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TORSION POINTS OF ELLIPTIC CURVES
OVER LARGE ALGEBRAIC EXTENSIONS
OF FINITELY GENERATED FIELDS

BY
WULF-DIETER GEYER AND MOSHE JARDEN

ABSTRACT

The following Theorem is proved: Let K be a finitely generated field over its
prime field. Then, for almost all e-tuples (o) = (o, <+, ) of elements of the
abstract Galois group G(K) of K we have:

(a) If e =1, then E (K (o)) is infinite. Morover, there exist infinitely many
primes | such that E(K (o)) contains points of order 1.

(0) If e 22, then E (K () is finite.

(c) If e = 1, then for every prime [, the group E(K (o)) contains only finitely
many points of an [-power order.

Here K (o) is the fixed field in the algebraic closure K of K, of oy, -+, 0., and

“almost all’” is meant in the sense of the Haar measure of G(K).

$1. Presentation of the problem
1.1. Introduction

By an elliptic curve E defined over a field K we mean a projective absolutely
irreducible curve E of genus 1 defined over K and equipped with a distinguished
K -rational point 0. An addition law is defined on the set of all points of E (in
some universal field that contains K) such that E becomes an abelian variety
with 0 as the zero point. If char (K) # 2,3, then E can be presented by the affine
Weierstrass canonical form Y?=4X"~ g, X —g,, where g ¢:€ K (see Ro-
quette [23, p. 70]). Here 0 is the point at infinity of the curve. The K -rational
points of E form a subgroup, E(K), of E whose torsion part is denoted by
E..(K). The main interest in the theory of elliptic curves lies in the exploration
of the properties of the groups E(K) and E..(K) for various K's. The most

important result is given by the Mordell-Weil Theorem, that handles the case
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where K is finitely generated over its prime field (K is then said to be finitely

generated ).

MorpeLL-WEIL THEOREM. If E is an elliptic curve defined over a finitely
generated field, then the group E(K) is finitely generated.

For a proof of this theorem see e.g. Lang [12, p. 92]. One can split the theorem
into two parts.

(a) The rank of E(K) is finite,

(b) The torsion group, E..(K), is finite.

Recently Mazur gave a bound for the order of E,(Q) that depends only on Q
(see [19]). Whether there exists a bound for rank (E(K)) that depends only on K,
is still an open question. If L is a finite extension of K, then L is also finitely
generated, hence both rank(E(L)) and E..(L) remain finite, but they are
possibly larger. If L is an infinite extension of K, then rank (E (L)) and E..(L)
may but must not be finite (cf. [19} and [11]). More precise statements about the
behaviour of these quantities can be made in the case where L is “close” to the
algebraic closure, K, of K. By “close’” we mean that the absolute Galois group,
G(L)=9(L,/L) of L (L, is the separable closure of L) is finitely generated (in
the topological sense).

To be precise, consider the absolute Galois group, G(K), of K. For every
(0)= (01, -+, 0.) € G(K) let K,(o) be the fixed field in K, of oy, -, 0.. The
maximal purely inseparable extension of K,(c) is denoted by K (o). It is the
fixed field in K of the unique extensions of oy, -+, 0. to K.

In [5, p. 124] Frey and Jarden proved the following

THEOREM. Let K be an infinite finitely generated field. Then for almost all
(0)€ G(K) and for every elliptic curve E defined over K,(c), the rank of
E(K,(0o)) is infinite.

Here “‘almost all” is meant in the sense of the Haar measure of G(K). (See

section 1.2 for details.)

Certainly the Frey-Jarden theorem remains valid if the fields K,(o) are
replaced by the fields K (o). It remains therefore to consider the torsion part of
the groups E (K (o). The situation here can be compared with the question of
the torsion groups of K (o). These are the groups of all roots of unity that are
contained in K (o). In [10, p. 124] Jarden proved the following

THEOREM. Let K be a field of a finite type. Then almost all (c) € G(K)* have
the following property:



Vol. 31, 1978 TORSION POINTS OVER LARGE FIELDS 259

(a) If e = 1, then K,(o) contains infinitely many roots of unity.
(b) If e =2, then K (o) contains only finitely many roots of unity.

One observes that unlike in Frey-Jarden’s theorem, there is a distinction here
between the case ¢ = 1 and e 2 2. This distinction extends also to elliptic curves,

where we prove the analogous

TueorREM 1.1. Let K be a finitely generated field. Then, for almost all (o) €
G(K)® and for every elliptic curve E defined over K (o) we have:

(a) If e =1, then E..(K(0)) is infinite. Moreover, there exist infinitely many
primes | such that E(K (o)) contains points of order |.

(b) If e =22, then E...(K(0)) is finite.

(c) If e = 1, then for every prime I, the group E(K(c)) contains only finitely
many points of an [-power order.

Theorem 1.1 is our main theorem and the whole work is devoted to its proof.
It turns out that in order to prove the theorem it suffices to prove the following

seemingly weaker

ProrosiTion 1.2, Let E be an elliptic curve with an absolute invariant j defined
over a finitely generated field. Suppose that j is contained in a finite field or
K =F,(j) or K =Q(). Then for almost all (o)€ G(K)* we have

(A) If e =1, then there exist infinitely many primes | such that E(K (o))
contains points of order L.

(B) If e =2, then there exist only finitely many primes | such that E(K (o))
contains a point of order I.

(C) Ife =1and!isaprime, then E (K (o)) contains only finitely many points of

an l-power order.

In the proof of Proposition 1.2 we distinguish between several cases. We
consider the n-torsion group E, of an elliptic curve E defined over K. Let
p = char K. It is well known that if p A n, then E, = Z/nZ B Z/nZ (cf. Cassels
[2, p. 219]). In this case K, = K(E.) is a Galois extension of K and G, =
%(K./K) is isomorphic to a subgroup G(n) of GL(2,n)=GL(2,Z/nZ); the
action of G, on E, is transferred by this isomorphism to the action of GL(2, n)
on Z/nA @ Z/nZ. Our proof of Proposition 1.2 is based on a good knowledge
of G(n). It turns out that there are four completely distinct cases.

Case 1. p =0 and E has no complex multiplication. Then G(n) is “almost”
equal to GL(2, n). This follows from classical results of Weber (cf. Lang [16, p.
68]) as well as new results of Serre (see [25, p. 260]).
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Case 1I. K =F,(j) and j is transcendental over F,. If p ’n, then G(n)=
{A € GL(2,n)|det A is a power of p}, by Igusa [8, p. 469].

Case 111. K is a number field and E has a complex multiplication. Here G(n)
is “almost™ abelian and | G(n)| has the order of magnitude n> To prove this we
apply classical results of Weber that use class field theory.

Case 1V. The invariant j is contained in a finite field and thus E is isomorphic
(over a finite separable extension of K) to an elliptic curve E’ defined over a
finite field. G (n) is “‘almost” cyclic. We prove a somewhat stronger theorem and

use the Riemann Hypotheses for elliptic curves.

The fact that Theorem 1.1 is true in all the possible cases makes the following

generalization plausible.

ConJeCTURE. Theorem 1.1 remains valid even if one replaces E by an arbitrary

abelian variety A.
Notation

Z = the ring of integers.

Q = the field of rational numbers.

F, = the field with q elements.

[ = a variable for prime numbers.

Z, = the ring of [-adic integers.

Q, = the field of [-adic numbers.

K = a finitely generated field.

L = an extension field of K.

K = the algebraic closure of K.

K, = the separable closure of K.

G(K) = 9(K,/K) = the absolute Galois group of K.
K (o) = the fixed field of (0)= (o1, -, 0.)€ G(K) in K.
p = the characteristic of K.

ord,p = the order of p modulo n (n is relatively prime to P
[A | = the cardinality of a set A.
SL(2,n)=SL(2,Z/nZ).

GLQ2,n)=GL(Q2,Z/nZ).

E = an elliptic curve defined over K.

E(L) = the group of L-rational points of E.
E,={P€E(K)|nP =0}

E ;= Ul E .
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E... = the torsion part of E.
K, = K(E.,).

G, = G(K./K).

K== Ul K(E ).

G['“ = (.(IJ(KF/K) = l(Lr_Tl G['.
T, = lim E ; = the Tate module of E at [

1.2. The Haar measure of a profinite group

Every profinite group G has a canonical topology that makes it a compact
group. There is therefore a unique way to define a Haar measure 4 = ug on G
such that u(G)=1. We complete u by adjoining to the Borel field all the
subsets of zero sets and denote the completion also by pu.

The fundamental property of the Haar measure is that it is invariant under
translations. This means that if A i1s a measurable subset of G, and g € G, then
gA and Ag are also measurable and pu(gA)= n(Ag)= n(A). In particular it
follows that w (H) = (G : H)™' for every closed subgroup H of a finite index, and
w(H)=0if (G : H)=co. If a measurable set A has infinitely many translations
g A, fori=1,2,3-- suchthat u(gA NgA)=0forevery i#J, then u(A)=
0. The intersection of countably many subsets of measure 1 is again a subset of
measure 1.

We recall that a sequence {A;}i-, of measurable sets is said to be u-
independent, if u ({V,e;A;)=1T1,c,u(A,;) for every finite subset J of positive

integers.

BoOrEL-CANTELLI LEMMA. Let {A;}7-| be a sequence of measurable sets in a
probability space (X,u). Then

(a) If the sequence {A;}7-, is w-independent and if 2, w(A,) = =, then almost
every x € X belongs to infinitely many of the A;’s.

(b) If 27w (Ai) <oo, then almost every x € X belongs, at most, to finitely
many of the A;’s.

A proof of this lemma can be found in [10, p. 111].

Let H be a closed subgroup with a finite index of a profinite group G. Then H
is also a profinite group. If A is a measurable subset of H, then it is measurable
in G and puu(A)=(G :H)us(A). In particular ps (A)=0 is equivalent to
mr {(A)=0.1f B is a measurable subset of G, then B N H is measurable in H
and ue(B)=1 implies uy (BN H)=1.

Let r : G — G’ be a continuous epimorphism of profinite groups. Let p = ug
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and u'= ug- A subset B of G'is measurable if and only if r 7' (B) is measurable,
and in this case u'(B) = u (r~'(B)). In particular it follows that if & (A ) = 1, then
p'(rA)=1, since A C r'r(A).

The cartesian power G° of a profinite group G is also a profinite group and
the completion of the Haar measure of G* coincides with the completion of the
power measure of ue.

Let now M be a Galois extension of a field K. Then ¥(M/K) is a profinite
group and has therefore a Haar measure pu = puapx= pn(M/K) as described
above. The following statements about fields are therefore the translations of the
corresponding statements about profinite groups.

If L C M is a finite extension of K, then u (¢(M/L))=[L :K]""If[L:K]=
co, then w(9(M/L))=0.

A sequence {K}7-, of intermediate fields of M/K is said to be linearly disjoint
over K, if K., is linearly disjoint from K, - - - K; over K for every positive integer
i. This happens to be the case if and only if the sequence {9 (M/K\)}., is
w-independent. In this case, u (U7, 9(M/K)) =1, if 27, [K : K] = o,

Let {K;/K}7., be a linearly disjoint sequence of finite Galois subextensions of
J/K.Foreveryi=1let Aibeasubset of 4(K;/K), and let A, be the lifting of A}
to Y(M/K). Then u(A;)=|A/|[K :K]"' and the sequence {A;}7., is u-
independent.

Let X, be an extension of K which is linearly disjoint from M and let M, be a
Galois extension of K, that contains M. Then the restriction map
r:9(M, /K, — 4(M/K) is a continuous map, for every e = 1. In particular we
have the formula wa(A) = wank, (r 7' (A)) for every measurable subset A of
G(M/KY).

Let K" be a purely inseparable extension of K, let y = p«,x and u” = wgi/x-.
The restriction map of G(K")* into G(K)* is an isomorphism. Hence, if A is the
image of a measurable subset A” of G(K"), then A is w-measurable and
w(A)=u"(A"). Note that if (¢") € G(K")° and (o) is the restriction of (¢") to
K., then K(o)= K(o").

1.3. Reduction steps

We show in this section that Theorem 1.1 follows from Proposition 1.2.
Step 1. Proposition 1.2 implies

Lemma 1.3. Let K(o) = K (o).
be an elliptic curve with an absolute invariant j defined over a field K. Suppose that
J belongs to a finite field or K =F,(j) or K=Q(j). Then for almost all
(o)& G(K)* we have:
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(a) Ife =1, then there exist infinitely many primes | such that E, (K (o)) # 0.
(b) If e =2, then E.(K(o)) is finite.
(¢) If e = 1, then E ~(K(0)) is finite for every prime .

Proor. Statement (a) is just a repetition of (A). We continue with the proof of
(c). Let A, ={(0)€ G(K) | E,=(K(¢)) is finite for every I}. Then A C A,
since K (o, -, 0.)C K(0y). By (C), n:(A) =1, hence u.(A.)= 1.

Statement (b) follows now from (B) and from (c).

Step 2. Lemma 1.3 implies:

Lemma 1.4. Let E be an elliptic curve defined over a finitely generated field K.
Then for almost all (0)&€ G(K)* we have:

(a) Ife =1, then there exist infinitely many primes | such that E, (K (o)) # 0.

(b) If e 22, then E...(K(o)) is finite.

(c) If e 2 1, then E ~(K (o)) is finite for every prime l.

Proor. We start the proof with a lemma on Hilbertian fields. Let L be a field,
let fi, -, fs be irreducible polynomials in L(T,---, T,)[X,,---, X,] and let
fi,: -+, fm be arbitrary polynomials there. The Hilbertian set in L’ defined by
fio s fms f1, 0, fristhe set H of all (@) in L” such that f (a, X) and fj(a, X) are
defined, and f;(a, X) are irreducible in L[X]. The field L is said to be Hilbertian,
if all its Hilbertian sets are non empty (cf. Lang {12, p. 141]). It is known that
every infinite finitely generated field is Hilbertian (cf. [12, p. 155]). It is also
known that if M is a finitely separable extension of a field L, then every
Hilbertian set of M" contains a Hilbertian set of L" (cf. [12, p. 152]). The
following lemma is less known, but it is still true (cf. Roquette [24, corol. 4.5]).

LemMa 1.5. Let M/L be a finitely generated separable extension. Then every
Hilbertian set of M" contains a Hilbertian set of L'

Next we prove the following

LemMA 1.6. Let E be an elliptic curve with an absolute invariant j defined over a
finitely generated field K. Let F be the prime field of K and suppose that F(j) is an
infinite field. Then for almost all (o) € G(K)* there exists an elliptic curve E’
defined over F(j) and isomorphic to E over K (o).

Proor. It is well known that E is isomorphic over K to a curve E ) given in
affine coordinates by the equation
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Y =4X— g, X ~ g, if p#£2,3,

3
YZ:X~’+yX2~—Y],—-, if p=3,

Y2+XY:X3+yX2+/l,, itp=2.
Note that if p =2 or p =3, then j#0,12°. On the case p# 2,3 we have

[ lg: 3
gy if j#0,12°
3

e 3____&_2 4 :J
JEI e and oy g it =12°,

g3 if j =0,

for the Haase invariant y. In this case we also have F(j,y) = F(g2 g4).
Further, let ¢# 0 and let y' be the new Haase invariant defined by

( yc?, ifp#2 and j#0,12°%
vet, ifp#2 and j=127%
.
yc®, ifp#2 and j=0;
ey, ifp=2.

Then the curve E; . is defined over F(j, y') and is isomorphic to E = E ,, over
F(j, v, c) (cf. Roquette [23, pp. 69-79]).

Let now K = F(j,v). Then K, C K and E is defined over K,. Let K, =
K M K., Then K, is a finite separable extension of K, and K is linearly disjoint
from K, over K. The restriction map p : G(K)* — G(K,)* is an epimorphism.
Suppose Lemma 1.6 is true for K. Let S, be the set of all (o) € G(K.)* for which
there exists an elliptic curve E’ over F(j) and isomorphic to E over K (o) and let
S1, 8 be the corresponding sets for K, K, respectively. Then e, (S:)=1 and
p '(S2) C S; hence ui(S) = 1. It follows that it suffices to prove Lemma 1.6 for
the case where K is a finite separable extension of K,.

Suppose next that Lemma 1.6 is true for K, i.e. w«,(S,) = 1. Then ux(S)=1,
since § = S5,N G(K)". It follows that it suffices to prove Lemma 2.4 in the case
where K = K.

It p#0 and vy is algebraic over F(j), then j#0,12° and v must not be
separable over F(j). Let
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,y(pﬂ)/z, if p7£ 2’
C =

Y, if p=2.

Then y'= vy’ and E is isomorphic over K to E,». Now, there exists a power q
of p such that y? is separable over F(j). Applying the above process a finite
number of times we conclude that E is isomorphic over K to E 4. It follows
that we can assume that either y is separable algebraic or transcendental over
F().

Define now an integer n and a polynomial f € K[T, X] as follows:

p#2 and j#0,122 > n=2 and f(1,X)=yX"-T;
p#A2 and j=12° > n=4 and f(T,X)=yX"'-T;
p#2 and j=0 > n=6 and f(T,X)=yX°-T,;

p=2 >n=2 and f(T,X)=X*+X+T+y.

Further, define by induction a linearly disjoint sequence, {L,/K}i-\, of separable
field extensions of degree n, and a sequence, {E:},, of elliptic curves which are
defined over F(j), such that E; is isomorphic to E over L, Suppose that
Ly, -, L.yand E|, - - -, E;., have already been defined. The field L generated by
L, -+, L. is a finite separable extension of K. Moreover F(j) is a Hilbertian
field, since it is infinite, and f(T, X)) is absolutely irreducible and separable in X.
Hence, by Lemma 1.4, there exists a y' in F(j) such that f(y’, X) is irreducible in
L[X], of degree n and separable. Let ¢ be an element in K such that f(y’,c)=0
and let L, = L(c). Then L, is a separable extension of degree n of K which is
linearly disjoint from L over K. The curve E; = E,, is defined over F(j) and
isomorphic to E over L. Our induction is thus completed.

If (o) € G(K;), then K (o) contains L; and hence E; is isomorphic to E over
K (o). This ends the proof of Lemma 1.6, since almost all (o) € G (K)* belong to
one of the G (L), by section 1.2.

EnD OF PROOF OF LEMMA 1.3 2> LEMMA 1.4, Let E be an elliptic curve with an
absolute invariant j defined over a finitely generated field K. We have to
consider only the case where F(j)is an infinite field. Then, by Lemma 1.6, the set
S, of all (o) € G(K)* for which there exists an elliptic curve E” over Ko = F(j)
and isomorphic to E over K(o), is of measure 1. Order all these E’ in a
sequence: Ej, E4, E4 -+ - . For every i Z 1 let S; be the set of all (o) € G (Ko)*
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such that (a), (b) and (c) are true with respect to £/, and let S' = (._, S’. Then
Hx{S)=1, by Lemma 1.3.

Let Ki= K N Ky, Then K is linearly disjoint from K,, over K| and hence the
restriction map r: G(K)*— G(K1)* is surjective. Moreover, K| is a finite
separable extension of K, Hence pux (S'N G(K))=1. Let S=
r'(S'NG(K1)), then uk(S)=1, hence px(SeNS)=1.

Let now (o) € SoN S and let (o) = (). Then there exists an E' over K, and
(a), (b), (c) are true for E' and K(o)N K, = Ko(o'). If e = 1, then there exist
infinitely many [ such that Ej(K (o)) # 0, hence also E(K (o)) # 0, since E and
E' are isomorphic over K(o). If e =2, then E.(K)c')) is finite. Hence
El.(K(0))is finite, since E1,, C E'(Ky). It follows that E,.(K (o)) is finite. The
same argument implies that if e = 1 and [ is a prime, then E «(K (o)) is finite.

The second reduction step is therefore completed.

Step 3. Lemma 1.4 implies Theorem 1.1.

Let K be a finitely generated field. Let L be a finite extension of K and let L,
be the separable closure of K in L. For every elliptic curve E defined over L,
define S(L,E) to be the set of all (¢) & G(L)* such that (a), (b) and (c) are
satisfied. By Lemma 1.5, u.(S(L,E))=1. Let So(L, E) be the restriction of
S(L,E)to K.. Then u(So(L, E))= 1. Hence ux (G (Lo)* ~ So(L, E))=0. There
are only countably many pairs (L, E). Hence the union U (G (Lo)* — So(L, E)),
where (L, E) runs over all possible pairs, is a zero set in G(K).

Suppose that (o) € So(L, E). Hence (a), (b), and (c) are satisfied for (o) and E.

1.4, Permutation groups

By a permutation group we mean a pair (G, A), where A is an additive
abelian group and G is a multiplicative group that operates faithfully (and
continuously, if A and G have topologies) on A.

A pair (G, A) is said to be a subgroup of (G,A) if G,=G and if the
operation of an element g, € G, on A coincides with its operation on A as an
element of G.

A homomorphism of a permutation group (G, A) into another one (H, B)
iIs a pair (6,«a), where 8 :G—>H and a: A — B are homomorphisms, and
0(g)aa = aga for every a € A and g € G.

The pair (6, «) is said to be surjective, if both § and « are surjective. It is
called an embedding if « is an isomorphism. In this case 6 is injective. It is called
an isomorphism, if both a and 6 are isomorphisms.

Let (G, A) be a subgroup of (G, A) and let (8, a):(G,, A)— (H, B) be an
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embedding. Then (6, «) can be uniquely extended to an embedding of (G, A)
into (Aut B, B) by the following definition:

6(g)b = aga™'b forbe B and g € G.

Suppose that we are given an inverse system {(G,, A,), (8}, a}) | i,j € I} of finite
permutation groups. Then its inverse limit (G, A) = l(iLn(G;, A;) is also a
permutation group, taking into account now also the topologies of G and A.

Given a permutation group (G, A) and a positive integer e, we define

S (G, A)={(g, 8)EG" f3a €EA:a#0andga=afori=1,-- e}
This is a subset of G that contains (1,1, --,1). We also write
S(G,A)=8/(G,A)={g €G|FaE A :a#0 and ga=a)
Then S.(G,A) C S(G,A)".
1.5. Examples of permutation groups

We bring in this section examples of permutation groups which we shall meet
in this work.

(1) (G,R?*. Here R is a commutative ring with 1 and G is a subgroup of
GL(2, R), with the usual operation. A matrix B belongs to S(G, R?) if and only
if 1 is a characteristic value of B.

(2) (R™, R). Here R is a commutative ring with 1 and R ™ is the multiplicative
group of all invertible elements. An element u &€ R™ operates on an element
r € R by multiplication. In particular we shall consider the case where R = R}

and R, is an integral domain. In this case
SR, R)={(u,u) ERZ|uy=1 or u,=1}.

(3) (G, E.). Here E is an elliptic curve defined over a field K of characteristic
p that does not divide n and G, = 9(K(E.)/K). The elements of b, operate on
E., since the law of addition of E is defined over K. E,, is isomorphic to (Z/nZ)".
One can therefore choose P, Q in E such that E, = {xP + yQ [x, y € Z}.

A specific isomorphism of E, onto (Z/nZ)’ can now be defined by mapping the
point xP + yQ onto the pair (x, y) modulo n. Also, one maps an element o € G,

onto the matrix

oP = aP + cQ,

oQ = bP +dQ.

(f 5) of GL(2, n) defined by

This gives an embedding of (G,, E.) into (GL(2, n), (Z/nZ)?) which is, however,
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not canonical, and depends on the choice of P and . Note that every
embedding (G, E,)— (GL(2,n),(Z/nZ)’) is induced by a certain pair (P, Q).
Indeed, P is the point of E, which is mapped on (1,0) and Q is the one mapped
on (0, 1).

Using the fact that an inverse limit of non-void finite sets is not empty, one can
prove that for every n which is prime to p there exist points P,, O, that generate
E, such that if n = km, then kP, = P, and kQ, = O,,. Denote by G(n) the
image of G, in GL(2, n) by the canonical embedding induced by (P,, O,).

In particular consider a prime 1# p. Let

B

K== J Ky and G,= 4(K-/K).

il
Then we have a sequence of canonical commutative diagrams
(Gt  Ept) ————(GI""),(Z/I'"" L))

! |

(G Ev) ———— (G"),(2/I'Z)").
Taking the inverse limit of this sequence we get an isomorphism
(G, 1) ——=(G ("), Z}),

where T = ILT E i is the Tate-module.

(4) Occasionally we shall consider pairs (G, A), where G is a multiplicative
group operating non-faithfully on A. We shall keep the notation S(G, A) for the
set of all g € G that fix a non-zero element of A. In particular we shall consider
the pairs (G(K), E,). An element o of G(K) belongs to S(G(K), E,)if and only
if E,(K(0))#0, i.c. if the restriction of o to K, belongs to S(G,, E.).

1.6. Further reduction

The case where j belongs to a finite field needs special treatment. In all other
cases it is more convenient to prove the following Proposition 1.7 rather than
Proposition 1.2. Indeed, Proposition 1.2 follows from Proposition 1.7 in these

cases.

Prorosirion 1.7. Let E be an elliptic curve with an absolute invariant | defined
over a field K. Suppose that K =F,{(j) and | is transcendental over F, or
K = Q(j). Then the following statements are true:

(A’) There exists an infinite set of primes A, and for every | € A there exists a
non-empty subset S'(Gy, E;) of S(G, E\) such that
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(A/I) E mgﬁ_iﬂ: w, and
e 1G]
(A'2) forevery I, -, I, €A we have

[(Sul 4 |S(G L, EL]
G e

where n = 1,1, and S,={c € G.,| o |K, € S(G,E,) forj=1,--r}
(B") There exists a positive constant ¢ such that

S(Gy E1)

|G|

IA

i

<
!

for all but finitely many primes L.
(C) If 1#p, then S(G -, T)) is a zero set in G~ For almost all o € G(K), the

set E (K (o)) is finite.
Lemma 1.8, Proposition 1.7 implies Proposition 1.2 in the cases where K =
F,(j) and | transcendental over F,, or K = Q(j).

Proor. (A') > (A). Let S'(G(K), E)) be the lifting of S(G, E;) to G(K).

Then
S'(G, E
1) W (SG(K), By = 154G Bl
|Gl

Hence, by (A'l), Ziea n (S(G(K), E))) = .

Next, let [,,<-+, L, € A. Then (., S"(G(K), E,) is the lifting of S} to G(K).
(We are using here the notation of (A'2).) Hence, by (A2) and (1), we have

o SGEKLEY ) =TT (S(GK).E)).

It follows that the set {S’(G(K),E,,)] € A} is p-independent. By the
Borel-Cantelli Lemma, the set S of all o € G(K) that belong to infinitely many
S'(G(K), E;)is of measure 1. For every o in § there are infinitely many I’s such
that E,(K(o))#0. This is (A) of Proposition 1.2.

(B") = (B). By (B') we have u(S(G(K), E;)) = c/l for all but finitely many
I's. We also know that S, (G(K), E/)C (S(G(K), E,)). Hence

w(S.(G(K), E)) §<§> , for all but finitely many [’s.

Hence 2,u(S.(G(K), E/)) converges, since e z2. It follows, by the
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Borel-Cantelli Lemma, that the set T of all (o) € G(K)* that belong to at most
finitely many S.(G(K), E;) is of measure 1. For every (o) & T there are only
finitely many primes [ such that E,(K(c))# 0. This proves (B) of Proposition
1.2.

(CY = (C). Let I#p be a prime. Denote by S(G(K), T;) the lifting of
S(G, T))to G(K). Then u (S(G(K), T:)) = 0. We have therefore to prove that
if 0 € G(K)=S(G(K), T)), then E ~(K(c)) is finite.

Assume that E ~(K (o)) is infinite. Then there exist infinitely many i’s such
that E,+ (K (0))— E (K (o)) is not empty, since each of the sets E; (K (o)) is
finite. Further, if P&E;»(K(0))—- E(K(c)), then [P€E(K(o))~
E. (K (o)) (where E» means 0). It follows that E, (K (o))~ E; (K (o)) is not
empty, for every i=1. Thus, these sets form an inverse system of finite
non-empty sets. The inverse limit of such a system is not empty. It follows that
there exists a sequence {P,}7-, of points such that P, € E;»»~ E;, oP, = P, and
[P, = P forevery i 2 1. This sequence defines a non-zero point P of T, which is
fixed by o. Hence o € S(G(K), T)), which is a contradiction.

Actually, we shall not prove Proposition 1.7 directly, but rather its matrix

counterpart. This is

Prorosimion 1.9, Let E be an elliptic curve with an absolute invariant j defined
over a field K. Suppose that K =F,(j) and | is transcendental over F, or
K = Q(j). Then the following statements are true:

(A") There exists an infinite set of primes A, and for every | € A there exists a
non-empty subset S'(G (D, (Z/NZY) of S(G(),(Z/IZ)) such that

" [S(G(D),(Z/1Z))]
(A1) 1G]

= oo, and

(A"2) for every I\, -, I, € A we have
[S'(n)] _ 11 [S(GU).(Z/L2))]

(G| = |G| ’

wheren =1, -- -1, and S'(n) is the set of all matrices A in G (n) that, when reduced
modulo |, belong 10 S'(G () AZILZY), for j=1,---,r.
(B") There exists a positive constant ¢ such that

[S(G), (2/177))|
[G(D)]

276 for all but finitely many primes .

(C") If[# p, then S(G(I™),Z3) is a zero set in G (I7). For almost all o € G(K),
the set E (K (o)) is finite.
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Proposition 1.9 is equivalent to Proposition 1.7, by section 1.5. The sets
S'(G(1),(Z/IZ)*) of (A”) are the images of the sets S'(G, E,) of (A).

ReEMARKS. (1) In some of the cases we shall choose for A of (A”) the set of all
primes [ = ax + b, where a, b are some fixed relatively prime positive integers.
In these cases we shall also find a ¢’ >0 such that

[S(G().(Z/1Z))|
1G]
for every 1€ A. Then (A"1) is satisfied, since Z,cs 1/l =, by the Dirichlet
Theorem.

(2) If one proves that

(A"2) The sequence {K,/K J I'€ L} is linearly disjoint, then conditions (A'2)
and (A"2) are certainly satisfied. We shall however have occasions on which we
shall have to prove (A"2) directly, since (A”2) will be false.

'
=<
T

§2. Elliptic curves without complex multiplication over a field of character-
istic 0
2.1. Axiomatization of the problem

In this Section we consider an elliptic curve E with an absolute invariant j
defined over Q(j) and has no complex multiplication. We prove Proposition 1.2
via Proposition 1.9 for E and for K = Q(j).

If j is transcendental over Q, then G(n)= GL(2, n) for every positive integer
n. This is a classical result of Weber (see e.g. Lang [16, p. 68]). If j is algebraic
over Q, then (GL(2, n): G(n)) is bounded by a constant that depends only on K
and E but not on n. This statement is equivalent to the conjunction of the
following two statements:

(I). There exists a positive integer m such that G(n)= GL(2, n) for every n
which is relatively prime to m.

I (GL(2,Z,): G(I")) < for every prime L
(Compare Serre [25, p. 260].) Of course, this result is valid also in the case where
J is transcendental over Q. We shall therefore assume in this chapter that the

curve E satisfies I and 11.
2.2. Calculation of S(G(1),(Z/1Z)")
Lemma 2.1, [S(GL(2,1),(Z/IZY)] = (I’ = 2) for every prime .

Proor. The group (Z/IZ) can be presented as a union of [ + 1 cyclic groups
Z\, -, Zyy of order [ such that Z, N Z; = {(0,0)} if i#].
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If a matrix in GL(2,[) fixes a non-zero element of Z, then it fixes all the
elements of Z. Denote the set of all matrices that fix the elements of Z, by S. It
is not difficult to see that [S;|={(! = 1). Further, if i #j and if A € 5, N S,, then
A has two independent fix-points, hence A is the unit matrix. It follows that

S|—1=1("=-2).

IS(GLQ, 1), (Z/12)")] = ( U 5'; :E

2.3. Proof of (A") and (B")

It is well known that [GL(2,1)]= (I~ 1)({*~[) for a prime [ (cf. Huppert [7,
p. 178]). If I>m, then G(l)=GL(2,1), by 1. Hence [S(G(),(Z/IZ))]|=
[(I”=2), by Lemma 2.1. It follows that there exist positive constants ¢, ¢, such
that

< C?

o [S(GW). (Z/17))
1= 0

for every prime L This alrcady proves (A"[) and (B”). We proceed to prove (A"2)
by proving that the sequence {K,/K [ I > m} is linearly disjoint.

It suffices to prove that if k, n, m are pairwise relatively prime, then K, and K,
are linearly disjoint over K. Indeed, K., = KK, Also GL@2,kn)=
GL(2,k)xGL(2,n). Hence |[KiK, : K] =[Ki :K]-[K,:K], by L

2.4. Proof of (C")

Let I be a prime. We have to prove that S(G(I7),Z7) is a zero set in G(I7).
Clearly S(G(I7),Z}) C S(GL(2,Z,),Z}) and by 1II, (GL(2,Z,): G(I7)) < .

Hence it suffices to prove
Lemma 2.2, S(GL(2,7,),Z}) is a zero set in GL(2,Z,).

Proor. We have already mentioned that the set S = S(G(2,Z,), Z7) consists
exactly of all the matrices in GL(2,Z,) having the characteristic value 1. In
particular § is a closed subset of GL(2,Z,). If u € Z;, then uS consists of all the
matrices in GL(2,Z,) having the characteristic value u. Our proof will be
completed if we show that if w'@Z; and u’ # u, then uS N u'S is a zero set in
GL(2,Z;). Indeed, if ww' €Z and w# xw', then wSNu'S)N
w'(uS Nu'S)=(, since a 2x2 matrix can have at most two characteristic
values. Hence, if we let w run over a set of representatives of Z;/{ = 1}, then we
obtain infinitely many disjoint translations w(uS Nu’'S) of uS Nu’S. This
implies that uS N u’S is a zero set in GL(2,Z,). O

The proof of Proposition 1.2 is completed in Case .
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§3. Elliptic curves with a transcendental j-invariant over F,
3.1. The theorem of Igusa

We consider in this section a fixed prime p, a transcendental element j over F,
and an elliptic curve E with the absolute invariant j defined over K = F,(j). Let
{, be a primitive n-th root of 1, and let G(n)={A EGL(2,n)]detA is a
p-power}. Then the following theorem is a reformulation of theorem 3 of Igusa
[8, p. 469].

Icusa's THEOREM. Suppose that p ¥ n. Then

(a) F, (&) C K,

(b) K, is Galois over K,

(©) (G, E.)=(G(n),(Z/nZ)),

(d) 9(K./K(Z,)) is mapped under the above isomorphism onto SL(2, n),
(e) [K(&): K] =ord.p.

3.2. Proof of (A") and (B")
An immediate consequence from Igusa’s theorem and from the well-known
formula for [|SL(2, n)| (e.g. Igusa [9, p. 458]) is:

Lemma 3.1, If p ¥ n, then
) [G(n)f:n‘“ord,‘pﬂ (1-17%.

In particular we have for | # p that
2) [G (D=1~ Dordp.
Lemma 3.2 [S(G(),(Z/IZ))] = I((I + )ord,p — 1).

Proor. We use the notation of the proof of Lemma 2.1.
A matrix of G () fixes the point (0,1) if and only if it has form

<p‘ 0>

c 17

where ¢ € Z/1Z. The number of these matrices is [ - ord,;p. Moreover, SL(2,1)

operates transitively on (Z/IZ), hence G(I) also does. It follows that |S;|=

[-ordp fori =1, --,1+1. Ourformula follows as in the proof of Lemma 2.1. []
It follows from Lemmas 3.1 and 3.2 that

1S(G (1), (ZNZ)] (I + Dordip — 1
) G (F=TDordp

A

2
]

for every I This proves (B").
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One observes that the arithmetic function |G (n)] is not multiplicative, since
ord,p is not. Hence we cannot achieve here linear disjointness for the fields K,
as we did in section 2.3. Moreover, the quotients (3) have the order of magnitude
™", but the factor ord,p still prevents the sets S(G (K), E;) being w-independent.
We therefore define S'(G (1), (Z/1Z)*) as a proper subset of S(G (1), (Z/IZ)*) such
that the factor ord,p disappears from the quotients corresponding to (3) and
such that (A") is satisfied.

Indeed, let S'(}, i) be the subset of GL(2,1) consisting of all matrices of the

form
1—cx X
) <C*cp“c2x pl+ cx)

where ¢ € Z/IZ and x € (Z/IZ)". Then |S'(L,i)| = (Il - 1). Note that the deter-
minant of (4) is p'. Also, (4) fixes the point (1,¢) of (Z/IZ)’. Hence S'(l,i)C
S(G (1), (Z/)IZ)"). It tollows also that if i # j mod ord,p, then S'(L, )N S'(L,j)=.
Hence, if we define

ord, p

S'(H=S(GU),(Z/IZY) = U S'(1, i)

we get that |S'(I)| = I(I - 1)ord,p. This together with (2) implies

S 1 1

) G| T+1- 21

H\I

Thus statement (A”1) is also satisfied.
We prove now statement (A"2). Let I, - - -, [, be r primes, different from p, let

n=1{4---1, and let
S'={A € G(n)| A modulo |, belongs to S'(};) forj=1,--- r}

By the Chinese Remainder Theorem there exists for every i a canonical
bijection of the cartesian product S’(l,,i)x---xS'(l,i) onto the set S| =
{A €S'|det A =p'}. Hence [S)| =TT, L (I — 1). Further S’ is the disjoint union
of the sets S} for i =1,--- ord,p. Hence

[S'l=ord.p[] L —1).
j=t

This, together with (1) and (5) implies

S’ 71 T 1S'(
STy

oI e o

Statement (A"2) is thus also proved.
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3.3. Proof of (C") for 1#p

Lemma 3.2, If I p, then (Z] :(p)) <. Here {p) denotes the closed subgroup
of Z7 generated by p.

Prook. One can write Z7 as a direct product Z; = G X H, where G =17,
and H=2Z/(I-1)Z if 1#2; H=1Z/rZ if | =2. Then p* € G, where k =|H|.
Clearly p“#1, hence (G :(p*))<e (cf. Ribes [27, p. 57]). It follows that
(Z; :(p)) <o, 1

By Igusa’s theorem we have now that G(I')={A € GL(2,1')|det A € (p)}.
Taking the inverse limit we get G(I°) = {A € GL(2,Z,)|det A € (p)}. It follows
that GL(2,Z,)/G(I")=Z;/{p).

This together with Lemma 3.2 implies that G(I7) is a closed subgroup of
GL(2,Z;) of a finite index. Now, S(G(I”), Zi) is contained in S(GL(2,7,),Z}),
which is a zero set in GL(2,Z,), by Lemma 2.2. Therefore S(G(I™), Z), hence
alsoin G(I™). 1

3.4. Proof of (C") forl=p

We have to prove that E ,~(K (o)) is finite for almost all 0 € G(K). Indeed, by
a well known result of Hasse E = Z/p'Z for every i = 1 (cf. Robert [22, p. 123];
note that E is not super singular, since j is not algebraic over F,). The field
K, = K(E,)is now not Galois over K but it is still normal over K. Denote by
K the maximal separable extension of K contained in K, Igusa proved in [9]
that [K;: K]l=Z4p'(p — 1). Hence, the maximal separable extension K= of K
contained in K ,- is of infinite degree. In particular it follows that G(K -} is a
zero set in G(K).

Let now o be an element of G (K) such that E ,-(K (o)) is infinite. It suffices to
prove that o € G (K;-=). Indeed, the unique extension o’ of o to K fixes infinitely
many points of E - If ¢’ fixes a point in E ,+— E =+ then o' fixes all the pointsin
E i since E i is cyclic. It follows that o’ fixes all the points of E -~ Hence
o € (K~).

The proof of Proposition 1.2 is completed in case II.

§4. Eliptic curves with complex multiplication over a number field

4.1. The endomorphism ring

We consider in this chapter an elliptic curve E defined over a number field
K = Q(j). We assume that E has a complex multiplication. Then its endomor-
phism ring, End E, is isomorphic to an order S of an imaginary quadratic
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extension L, of Q. The curve E itself has an analytic representation E = C/a,
where a is a lattice of C which is contained in L, and § ={s &€ Lt,/ sa C a}.
Moreover, if a point P of E corresponds to a coset z + a and the endomorphism
A corresponds to the element s of S, then the point A(P) corresponds to the
coset sz +a (cf. Shimura [26, p. 104]).

The ring S is contained in the ring of integers S, of L,. Indeed it has the form
S = Z + [S,, where the positive integer f is the conductor of §. The ring S, can be
represented as S, = Z[w,]. Hence § has the form § = Z[w], where w = fw,, and
w satisfies an irreducible equation X°—gX —h =0, where g, h € Z. Further, if
8o is the discriminant of S,, then 8§ = 8, is the discriminant of S.

For every prime [ consider the quotients ring

Sy = {—{’s €S and n€Z- IZ} and the $,-module
n

. ~{a
L=
T

It is known that there exists an element ¢ € ag, such that

a&a and nEZ-lZ}‘

(1) ap = aSq
(cf. Lang [16, p. 98]). This implies that
2) a/na=sS/nS

for every positive integer n.
For odd primes [ that do not divide the discriminant & of S, the ring S
coincides with the localization of S, with respect to . There are therefore two

types of such I’s:
(i) (6/1)=1.Then there are in S two prime ideals over [, each of degree 1 and

3) ((S/1S)", S/1S) = (FI", 7).
In particular |S/1S)|= (I — 1)

(ii) (8/1) = — 1. Then there is only one prime ideal over /, its degree is 2, and
((S/1S)",S/1S)y= (F, F2). In particular

[(S/IS)*|=1*—1.

Moreover, the polynomial X*—gX —h remains irreducible modulo [ and
Fe=F [w], where w’—gw —h =0,
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4.2, Embedding of H, in (S/nS)"

Let I = L,K and for every n let L, = LK, = L(E,). Write G, = 4(K./K)
and H, = G(L,/L). I L C K,, then K, =L, and H, is a subgroup of G, of
index [L : K], i.e. 1 or 2. If L € K,, then L is linearly disjoint from K, over K
and the restriction map induces an isomorphism (H,, E,) =(G,, E,). We shall
first examine the permutation groups (H,, E.) and then imply the accumulated
information on the permutation groups (G.,, E,).

We note first that the analytic presentation E = C/a induces the analytic
presentation E, = (1/n)a/a. The elements of H, fix the elements of End £ = §.
Moreover, they operate faithfully on E, Hence there is an embedding
(H., E.)— (Autgwe E., E.). Further

(Autpuar B, E) = (Auts Ga/a), vafa)

= (Auts S/nS, S/nS)=((S/nS)", S/nS),
by (2). Hence we get an embedding
“) (H., E.)— ((S/nS)", S/nS).

We write ((S/nS)*: H,) for the index of the image of H, in (§/nS)". This index
will be proved to be bounded in the next two sections.

4.3. Class field theory
Consider the Weierstrass normal form of E : Y?=4X"~ g,X — g;. Then the
discriminant of E is given by A = g3—27g3. The Weber function of E is defined
on a point (x,y) of E by
A"g;»gz& if gzgzi‘é(),

-1,.2 2

h(x,y)=4 A gax7, if g=0,

A'gax?, if go=0.
This function is independent of the selected Weierstrass normal form of E. It
obtains the same value on points which are obtained from one another by Aut E.
Let L, = L(hE,). The L are shown to be class fields over L, of certain open
subgroups of the idéle group of L. In this section we describe these subgroups
and deduce some of their properties.
For every prime [ let Lo = LoXo Qs
S,=S(,,®Z,:S®Z,=IlrllS/l'S, and
a=a,QZ =a&®Z, =lima/l'a.

Then a, = ¢S by (1), hence S ={s € Lo, [ sa; C ar).
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Consider now the adéle ring Q. of Q defined as the restricted product
Q. =RxII(Q,Z;). The adéle ring of L, can be then written as Lo. =
Lo®qQa=CXII(Ly, S)). It contains L, as a discrete subring. The group of units
L4 is the idéle group of Ly J = Loa=C"xXII(L5, S7).

Let further Sa = C* XIS, Then Lo,N S+ =S and hence S N nS, = nS for
every n. Moreover Sa = S + nSa. Hence
) Sa/nSa = S/nS.

Denote the group of unites of Sx by W = 87 = C* xIIST. It is an open subgroup
of J. Then Sa ={s € Lo f saCaland W={s€ES, ’sa = qa}, where sa C a and
sa = a mean that s;,a, C a; and s,a, = a,, respectively, for every I The group W
contains for every positive integer n the open subgroup W, ={s& W [s =

1 mod nSaA}.
Attached to this subgroup is the following exact sequence:

(6) = WNLi/W, O Li—> W/W,— WL W,Li— 1.

We shall identify the components of this short sequence with some familiar

groups.
We start from WL;/W,L¢ and note that the proof of the corollary on page 135
of Lang [16], together with theorem 5.5 on page 122 of Shimura [26], can be used

to prove:

LemMma 4.1, L, = Lo(W,) is the class field of the idéle group W, over L,. In
particular L = Lo(W) is the class field of W over L.

It follows from Lemma 4.1 and from class field theory that
(7) WLG/W,Ls=%(L,/L)=H,.

Next note that if a, b € S, and ab =1 mod IS, then a, b € S;. It follows that
W/W, =(5./nS.)" and by (5) we obtain that
(8) W/W, =(S/nS)".

Observe also that §™= W N L. Therefore, taking into account (6), (7) and (8)
we obtain an exact sequence S§™— (S/nS)*— H,— 1. Thus, a quotient group of
H, has been represented as a quotient group of (S/nS)” with a bounded kernel.
Indeed, S™ is contained in the ring of unites Sg of S, and

2, ifLo#Q(V ~1),Q(V=3), ie. if j#0,12*
[Sil=12 4, if Ly=Q(V 1), ie. if j =12

6, if Lo=Q(V -3), e if j=0
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(cf. Shimura [26, p. 106]). Hence | $*| isequal to 1, 2, 3, 4 or 6. If one adds to this
result the fact that H, was embedded in (S/nS )" (see (4) of section 4.2), one can
easily deduce the following

ProrosiTion 4.2, Let E be an elliptic curve with complex multiplication defined
over K = Q(j). Let S = End E, let L, be the quotient field of S and let L = L(j).
For every n let L, =L(hE,), L, =L(E.), H.,=%(L,/L) and H, = §(L./L).
Then (H,, E.) can be embedded in ((S/nS)",(S/nS)) and

1or?2, if j#0,12°,
[L.: L7 -((S/nS)Y :H,)=14 1,2 o0r 4, if j =127,
1,2,30r6, ifj=0.
4.4. Linearly disjoint fields

Lemma 4.3, If n and m are relatively prime positive integers, then L, and L,

are linearly disjoint over L.

Proor. Observe that W, W,, = W. Hence Lo(W,)NL(W,. )= L(W) =L, by
class field theory, i.e. L, and L, are linearly disjoint over L. ]

In order to deduce the linear disjointness of the L, from that of the L, we
need the concept of the Frattini group ®(G) of a finite group G and the

following

LemMmA 4.4, Fori=1,2,---,nlet N, D Ni be finite Galois extensions of a field
M such that (N /N?) C P(G(N;/M)). If Ni,- -+, N, are linearly disjoint over M,
then Ny, -+, N, are also linearly disjoint over M.

Proor. Let J, = 4(N,/M), J. = 4(N!/M) and A, = 4(N,/N}). Denote by N
and N’ the fields generated by N,,---, N, and Ni, -+, N, respectively and let
J =%(N/M)and J = G(N'/M). Then J can be considered as a subgroup of the
direct product IIi-, J,, and J=T1"_,J, since Ni,---, N/ are linearly disjoint over
M. 1t follows that J - I, A, =1I'.,J. Next we have II'., A, C I, PJ) =
dI1L, J) (see Huppert [7, p. 275]). Hence J =1I{_,J, by the fundamental
property of Frattini groups (see [7, p. 268]). Hence N,,---, N, are linearly
disjoint over M. 0

Lemma 4.5, If I =1mod 728, then G(L,/L}) C P(H)).

Proor. Our assumption implies that (//8)= 1. Hence, by section 4.1 we have
(S/1S) = (Z/(1 - 1)Z)*. If L= L, there is nothing to prove. Suppose therefore
that [L,: L] >1.
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If j#0,12° then [L,: L7} =2 and H,=(S/IS)", by Proposition 4.2. Hence
H, = (Z/27) & C, where rz3 and C has an odd order. It follows that
D(H,) = (Z/2'ZY D P(C), hence G(L/L}) T O(H,).

If j =12°, then [L,:Li]=2 and ((S/IS)*: H)=2, or [L,:Li]=4 and H, =
(8/1S). In the first case H, is isomorphic to Z/2"ZP Z/2"Z P C, where r', r" =2
and we still have that Y(L /L) C ®(H,). The second case is treated as the case
j#0,12°

The case j = 0 is proved analogously. One treats the 2-factors and the 3-factors

separately. O

Combining Lemmas 4.3, 4.4 and 4.5 together we get:

Lemma 4.6. The sequence of fields {L,|1=1mod728} is linearly disjoint
over L.

LEMMA 4.7. There exist at most two primes [; such that
) L=1mod728 and ((S/LS)":H,)=?2

Proor. Indeed, assume that there were three primes [, for i = 1,2,3, satisfy-
ing (9). Let n=1,I;, By Lemma 4.6 we have H, =1Il_, H,. Also (§/nS)* =
[17.,(S/48)". Hence, by Proposition 4.2

1 9/15) [ _[(S/nS)]
STH, |H, | [H,|

1!/\

which is a contradiction. ]

By Lemma 4.7 and by (3) we have for all primes | = 1 mod 728, except possibly
for two, that
(10) (H, E;) = (F, F}).
We split these primes into a set A’ with L & K or L, C K, and a set A" with
L C K, and LoZ K. Then (i) Zca 1/l = @ or (ii) Zjes-1/1 = o, by Dirichlet’s

Theorem.
4.5. Proof of (A') in case (i)

In this case Zjea 1/l = . Let [ € A’. Then L is linearly disjoint from K, over
K. Hence (G, E))= (H, E,) = (F;°,F}), by (10). Hence |S(G, E))| =21 -3 (see
example 2 in section 1.5). It follows that for I € A’

IS(G,E)| _21-3 _2
G| U-1¢"

Condition (A'l) follows.
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In order to prove (A'2) it suffices to prove that the set of fields {K, I leA}is
linearly disjoint over K. Note that by Lemma 4.6 the set of fields {L, [ €At is
linearly disjoint over L. Hence it suffices to prove

Lemma 4.8. Let L be a finite extension of a field K. Let K,,-- -, K, be finite
extensions of K and let L, = K,L. Suppose that K, is linearly disjoint from L over K
fori=1,---r and L, L. are linearly disjoint over L. Then K,, - -, K, are
linearly disjoint over K.

Proor.

.,

(K- K:Klz[LoLoeL) =[] [L:L) =[] [K K] =K, K, K]

> [Ki K :K]=]][K:K]

= K,,- -+, K, are linearly disjoint over K.
4.6. Some matrices computations
Let R be an integral domain. Then
(1 (R™,R*) = (D, R?,
where D = D(R) is the group of all diagonal matrices in GL(2, R). Consider the

set C = C(R) that consists of D and all the antidiagonal matrices

0 b x
(12) (0 ) bheern

It is easy to see that C is a subgroup of GL(2, R) and (C': D)=2.

Lemma 4.9, Let H be a subgroup of D and let G be a subgroup of GL(2,R)
that contains H such that (G : H)=2. If |[R*|>(D : H), then G is contained in
C. In particular, if |R”|22, then C is the unique subgroup of GL(2, R) that
contains D as a subgroup of index 2.

Proor. It suffices to consider a matrix

_fa b
A= <c d>
in G — D andto prove that a = d = 0. Indeed, A€ D. Hence b(a+d)=10and

cla+d)=0.
Next we have that
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(13) b#0 or c#0.
Hence a = —d.

Next observe that the condition |R™|> (D : H) implies that H contains a
matrix of the form

<u O> u,v €ER™, u#o.
0 v

The matrix A acts on H. Hence there exist u’, v’ € R”™ such that

o fu 0 _fu’ 0
A <o v)A"<o v’>

(14) ua=u'a and wva=v'a and vc=u'c and ub=1v'b

If a#0, then u=u" and v = v'. Hence, by (13) and (14), u = v, which is a
contradiction. Hence a =0 and A has the form (12.) L]

A matrix A of C belongs to S(C, R?) if and only if it has the characteristic

value 1. Hence

Lemma 4.10. The set S(C, R?) consists of the matrices having one of the forms:

<u ()) or <1 0) <() u>
0 | 0 u u' 0/
where u € R™.

4.7. Proof of (A") in case (ii)

In this case Z,ea- 1/l = . Let [€A”. Then [L : K] =2 and K, = L, Hence H, is
a subgroup of G, of index 2. Also, we have by (10) and (11) that (H, E,) =
(D (1), ¥7), where D(l)= D(F,) is the subgroup of GL(2,!) consisting of all
diagonal matrices. This isomorphism can be uniquely extended to an isomor-
phism (G, E;) = (G (1), Fi), where G (1) is a subgroup of G (2, 1) (see section 1.4).
Clearly G(I) contains D(l) as a subgroup of index 2. Hence G(I)= C(l) =
C(F,), by Lemma 5.9,

Define now the set S (G(!), Fi) to be the set consisting of all matrices in G (1)

of the form
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Then S'(G(1),F}) C S(G(I),F?), by Lemma 4.10. Further we have
IS(G (1), F)| =2(I - 1). Hence

[S(GWU.F)[_ 1 1
(15) Gl TI-1T

Statement (A"1) follows. We proceed now with the proof of (A"2). Consider
Ly~ LeA" and let n=1,--1.

Lemma 4.11. (G, E.)=(G(n),(Z/nZ)), where G(n) is the subgroup of
G (2, n) consisting of the diagonal matrices and all the matrices of the form

1o £ o)

ProOOF. For every 1 =j =r we have the isomorphism
(17) (G, Ey)=(CU),(Z/, Z)).

Let P, and Q; be the points of E, which are mapped on (1,0) and (0,1)
respectively. Then (17) is induced by (P, Q;). We know that E, = (B’ E,, where
the projection E, — E, is induced by multiplication by n/l. It follows that one
can choose generators P, Q for E, such that

n

lP=P, and IEO:O, forj=1,---,r
J i

Thus we obtain the following commutative diagrams:

(Gw En) ———————(G\(n),(Z/nZ)’)

N

' - (Di(n), (ZInZ))

(H,, E.)

(H, E,) = (D (1),(Z/1; Z.))

where D,(n) C G(n) are subgroups of GL(2,n). Now, K, , -, K, are linearly
disjoint over L, by Lemma 4.6. Hence D (n) is equal to D (n), the group of all
diagonal matrices in GL(2, n).

Let now o € G, — H, and let
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a b
¢ d
be the matrix in G/(n) that corresponds to o under the above isomorphism.

Then o f K, € G, — H, for j=1, - r. Hence if we denote by A; the matrix A

modulo [, we get that
A e€CY- D) forj=1,--r
> a=d=0mod] forj=1,--r
> a=d =0modn.

This means that A has the form (16).
We have thus proved that D(n) C Gi(n) C G(n). One observes that the
elements b and ¢ appearing in (16) must be invertible in Z/nZ. It follows that

(G(n):D(n))=2. Hence G(n)= G(n). ]

We consider now the set S'(n) consisting of alk matrices A in G (n) that, when
reduced modulo I, belong to S(G (L), (Z/L Z)), for j = 1,-- -, r. By Lemma 4.11,

and by the Chinese Remainder Theorem, S'(n) consists of all the matrices

| 0 0 b ) S
(() v> and <b . 0) where v, b € (Z/nZ)".
Hence
(1) s'eml=2[T ¢~ 1.

Moreover,

r

Vll ([/ - 1)2»

(19) [K,:K]=[L:KJ[K.,:L}=2]
i
by Lemma 4.6. Hence, by (15), (18) and (19) we get

00| _ 7 ISUG ). @/ 2))]
:(}(n)! j=1 !(7(ll)f .

This is exactly statement (A"2).
The proof of (A”) is thus completed.

4.8. More matrices computations

Let R be an integral domain and let w be an element of a field extension of R

satisfying an equation w’— gw —h =0, where g and h are elements of R such
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that X’ —gX — h is irreducible over the quotient field of R. Every element of
R[w] can be uniquely represented in the form x + yw, where x, y € R. The map
x +yw —(x,y) is therefore an additive group isomorphism of R[w] onto R2
Using the formula (a + bw)(x + yw) = (ax + byh)+ (bx + ay + byg)w one can
prove directly that

(20) (R[], R[w])=(LR?),

where I = I(R) is the subgroup of GL (2, R) consisting of all the matrices

_{a bh
h B = <b a+bg>

In this isomorphism an element a + bw of R{w]" is mapped onto the matrix B.
Define now J = J(R) to be the subgroup of GL(2, R) consisting of T and all

<x xg—zh>
z - X '

Note that J — I is not empty since it contains the matrix with z = 0 and x = 1.

the matrices

Lemma 4.12. Let H be a subgroup of 1 and let G be a subgroup of GL(2, R)
that contains H such that (G :H)=2. If (R{w]":R")>(:H), then G is
contained in J. In particular, if (R[w]": R™)= 2, then J is the unique subgroup of
GL (2, R) that contains I as a subgroup of index 2.

Proor. It suffices to consider a matrix
x
A=)
z u
in G — I and to prove that it belongs to J. Indeed, A*€ I, hence

(22) (x+u)ly—zh)=0 and (x+u)(x—u+2zg)=0.

If x +u#0, then (22) implies that y = zh and u = x + zg, hence A € I, against

our assumption. It follows that x = —u, i.e.

A = (x y).
z X
Next note that the assumption (R{w]": R™)> (I : H) implies that H contains a
non-scalar matrix, i.e. a matrix B of the form (21) in which b# 0. The matrix A

acts on H. Hence, there exists a matrix B, € H such that A”' BA = B,. Hence
ABA = A*B, €]
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Now
ABA = <x"‘a + xyb + xzbh + yza + yzbg xya + y*b — x*bh — xya — xybg>
xza — x*b + z*bh — xza — xzbg yza — xyb — xzbh + x*a + x’bg }°

Hence

(23) xya + y’b — x*bh — xya — xybg = xzah — x*bh + z°bh*— xzah — xzbgh,
(24) x’a + xyb + xzbh + yza + yzbg + xzag — x’bg + z’bgh — xzag — xzbg’
= yza — xyb — xzbh + x’a + x°bg.

The condition b# 0 implies that (23) and (24) can be rewritten as
(y —zh)(y +zh —xg) =0, and (2x +zg)(y +zh —xg)= 0.

If y+zh—xg#0, then y=1zh and 2x +zg =0, hence A €I, against our

assumption. It follows that y = xg — zh. (]

LemMa 4.13. In the above notation, S(J, R?) consists of the unit matrix and the
subset W of J — I, of all matrices with determinant — 1. Moreover, if u runs over a
set of representatives in R™ modulo {1}, then uW is a disjoint union and it is
contained in J ~ I

Proor. Clearly S(J, R?) = S(I, R))U S —1,R?. Also S(R[w]", R{w]) con-
sists of 1 only, since R[w]is an integral domain. Hence S(J, R?) consists of the

unit matrix only, by (20).

Now, a matrix

A = <x xg — zh)
z =X
of J — I belongs to §{J — I, R*) if and only if it has the characteristic value 1. This
happens exactly if det A = — L.
ltue R and A €J— I, then uA € J — I anddet (uA) = — u’. It follows that
ifve R and v# *u, then uA N vA = . This proves our second assertion. [

4.9. Proof of (B")
We consider only primes [ > 7 that do not divide the discriminant & of § and
distinguish between two cases:

Case i. (8/1)=1. By Lemma 4.2, (H, E;) can be embedded in ((§/1S)", $/IS)
such that ((S/1S)": H)) = 6. Further ((S/IS)", S/IS)= (D (l),¥7), by (3) and (11).
Here D(I)= D(F,), in the notation of section 4.6. It follows that
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(25) (H, E))=(H(I), F),

where H(l) is a subgroup of D(I) of index = 6. Further, (H, E;) can be
considered as a subgroup of (G, E,) of index =2. The isomorphism (25) can be
therefore extended to an isomorphism (G, E)=(G(l),¥}), where H(l) C
G(l) CGL@2, 1) and (G(I): H(1))=2. Also Fil=1-1>6=(D():H(I)). It
follows from Lemma 4.9 that G(I) C C(!), where C(ly= C(F,), in the notation
of section 4.6. The index of G (/) in C(I) is certainly not greater than 12. Hence

(26) [G()|zd(~ 1)
Moreover S(G(!),F}) C S(C(I),F}) and the last set consists, by Lemma 4.10, of

all the matrices
<u O) (1 ()> and <0 u)
0 177 \0 u/ °© u! 0/’

where u € F/'. Their number is 3(/ — 1)~ 1. Hence

IS(GW.F)[_ 66 -1~ 1) _20
Gl = a-1y T
by (26). This is the desired inequality in (B”) for case i.
Case ii. (8/1)= —1. As in case i, one proves, by the end of section 4.1,
Lemma 4.2 and Lemma 4.12, that the following diagram of groups holds in
GL2,1):

=12 J()
G() 5
=2
()

HO)—F6

Here H(l) and G(l) are, as above, the images of H, and G, respectively,
I(l)=I(F,) and J(I)=J(F,), in the notation of Section 4.8. Now [J()|=
2/I(1)] =2|F:|=2(I*~1). Hence
F—1

Niz-———ro.
o Gul=t
Next we know, by Lemma 4.13, that S(J (1), Fi) consists of the unit matrix and
the subset W(l) of J(I)— I(I) of all matrices with determinant — 1. Moreover, if
we let u run over a set of representatives of F;/{ = 1}, then U uW(l)isa disjoint
union in J(I) = I(l). Since |Fi/{ =1} =1(I - 1), we obtain that
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%—’ Iwhl=1r-1.

Hence | W(I)| =2(I + 1), hence
(28) (ST, FH| =201+ 1)+ 1.
It follows from (27) and (28) that

[S(GU).FD] _6QU+1)+1) _20

GOl — -1 I

This is the desired inequality for the case ii. The proof of (B”) is now completed.
4.10. Proof of (C")

Let [ be a prime. We embed (G-, T7) in (GL(2,Z,),Z7) and show that
S(G(I),Z7) is a zero set in G(7).
Let L,-= L(E) and let H;»= 9§(L+/L). Then H can be considered as a

subgroup of G- of index =2.

Lemma 4.14. There exists an embedding

(29) (Hi, T)——(S7, )
such that (ST H,;»)=6.
Proor. By Lemma 4.2, there exists for every i =1 an embedding

(30) (Hp, E)—> ((S/I'S)", S/I'S)

such that ((§/1'S)", H;)= 6. Consider the diagram

(Hp Ey) ———— ((S/1'S)", SII'S)
(p.1) l |
(H 1, E ) (S/I'S), S/

where p is the restriction map and r is reduction modulo ' 'S. One observes
that the kernel of (p, 1) is embedded into the kernel of (r, r). Hence the diagram
(39) can be completed in a canonical way to a commulatative diagram, by an
embedding.

This argument shows that if one denotes by I the non-empty finite set of
embeddings (30), then there is a canonical map of I into Li-,. The s together
with this map form an inverse system. The inverse limit of this system is not
empty. Every element of it induces the desired embedding (29). ]
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We proceed by embedding S; in GL (2, Z,) and distinguish between two cases:

Case i. | decomposes in L,. We recall that S, = Z[w,] and w, satisfies an
irreducible equation X* — goX — h, =0 over Z. Let w} be the other root of this
equation. Then wo, wo€ Z, and [ £ (w — wj) (e.g. by Dedekind Theorem, cf.
Lang [15, p. 27]), i.e. wo— wy is a unit in Z,. Now So, = Z, ® S, = Z, [W,], where
1, wy are linearly independent elements over Q, and Wi — goWwo— hy= 0. One
casily checks that the map

a+bwy—(a+ bwy,a+ bwj) (a,bEZ)

is a ring isomorphism Z, [Wo] = Z{. Further S, = Z, [ fw,]. Hence S, is isomorphic
to the subring Z;={(a,b) € Z}|a = b mod fZ,} of Z}. Denote by D, (I*) the
group of all diagonal matrices in GL(2,Z,) with (ab) as the principal diagonal
for which a = b mod fZ, Then we have (S7,8,) = (D,(I”),Z}). Let also D(L.) =
D.(I")=D(Z;) (in the notation of section 4.6). Then, noting that
(D(I7): Dy (I")) = f, we have, by Lemma 4.14, that (H -, T;) = (H(I"), Zi,), where
H(I”) is a closed subgroup of D(I”) of index = 6f This isomorphism can be
extended to an isomorphism (G-, T;) = (G (I*), Zi;), where G(I7) is a closed
subgroup of GL(2,Z,) that contains H(I") and (G(I"): H(I"))=2. Clearly
|Z7|>6f =z (D("): H(I")). It follows from Lemma 4.9 that G(I")= C("),
where C(I")= C(Z;), in the notation of Section 4.6, and we have
(C(I7):GUM=12f Also S(GUM),Zi) € S(C(™),Z}). Hence, in order to
prove that S(G(I"),Zi) is a zero set in G(I7), it suffices to prove that
S(C(I™),Z}) is a zero set in C(I7).
Indeed, S(C(I"),Z}) is, by Lemma 4.10, the union of three subsets

[ (u 0 <1 . /1 0
V.—{(O 1> uEZ,} and VZ“{(() u>

el

Vi and V; are clearly closed subgroups of D (I7), hence of C(I”), of an infinite
index. Hence they are zero sets in C(I”). V;is a coset of the subgroup

. [ fu 0
VJ"{(O u”)

of D(I%). Since the index of V3in D(I”)is infinite, V, is also a zero set in C (7).
Thus S(C(7),Z}) is a zero set in C(I7).

ue Zf} and

uEZT}‘

uEZf}

Case ii. [ remains prime in L, or / ramifies in Lo. In this case Lo, is a quadratic
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extension of Q. Hence the irreducible equation X*~gX —h =0 for w over Q
remains irreducible over Q.. It follows that S, = Z,[w] is an integral domain and
(S5,8)=(Zi[w]", Zi [w]).

The elements 1+ [I'w, i=1,2,3 - represent distinct cosets of Z [w]”
modulo Z7. Hence (Z,[w]":Z7)>6=((I"): H(I")), by Lemma 4.14, and
Lemma 4.12 is thus applicable. As in case i, we have only to prove that
S, Zi) is a zero set in J(I"). Here 1(I")=I(Z,) and F(I") = J(Z,) in the
notation of Section 4.8. Indeed, by Lemma 4.13, S(J(I™), Z{) consists of the unit
matrix and a subset W of J(I”) — I(I”) of all matrices having determinant — 1. W
is therefore a closed subset. Moreover, if u runs over a set of representatives of
Z;/{ =1}, then U uW is a disjoint union in J(I7). 1t follows that W is a zero set
in J(I7), since Zi/{ = 1} is certainly infinite. Thus S(J(I"), Z°) is a zero set in J(I7).

The proof of (C”) is completed and with it the proof of Proposition 1.2 in case
IIT is also completed.

§5. The absolute invariant | is contained in a finite field

An elliptic curve E defined over a field K whose j-invariant belongs to a finite
field K' is isomorphic, over a finite extension of K, to a curve E' defined over K.
We first prove a stronger theorem for E’ than Proposition 1.2 and then deduce
Proposition 1.2 for E from the stronger theorem for E’.

5.1. The stronger theorem for elliptic curves over finite fields

We consider in this section an elliptic curve E defined over a finite field K of
characteristic p. It is well known that the group of all algebraic automorphisms,
Aut E, of E is a finite group, the order of which divides 24. If ¢ € Aut E, then
ord e is equal to 1, 2, 3, 4, or 6 (cf. Lang [16, pp. 301-304]).

THEOREM 5.1. Let E be an elliptic curve defined over a finite field K. Then for
almost all (o)€ G(K)" we have:

(A™) If e =1, then for every finite ¢ € AutE there exist infinitely many
P € E(K) such that oP = gP.

(B") If e =2, then there exist only finitely many P € E(K) for which there exist
€1, €. € Aut E such that oP = P fori=1, - e

(C") Ife =1 andlisa prime, then there exist only finitely many P € E ~(K) for
which there exists an ¢ € Aut E such that oP = ¢P.

5.2. A generalization of Riemann Hypothesis for elliptic curves

We shall imitate Hasse’s proof of the Riemann Hypothesis for elliptic curves
(see Hasse [6] or Cassels [2, p. 241]).
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Let A be a non-zero endomorphism of E which is defined over an extension L
of K and let P be a generic point of E over L. Then the degree of A is defined as
deg A =[L(P): L(A(P)]. It is a positive integer that does not depend on P and
on L. The endomorphism A is said to be separable if L (P)/L(AP) is a separable

extension. In this case

(1 [KerA|=degA

(cf. Cassels [2, p. 217]). One knows also that there corresponds to A an element
X € EndE such that

) AX = XA = deg A.

The map A — A of End E into itself satisfies the following rules:

A+upu=A+4 and mA= mA forme Z

(cf. {2, p. 220]). It follows from (2) that if A, u €EndE and A, u#0, then
deg (A + w)=deg A +degpu + At + A, Define therefore (A, u)=3(Ag + pA).
Define also (A,0)= (0, w)=0. In this way one obtains a Q-valued symmetric
Z-bilinear form on End E. Clearly (A,A)=degA >0 for A#0. Hence if we
define [A | = V/(A, 1), we obtain the usual Cauchy-Schwartz inequality

G) [ )= 1Al el

We consider now certain special endomorphisms. First let £ be an automor-
phism of E. It is defined over a finite extension L of K. If P is a generic point of
E over L, then L(eP)= L(P) and hence dege = 1.

Suppose that the order of L is g and denote by = =, the Frobenius
endomorphism defined by = (x) = x" Then = induces an endomorphism of E
which we also denote by . If (x,y) is an affine representative of P, then
L{(mP)y=L(x%y*)y= L(x,y)", hence degm = [L(P):L(7P)]=q (see also Lang
[16, p. 118]) and = is a purely inseparable endomorphism. Also

L(P)=L(¢P) C L(wP)L((¢ — m)P) C L(P).

Hence L(P)'L((e — w)P)= L(P). It follows that L (P) is a separable extension
of L((e — m)P) (see Lang [14, p. 188]), hence ¢ — 7 is a separable endomor-
phism." In particular we obtain that [Ker (e — m)| = (¢ — m, & — ), by (1). Now
(¢ —me—m)=1-q—2(e, m)and|(e, 7)| = Vg, by (3). Therefore the follow-

ing lemma has been proved.

"This argument was suggested by Peter Roquette.
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LEMMA 5.2, Let q be a power of p. Denote by N(q, ¢ ) the number of points P of
E(K) for which 7, (P)= eP. Then

IN(g.£)~q~1]=2Vqg.

For ¢ = 1, one obtains the usual Riemann Hypothesis for elliptic curves. A
similar result for curves of arbitrary genus can be found in Bombieri [1, p. 430].

5.3. The operation of G(K) on AutE

The points that occur in Lemma 5.2 are algebraic over K. We show in this
section that their degrees over K are bounded.

The smallest field of definition for the elements of Aut E is obtained from K
by adjoining roots of equations of degrees 2,3 and 4 with coefficients in K (see
Deuring [4, section 2]). It follows that the elements of Aut E are defined over the

unique extension L of K of degree 12. Hence
(4) o€ G(L) and a € AWME 2 gar ™ = a.

If o € G(L), then oo™ is in general not equal to «, but it is still an element of
Aut E. We therefore define o(a) = oao ™. This is a representation of G(K) as
an automorphism group of Aut E. The order of every ¢, as an automorphism of
Aut E, divides 12, by (4).

More generally we consider a finite (multiplicative) group B and denote the
set of all maps of B into itself by T(B). We introduce addition and multiplica-
tion to T(B) by (f+g)(B)=f(B)g(B) and (f-g)(B) = f(g(B)). Define also
(=H(B)=f(B)" and 0(B) =1 and 1(B) = B.

These operations satisfy the following rules: (i) Addition is associative (but not
necessarily commutative). (i) 0+g =g +0=g (i) f+ (~f)=(— )+ [ =0.(iv)
Multiplication is associative. (v) 1 g = g -1 =g. (vi) f- g = 1 implies f and g are
bijective. (vii) (f + g)h = fg + gh for h € T(B). (viii) 0-f = 0. (ix) If f € End B,
then f(g+h)=fg+fh and f-0=0.1f 0 € Aut B and n is a positive integer we
define s, (o)=2", 0" =0+ " P+ + 1.

This is an element of T(B). Using the above rules one finds that
(5) Son(T) = S (0" )80 ().

Lemma 5.3, If B is a finite group, k is a multiple of the exponent of B, o is an
element of AutB, lis a multiple of ord o and m = ki, then

(a) sw(o)=0, and

(b) if n is relatively prime to m, then s,(c) is bijective.



Vol. 31, 1978 TORSION POINTS OVER LARGE FIELDS 293

Proor. Note first that s (1)(8)=g* =1 for every B € B. Hence s, (1)= 0. It
follows, by (5), that

sul0) = s (0 )si(a) = s (1)s(o) =0 5,(c) = 0.
In order to prove (b) take positive integers u, v such that un = mv + 1. Then
S (0")80 (T) = 5un () = 0™ + S () = 1 + 5, (@ )5, (o) =1+0"5,(0) =1,
by (5) and by (a). It follows that s,(o) is indeed bijective. (]
We return now to our elliptic curve E and prove:

LemMma 5.4, Leto € G(K), a EAutEand P € E(K). Suppose that oP = «P.
Then o'p = (si()(a))P for every i =1 and o' p = p.

Proor. The first formula can be rewritten ds

o'p=(oc""ac" Yo Par?) - (oaor™)aP

and this can be easily proved by induction on i. For the proof of the second
statement recall that «'* = 1 and that ¢" operates trivially on Aut E. Hence we
have, by Lemma 5.3, that o'“P = (0(«)P) = P. ]

5.4. Proof of (A™)

Denote by K and K the maximal 2 and 3 extensions of K, respectively.
These are infinite extensions and G (K®/K) = Z,, G(KYIK)=2Z,. 1t follows that
G(K®) and G(K®) are zero sets of G(K). Let S be the set of all o€
(G(K) = G(K?)N(G(K)= G(K™)) such that K(c) is an infinite field. Then
w(S)=1, by lemma 7.1 of [10]. We prove that every o € § satisfies (A”).

Indeed, let M = K(o). Then K® ¢ M, and hence K®NM is a finite
extension of K (cf. Ribes [21, p. 57]). Similarly K® N M is a finite extension of
K. Let e € AutE and let m be a positive integer. By Lemma 5.2 there exists a qo
such that N(q, «) = m for every p-power ¢q = qo and every a € Aut E. The field
M is an infinite extension of K. Hence one can find a subfield L of M of order
q = qo that contains both K” N M and K® N M. For every « € Aut E there
exist then points P, - -, P, in E(K) such that

6) TP = aPy fori=1,- m.

It follows from Lemma 5.4 that w)"P,, = P,, for i = 1,-+,m. The points P,
belong therefore to E(L’), where L' is the unique extension of L of degree 144.
The degree [M : L] is relatively prime to 144, since K® N\ M and KN M are
contained in L. It follows that M is linearly disjoint from L' over L. In particular
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o I L' generates the cyclic group 9(L’/L ). Hence there exists a positive integer n
which is relatively prime to 12 such that o ’ L'=ay| L' By Lemma 5.3, s.(m,) is
a bijective map of Aut E onto itself. Hence there exists an « € Aut E such that
sa{my)(a) = €. It follows from Lemma 5.4 and from (6) that P, = 7P, =
(s (m)a)Py = Py for i =1, m.

Since m is arbitrary, there exist infinitely many points P € E(K) such that
oP = gP.

5.5. Proof of (B")

Let e = 2 and denote by S the set of all (o) € G(K)* such that K (o) is a finite
field. By lemma 7.2 of [10], S has the measure 1. We prove that every (o) E S
satisfies (B").

Indeed, the field M = K (o) is finite with, say, q elements. The group G (M) is
therefore generated by the Frobenius automorphism o = m,. In particular there

exist u,, -, U, & Z such that
@) g = fori=1,--- e

On the other hand, the group G (M) is generated also by o, - - -, oo.. Hence there
exist vy, -+, v, € Z such that

(8) TT:O';J""(T:’,

Raising equalities (7) and (8) to the 144-th powér, one sees that M'=
Ko™, -, ol = K(#'"") is the unique extension of M of degree 144.

Let now P be a point of E(K) for which there exist ¢, , 6. € Aut E such
that ooP =¢gP for i =1,---,e. By Lemma 54, ¢/"P=P for i=1,---,e. It
follows that P € E(M'). But M’ is a finite field, hence E(M') is a finite group. It

follows that there are only finitely many such P’s.
5.6. Proof of (C")

Recall that an elliptic curve E defined over a field K of characteristic p is said
to be super singular if End E is a non-commutative ring. In this case T, = E - =
0. If E is not super singular, then T, = Z, and G ,~ is isomorphic to a subgroup
G(p~) of Z; (cf. Robert [22, p. 123]).

LemMa 5.5. Let K be a finite field and let E be an elliptic curve defined over K.
Let | be a prime such that T, #0. Then G~=1Z, x H, where H is a finite cyclic

group whose order is prime to .

Proor. The group G = %(K ~/K) is an infinite subgroup of Z. Hence it is
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pro-cyclic. Suppose first that [# p. Then G(I”) is an infinite pro-cyclic subgroup
of GL(2,Z,). We prove that G(I")=Z, x H, where H is as above.

Forizl, let N ={A € GL(2,Z,)’A = [ mod!'}, where I is the 2 X2 unit
matrix. Then N, are open normal subgroups of GL(2,Z,). Let A = [ + ['A’ and
B =1+1'B' be two elements of N. Then AB=I+1'(A"+ B’ )mod /' It
follows that the map A » A’ induces an isomorphism Ni/N.,, = (Z/IZ)".

Hence, for N = N, we have that (N : N.,.) = 1", Also N =1im N/N, hence N
is a pro-I group. -

Let now r = (GL(2,Z,): N)and let A be a generator of G(I*). Then A’ € N
and hence ord A" must be a power of I, which is necessarily [”, since G(I”) is
infinite. It follows that ord A = kI”, where k is relatively prime to . This means
that G(I")=Z, x H, where H is a cyclic group of order k.

If I =p, then G(p”) is an infinite pro-cyclic subgroup of Z;. Now Z] =
Z,xZ{(p—-1)Zif p#2, and Z; =Z,x Z/2Z. The proof can be carried on as
above, replacing N by Z,. [

Enp or Proor oF (C”). By Lemma 5.5 there exists a field K’ such that
K CK'C Ky=and [K=: K'| <o and §(K'/K)=1Z, If L is an infinite extension
of K which is contained in K', then L = K, since Z, has no closed finite
subgroups except 1. Also G(K’) is a zero set in G(K). We show that every
o€ G(K)~- G(K’) satisfies (C").

Indeed, suppose that o € G(K)— G(K') and that there exist infinitely many
P € E - for which there exists an ¢ € Aut E such that oP = ¢P. For every such P
we have o'"P = P, by Lemma 5.4. It follows that K,»N K(¢'*) is an infinite
field, since E(K N K(c') is an infinite set. Hence also K'N K (o) is an
infinite field, since [K,~:K']|<e. It follows that K'C K(os'). Hence
[K":K'NK(c)] = [K(c"): K(c)] = 144. Thus K'N K (o) is also an infinite
field and hence K’ C K(o). This however contradicts the assumption that
o G(K').

5.7. Proof of Proposition 1.2 in Case 1V

We return now to the case where the elliptic curve E is defined over a field K
which is finitely generated over F, and such that F,(j) is a finite field. Then there
exists an elliptic curve E’ defined over F,(j) which is isomorphic to E over a
finite extension L of K. Let ¢ : E — E’ be an isomorphism. Then ¢ induces an
isomorphism of groups ¢ : E.,,— E'(F,). If ¢ € G(K), then oo ¢ oo ' is also an
isomorphism from E to E'. Therefore there exists an automorphism ¢ = ¢, of
E'suchthat oo g oo™ = g o, It follows that if P € F,, and P' = ¢(P), then
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9 oP =P & gP'= P’

Let now K'=F, N K. Then F,(j) C K’, and the lifting of every subset of
G (K')* of measure 1 to G (K)* is again a set of measure 1. Parts (B) and (C) of
Proposition 1.2 follow therefore from Theorem 5.1 for E’ and K’, by (9). It
follows also that E,..(K(o)) is infinite for almost all & € G (K). If we combine
this result with (C) we get that almost all ¢ € G(K) have the property that
E..(K (o)) is infinite and that E~(K () is finite for every I. Hence, by Lemma
1.3, there exist infinitely many [ such that E (K (o)) # 0.

The proof of Proposition 1.2 is completed.
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