FIELDS ON THE BOTTOM

*

by

Moshe Jarden**

School of Mathematics, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel e-mail: jarden@post.tau.ac.il

and

CARLOS VIDELA Mount Royal University Calgary, Alberta, Canada

e-mail: cvidela@mtroyal.ca,

MR Classification: 12E30 Directory: \Jarden\Diary\Bottom 26 December 2013

^{*} Research initiated in a working team during a conference on Definabiliity and decidability problems in number theory, in the American Institute for Mathematics, Palo Alto, California, September 2013

^{**} Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

Introduction

We say that a field F lies on the bottom if F contains no field E with $1 < [F : E] < \infty$. By definition, each of the prime fields \mathbb{Q} and \mathbb{F}_p lie on the bottom. By a theorem of Artin, every separably closed field of positive characteristic lies on the bottom (see for example the proof of [Lan93, Cor. 9.3]). In particular, the absolute Galois group Gal(K)of a field K of positive characteristic is torsion free.

The same theorem combined with another theorem of Artin [Lan93, p. 452, Prop. 2.4] implies that every real closed field lies on the bottom. Again, this implies that the only torsion elements of the absolute Galois group of a field K are involutions.

By a theorem of F. K. Schmidt, the Henselian closure $\mathbb{Q}_{p,\text{alg}}$ of \mathbb{Q} with respect to a prime number p lies on the bottom (e.g. [Jar91, Cor. 15.3]).

By the "Bottom Theorem" [Jar08, Thm. 18.7.7], for every positive integer e and almost all $(\sigma_1, \ldots, \sigma_e) \in \text{Gal}(\mathbb{Q})^e$ the field $\tilde{\mathbb{Q}}(\sigma_1, \ldots, \sigma_e)$ lies on the bottom. Here $\tilde{\mathbb{Q}}(\sigma_1, \ldots, \sigma_e)$ is the fixed field of $\sigma_1, \ldots, \sigma_e$ in the algebraic closure $\tilde{\mathbb{Q}}$ of \mathbb{Q} . The clause "almost all" means "all but a subset of $\text{Gal}(\mathbb{Q})^e$ of Haar measure 0".

We mention that Lior Bary-Soroker [BaS08] strengthened the bottom theorem in the following way: Let K be a finitely generated extension of \mathbb{Q} and let $e \geq 2$ be an integer. Then, for almost all $(\sigma_1, \ldots, \sigma_e) \in \text{Gal}(K)^e$ the field $\tilde{K}(\sigma_1, \ldots, \sigma_e)$ lies on the bottom [BS008, Thm. 8.2.2].

Next, we recall that a field F is **Pythagorean** if every sum of two squares in F is a square in F. It follows that every sum of finitely many squares in F is a square in F. It also follows that the intersection of Pythagorean subfields of a field Ω (which we assume to be algebraically closed) is Pythagorean. Note that every algebraically closed field is Pythagorean. Hence, the intersection of all Pythagorean field extensions of a given field K in Ω is the least algebraic extension of K which is Pythagorean. We denote it by K_{pyt} . If char $(K) \neq 2$, then K_{pyt} is a Galois extension of K. Indeed, K_{pyt} is the smallest algebraic extension of K closed under extensions with elements of the form $\sqrt{x^2 + y^2}$. By [Rbn72, p. 176], \mathbb{Q}_{pyt} lies on the bottom.

In order to present our results, we consider the field \mathbb{Q}_{tr} of all totally real algebraic numbers. It is the union of all finite extensions K of \mathbb{Q} whoes images under all

embeddings into \mathbb{C} lie in \mathbb{R} . It is also the intersection of all real closures of \mathbb{Q} in \mathbb{Q} . Since the absolute Galois group of a real closed field has order two, $\operatorname{Gal}(\mathbb{Q}_{tr})$ is generated by involutions. Florian Pop proved in [Pop92] that \mathbb{Q}_{tr} is **PRC**. This means that every absolutely irreducible variety defined over \mathbb{Q}_{tr} with a simple *R*-rational point for each real closure *R* of \mathbb{Q}_{tr} has a \mathbb{Q}_{tr} -rational point. Michael Fried, Dan Haran, and Helmut Völklein proved in [FHV94] that $\operatorname{Gal}(\mathbb{Q}_{tr})$ is a free profinite group (in the sense of Melnikov) generated by involutions. They also proved that the elementary theory of \mathbb{Q}_{tr} is effectively decidable [FHV94, Thm. 10.1].

Our first goal is to enrich the already rich collection of properties of \mathbb{Q}_{tr} with the following one:

THEOREM A: The field \mathbb{Q}_{tr} of all totally real algebraic numbers lies on the bottom.

Our second result involves the notion of an "S-closure" of a field, where S is a set of prime numbers. Given a field K, we let $K^{(S)}$ be the union of all finite Galois field extensions L of K whose degrees [L:K] are divisible only by prime numbers that belong to S. We prove:

THEOREM B: Let S be a set of primes.

- (a) $\mathbb{Q}^{(S)}$ lies on the bottom if and only if $2 \notin S$.
- (b) If $2 \in S$, then $\mathbb{Q}_{tr}^{(S)} = \mathbb{Q}^{(S)} \cap \mathbb{Q}_{tr}$ lies on the bottom.

The proofs of both theorems use information about Pythagorean fields, an old theorem of George Whaples, and an older theorem of Edmund Landau.

1. The Field \mathbb{Q}_{tr}

We present a few facts and results that enter the proof of Theorems A and B.

LEMMA 1.1: Let F/K be a Galois extension. Suppose that there exists no field $K \subseteq QTRa$ $M \subset F$ such that [F:M] is a prime number. Then F is a proper finite extension of no field that contains K.

Proof: Assume that M is an extension of K in F such that $1 < [F : M] < \infty$. Then F/M is a finite proper Galois extension. Let p be a prime divisor of [F : M]. By a theorem of Cauchy, $\operatorname{Gal}(F/M)$ has an element σ of degree p. Let M' be the fixed field of σ in F. Then, [F : M'] = p, in contrast to the assumption of the Lemma.

LEMMA 1.2: If F/M is a cyclic extension of an odd prime degree p, then F has a cyclic QTRb input, 32 extension of degree p.

Proof: By a result of Whaples from 1957 [FrJ08, Thm. 16.6.6], M has a Galois extension N with $\operatorname{Gal}(N/M) \cong \mathbb{Z}_p$. The compositum FN is a Galois extension of F and $\operatorname{Gal}(FN/F) \cong \operatorname{Gal}(N/F \cap N)$. The latter group is isomorphic to an open subgroup of \mathbb{Z}_p , hence to \mathbb{Z}_p itself [FrJ08, Lemma 1.4.2]. It follows that $\operatorname{Gal}(FN/F) \cong \mathbb{Z}_p$. Hence, F has a finite cyclic extension of degree p in FN.

Next we need the following result about Pythagorean fields which is proved on page 176 of [Rbn72]. It is a corollary of a theorem of Diller and Dress.

PROPOSITION 1.3: If a finite extension of a field P_0 is Pythagorean, then P_0 itself is QTRd input, 53 Pythagorean.

Finally we use a result of Landau from 1919 proved in [Lan19, p. 392, II]. To this end recall that an algebraic number a is **totally real** if $\varphi(a) \in \mathbb{R}$ for every embedding $\varphi: \mathbb{Q} \to \mathbb{C}$. If in addition $\varphi(a) > 0$ for each such φ , then a is **totally positive**. Note that if a is totally real and $a \neq 0$, then a^2 is totally positive.

LEMMA 1.4: Q_{tr} is a Pythagorean field. Proof: Given elements $x, y \in \mathbb{Q}_{tr}$, not both zero, the sum $x^2 + y^2$ is totally positive.

Hence, so is $z = \sqrt{x^2 + y^2}$. Therefore, $z \in \mathbb{Q}_{tr}$ and $x^2 + y^2 = z^2$, as claimed

The following result is due to Landau [Lnd19].

PROPOSITION 1.5: Every totally positive algebraic number a is a sum of finitely many QTRf input, 82 squares of elements of $\mathbb{Q}(a)$.

We mention that two years after Landau published his result, Carl Ludwig Siegel improved it by proving that every totally positive algebraic number a is a sum of four squares in $\mathbb{Q}(a)$ [Sie21].

Proof of Theorem A: Assume that \mathbb{Q}_{tr} is a cyclic extension of degree p of a field M for some prime number p. By Lemma 1.1, it suffices to prove that this assumption leads to a contradiction.

There are two cases to consider.

CASE A: $p \neq 2$. By Proposition 1.2, \mathbb{Q}_{tr} has a finite cyclic extension N_0 of degree p. However, since as mentioned in the introduction, $\operatorname{Gal}(\mathbb{Q}_{tr})$ is generated by involutions, so is $\operatorname{Gal}(N_0/\mathbb{Q}_{tr})$. This contradicts the assumption that $p \neq 2$.

CASE B: p = 2. Then, \mathbb{Q}_{tr}/M is a quadratic extension. Thus, there exists a non-square element $a \in M$ with $\mathbb{Q}_{tr} = M(\sqrt{a})$.

Observe that a is totally positive, since otherwise \sqrt{a} would not lie in \mathbb{Q}_{tr} . By Proposition 1.5, a is a sum of squares in $\mathbb{Q}(a)$. Hence, a is a sum of squares in M. By Proposition 1.4, \mathbb{Q}_{tr} is Pythagorean. Hence, by Proposition 1.3, M is also Pythagorean. Hence, $\sqrt{a} \in M$, in contrast to the preceding paragraph.

Thus, in both cases we achieve a contradiction.

2. The Fields $\mathbb{Q}^{(S)}$ and $\mathbb{Q}^{(S)}_{\mathrm{tr}}$

Starting with a set S of prime numbers, we prove Theorem B about the fields that appear in the title. We start with a few observations:

(1) For each $p \in S$ the field $\mathbb{Q}^{(S)}$ has no cyclic extension of degree p.

Otherwise, there exist a finite Galois extension K of \mathbb{Q} in $\mathbb{Q}^{(S)}$ and a cyclic extension L of K of degree p such that $\mathbb{Q}^{(S)}L$ is a cyclic extension of degree p and $\mathbb{Q}^{(S)}\cap L = K$. Let \hat{L} be the compositum of all conjugates of L over \mathbb{Q} . In particular, (2) $L \not\subseteq \mathbb{Q}^{(S)}$.

On the other hand, \hat{L} is a Galois extension of \mathbb{Q} and each prime number that divides $[\hat{L}:\mathbb{Q}]$ belongs to S. Hence, $\hat{L} \subseteq \mathbb{Q}^{(S)}$, so $L \subseteq \mathbb{Q}^{(S)}$, in contrast to (2). This concludes the proof of (1).

The second observation is:

(3) If M'/M is a finite extension of fields and Q ⊆ M ⊆ M' ⊆ Q^(S), then every prime divisor of [M' : M] belongs to S.

Indeed, \mathbb{Q} has a finite Galois extension K in $\mathbb{Q}^{(S)}$ such that $M' \subseteq MK$ [FrJ08, Lemma 1.2.5(a)]. The field K is contained in the compositum of finitely many Galois extensions of \mathbb{Q} with degrees whose prime divisors belong to S. Hence, every prime divisor of $[K : \mathbb{Q}]$ belongs to S, Therefore, every prime divisor of [M' : M] belongs to S.

(4) If M is a Galois extension of \mathbb{Q} in $\mathbb{Q}^{(S)}$ and N is a Galois extension of M such that the degree of each finite Galois subextension N_0/M of N/M is divisible only by prime numbers that belong to S, then $N \subseteq \mathbb{Q}^{(S)}$.

Indeed, it suffices to prove that each N_0 as above is contained in $\mathbb{Q}^{(S)}$. To this end we take a finite Galois extension K of \mathbb{Q} in M and a finite Galois extension L_0 of K such that $M \cap L_0 = K$ and $ML_0 = N_0$ [FrJ08, Lemma 1.2.5(a)]. In particular, every prime divisor of $[L_0 : K] = [N_0 : M]$ belongs to S. Let L be the compositum of all conjugates of L_0 over \mathbb{Q} . Then, every prime divisor of $[L : \mathbb{Q}]$ divides $[L_0 : \mathbb{Q}]$, hence belongs to S. Therefore, L is contained in $\mathbb{Q}^{(S)}$. It follows that $L_0 \subseteq \mathbb{Q}^{(S)}$, so $N_0 = ML_0 \subseteq \mathbb{Q}^{(S)}$, as claimed. Now we break up the rest of the proof of Theorem B into three parts.

PART A: If $2 \notin S$, then $\mathbb{Q}^{(S)}$ lies on the bottom. By Lemma 1.1, it suffices to prove that F is a cyclic extension of no subfield M such that $p = [\mathbb{Q}^{(S)} : M]$ is a prime number. Assume that there exists such an M. By (3), $p \in S$, hence by our assumption $p \neq 2$. By Lemma 1.2, $\mathbb{Q}^{(S)}$ has a cyclic extension of degree p. But this contradicts (1).

PART B: If $2 \in S$, then $\mathbb{Q}^{(S)}$ does not lie on the bottom. Indeed, in this case $\sqrt{-1} \in \mathbb{Q}^{(S)}$. Hence, after embedding $\tilde{\mathbb{Q}}$ into \mathbb{C} , we find that $\mathbb{Q}^{(S)} \not\subseteq \mathbb{R}$, Therefore, $\mathbb{Q}^{(S)}$ is a quadratic extension of $\mathbb{Q}^{(S)} \cap \mathbb{R}$. This proves our claim.

The combination of Parts A and B proves Theorem B(a).

PART C: In each case $\mathbb{Q}_{tr}^{(S)}$ lies on the bottom. As before, we have to derive a contradiction from the assumption that $\mathbb{Q}_{tr}^{(S)}$ is a cyclic extension of some prime degree p of a field M. By (3), $p \in S$. Again, we have to consider two cases.

CASE C1: $p \neq 2$. By Lemma 1.2, $\mathbb{Q}_{tr}^{(S)}$ has a cyclic extension N of degree p. By (4), $N \subseteq \mathbb{Q}^{(S)}$. Since $\mathbb{Z}/p\mathbb{Z}$ is not generated by involutions, $N \subseteq \mathbb{Q}_{tr}$. Hence, $N = \mathbb{Q}_{tr}^{(S)}$, which is a contradiction.

CASE C2: p = 2. In this case $\mathbb{Q}_{tr}^{(S)} = M(\sqrt{a})$ for some non-square element a of M. In particular,

(5) a is not a square in M.

On the other hand, $\mathbb{Q}^{(S)}$ is in our case a Pythagorean field. Otherwise there exist $x, y \in \mathbb{Q}^{(S)}$ such that $x^2 + y^2$ is not a square in $\mathbb{Q}^{(S)}$. Therefore, $\mathbb{Q}^{(S)}(\sqrt{x^2 + y^2})$ is a quadratic extension of $\mathbb{Q}^{(S)}$, in contrast to (1). Since \mathbb{Q}_{tr} is Pythagorean (Lemma 1.4) so is the intersection $\mathbb{Q}_{tr}^{(S)} = \mathbb{Q}^{(S)} \cap \mathbb{Q}_{tr}$. By Lemma 1.3, M is also Pythagorean.

Since $\sqrt{a} \in \mathbb{Q}_{tr}$, the element *a* of *M* is totally positive. By Lemma 1.5, *a* is a sum of squares in *M*. Hence, by the preceding paragraph, *a* is a square in *M*. This contradiction to (5) ends the proof of Part C and the proof of Theorem B.

References

- [BaS08] L. Bary-Soroker, Pseudo Algebraic Closed Extensions, Ph.D Thesis, Tel Aviv University, 2008.
- [FHV94] M. D. Fried, D. Haran, H. Völklein, Real hilbertianity and the field of totally real numbers, Contemporary Mathematics 174 (1994), 1–34.
- [FrJ08] M. D. Fried and M. Jarden, Field Arithmetic, Third Edition, revised by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2008.
- [Jar91] M. Jarden, Intersection of local algebraic extensions of a Hilbertian field, in "Generators and Relations in Groups and Geometries" (A. Barlotti et al., eds), NATO ASI Series C 333, 343–405, Kluwer, Dordrecht, 1991.
- [Lnd19] E. Landau, Über die Zerlegung total positiver Zahlen in Quadrate, Nachrichten von der Gesselschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1919), 392–396.
- [Lan93] S. Lang, Algebra, Third Edition, Addison-Wesley, Reading, 1993.
- [Pop92] F. Pop, Fields of totally Σ -adic numbers, manuscript, Heidelberg, 1992
- [Rbn72] P. Ribenboim, L'Arithmétique des corps, Hermann, Paris, 1972.
- [Sie21] C. Siegel, Darstellung total positiver Zahlen durch Quadrate, Mathematische Zeitschrift 11 (1921), 246-275.