, p. 120]
ne+1
=——— 4+ 0(n%.
erOiern TO0) ]

Lemma 2.4. There exists a positive constant ¢ such that for every positive
integers e and n
cn®
Jnz ———.
(mz (log logn)®

Proof. By LeVeque [10, p. 114]

1 11\¢ ctn®
Jm=n]lt——=]|zr[]{t- —| =0on> —_.
) =n :H< le) =" un< l) obyz (loglogn) O

3. Lower Bounds for [(0), : §)(o)]
Lemma 3.1. Let | be an odd prime, m a positive integer and D a set of divisors
of @(I"). Put

™ E={(0)e 9(@Q/Q’|[Q()m: Q(o)] € D} .
en

1
WEy= ——— ) J(d).
(™) gu
Proof. 1t is certainly sufficient to prove the Lemma for the case where D
consists of only one divisor d of @(I").
Indeed, for every (o) € 4(Q/Q)° we have

[Q0)m: Q(0)] = [Qpn: Qpu(0)] =<5 Q] (1)

since

Qin(0)=Qmn Qo) and  Q(0)m = Qm Qo).
G(Qum/Q) 2 Z/p(IMZ 2)

Also
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since ! is an odd prime. For every a e Z we denote by @ its congruence class modulo

o(I™. Put _ B B _
E={@,...,a)e Z/o(" L) Ka,,...,ap|=d} .
Then, by (1) and (2) B
E)= . 3)
H(E) o
Now, {a, ..., 4,y = {gcd(ay, ..., a,, (I")>. Hence
_ o (™)
Qyy ey A= .
N T O )
It follows that |E| is equal to the number of the e-tuples (a4, ..., a,) of integers
lm
between 1 and ¢(I") which satisfy ged(ay, ..., a,, @(I™) = 8(7)— This number is
equal to the number of the e-tuples (by, ..., b,) of integers between 1 and d for

which gcd(b,, ..., b, d)=1, ie. to JL(d). Our Lemma follows from (3). [
Since [Q(0),: Q(o)] divides I — 1 it is interesting to compare it with powers
of | — 1 of exponents 0 < 6 < 1. This is done to some extent in the following theorem.
Theorem 3.2. Let e be a positive integer. Then for almost all (o) € %((]N)/Q)e and

e—1
I there exists an lo=ly(o, 0) such that for every prime 12l

[Qo): Q)] >(—1)" . (1)

Proof. Consider an increasing sequence {6,};%, of real numbers which con-
e—1

or every <
f Y e+

verges to . Obviously it suffices to prove that for every n and for almost

e+
all (¢) e 9(Q/Q) there exists an [, such that for every prime [ 2], (1) is satisfied
e

. ! |
with 0 replaced by 6,. We therefore choose a fixed 0 < N and prove that for

e+
almost all (o) € #(Q/@Q)* there exists an I, such that for every [ >, (1) holds. The
case e =1 is trivial. We therefore assume that e = 2.

For every prime [ we denote by A(l) the set of all (o) e 9(@Q/Q) for which
(1) holds and by B(J) its complement in g((f)/Q)e_ Let A be the set of all (o) € 4(Q/Q)°
for which (1) holds for almost all /. By Lemma 3.1

1
B(l))= —— .
W)= G5 dd‘;_l) 14d)
=(-1)¢

Hence, by Lemma 2.3

M(B(l))é——i—i)—e Y J(d) < c(l—1)petie

(l_ ds(-1)°

for some constant c. Hence
1
;M(B(l))écgﬁ_—i)em <®

since e — O(e+ 1) > 1. Hence, by Lemma 1.4 u(4)=1. O
Problem 1. Is it possible to prove Theorem 3.2 for every 8 < 1?
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4. The Values of the Function [Q(0), : Q(0)]

The next Theorem gives a second answer to the question how close can
[@Q(o),: Q(0)] be to I — 1 for a (¢) which is selected at random.

Theorem 4.1.Let e be a positive integer. Then for almost every (a)efﬁ((f)/(l))e
we have: For every positive integer there exist infinitely many primes | such that

. - | —
(¥ ali—1 and [Qo): Q)=

Proof. Since there are only countably many d’s, it suffices to consider a fixed
d and to prove that for almost all (o) € %(Q/®Q)° there exist infinitely many primes [
for which () holds.

Indeed, for every prime [= 1 (modd) let

Mo=%wegmyQﬂnmquWH=l§i}

V"We
MMM=U~U”L(53J;qu—oﬂ———iiw-gfi
d [—1\¢ [
(log log )

By Lemma 3.1 and Lemma 2.4

for some positive constants ¢,, ¢,. Hence, by Dirichlet’s theorem (cf. LeVeque
[t1, p. 217])
HA(D) = oo
{=1(modd)
The sequence {Q,/Q|! is prime} is linearly disjoint. Hence, by Lemma 1.4
almost all (¢) € 4(Q/@Q)° belong to infinitely many A(l)’s. O
Theorem 4.1 shows that there does not exist a 6 < 1 such that

lim sup (1 — 1)~ [Q(o): Q)] =1

for almost all (o) € g(@/@)@_ This removes a possible negative solution to Prob-
lem 1.
If e > 2 then Theorem 3.2 implies that

lim [Q(0);: Qo] = o0

for almost all (¢)e 4(Q/Q). In particular, there are only finitely many roots
of unity of prime order in those (o). This statement is no more true if e= 1.

Moreover, we have
Lemma 4.2. For almost all o€ (.4((13/(12) we have: For every positive integer d
there exist infinitely many primes | such that [Q(o),: Q(c)] =d.

Proof. Again it suffices to consider a fixed d and to prove that there exist
infinitely many primes [/ such that [Q(0),: Q(o)] =d.
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Indeed, for every odd prime =1 (modd) we put
B() = {0 e 9(Q/Q)|[Q(0),: Q)] =d}
={0e9(Q/Q)I[Q,: Q,(0)]=4d} .

Then p(B(l) = —'lji(—‘?-, by Lemma 3.1, hence X u(B(])) = co. Moreover, the B(l)’s
are independent, by Lemma 1.3, hence, by Lemma 1.4, almost every o € g((f)/(]))

belongs to infinitely many B(l)’s. [

5. The Divergence of [Q(a), : Q(0)]

We have already proved that if e >2 then the sequence {[Q(0),: Q(0)]|] is a
prime} diverges to infinity for almost all (6) e ¥ ((f)/(]))e. Our aim now is to strength-
en this result by replacing ! by n and letting »n to run over all positive integers.
We begin with a Lemma which serves as a complement to Lemma 3.1.

Lemma 5.1. Let e be a positive integer, 0 <8< 1 and n=e~—0(e+1). Put

AQ2,m)={(0) € 9(Q/Q)| [Q(0)m : Q)] < (27} .
Then

WA, m))=0( :

L) moe

Proof. We can assume, without loss of generality, that m=2. For every
(0) e 9(Q/Q)° we have
[Q0)om: Q)] =[Qam: Qam(@)] =[<0 | Qum)! )
Further
G(Qu/Q=ZNLDL2™ *Z . (2)

For every pair (a, b) of integers denpte by (a, b) the pair in which 7 is the congruence
class of @ modulo 2 and b is the congruence class of b modulo 2™~ 2. Let B(m) be
the set of all e-tuples

((51151)7 (AR ((,_le,Ee)) (3)

in Z2Z ®Z/2" *Z which generate a subgroup of order <2™~Y, (1) and (2)
imply that it suffices to prove that

|B(m)| =0(2™C* D) m—o0.
Indeed, there exists an a € {0, 1} such that

<(ala El)» (AR (aev Be)> ; <(Zl—, ng(bl AR be7 2m— 2))> 3

hence
. _ 2m—2
a. a >
|<(a1=b1)’ ""(ae’ be)>' = ng(bl, o, be, 2,,,_2) .

On the other side
<(51>Bl)a (AR ] (aeaBe)> gz/21@<51; ...,-Ee> 5
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hence
2 . 2m -2

ged(by, ..., b, 2" "
It follows that if 0 <k <m~—1 is such that
(<(al7 El)» ey (ae’ .b-e)>| == 2k) s
QCd(bb --~7be, 2"1_2)=2m_2_k+£ (4)

where ¢ e {0, 1}; and if k=0 then ¢=0. For every 0 £k <m—2 denote by C(k)
the set of all e-tuples (3) which satisfy ged(b,, ...,b,, 2"~ *)=2""2"% We have
by (4) that

A

K(Zil’ El): e (ae: Ee)>]

then

[(m=1)6]

Bme< ) Ck). &)
Clearly k=0
Hence, by (5)

IC ()| =2°J,(29).

[(m—1)6]

[Bm) £2° ), J,(2F) = e+ elim= 16l _ g(méle+1))
k=0 0

e—1

Lemma 5.2, Let e=?2, 0< and n=e—0(e+1). For every mz=1 set

e+1

A(m) = {(0) e 9(Q/Q)|3 a prime 1: [Q(0)pm: Q@) = ("} .
Then

) =0 ) mo,
Proof. For every prime [ put
Al m)={(0) e 9(@Q/Q | [Q@)m: Q)] S ("'} .
For [ =3 we have by Lemmas 3.1 and 2.3 that

{

U™ agpimpe
1 l(m—1)0(3+1)(l__1)0(e+1)

[on=The(] _ {) e+ ) llet 1)

u(A(lLm) < J(d)

+ Cl(m~l)()e(l__~ 1)0e

Il

C2
< _ 2
= Tm= D

where ¢,, ¢, are positive constants which does not depend on ! and m. Now
A(m)= { ) A(l, m), hence, by Lemma 5.1
!

HAMm) S (AR m) + Y w(AC, m)

1+£2
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Lemma 5.3. Let e 2 2. Then for almost all () € ?(Q/Q)e
lim [Q(0),: Q(o)] =c0. (1)

-1 . .
Proof. Choose a fixed 0 <0< ~Z+—1. For every k=1 put, in the notations

of Lemma 5.2, B(k)= | A(m). Then {B(k)}, is a decreasing sequence of measur-
m=k 0

able sets and if we put B = () B(k) then pu(B)=0. Let

k=1
S={(0)e 9(Q/Q)F|3,¥I=1y: [Qo): Qo)] > (- 1)°} .
By Theorem 3.2 1(S) = 1. Hence, if we put
T =5n(%9(Q/Q) — B)

w(T)=1.

We prove that (1) holds for every (o) e T.

Indeed, let {(o6)e T and set M= (f)(a). Let s>0. Then there exists an [, such
that for every prime /21, [M,: M]>(I—1)’ and hence there exists an [, =1,
such that for every prime [ > [,

then

[M,:M]>s. )

Further there exists a k, such that for every k>k, 2%~ 1> 5. Also (0)¢ B hence
there exists a k; >k, such that (¢) ¢ B(k,). This implies that for every k =k and
every prime /

[Myc: M] > 167 D0(] — ()0 > 26=D0 ¢ 3)

Now, there exists an n, such that for every n> n, either n has a prime divisor
I =1, or nis divisible by a prime power * with k = k, . In the first case we have by (2)

(M, M]=[M,:M]>s
and in the second case we have by (3) that

(M, M]z[My:M]>s. [

6. Roots of Unity over Finite Fields

While the behaviour of the roots of unity over Q) is known in great detail,
very little is known about it over finite fields. It happens that this behaviour is
strongly connected with number theoretic questions, some of which are the
subject of well known conjectures. In this section we gather some simple facts
on the roots of unity over finite fields which will help us to establish analogy
to the theory which has been developed in the previous sections over @. The
key Lemma is the following

Lemma 6.1. Let F be a field of q elements and let n> 1 be relatively prime to
q. Then [F,:F]}=ord,q.
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Proof. Put [F,: F]=r and ord,q=s. Then ¥(F,/F)= {1, ...,1,} where 1, is
defined by
ri(x)=x‘1‘ xeF,, i=1,..,r.
In particular if { is a primitive n-th root of 1 then the elements (4, {7*, (©°, ..., (¥
are distinct, since F, = F({). It follows that the numbers g, ¢%, ..., q" are distinct

modulo n, hence r = s.

Conversely, £ defines an element 1, € %(F,/F) for every i. This gives us
s distinct elements of 4(F,/F), hence s<r. [

It follows from Lemma 6.1 that we have to focus our attention on ord,q as
a function of n. First note that it diverges to co.

Indeed, we have the stronger statement

Lemma 6.2. If a,n = 2 are two relatively prime integers then

Ordna g M .
loga

Proof.
orda=r=nld"—1=nsa 1

s log(n+1) '
loga Ol

If a is not divided by the prime [ then ord,a divides [ — 1. One can therefore con-

sider . and ask for its properties. One of them is given by the following
. :
|-
Lemma 6.3. For every a> 1 the function ¥Y(l) = da whose arguments are
a

the primes | which do not divide a, is unbounded.

Proof. Assume that ¥(l) is bounded. Then ¥(I) obtains only a finite number
of values ki, ..., k,. There exists now an n, such that for every n>ny a"—1 has
a primitive divisor, i.e. a prime divisor [ which does not divide a™ —1 for m<n
(cf. Carmichael [3, Theorem XXIII]).

Put n=ng(ky + 1) (ky + 1) ... (k;+ 1)+ 1. Then n> ny and nk;, +1 = (ng(k; + 1)
Ak + 1) kg+ D)+ Dk + 1=k +1=0(mod k; + 1) for i=1,...,s. Since 1 <k;
+ 1 <nk; + 1, nk; + { is composite.

Let | be a primitive prime divisor of ¢"— 1. Then n= ord,a and hence there
exists an 1 £ i< s such that [ =nk, + 1, which is a contradiction. []

Remark. The proof of Lemma 6.3 is roughly the same as that of the analogous
theorem in Fibonacci sequences proved by Dov Jarden in [8, p. 5].
By combining Lemmas 6.1, 6.2, and 6.3 we obtain the following

Lemma 6.4. Let F be a field with q elements.
log(n+1)

a) If nis primeto q then[F,.F}Z
logq

is unbounded.
[F,: F]

b) The function
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7. Roots of Unity over IF »(0)

We consider now the field IF, as a ground field and study the behaviour of
the roots of unity over I »(0) for a (o)e.‘é(]F /F,)° selected at random. We dis-
tinguish between two cases: e=1 and e 2 2.

We beginn by the analogue of Lemma 4.2:

Lemma 7.1. Almost all 6 € % (]I:“p/lF) have the following properties:
a) IF ,(0) is an infinite field.
b) IF 1(0) has exactly one extension of each degree d, i.e. (o> =
c) For every positive integer d there exist infinitely many primes | such that

[IF (o), : IF, (0)] = d.
Proof. For every r IE,, is a Galois extension of IF, of degree r. Hence {IF /IF, | r is
a prime} is a linearly dlS_)Olnt sequence of extensmns Moreover

1 l
Y =Y — =00,
r prime DFp" . p] r

hence, by Lemma 1.4, IF,(¢) contains infinitely many IF, with » prime, and in
particular IF »(0) is an infinite field for almost all 6 g(IF /IF ).

Put now IF{’ = U IE,.m, for every prime r. ThenIF{” is an infinite extension

m=1

of IF, and 9(IF))/IF ) = Z,.
Hence u(.‘ﬁ(]Fp/lF"’)) 0. Put S= U Y(F,/IFY). Then u(S)=0. We prove that

(o> ~Z for everyae.@(]F /IF,) —
Indeed, consider such a o. Let r be a prime. Then IFY {IF,(c). Hence

Y(IFY - IF,(0)/IF,(0)) is isomorphic to a non trivial closed subgroup of Z,, hence
to Z, 1tself (cf. Rlbes [12, p. 57]). If follows that (o) = 4(IF ,,/]F ()=, ie. }Fp(a)
has exactly one extension of each degree d.

Suppose now that ¢ has both Properties (a) and (b). We show that it has also
Property (c). Put M =IF »(0) and let N be an extension of M of degree d. Let o be
an element of N which generates it over M. We can write M as an increasing
union of finite fields K, since M is an infinite field. For every i large enough let
[Ki(@):JF,]=n; Let I, be a primitive prime factor of p" — 1, which exists by
Carmlchael Theorem mentioned on the proof of Lemma 6.3. Then n,= ord, p
and hence, by Lemma 6.1 [IF, , :IF,]=n; hence K(a)= IF,, It follows that
n=IJF,, -M=M,,. Since [N:M]=d and all the /; are distinct we have that
M, M] =( for infinitely many primes . [

For e 22 we have the following analogue of Lemma 5.3.

Lemma 7.2. If e = 2 then almost all () € GJ”(IF /IF)* have the following properties :
a) IF »(0) is a finite field,
b) hm [IF,(0), : TF,(0)] = co.
p+n

Proof. We have

|

1
n?

n};l []Fp":IFp]e = ng

—
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Hence, by Lemma 1.4 F ,(0) contains only a finite number of the fields IF,, ie.
IF »(0) 1s a finite field, for almost all (0)e @ (IF /IE,)°.

Property (b) follows from Property (a) and Lemma 6.4 (a). []

We would like also to prove the analogue of Theorem 4.1 and in particular
that for almost all (0) e 4(IF,/IF,)° there exist infinitely many primes ! such that
[JF (a), »(0)]=1~1. For e—2 and for a (a)efﬁ(]F,,/le) selected at random

(a) is a flnlte field with, say g elements. Our desired analogue would then
1mply that ord,q-l-l ie. that ¢ is a primitive root modulo I, for infinitely
many primes /. This is however a well known and unsettled conjecture of Artin
(cf. Goldstein [5, p. 343]). Theorem 4.1 appears therefore as an analogue of

Artin’s Conjecture.
We must be satisfied with the following weakened analogue of Theorem 4.1:

Theorem 7.3. For every (o) € 4(IF J/IF,) the function
—w——l——L— lis a prime
[, (o), : IF, (0)]
is unbounded.
Proof. Put K =]I~3p(o*). Then, by Lemma 6.1,
[—1 - -1 _ [—1
[K,:K] = [F,,:F,] ordp’

The right hand side is not bounded, by Lemma 6.3, hence also ————=- is not
[K;: K]
bounded. []

On the other hand it is difficult to believe that the analogue of Theorem 3.2
is valid, since this would imply as before that for some g and 0> 0 ord;q = (I — 1)°
for every large prime I. However, it is strongly believed that there are infinitely
many Mersenne primes [=2"—1 and in general one can conjecture that
ord,q = clog(l+ 1) for some constant ¢ and for infinitely many primes .

8. Fields of Finite Type

A field K is said to be of finite type if K is finitely generated over its prime
field. We are going to show that if K is a field of finite type and F is its prime
field then all the results proved in the previous sections for F are also valid for K.
We do it in two steps.

Step 1. Let K be a purely transcendental extension of a field F. Then K is
linearly disjoint from F, over F and the restriction map >0 |F; is a continuous
epimorphism of 4(K,/K) onto ¥(F,/F) with a compact kernel. It follows that
if Ais a subset of %(F,/F)° of measure 1 then its lifting 4= {(0) e 4(K /K)*|(c | F,) € A}
is of measure 1 in 9(F,/F) (cf. Halmos [7, p. 279]). Moreover, [F(0),: F(o)]
=[K(0),: K,(0)] for every (c) € 4(K,/K)*. Hence, every property of these numbers
which holds for almost all (¢) € 4(F /F)¢ holds for almost all (6) e (K /K)*.

Step 2. Let L be a finite separable extension of a field K. Then K = L, and
~ every subset of ¥(L,/L)° of a positive measure has also a positive measure in
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G (K /K. It follows that every statement about fields which holds for the K (o)
for almost all (o) e ¥(K,/K)® holds also for the L (o) for almost all (¢) e G(L/L).

Since every field of finite type can be obtained from its prime field by a purely
transcendental extension followed by a finite separable extension our goal is

achieved.
Thus Theorems 3.2 and 4.1, Lemmas 4.2 and 5.3 remain valid if we replace

@ by any field K of characteristic 0 and of finite type; Lemmas 7.1 and 7.2 and
Theorem 7.3 (b) remain valid if we replace IF, by any field K of characteristic
p and IF, by K. By combining Lemmas 4.2 and 7.1 and this remark we get the

following theorem:

Theorem 8.1. Let K be a field of finite type. Then for almost all o€ 9(K /K)
and for every positive integer d there exist infinitely many primes | such that
[K{0),: K(o)] =d. In particular it follows, for d =1, that K o) contains infinitely
many roots of unity of a prime order.

By combining Lemmas 5.3 and 7.2 and the above remark we obtain the
following theorem:

Theorem 8.2. Let e > 2 and let K be a field of finite type with char(K)=p=0.
Then for almost all (¢) e 9(K/K)*

lim [K,(0),: K (o)] = co.

ptn

In particular, K (o) contains only a finite number of roots of unity.

9. Points of Finite Order on Linear Algebraic Groups

In this section we generalize Theorem 8.2 to linear groups which are, by
definition, affine algebraic group varieties. The generalization depends on the
following Lemmas:

Lemma 9.1. Let C be a triangular matrix of the form
oy *
B 'Yk~1
0 1

with entries in a field of characteristic p = 0. If C* =1 is the unit matrix for some
positive integer d which is not divisable by p, then C = 1.

Proof. 1t is easy to see that
{ dy *

Ci=
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hence dy, = - =dy,_, =0. It follows that y, = --- =v,_, =0 since p+d. In the
same way one proceeds to show that all diagonals of C above the principal di-
agonal consist of zeros. [] :

Lemma 9.2, Let

B=
0 &

be a triangular matrix of order n with entries in a fleld of characteristic p. Then
= . =E =1, If p does not divide n, then there exists an | i<k such that
ord¢é; =% /n.

Proof. B"=1.
Hence &= =& =1. Put n;=ord¢;, j=1,...,k Then n;|n. Assume that
nj<% for j=1,....,k. Then m=lIlcm(ny,...,n)<n;...k,<n and m|n Put

C=B" Then C satisfies the assumptions of Lemma 9.1 with d= L:— Hence
C =1. It follows that n|m which is false. []

Lemma 9.3. Let L be a field of characteristic p>0 and let A be a kx k matrix
of order n with entries in L. Then the maximal power of p which divides n is = pEh

Proof. Put n= p™n’ where n' is prime to p. Replacing A by A4’ = A" we can
assume that ord 4 = p™ and we have to prove that A” ' =1. Again we know
that there is a triangular matrix A” with entries in L which is similar to 4 (cf.
Halmos [6, p. 107]). A” has the same order as A4, so we can assume, without loss
of generality, that A has the form

a; *
A=] -
0 aqa
By assumption 47" =1I. Hence a/" = --- =al" =1, hence q, = --- =q,=1. Now,

if we raise A to the p*~!th power, we see, as in the proof of Lemma 9.1, that all
the diagonals of 4 above the principal diagonal vanish, since char(l)=p. It
follows that 47 ™' =1.

Lemma 94. Let L be a field of characteristic p =0 with the property
an% [L,:L]=co. Let G be a linear algebraic group defined over L. Then for every

ptn
m there exists an ng such that for every point P of G

ng<ordP<oo => [L(P):L]>m.
In particular, the order of the torsion L-rational points of G is bounded.

Proof. Every linear algebraic group G defined over L is L-isomorphic to a
Zariski L-closed subgroup of the general linear group GIL, for some positive
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integer k (cf. Borel [1, p. 101]). It is therefore sufficient to prove our lemma for

the GIL,’s.
Let m be a positive integer. Then there exists a t, such that

t>to=>[L,:L)>km. (1)

Put ny=p* 1§ if p>0 and n,=t% if p=0. Let A be a matrix of a finite order
n and suppose that n>n,. Put M= L(A4). We have to prove that [M:L]>m.
Define n’ as follows: If p>0 put n=p'n’ where 1’ is relatively prime to p. Then
I=k—1, by Lemma 9.3. If p=0 put ' =n. In every case we have n' > t&.
Assume that [M : L] <m. Let B be a triangular matrix with entries in L which
is similar to A. Put B'=B"" if p>0 and B'=B if p=0. Then B’ has the form

f1A *
B=| "
0 &
and its order is n'. Hence, by Lemma 9.2, &' = ... = ¢" =1{ and there exists an
{ <i<ksuch thatt=ord& = */n > t,. It follows by (1) that
[L,:L]>km. 2)

The characteristic polynomial of B is f(X)=(X —&,)---(X — &,). It is also the
characteristic polynomial of A’ which is defined to be A”' if p>0 and as A4 if p=0.
Hence f has coefficients in M. It follows that [M(¢;): M] < k. Hence [L,: L] < km
since L, = L(£;) S M(¢,). This contradicts (2). [J

Finally, by combining Theorem 8.2 and Lemma 9.4 we get the following
theorem:

Theorem 9.5. Let e 22 and let K be a field of finite type with char(K)=p = 0.
Then almost all (c) € 4(K,/K)° have the following property:
For every linear algebraic group G defined over L and for every m there exists
an n, such that for every point P of G
ng<ordP<oo = [K(o)(P): K (a)]>m.

In particular the order of the K (o) torsion L-rational points of G is bounded.

We note that we cannot extend Theorem 8.1 to linear algebraic groups too,
since, there exist linear algebraic groups like the additive group of the field in
characteristic 0 which have no torsion points at all.
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