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Introduction

Integral Tate algebras over complete fields with respect to absolute values play a cen-
tral role in rigid analytic geometry, analogous to the role of finitely generated integral
domains over fields in algebraic geometry. Given a finitely generated domain A over
a field K, the absolute Galois group Gal(F ) of F = Quot(A) is in general unknown.
We do not know if every group can be realized over F , let alone if every finite split
embedding problem over F is solvable. In contrast, we prove that if K is complete
under a non-archimedean absolute value | · | and A is a Tate algebra over K, then not
only the inverse Galois problem over F has an affirmative solution but Gal(F ) is even
“semi-free”.

To be more specific, recall that the free affinoid algebra Tn = Tn(K) is defined
as the ring of all formal power series

∑
aiX

i1
1 · · ·Xin

n with coefficients ai in K that
converge to 0 as i→∞. Each finitely generated integral extension domain A of Tn(K) is
an integral Tate algebra. A finite split embedding problem over F = Quot(A) is
an epimorphism α: B → Gal(F ′/F ) of finite groups, where F ′ is a finite Galois extension
of F and there exists a homomorphism α′: Gal(F ′/F )→ B such that α◦α′ = idGal(F ′/F ).
A solution field of the embedding problem is a Galois extension F ′′ of F that contains
F ′ for which there exists an isomorphism γ: Gal(F ′′/F )→ B such that α◦γ = resF ′′/F ′ .
One says [BHH11] that the absolute Galois group Gal(F ) of F is semi-free if every
finite split embedding problem α: B → Gal(F ′/F ) over F with a nontrivial kernel has
a set {Fi | i ∈ I} of solution fields of cardinality card(F ) such that the fields Fi are
linearly disjoint over F ′. In particular, each finite group occurs as a Galois group of a
Galois extension of F .

If Gal(F ) is semi-free and projective, then by Chatzidakis-Melnikov, Gal(F ) is
a free profinite group [FrJ08, Theorem 25.1.7]. However, most of the absolute Galois
groups that one encounters are not projective. This is in particular the case for Gal(F ),
at least if K is not real closed and the order of Gal(K) is is divisible by a prime
l 6= char(K) (Proposition 7.1). Thus, the semi-freeness of Gal(F ) is the best known
approximation to freeness.

Semi-freeness of absolute Galois groups of fields has been previously proved for
several types of fields, for example for function fields of one variable over an ample field
([Jar11, Theorem 11.7.1] or [BHH11, Theorem 7.2]), for fields of formal power series in
at least two variables over an arbitrary field, and for Quot(R[[X1, . . . , Xn]]), where R is
a Noetherian integral domain that is not a field and n ≥ 1. The two latter examples are
consequences of a theorem of Weissauer that those fields are Hilbertian, and a theorem
of Pop asserting that those fields are ample (passage following the proof of Proposition
1.4) and Krull (Definition 1.1) [Jar11, Theorem 12.4.3], and on another result of Pop:
If a field F is Hilbertian, ample, and Krull, then Gal(F ) is semi-free of rank card(F )
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[Jar11, Theorem 12.4.1].
Our proof takes a detour through the maximal purely inseparable extension Fins

of F . First we observe that the properties of being Hilbertian, ample, and Krull are
preserved under finite algebraic extensions. Thus, it suffices to prove these properties
for Fn = Quot(Tn(K)). The proof of Hilbertianity applies a theorem of Weissauer about
generalized Krull domains (Corollary 3.4). To prove that Fn is ample, we use a criterion
of Pop [Jar11, Proposition 5.7.7] and show that Fn is the quotient field of a domain
complete with respect to a nonzero ideal. The main effort is however done in the proof
that Fn is Krull (Proposition 4.4).

Using that F is Hilbertian and Krull, we apply [BaP10, Proposition 7.4] to con-
clude that Fins is fully Hilbertian (Theorem 5.1(b)). This notion is a powerful strength-
ening of Hilbertianity that, combined with ampleness, implies the semi-freeness of the
absolute Galois group of F . Since Gal(Fins) ∼= Gal(F ), the group Gal(F ) is also semi-
free.

Interesting examples for integral Tate algebras are the rings RI of holomorphic
functions on certain connected affinoids (Section 6) used by the method of “algebraic
patching” in [HaV96] and subsequent works to solve finite split embedding problems
over K(x), where K is a a complete field with respect to an absolute value, and more
generally when K is an ample field.

Acknowledgement: The authors thank Dan Haran for useful discussions.

1. Krull fields and fully Hilbertian fields

We recall the notions of a “Krull field” and of a “fully Hilbertian field” and prove that
if K is an ample Hilbertian Krull field, then Kins is fully Hilbertian and Gal(K) is
semi-free.

Definition 1.1: [Pop10, §1] and [Jar11, Definition 12.2.2]. Let K be a field and let V
be a set of discrete valuations of K. We say that (K,V) is a Krull field (or that K is
a Krull field with respect to V) if
(a) for each a ∈ K× the set Va = {v ∈ V | v(a) 6= 0} is finite, and
(b) for each finite Galois extension K ′ of K the set SplV(K ′/K) of all v ∈ V that totally

split in K ′ has the same cardinality as of K (in particular, taking K ′ = K, we get
that card(V) = card(K)).

We say that K is a Krull field if K is a Krull field with respect to some set of discrete
valuations.

Lemma 1.2: Let (K,V) be a Krull field and and let F be a subfield of K with card(F ) <
card(K). Denote the set of all v ∈ V that are trivial on F by F . Then K is also a Krull

field with respect to F .
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Proof: If F is finite, then F = V. Otherwise, F is infinite, hence K is uncountable.
Since F ⊆ V, the family F satisfies Condition (a) of Definition 1.1. By definition,
V rF =

⋃
a∈F× Va, hence card(V rF) = card(

⋃
a∈F× Va) ≤ card(F ) ·ℵ0 < card(K)2 =

card(K). Consequently, F satisfies Condition (b) of Definition 1.1.

The following notion is introduced in the introduction to [BaP10].

Definition 1.3: A field K is said to be fully Hilbertian if every irreducible polynomial
f ∈ K[X,Y ] which is separable in Y has the following property: Let (x, y) be a zero of
f in some field extension of K such that x is transcendental over K, set F = K(x, y),
and let L be the algebraic closure of K in F . Then there exists a subset A of K with
card(A) = card(K) such that for each a ∈ A, f(a, Y ) is irreducible over K and there
exists ba ∈ K̃ with f(a, ba) = 0 and L ⊆ K(ba) such that the fields K(ba), a ∈ A, are
linearly disjoint over L.

We denote the maximal purely inseparable extension of a field K by Kins.

Proposition 1.4: Let K be a Hilbertian Krull field. Then Kins is fully Hilbertian.

Proof: If K is countable, then Hilbertianity and full Hilbertianity are equivalent prop-
erties [BaP10, Corollary 2.24]. Thus K is fully Hilbertian, hence by [BaP10, Theorem
1.3], so is Kins.

Now assume K is uncountable, and let V be a family of valuations on K such that
(K,V) is Krull. Let F be the prime field of K, and let F be the family of valuations in
V which are trivial on F . Since K is uncountable, card(F ) < card(K), hence by Lemma
1.2, (K,F) is also Krull. By [BaP10, Proposition 7.4], Kins is fully Hilbertian.

Recall that a field K is ample if K is existentially closed in the field K((t)) of
formal power series in the free variable t. Alternatively, if each absolutely irreducible
K-curve with a simple K-rational point has infinitely many K-rational points [Jar11,
Definition 5.3.2]. Examples of ample fields are PAC fields [Jar11, Example 5.6.1], quo-
tient fields of domains that are complete (or even Henselian) with respect to nonzero
ideals [Jar11, Proposition 5.7.3], and fields whose absolute Galois groups are pro-p for a
single prime number p [Jar08, Theorem 5.8.3]. The strongest result about ample fields
concerning solutions of finite embedding problems is that the absolute Galois groups
of function fields of one variable over them are semi-free ([Jar11, Theorem 11.7.1] or
[BHH11, Theorem 7.2]).

The next result is due to Pop ([Pop10, Thm. 1.2] or [Jar11, Thm. 12.4.1]):

Proposition 1.5: Let K be an ample Hilbertian Krull field. Then Gal(K) is semi-free

of rank card(K).
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Proof: By Proposition 1.4, Kins is fully Hilbertian. By [Pop96, Prop. 1.2] or [Jar11,
Lemma 5.5.1], Kins is ample. By [BaP10, Corollary 2.28], Gal(Kins) is semi-free. Hence
Gal(K) ∼= Gal(Kins) is semi-free.

Remark 1.6: Our proof of Proposition 1.5 is essentially the same as that of Pop. How-
ever, as an interim result we have proven that Kins is fully Hilbertian (Proposition 1.4).
That property for ample fields is stronger than just having a semi-free absolute Galois
group [BaP10, Remark 2.14]. Thus, Proposition 1.4 is interesting for its own sake.

When K is also perfect, Proposition 1.4 asserts that K itself is fully Hilbertian.
It is unknown whether this holds if K is non-perfect.

2. Generalized Krull Domains

One method to produce Krull fields is to start with Krull domains or rather with
“generalized Krull domains” with certain additional properties. The latter notion was
introduced by Ribenboim in [Rib56].

Definition 2.1: Let R be an integral domain with quotient field K. Then R is a
generalized Krull domain if K has a family V of rank-1 (i.e. real-valued) valuations
satisfying the following properties:
(a) Denoting the valuation ring of v by Rv, we have

⋂
v∈V Rv = R.

(b) For each a ∈ K× the set Va = {v ∈ V | v(a) 6= 0} is finite.
(c) For each v ∈ V, Rv is the localization of R by the center pv = {a ∈ R | v(a) > 0} of

v on R.

An equivalent formulation of this definition appears in [FrJ08, §15.4].
If R is a generalized Krull domain, then the family V as above is unique up to

equivalence of valuations [Par11, Lemma 1.3]. It is called the essential family of R.
If every v ∈ V is discrete, then R is a Krull domain. All unique factorization domains
and all integrally closed Noetherian domains are Krull domains [ZaS75, §VI.13]. By (a),
every generalized Krull domain is integrally closed.

The quotient field K of a generalized Krull domain with an essential family V
satisfies Condition (a) of Definition 1.1. The following result proves that it satisfies a
weak form of Condition (b) of that definition.

Proposition 2.2: Let R be a generalized Krull domain of dimension at least 2, with

essential family V. Suppose F ′ is a finite Galois extension of F = Quot(R). Then there

exist infinitely many valuations in V that totally split in F ′.

Proof: Let m be a maximal ideal of R, of height at least 2. By [FrJ08, Lemma 15.4.2],
Rm is also a generalized Krull domain of dimension at least 2. Replacing R by Rm, we
assume that R is local and m is its unique maximal ideal.
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We choose a primitive element z for F ′/F integral over R, and let

f(T ) = Tn + cn−1T
n−1 + · · ·+ c0 ∈ R[T ]

be its minimal polynomial over F . In particular, c0 6= 0. Then we multiply z with an
element of m to assume that d = discr(f(T )) ∈ m

We suppose by induction that v1, . . . , vk ∈ V are valuations that totally split in
F ′. If k = 0, we set a = d. If k ≥ 1 we choose for each 1 ≤ i ≤ k an element ai ∈ R
with vi(ai) > 0, and set a = da1 · · · ak. Then vi(a) > 0 for i = 1, . . . , k and a ∈ m.

By [FrJ08, Lemma 15.4.1(a)], Va 6= ∅. there exists w ∈ V with w(a) > 0. By (b)
the set Va ∪ Vc0 consists of finitely many elements w1, w2, . . . , wm.

For each w ∈ V, let pw = {x ∈ R | w(x) > 0} be the center of w on R. Since
R is a generalized Krull domain and V is its essential family of valuations, Rpw

is the
valuation ring of w in F . Since w is of rank 1, pw is a minimal prime ideal of R. We
set pi = pwi

for i = 1, . . . ,m. Since the height of m is at least 2, m properly contains
each pi. Hence, m strictly contains p1 ∪ · · · ∪ pm [AtM69, Proposition 1.11]. We choose
b ∈ m r(p1 ∪ p2 ∪ · · · ∪ pm) and consider w ∈ Vb. Then w(a) = 0 and w(c0) = 0,
otherwise w = wi for some 1 ≤ i ≤ m, so wi(b) > 0, hence b ∈ pi in contrast to the
choice of b. Thus,
(1) If w ∈ V satisfies w(a) > 0 or w(c0) > 0, then w(b) = 0.

Since a, b ∈ m, the element

(2) c = cn−1
0 an + cn−2

0 cn−1a
n−1b+ · · ·+ c0c2a

2bn−2 + c1ab
n−1 + bn

belongs to m, hence by [FrJ08, Lemma 15.4.1(a)], there exists vk+1 ∈ V such that
vk+1(c) > 0. If vk+1(b) > 0, then vk+1(c0) > 0 or vk+1(a) > 0, contradicting (1).
Hence, vk+1(b) = 0. By (2), vk+1(a) = 0. Therefore, vk+1 6= v1, . . . , vk and vk+1(d) = 0.

Finally we prove that vk+1 totally splits in F ′. Indeed, f( c0a
b ) = c0c

bn , so
vk+1(f( c0a

b )) > 0. Let v′k+1 be an extension of vk+1 to F ′, and use a bar to denote
reduction modulo v′k+1. Then c̄0 ā

b̄
is a root of f̄(T ) in F̄ . Since d̄ 6= 0, this implies that

vk+1 totally splits in F ′ (see also [Jar11, Remark 12.2.1(b)]).

Corollary 2.3: Let R be a countable generalized Krull domain of dimension at least

2 with an essential family V. Then (Quot(R),V) is a Krull field.

Proof: Condition (a) of Definition 1.1 follows from Condition (a) of Definition 2.1. Con-
dition (b) of Definition 1.1 is a consequence of Proposition 2.2, because card(Quot(R)) =
ℵ0.
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3. Free Affinoid Algebras

We recall the notion of a free affinoid algebra and prove that its quotient field is Hilber-
tian and ample. In the next section we prove that such a field is Krull.

Let R be a domain, complete with respect to a non-archimedean absolute value
| · |. Let R[[X]] be the ring of formal power series in X over R. We consider the following
subring of R[[X]]:

R{X} =
{ ∞∑

i=0

aiX
i ∈ R[[X]] | ai ∈ R, lim

i→∞
|ai| = 0

}
.

The absolute value of R extends to an absolute value of R{X} by

|
∑

i

fiX
i| = max

i≥0
(|fi|)

and R{X} is complete with respect to | · | [Jar11, Lemma 2.2.1(c)]. Thus, for each
f ∈ R{X} there exists a ∈ R with |f | = |a|.

Setup 3.1: We use the following convention for the rest of this work.
Let K be a complete field with respect to a non-archimedian absolute value | · |.

The free affinoid algebra Tn = Tn(K) is the subring of K[[X1, . . . , Xn]] consisting
of all power series f =

∑
aiX

i1
1 · · ·Xin

n with coefficients ai in K that converge to 0 as
min(i1, . . . , in) → ∞, where (i1, . . . , in) = i. The absolute value of K extends to an
absolute value of Tn by |f | = max(|ai|) [FrP04, p. 46]. For each n ≥ 0 we consider the
subring On = {f ∈ Tn | |f | ≤ 1} of Tn and observe that On = On−1{Xn} when n ≥ 1.

One observes that Tn = Tn−1{Xn} for each n ≥ 1. A non-zero element f =∑
fiX

i
n ∈ Tn is said to be regular (over Tn−1), if fd ∈ T×n−1, where d = max(i | |fi| =

|f |).
We denote the quotient field of Tn by Fn.

Lemma 3.2: The ring Tn is a unique factorization domain of Krull dimension n. More-

over, if p is a prime element in Tn, then there exists an automorphism σ of Tn such

that σ(p) is an associate of an irreducible monic polynomial q ∈ On−1[Xn] with |q| = 1.

Proof: That Tn is a unique factorization domain of dimension n is stated in [FrP04,
Theorem 3.2.1(2)]. Given p as in the lemma, we multiply p with an appropriate element
of K× ⊆ T×n to assume that |p| = 1. By the Weierstrass preparation theorem [FrP04,
Theorem 3.1.1(1)], there exists an automorphism σ such that p′ = σ(p) is regular with
|p′| = 1 (note that “regular” in [FrP04] includes the condition on the norm to be 1).

6



Proposition 3.3: The ring On is a generalized Krull domain with quotient field Fn

and dim(On) = n+1. Moreover, if w denotes the real valuation on Fn that corresponds

to the absolute value | · |, and if V is the family of valuations of Fn that correspond to

the prime elements of Tn, then the essential family of On is V ′ = V ∪ {w}.

Proof: We set T = Tn, O = On, and F = Fn. Let 0 6= f ∈ T . Then there exists
a ∈ K× with |a| = |f |, so f = f

a · a ∈ O ·K. Therefore, Quot(O) = Quot(T ) = F .
Since O0 is a real valuation ring, its dimension is 1. Inductively, assuming that

dim(On−1) = n, we observe that the map Xn 7→ 0 extends to an epimorphism On →
On−1 whose kernel OnXn has height 1. Hence, dim(On) = dim(On−1) + 1 = n+ 1.

We denote the valuation ring of F at v ∈ V byRv. Since T is a unique factorization
domain, Conditions (a), (b), (c) of Definition 2.1 hold for (T,V) rather than for the pair
(R,V) of that definition. In particular, each element of F× satisfies v(a) = 0 for all but
finitely many v ∈ V, hence v(a) = 0 for all but finitely many v ∈ V ′ as well. Thus, V ′

satisfies Condition (b) of Definition 2.1.
Suppose f ∈

⋂
v∈V′ Rv. Since

⋂
v∈V Rv = T , we have f ∈ T . In addition,

w(f) ≥ 0. Equivalently, |f | ≤ 1, hence f ∈ O. Thus, (O,V ′) satisfies Condition (a) of
Definition 2.1.

It remains to prove that if v ∈ V ′, then Rv = Opv , where pv is the center of v
in O. First suppose that v ∈ V. Then v is the p-adic valuation of F for some prime
element p of T . In particular, v is trivial on K, because K× ⊆ T×. Since T is a unique
factorization domain, Rv = Tqv

, where qv is the center of v in T . Suppose f
g ∈ Rv = Tqv

,
with f, g ∈ T and g /∈ qv. We choose b ∈ K× with |b| ≤ min(|f−1|, |g−1|). Then g′ = bg

and f ′ = bf are in O. Moreover, v(g′) = v(b) + v(g) = v(g) = 0. Thus, g′ /∈ pv, hence
f
g = f ′

g′ = Opv
. This proves that Rv = Opv

.

Finally, suppose that v = w and let f
g ∈ F with f, g ∈ O, w(f) ≥ w(g). Dividing

f, g by an element of K with value w(g), we may assume that w(g) = 0. Thus, f
g ∈ Opw

,
as needed.

Corollary 3.4: For each n ≥ 1 the field Fn is Hilbertian.

Proof: By Proposition 3.3, On is generalized Krull domain of dimension at least 2 with
quotient field Fn. By Weissauer’s Theorem [FrJ08, Theorem 15.4.6], Fn is Hilbertian.

Remark 3.5: The case where n = 1 of Corollary 3.4 is [Jar11, Theorem 2.3.3]. For
n > 1, Corollary 3.4 may be deduced without the use of Proposition 3.3. Indeed, the
ring Tn is a unique factorization domain, and in particular a generalized Krull domain.
Since dim(Tn) = n > 1, Weissauer’s Theorem implies that Fn = Quot(Tn) is Hilbertian.
Nevertheless, Proposition 3.3 will be used in the proof of Proposition 4.4.
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4. Proof that Fn is Ample and Krull

In the next section, we prove that the maximal purely inseparable extension of Fn is
fully Hilbertian by proving that Fn is a Krull field (We keep the convention of Setup
3.1.) The main difficulty is to prove that the essential family of Tn satisfies Condition
(b) of Definition 1.1.

Lemma 4.1: Let A be an integral domain. Suppose A is complete with respect to a

real valuation v and A is contained in the valuation ring Rv of v in Quot(A). Let t

be a nonzero element of A with v(t) > 0. If A[t−1] ∩ Rv = A, then A is complete and

Hausdorff with respect to the t-adic topology on A.

Proof: First note that since v(t) > 0 and v(t) ∈ R, we have
⋂∞

n=1(tA)n = {0}. That
is, A is Hausdorff with respect to the t-adic topology. Now we consider a Cauchy
sequence {ai}∞i=1 in A with respect to the t-adic topology. Then there exists a sequence
of integers {ni}∞i=1 with tni |ai+1− ai and ni →∞. Thus, v(ai+1− ai) ≥ niv(t) for each
i, so v(ai+1 − ai)→∞. Since A is complete with respect to v, there exists a ∈ A with
v(ai−a)→∞. For each i ≥ 1, let mi be an integer satisfying v(ai−a)

v(t) −1 ≤ mi ≤ v(ai−a)
v(t) .

Then, mi → ∞ and v(ai−a
tmi

) ≥ 0, which implies that ai−a
tmi
∈ A[t−1] ∩ Rv = A for each

i. Thus, tmi |ai − a for each i ≥ 1. Hence ai converges t-adically to a.

Lemma 4.2: Let n ≥ 0 and let t ∈ K× with |t| < 1. Then On is complete with respect

to the t-adic topology.

Proof: Let Rn = {x ∈ Fn | |x| ≤ 1} be the valuation ring of | · | in Fn. Since
t ∈ K×, we have On[t−1] ≤ Tn. Hence, On ⊆ Rn ∩ (On)[t−1] ⊆ Rn ∩ Tn = On, so
On = (On)[t−1] ∩ Rn. Hence by Lemma 4.1, On is complete with respect to the t-adic
topology.

Corollary 4.3: For each n ≥ 1, Fn is an ample field.

Proof: By Proposition 3.3, Fn = Quot(On). By Lemma 4.2, On is complete with
respect to the t-adic topology (for each t ∈ K× with |t| < 1). Hence, by [Pop10,
Theorem 1.1] or [Jar11, Proposition 5.7.7], Fn is ample.

Now we prove that Fn is a Krull field. The proof is an adaptation of [Par10,
Proposition 5.5].

Proposition 4.4: For each n ≥ 1, Fn is a Krull field.

Proof: Set F = Fn = Quot(Tn). By Lemma 3.2, Tn is a unique factorization domain.
We choose a system of representatives S for the associate classes of the prime elements
of Tn. Let V be the family of all s-adic valuations of F with s ranging on S. Then
each v ∈ V is discrete and V satisfies Condition (a) of Definition 1.1. Let F ′ be a finite
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Galois extension of F . We prove that there are card(K) valuations in V that totally
split in F ′.

By Proposition 3.3, On is a generalized Krull domain with quotient field F . There-
fore, we may choose a primitive element z for F ′/F integral over On. Let f = irr(z, F ).
Then f is a monic polynomial with coefficients in On and f(z) = 0. In particular,
d = discr(f) is a non-zero element of On.

Let V ′ be the essential family of On (Definition 2.1). By Proposition 2.2, infinitely
many valuations of V ′ totally split in F ′. By Proposition 3.3, V ′rV consists of one
element. Hence, we may choose an s ∈ S that totally splits in F ′ and s - d. By Lemma
3.2, we may apply an automorphism of Tn to assume that s is an irreducible monic
polynomial in On−1[Xn] with |s| = 1.

We divide the rest of the proof into two parts.

Part A: Modification of s. We set X = Xn. As a generalized Krull domain, On is
integrally closed. Set P = On ∩ Tns. Since s does not divide d, z generates the integral
closure O′n,P of the local ring of On,P [FrJ08, Lemma 6.1.2]. Let P ′ be a prime ideal of
O′n,P lying over PO′n,P . Then, the residue of z modulo P ′ generates the residue field
F ′ of F ′ over F̄ = On,P /POn,P . Since s totally splits in F ′, we have F ′ = F̄ . Hence,
there exists a ∈ On such that

(1) f(a) ≡ 0 mod Ons and b = f ′(a) 6≡ 0 mod Ons.

Since s ∈ On−1[X] is monic with |s| = 1, s (viewed as an element of Tn) is regular.
By the Weierstrass division theorem [FrP04, Theorem 3.1.1(2)], for each g ∈ Tn, there
exist q ∈ Tn and r ∈ Tn−1[X] such that g = qs + r, degX(r) < degX(s), and |g| =
max(|q|, |r|). If also g ∈ On, then |g| ≤ 1, so |q|, |r| ≤ 1, hence q, r ∈ On. Therefore,
r ∈ Tn−1[X] ∩On = On−1[X].

It follows that On/Ons = On−1[x], where x (the reduction of X modulo s) satisfies
a monic equation over On−1 of degree k = degX(s). We denote the reduction of bmodulo
s by bs. Then, b2s = qs(x), where qs ∈ On−1[X] is a polynomial of degree less than k.
Set c = qs(X). Then, c ∈ On−1[X] satisfies

(2) c ≡ b2 mod Ons.

We choose 0 6= t ∈ O0 with |t| < 1. For each e ∈ O0 ⊆ On with |e| ≤ |t| we set

(3) se = s+ ce.

Then,
(4) there exists u ∈ O×n such that cu ≡ b2 mod seOn.
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Indeed, by (2) there exists g ∈ On such that c = b2 + gs. Then, u = 1 + ge is
invertible in On, because |ge| ≤ |e| < 1 and On is complete with respect to | · |. By (3),
c = b2 + gse − gce ≡ b2 − gce mod seOn. Hence, cu = c(1 + ge) ≡ b2 mod seOn, as
claimed.

By (1) and (3), f(a) ∈ Ons ⊆ Ons+Once = Onse +Once. Hence, by (2) and (1),

(5) f̄(ā) ∈ (c̄ē)Ōn = (b̄2ē)Ōn = f̄ ′(ā)2(Ōnē),

where the bar denotes reduction of elements of On modulo se.
Since s is monic of degree k in X and degX(c) < k, se is also monic of degree k

(by (3)). Also, |se| = 1, because |ce| < |e| ≤ 1 = |s|. Applying the Weierstrass division
theorem to se, we get that the ring Ōn = On−1[X̄] is a finite module over On−1. By
Lemma 4.2, On−1 is complete and Hausdorff with respect to tOn−1. Since Ōn is a finite
On−1-module, it follows from [ZaS75, p. 256, Theorem 5] that Ōn is complete with
respect to the tŌn-adic topology.

Since |e| ≤ |t|, we have One ⊆ Ont. Hence, by (5), f̄(ā) ∈ f̄ ′(ā)2(Ōnē) ⊆
f̄ ′(ā)2(Ōnt). Therefore, by Hensel’s Lemma (for the ring Ōn and the ideal Ōnt), there
exists ae ∈ On such that f̄(āe) = 0 [Eis95, p. 185], i.e. f(ae) ∈ Onse.

Part B: Many totally split primes. For each e ∈ O0 satisfying |e| ≤ |t| let se = s+ce,
as in (3), and let pe be a prime factor of se in the unique factorization domain Tn.
Dividing by a nonzero element of K of the same absolute value as pe, we may assume
that |pe| = 1. It follows that pe is also a prime element of On. Since f(ae) ∈ Onse, we
also have f(ae) ∈ Onpe.

We claim that if e, e′ are distinct elements in O with |e|, |e′| ≤ |t|, then pe, pe′

are non-associate prime elements of On. Indeed, suppose pe is a product of pe′ by an
invertible element of On. Then pe divides (s + ce) − (s + ce′), so pe|c(e − e′). If pe|c,
then pe|s, and since s is prime in On, s and pe are associates, which implies that s|c. By
(2) c ≡ b2 mod Ons, so b ≡ 0 mod Ons, in contrast to (1). Thus, pe does not divide c.
If pe|e− e′, then |pe| ≤ |e− e′| ≤ |t| < 1, in contrast to the choice of pe in the preceding
paragraph. It follows that pe, pe′ are non-associate prime elements of On. This implies
that pe, pe′ are non-associate prime elements of Tn. Indeed, if pe and pe′ are associates
in Tn, then pe

pe′
, pe′

pe
∈ Tn, and since |pe| = |pe′ | = 1 this implies that pe

pe′
, pe′

pe
∈ On, a

contradiction.
Thus, each e in O with |e| ≤ 1 yields a distinct prime pe of Tn such that f has

a root modulo pe. Only finitely many of these primes divide d (since Tn is a unique
factorization domain), all others split completely in F ′ (same argument as for s in Part
A). The corresponding valuations in V totally split in F ′.

Finally we note that since K is complete with respect to a non-trivial non-
archimedean absolute value, we have card(K) = card(K)ℵ0 [Vam75, Lemma 2]. Since
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K ⊂ Tn ⊂ K[[X1, . . . , Xn]], we have card(K) ≤ card(Tn) ≤ card(K)ℵ0 = card(K).
Hence, card(Tn) = card(K). Therefore, card(F ) = card(K). Consequently, F is a Krull
field.

Remark 4.5: In the case where the absolute value | · | is discrete (that is, the corre-
sponding valuation is discrete), Proposition 4.4 follows by applying [Pop10, Theorem
3.4(ii)] to the ring On and the ideal 〈t,X1〉, where t is a uniformizer of O. In the case
where | · | is non-discrete (in particular, when K is algebraically closed), we cannot rely
on [Pop10, Theorem 3.4].

5. Tate Algebras

We prove the main result of this work, namely that the quotient field of a Tate algebra
has a semi-free absolute Galois group.

Theorem 5.1: Let A be an integral Tate algebra over a complete field K with respect

to a non-archimedean absolute value and let F = Quot(A). Then:

(a) F is Hilbertian and Krull.

(b) The maximal purely inseparable extension Fins of F is fully Hilbertian.

(c) F is ample and Gal(F ) is semi-free of rank card(F ).

Proof: By definition, A is a finitely generated integral extension domain of Tn for some
n ≥ 1. Thus, in the notation of Setup 3.1, F is a finite field extension of Fn = Quot(Tn).
By Corollary 3.4, Fn is Hilbertian. By Proposition 4.4, Fn is a Krull field. Since F is
a finite extension of Fn, F is Hilbertian [FrJ08, Proposition 12.3.3] and Krull [Jar11,
Lemma 12.2.4], This proves (a).

It follows from [BaP10, Proposition 7.4] that Fins is fully Hilbertian, which is (b).
By Corollary 4.3, Fn is ample. Hence, by [Pop96, Proposition 1.2] or [Jar11,

Lemma 5.5.1], F is ample. Since Fins is an algebraic extension of F , it is also ample. It
follows from [BaP10, Theorem 1.6] that Gal(Fins) is semi-free of rank card(Fins). Since
Gal(F ) = Gal(Fins) and card(F ) = card(Fins), we find that Gal(F ) is semi-free of rank
card(F ).

Remark 5.2: The conclusion that Gal(F ) is semi-free of rank card(F ) follows also from
[Pop10, Theorem 1.1] (see also [Jar11, Theorem 12.4.1]). We note that Pop’s proof
replaces the field F by a finite purely inseparable extension, like the step we take in (b).

6. Rings of Convergent Power Series

We apply Theorem 5.1 to rings of convergent power series that play a central role in
“algebraic patching”.

11



Let K be a complete field with respect to an absolute value | · | and let x be a
variable. We extend |·| to the fieldK(x) by the rule |

∑d
j=1 aix

i| = max(|a0|, . . . , |ad|) for
ai ∈ K (the Gauss extension). Now we consider a positive integer n, let I = {1, . . . , n}
and consider c1, . . . , cn ∈ K and r1, . . . , rn ∈ K× such that |ri| ≤ |ci−cj | for all distinct
i, j in I. Then we set wi = ri

x−ci
and note that |wi| = 1 for all i. Finally we consider the

subring R0 = K[w1, . . . , wn] of K(x) and let R = RI be the completion of the ring R0

with respect to | · |. This is the ring of holomorphic function on the connected affinoid⋂
i∈I D(ci, ri), where D(ci, ri) = {z ∈ P1(K̃) | |z − ci| ≥ |ri|} [FrP04, Example 3.3.5].

In the case where the ri’s are independent of i, the rings RJ , with J ranging
on the subsets of I, satisfy certain rules that make them part of a “patching data”
[Jar11, Definition 1.1.1] that eventually lead to the solution of all finite split embedding
problems over K(x) [Jar11, Proposition 7.3.1]. Indeed, [Jar11, Proposition 7.4.4] proves
even that Gal(K(x)) is semi-free profinite group of rank card(K). We prove here that
the absolute Galois groups of the quotient fields of these rings are themselves semi-free.

The following lemma appears in [FrP04, Example 3.3.5] in the case where K is
algebraically closed.

Lemma 6.1: The integral domain R is an integral Tate algebra.

Proof: Let Tn0 = K[X1, . . . , Xn] equipped with the Gauss extension of | · |. The
map Xi 7→ wi for i ∈ I extends to a K-epimorphism ϕ0: Tn,0 → R0. For each f =∑
aj
∏

i∈I X
ji

i ∈ Tn0 with distinct monomials
∏

i∈I X
ji

i , we have |f | = max(|aj|). Since
|wi| = 1 for all i ∈ I, we have |ϕ0(f)| ≤ max(|aj|) = |f |. Since Tn and R are the
completions of Tn0 and R0 with respect to the absolute value, this implies that ϕ0

extends to a continuous K-epimorphism ϕ: Tn → R. Then R = Tn/Ker(ϕ). By [FrP,
Theorem 3.2.1(4)], R is a finitely generated extension of Td, with d = dim(R). Thus, R
is a Tate algebra.

Taking Lemma 6.1 into account, we get the following example for Theorem 5.1:

Theorem 6.2: Let R = RI be as above and set F = Quot(R). Then, F is Hilber-

tian, Krull, and ample, Gal(F ) is semi-free of rank card(F ), and the maximal purely

inseparable extension Fins of F is fully Hilbertian.

7. Non-projectivity

Let A be an integral Tate algebra over a complete field K with respect to a non-
archimedean absolute value and let F = Quot(A). By Theorem 5.1, Gal(F ) is semi-
free. We prove that in most cases this result can not be improved to “Gal(F ) is free”
by showing that Gal(F ) is not projective.
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Proposition 7.1: Let A be an integral Tate algebra over a field K which is complete

with respect to a non-archimedean absolute value | · | and let F = Quot(A). Then

Gal(F ) is not projective in each of the following cases:

(a) dim(A) ≥ 2.

(b) dim(A) = 1, K is not real closed [Lan93, Section XI.2], and the order of Gal(K)
[FrJ08, Section 22.8] is divisible by a prime number l 6= char(K).

Proof: Since K is complete with respect to | · |, the field K ′ = K(
√
−1) is also complete

with respect to the unique extension of | · |. Moreover, under the assumptions of (b), K ′

is not formally real and the order of Gal(K) is divisible by a prime number l 6= char(K).
By definition, the domain A is integral and finitely generated over Tn = Tn(K) for some
n ≥ 1. By the going up theorem, dim(A) = dim(Tn) [HuS06, Theorem 2.2.5]. By
Lemma 3.2, dim(Tn) = n, hence dim(A) = n. Let T ′n = Tn[

√
−1], A′ = A[

√
−1],

and F ′ = F (
√
−1). Then T ′n = Tn(K ′) (because there exists a positive real number γ

such that |a + b
√
−1| ≤ γmax(|a|, |b|) for all a, b ∈ K [CaF67, p. 57, Corollary] and

F ′ = Quot(A′). Moreover, A′ is integral over Tn(K ′), so A′ is an integral Tate algebra
over K ′ and dim(A′) = dim(A). If Gal(F ) is projective, so is Gal(F ′) [Rib70, Chapter
IV, Proposition 2.1(a)]. Thus, replacing K, Tn, A, F , respectively, by K ′, T ′n, A′, F ′, if
necessary, we may assume that K is not formally real, so K can not be ordered.

Now we set T0 = F0 = K. By Lemma 3.2, Tn is a unique factorization domain. In
particular, Tn is Noetherian. The map (X1, . . . , Xn−1, Xn) 7→ (X1, . . . , Xn−1, 0) extends
to a continuous K-epimorphism Tn 7→ Tn−1 with TnXn as its kernel. In particular,
TnXn is a prime ideal of Tn and Xn is a prime element of Tn.

We denote the discrete valuation of Fn that corresponds to Xn by v. Then the
residue field of Fn with respect to v is Fn−1. We consider an extension w of v to F

and let Fw be a Henselian closure of F with respect to w. The field Fw is a discrete
Henselian valuation ring whose residue field F̄w is a finite extension of Fn−1. Since
K ⊆ Fn−1 and K is not formally real, F̄w not formally real.

If l 6= char(K) is a prime number, then l ∈ K×, so l is invertible in the valuation
ring of Fw. By [AGV63, Chap. x, Théorème 2.3], cdl(Gal(Fw)) = cdl(Gal(Fn−1)) + 1.
Since Gal(Fw) is a closed subgroup of Gal(Fn), we have cdl(N) ≤ cdl(Fn) [Rib70, p. 204,
Proposition 2.1(a)]. Hence,

(1) cdl(Gal(Fn)) ≥ cdl(Gal(Fn−1)) + 1.

End of proof under Assumption (a): As in the second paragraph of the proof, Xn is a
prime element of Tn−1. Let l 6= char(K) be a prime number. By Eisenstein’s criterion,
Fn−1( l

√
Xn) is a separable extension of Fn−1 of degree l. Hence, by [Rib70, Chapter

IV, Corollary 2.3], cdl(Fn−1) ≥ 1. Consequently, by (1), cdl(Fn) ≥ 2, so Gal(F ) is not
projective.
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End of proof under Assumption (b): Let l 6= char(K) be a prime number that does
not divide the order of Gal(K). By [Rib70, Chapter IV, Corollary 2.3], cdl(K) ≥ 1.
Therefore, by (1), cd(F1) ≥ 2.

If K is a real closed field, then its unique ordering can be extended to K((x)) (e.g.
by defining 0 < x < a for each positive a ∈ K), hence to F1 = Quot(K{x}). Therefore,
Gal(F1) contains an involution and consequently cd2(Gal(F1)) = ∞ [Rib70, Chapter
IV, Proposition 2.1(a) and Corollary 2.5]. In particular, Gal(F1) is not projective. From
the remaining cases, it seems that the first one to handle should be when K is separably
closed.

Problem 7.2: Let K be a separably closed field, x a variable, and F = Quot(K{x}).
Is it true that Gal(F ) is projective?
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