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Abstract: Let K be a global field, V a proper subset of the set of all primes of K, S a finite subset
of V, and K̃ (resp. Ksep) a fixed algebraic (resp. separable algebraic) closure of K. Let Gal(K) =
Gal(Ksep/K) be the absolute Galois group of K. For each p ∈ V we choose a Henselian (respectively, a

real or algebraic) closure Kp of K at p in K̃ if p is non-archimedean (respectively, archimedean). Then,
Ktot,S =

⋂
p∈S

⋂
τ∈Gal(K)K

τ
p is the maximal Galois extension of K in Ksep in which each p ∈ S totally

splits. For each p ∈ V we choose a p-adic absolute value | |p of Kp and extend it in the unique possible

way to K̃.
For σ = (σ1, . . . , σe) ∈ Gal(K)e let Ktot,S [σ] be the maximal Galois extension of K in Ktot,S fixed

by σ1, . . . , σe. Then, for almost all σ ∈ Gal(K)e (with respect to the Haar measure), the field Ktot,S [σ]
satisfies the following local-global principle:

Let V be an absolutely integral affine variety in AnK . Suppose that for each p ∈ S there exists
zp ∈ Vsimp(Kp) and for each p ∈ V rS there exists zp ∈ V (K̃) such that in both cases |zp|p ≤ 1 if p is
non-archimedean and |zp|p < 1 if p is archimedean. Then, there exists z ∈ V (Ktot,S [σ]) such that for all
p ∈ V and for all τ ∈ Gal(K) we have: |zτ |p ≤ 1 if p is archimedean and |zτ |p < 1 if p is non-archimedean.

Introduction

The strong approximation theorem for a global field K gives an x ∈ K that lies in given p-adically open
discs for finitely many given primes p of K such that the absolute p-adic value of x is at most 1 for
all other primes p except possibly one [CaF67, p. 67]. A possible generalization of that theorem to an
arbitrary absolutely integral affine variety V over K fails, because in general, V (K) is a small set. For
example, if V is a curve of genus at least 2, then V (K) is finite (by Faltings). This obstruction disappears
as soon as we switch to “large Galois extensions” of K. We prove in this work a strong approximation
theorem for absolutely integral affine varieties over each “large Galois extension” of K.

To be more precise, let K̃ be an algebraic closure of K, Ksep the separable closure of K in

K̃, Gal(K) = Gal(Ksep/K) the absolute Galois group of K, and e a non-negative integer. We equip
Gal(K)e with the normalized Haar measure [FrJ08, Section 18.5] and use the expression “for almost all
σ ∈ Gal(K)e” to mean “for all σ in Gal(K)e outside a set of measure zero”. For each σ = (σ1, . . . , σe) ∈
Gal(K)e let Ksep(σ) = {x ∈ Ksep | xσi = x, for i = 1, . . . , e} and let Ksep[σ] be the maximal Galois
extension of K in Ksep(σ).

Let PK be the set of all primes of K, PK,fin the set of all finite (i.e. non-archimedean) primes and
PK,inf the set of all infinite (i.e. archimedean) primes. We fix a proper subset V of PK , a finite subset

T of V, and a subset S of T such that V r T ⊆ PK,fin. For each p ∈ V we fix a completion K̂p of K

at p and embed K̃ in an algebraic closure
˜̂
Kp of K̂p. Then, we extend the normalized absolute value

| |p of K̂p to
˜̂
Kp in the unique possible way. In particular, this defines |x|p for each x ∈ K̃. As usual, if

x = (x1, . . . , xn) ∈ K̃n, we write |x|p = max(|x1|p, . . . , |xn|p).

We set Kp = K̃ ∩ K̂p and note that Kp is a Henselian closure of K at p if p ∈ PK,fin and a real or
the algebraic closure of K at p if p ∈ PK,inf . Thus,

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p



is the maximal Galois extension of K in which each p ∈ S totally splits. For each σ ∈ Gal(K)e we set
Ktot,S(σ) = Ksep(σ) ∩Ktot,S and Ktot,S [σ] = Ksep[σ] ∩Ktot,S .

For each extension M of K in K̃ and every p ∈ Pfin∩V we consider the valuation ring OM,p = {x ∈
M | |x|p ≤ 1} of M at p. For each U ⊆ V we define OM,U to be the set of all x ∈M such that |xτ |p ≤ 1
for all p ∈ U and τ ∈ Gal(K). Note that if U ⊆ PK,fin, then OM,U is an intersection of valuation rings,
hence it is an integrally closed domain. Note however that OM,{p} is different from OM,p.

In this notation the following result is a reformulation of [JaR08, Thm. 2.2]. Throughout this paper,
for each positive integer n, by an affine variety in AnK we mean a closed subscheme of AnK (Subsection
4.2).

Proposition A: For almost all σ ∈ Gal(K)e the field M = Ktot,S(σ) satisfies the following strong
approximation theorem: Let V be an affine absolutely integral variety in AnK for some positive integer
n. For each p ∈ S let zp ∈ Vsimp(Kp), for each p ∈ T rS let zp ∈ V (K̃), and for each p ∈ V r T let
zp ∈ V (OK̃,p). Then, for every ε > 0 there exists z ∈ V (M) such that |z − zτp|p < ε for all p ∈ T and
τ ∈ Gal(K) and |zτ |p ≤ 1 for all p ∈ V r T and τ ∈ Gal(K).

When e = 0, we have Ktot,S(σ) = Ktot,S and we retrieve [MoB89, Thm. 1.3]. For arbitrary
e ≥ 0, Proposition A implies the following analog of Rumely’s local-global principle for almost all fields
Ktot,S(σ):

Proposition B: For almost all σ ∈ Gal(K)e the field M = Ktot,S(σ) satisfies the following local-global
principle: Let V be an affine absolutely integral variety in AnK for some positive integer n. Suppose for
each p ∈ S there exists zp ∈ Vsimp(Kp) and for each p ∈ V rS there exists zp ∈ V (K̃) such that in each
case the following holds: |zp|p ≤ 1 if p ∈ PK,fin and |zp|p < 1 if p ∈ PK,inf .

Then, there exists z ∈ V (M) such that for all τ ∈ Gal(K) we have: |zτ |p ≤ 1 for each p ∈ V∩PK,fin

and |zτ |p < 1 for each p ∈ V ∩PK,inf .

For K = Q, e = 0, and V = Pfin, Proposition B specializes to Rumely’s local-global principle for
the ring Z̃ of all algebraic integers [Rum86]. That principle yields an affirmative answer to Hilbert’s 10th
problem for Z̃ [Rum86, p. 130, Thm. 2], answering a question of Julia Robinson from the 1970’ties. L.
v. d. Dries applies the local-global principle to prove that the elementary theory of Z̃ is decidable [Dri88,
p. 190, Cor.].

The proof of Proposition A is carried out along the lines of the proof of the local-global principle
for Ktot,S of [GPR95]. In addition it uses that for almost all σ ∈ Gal(K)e the field Ksep(σ) is PAC
over OK,V . This means that for every absolutely irreducible polynomial f ∈ K[X,Y ] which is separable
in Y there exist infinitely many points (a, b) ∈ OK,V ×Ksep(σ) such that f(a, b) = 0. This implies that
Ksep(σ) is also PAC over OL,V for every extension L of K in Ksep(σ).

Unfortunately, as [BaJ08, Thm. B] proves, no Galois extension of K except Ksep is PAC over K,
let alone over OK,V . In particular, if σ 6= 1, then Ksep[σ] is not PAC over OK,V . Thus, the proof
of Proposition A breaks down for the fields Ksep[σ]. However, almost all of the fields M = Ksep[σ]
have a weaker property than being PAC over OK,V , namely they are “weakly K-stably PAC over OK,V”
(Definition12.1 for S = ∅). This would almost help to adjust the proof of Proposition A given in [JaR08]
to a proof of the analogous theorem for almost all of the fields Ktot,S [σ]. However, as in [JaR08], we
would need to replace K somewhere along the proof by a finite extension L that lies in Ktot,S [σ] and
then proceed with Ltot,SL [σ], where SL is the set of all primes of L lying over S. Although it is still true
that Lsep(σ) = Ksep(σ) and Ksep(σ) is weakly L-stably PAC over OL,V (for almost all σ ∈ Gal(L)e),
the field Lsep[σ] may properly contain Ksep[σ] even if we choose L to be Galois over K, so nothing that
we prove on Ltot,SL [σ] would apply to Ktot,S [σ].

Fortunately, the proof of [MoB89, Thm. 1.3] does not enlarge K as [JaR08] does. We combine the
method of that proof with the method of the proof of the main result of [GeJ02]. In our case the latter
result says that Ktot,S [σ] is PSC for almost all σ ∈ Gal(K)e. This means that if V is an absolutely
integral affine variety in AnKtot,S [σ] for some positive integer n and Vsimp(Kτ

p ) 6= ∅ for every p ∈ S and

τ ∈ Gal(K), then V (Ktot,S [σ]) 6= ∅. One of the main ingredients of the proof of that theorem is the main
result of [GJR17] which produces a “symmetrically stabilizing” element t for a given function field F of
one variable over K with zeros and poles in given S-adically open neighborhoods in V (Ktot,S).
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The construction of t in the present work has to be done with extra care. We prove the following
analog of Proposition A (see Theorem 13.7):

Theorem C (Strong approximation theorem): Let K,S, T ,V, e,PK,fin be as above. In particular, K is
a global field and V r T ⊆ PK,fin. Then, for almost all σ ∈ Gal(K)e the field M = Ktot,S [σ] satisfies the
strong approximation theorem, that is M has the following property:

Let V be an absolutely integral affine variety in AnK for some positive integer n. For each p ∈ S
let Ωp be a non-empty p-open subset of Vsimp(Kp). For each p ∈ T rS let Ωp be a non-empty p-open

subset of V (K̃), invariant under the action of Gal(Kp). Finally, for each p ∈ V r T we assume that
V (OK̃,p) 6= ∅. Then,

(1) V (OM,V r T ) ∩
⋂
p∈T

⋂
τ∈Gal(K)

Ωτp 6= ∅.

The first three sections of this work introduce necessary prerequisites. Section 4 reduces the proof
of the strong approximation theorem for an intermediate field M of Ktot,S/K from absolutely integral
affine varieties over the given global field K to absolutely integral affine curves over K. In particular
it allows us to increase T within V and replace V by a non-empty Zariski-open subset, if necessary.
Given an absolutely integral affine curve C over K, we use this flexibility in Section 5 to construct a
principal ideal domain R = OK,V r T with quotient field K and a smooth affine curve X over R such
that XK = C. Then, following [MoB89], we embed X as a Zariski-open subset of a projective regular
curve X̄ = Proj(R[t0, . . . , tr]), where R[t0, . . . , tr] =

∑∞
k=0R[t0 . . . , tr]k is a graded integral domain over

R such that R[t0, . . . , tr]0 = R and R[t0, . . . , tr]1 =
∑r
i=0Rti (Lemma 5.6).

The main result of [MoB89] produces for every large positive integer k a section s0 ∈ Γ(X̄,OX̄(k))
such that each of the irreducible components of the effective divisor div(s0) yields distinct points of
X(Ktot,S) that belong to the left hand side of (1) with C replacing V and Ktot,S replacing M . In
particular, s0 does not vanish on Z = X̄ rX (essentially Proposition 7.6 and Lemma 7.8).

In order to find such points in C(OM,V r T ), we construct a surjective morphism ϕ from X̄K

onto a projective curve Y = Proj(K[s0, . . . , sl]), where s0, s1, . . . , sl are elements of R[t0, . . . , tr]k for
an appropriately chosen large k and s0 is as in the preceding paragraph. Moreover, s1, . . . , sl vanish on
Z. Changing the base from R to K̃, the curve YK̃ has some special properties. It is a non-strange curve
with only finitely many inflection points and finitely many double tangents, and it has cusps with a given
large multiplicity q such that the multiplicities of all other points of YK̃ are at most q (Proposition 10.5).

Choosing q as a large prime number, the main result of [GJR17] and Proposition 11.2 give an
element

t =
s0 + a1s1 + . . .+ alsl
s0 + b1s1 + · · ·+ blsl

of the function field F of X̄K such that F/K(t) is a finite separable extension and the Galois clo-
sure F̂ of F/K(t) is a regular extension of K (we call t a “stabilizing element” of F/K). Moreover,
a1, . . . , al, b1, . . . , bl ∈ R, b1 = 1 + a1, and (a1, . . . , al, b2, . . . , bl) can be chosen in a T -open subset of
R2l−1.

By a result of [GJR00] (quoted here as Lemma 13.6), for almost all σ ∈ Gal(K)e, every extension
M of Ktot,S [σ] in Ktot,S is “weakly K-stably PSC over OK,V” (Definition 12.1). If we take a1, . . . , al in R
sufficiently close to 0 in the T -adic topology and b2, . . . , bl ∈ R, then that property yields an M -rational
place of FM with residue field M such that, with s′ = s0 + a1s1 + · · · + alsl, the zero of div(s′) that
corresponds to this place belongs to C(OM,V r T )∩

⋂
p∈T

⋂
τ∈Gal(K) Ωτp 6= ∅ (Proposition 12.3). Thus, M

satisfies the strong approximation theorem.

Finally, we denote the compositum of all finite Galois extensions of K with symmetric Galois groups
by Ksymm. In a forthcoming work we prove the following result:

Theorem D: In the notation of Theorem C, the field Ktot,S ∩Ksymm satisfies the strong approximation
theorem.
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1. Twisted Sheaves

Recall that a ring A (commutative with 1) is graded if A =
⊕∞

k=0Ak, where each summand Ak is a
commutative group under the addition of A and AkAl ⊆ Ak+l for all k, l ≥ 0. In particular, A0 is a
subring of A and each Ak is an A0-module. We then say that A is a graded ring over A0. Each
non-zero s ∈ A has a unique presentation s =

∑∞
k=0 sk, where sk ∈ Ak for each k ≥ 0 and sk = 0 for

all large k. The elements of
⋃∞
k=0Ak are said to be homogeneous and the elements sk above are the

homogeneous components of s.
If a homogeneous element s of A belongs to Ak, we say that the A-degree of s is k and write

degA(s) = k. If s′ is an additional homogeneous element of A, then degA(ss′) = degA(s) + degA(s′).
If s0, . . . , sl are elements of Ak for some k ≥ 0, then T = A0[s0, . . . , sl] is a graded ring over A0

with Tm being the A0-module generated by all of the monomials in s0, . . . , sl whose A-degree is km. In
particular, T0 = A0 and T1 =

∑l
i=0A0si.

An A-module M is graded if M =
⊕∞

k=0Mk, where each Mk is an additive subgroup of M and
AkMl ⊆Mk+l for all k, l.

An ideal a of A is homogeneous if a is homogeneous as a graded A-module; alternatively, if
a =

⊕∞
k=0(a ∩ Ak); alternatively, if each of the homogeneous components of every a ∈ a belongs to

a; alternatively, if a is generated by homogeneous elements. An example of a homogeneous ideal is
A+ =

⊕∞
k=1Ak. The homogeneous prime ideals of A not containing A+ form a set Proj(A) that has a

natural sheaf structure [Liu06, p. 52, Prop. 2.3.38].
If (ai)i∈I is a family of homogeneous ideals of A, then each of the following ideals is homogeneous:∑

i∈I ai,
∏
i∈I ai (= the set of all finite sums of finite products ai1 · · · ain with ai1 ∈ ai1 , . . . , ain ∈ ain

and i1, . . . , in distinct elements of I), and
⋂
i∈I ai.

Setup 1.1: Let A =
⊕∞

k=0Ak be a Noetherian graded ring. Then, the ideal A+ of A is finitely generated,
so A1 =

∑r
i=0A0ti is a finitely generated A0-module. We assume that A = A0[t0, . . . , tr]. Then, we set

V = Proj(A) and consider for each k the twisted sheaf OV (k) [Har77, pp. 116–117] and the abelian
group Γ(V,OV (k)) of its global sections. Each t ∈ Γ(V,OV (k)) can be viewed as an element of the direct
product

∏
P∈V AP which is locally a fraction of degree k. This means that each P0 ∈ V has a Zariski-open

neighborhood V0 and there exist homogeneous elements f and g of A such that degA(f)− degA(g) = k,
g /∈ P , and tP = f

g in AP for each P ∈ V0. If a ∈ Aj , then at is an element of Γ(V,OV (j + k)), which is

defined in the latter notation by (at)P = af
g for each P ∈ V0. This definition makes

⊕∞
k=0 Γ(V,OV (k))

into a graded A-module. It also gives a natural homomorphism β = βV : A →
⊕∞

k=0 Γ(V,OV (k)) of
graded A-modules mapping each s ∈ Ak onto the element of

∏
P∈V AP whose P th coordinate is s

1 . Let
βk = βV,k: Ak → Γ(V,OV (k)) be the kth homogeneous component of β.

For the convenience of the reader we supply a proof to a special case of [Gro61III, p. 446, Thm. 2.3.1].
It says that βk is an isomorphism for all large k.

Lemma 1.2: The following statements hold under Setup 1.1:
(a) Let I be an ideal of A such that A1 ⊆

√
I. Then, Am ⊆ I for all large m.

(b) Let s be a homogeneous element of A whose annihilator I = {a ∈ A | as = 0} is contained in no
P ∈ Proj(A). Then, Am ⊆ I for all large m.

Proof of (a): For each 0 ≤ i ≤ r there exists ei such that teii ∈ I. Let e =
∑r
i=0(ei − 1) and let m > e.

If
∏r
i=0 t

mi
i ∈ Am, then

∑r
i=0mi = m >

∑r
i=0(ei − 1), so there exists 0 ≤ i ≤ r with mi ≥ ei, hence∏r

i=0 t
mi
i ∈ I. Since Am is generated as an A-module by the monomials of degree m in t0, . . . , tr, we

conclude that Am ⊆ I.

Proof of (b): First note that I = 0:As = {a ∈ A | as = 0} is a homogeneous ideal of A [ZaS75II, p. 152,
Thm. 8]. Therefore, by the same theorem,

√
I is also homogeneous. By [Bou89, p. 283, Prop. 1],

√
I is

an intersection of homogeneous prime ideals P of A. By assumption, none of those P is in Proj(A), so
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all of them contain A+, hence also A1. It follows that A1 ⊆
√
I. By Part (a), Am ⊆ I for all large m.

Lemma 1.3: Under Setup 1.1, the natural homomorphism βk: Ak → Γ(V,OV (k)) is an isomorphism for
all large k.

Proof: We break up the proof into two parts.

Part A: For all large k, the map βk is injective. Since β: A→
⊕∞

k=0 Γ(V,OV (k)) is a homomorphism
of graded A-modules, I = Ker(β) is a homogeneous ideal of A. Since A is Noetherian, I =

∑n
i=1Abi

with bi ∈ Aki for some distinct non-negative integers ki, i = 1, . . . , n. By the convention in Setup 1.1,(
bi
1

)
P∈V = βki(bi) = 0, where for each P ∈ V , the quotient bi

1 is taken in the local ring AP . Thus, there

exists b ∈ ArP with bbi = 0. It follows that Ni = {a ∈ A | abi = 0} 6⊆ P . Lemma 1.2(b) gives an li such
that Ak ⊆ Ni for all k > li. Let l0 = max(k1 + l1, . . . , kn + ln). For each l > l0 and for each 1 ≤ i ≤ n
we have l − ki > li, so Al−ki ⊆ Ni, hence Al−kibi = 0. Using the presentation I =

∑n
i=1Abi and the

homogeneity of I, we get Il =
∑n
i=1Al−kibi. Therefore, Il = 0 for each l > l0. This means that βl is

injective for all l > l0.

Part B: For all large k, the map βk is surjective. Let X = PrA0
= Proj(R), with R = A0[T0, . . . , Tr],

be the projective space of dimension r over Spec(A0). Let J be the kernel of the A0-epimorphism R→ A
that maps each Ti onto ti, i = 0, . . . , r. Let J be the sheaf of ideals associated with J , that is the sheaf
appearing in the following exact sequence of sheafs:

(1) 0 // J // OX
j# // j∗OV //// 0,

where j: V → X is the inclusion map [Har77, p. 115, Definition]. Since OX(k) is an invertible sheaf on
X [Har77, p. 117, Prop. II.5.12(a)], the tensor product of (1) with OX(k) remains exact. In other words,
the sequence 0→ J (k)→ OX(k)→ j∗OV (k)→ 0 is exact. Indeed, one may check the exactness locally
at each P ∈ X [GoW10, p. 172] using that OX(k)P is a free OX,P -module. This yields an exact sequence
of cohomology groups:

(2) 0→ Γ(X,J (k))→ Γ(X,OX(k))→ Γ(X, (j∗OV )(k))→ H1(X,J (k))

[Har77, p. 208, Prop. III.2.6 or Liu06, p. 184, Prop. 5.2.15]. Since J (k) is a coherent sheaf on X [Har77,
p. 116, Prop. II.5.9], a theorem of Serre [Har77, p. 228, Thm. III.5.2(b) or Liu06, p. 195, Thm. 5.3.2(b)]
asserts that H1(X,J (k)) = 0 for all large k. By [Har77, p. 117, Prop. II.5.12(c)] applied to the A0-
epimorphism R→ A that maps Ti onto ti, i = 0, . . . , r, we have j∗(OV (k)) ∼= (j∗OV )(k). It follows from
the definition of the direct image [Har77, p. 65, Def.] that Γ(X, (j∗OV )(k)) ∼= Γ(V,OV (k)). Thus, (2)
becomes:

(3) 0→ Γ(X,J (k))→ Γ(X,OX(k))→ Γ(V,OV (k))→ 0.

Adding the maps βX,k and βV,k of Setup 1.1 to (3), we get the following commutative diagram:

(4) 0 // Γ(X,J (k)) // Γ(X,OX(k)) // Γ(V,OV (k)) // 0

Rk //

βX,k

OO

Ak

βV,k

OO

By [Har77, p. 118, Prop. II.5.13], βX,k is an isomorphism for all k. Since the two horizontal maps of the
commutative square of (4) are surjective, βV,k is surjective for all large k.
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Remark 1.4: Under Setup 1.1, let V ′ be a closed subscheme of V and let I be a homogeneous ideal of A
such that V ′ = Proj(A/I) [Liu06, p. 168, Prop. 5.1.30]. Then, A′ = A/I =

⊕∞
k=0(Ak/Ak ∩ I) is a graded

ring over A′0 = A0/A0 ∩ I. Moreover, A′1 =
∑r
i=0A

′
0t
′
i with t′i = ti + I, and A′ = A′0[t′0, . . . , t

′
r].

For each integer k ≥ 0 let π
(k)
V,V ′ : Ak → A′k be the epimorphism of abelian groups induced by

the epimorphism A → A/I of rings and let ρ
(k)
V,V ′ : Γ(V,OV (k)) → Γ(V ′,OV ′(k)) be the restriction

homomorphism induced by the closed immersion V ′ ⊆ V . We set βk = βV,k and β′k = βV ′,k (Setup 1.1).
By Lemma 1.3, we have for each large k that βk and β′k are isomorphisms. Since βV,k is natural in V , we

have ρ
(k)
V,V ′ ◦ βk = β′k ◦ π

(k)
V,V ′ . It follows that βk maps the kernel Ak ∩ I of π

(k)
V,V ′ onto Ker(ρ

(k)
V,V ′). Also,

since π
(k)
V,V ′ is surjective, so is ρ

(k)
V,V ′ . This gives the following commutative diagram with two short exact

sequences:

(5) 0 // Ak ∩ I //

βk
��

Ak
π

(k)

V,V ′ //

βk

��

A′k

β′k

��

// 0

0 // Ker(ρ
(k)
V,V ′)

// Γ(V,OV (k))
ρ

(k)

V,V ′ // Γ(V ′,OV ′(k)) // 0

The maps π
(k)
V,V ′ and ρ

(k)
V,V ′ combine to epimorphisms ofA-modules πV,V ′ : A→ A′ and ρV,V ′ :

⊕∞
k=0 Γ(V,OV (k))→⊕∞

k=0 Γ(V ′,OV ′(k)) that satisfy ρV,V ′ ◦ βV = βV ′ ◦ πV,V ′ .
Following this observation, we categorically identify Ak with Γ(V,OV (k)) via βV,k and identify

Ak ∩ I with Ker(ρ
(k)
V,V ′) for all large k.

Lemma 1.5: In the notation of Setup 1.1, let V1, . . . , Vm be closed pairwise disjoint subschemes of the
projective scheme V and let k be a sufficiently large positive integer. For each 1 ≤ i ≤ m let si ∈
Γ(Vi,OVi(k)). Then, there exists an s ∈ Γ(V,OV (k)) such that s|Vi = si for i = 1, . . . ,m.

Proof: We consider the closed subscheme V ′ =
⋃m
i=1 Vi of V . The sets V1, . . . , Vm are closed and

disjoint in V ′. Hence, they are also open in V ′. If i 6= j, then the restrictions of both si and sj to
Γ(∅,OV ′(k)) is the unique element 0 of the latter module. By the basic property of sheaves, there exists
s′ ∈ Γ(V ′,OV ′(k)) such that s′|Vi = si for i = 1, . . . ,m. Since V ′ is a closed subscheme of V , the

surjectivity of ρ
(k)
V,V ′ in (5) gives an s ∈ Γ(V,OV (k)) such that s|V ′ = s′, hence s|Vi = si for i = 1, . . . ,m.

Example 1.6: Let K be a field and t0, . . . , tr non-zero elements of a field extension of K. We set
t = (t0, . . . , tr) and assume that K[t] is a graded ring over K such that K[t]1 =

∑r
i=0Kti. Then, for all

distinct integers i, j between 0 and r the element ti is transcendental over K
(
t0
tj
, . . . , trtj

)
[ZaS75II, p. 168,

Lemma]. Also, for each k ≥ 0, K[t]k is the vector space over K generated by all monomials in t0, . . . , tr
of degree k with coefficients in K.

A homogeneous element of the quotient field K(t) of K[t] is a quotient f
g of homogeneous

elements of K[t] with g 6= 0. We set degK[t]

(
f
g

)
= degK[t](f) − degK[t](g) and observe that degK[t] is a

well defined homomorphism from the multiplicative group of homogeneous elements of K(t)× onto Z.
We consider the integral projective variety V = Proj(K[t]) over K. Then, for each 0 ≤ i ≤ r,

F = K
(
t0
ti
, . . . , trti

)
is the function field of V . It can also be described as the set of all homogeneous

elements of K(t) of K[t]-degree 0. Indeed, if f(t), g(t) are homogeneous elements of K[t] of the same

K[t]-degree k with g 6= 0, then f(t)
g(t) = f(t0/ti,...,tr/ti)

g(t0/ti,...,tr/ti)
∈ F.

Recall that the local ring of V at a point P is the ring OV,P of all quotients f
g , where f and g are

homogeneous elements of K[t] of the same K[t]-degree and g /∈ P . Likewise for each k ≥ 0 the stalk
OV (k)P is the K-vector-space that consists of all quotients f

g , where f and g are homogeneous elements

of K[t] such that degK[t](f)− degK[t](g) = k and g /∈ P . By Lemma 1.3,
(a) for every large positive integer k an element x of K(t) belongs to K[t]k if and only if x ∈ OV (k)P

for all P ∈ V .
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Next we assume that V is an integral normal projective curve over K. Then,
(b) for each closed point P of V , the local ring OV,P is a valuation ring of F [Lan58, p. 151, Thm. 1].

We denote the corresponding normalized discrete valuation of F by ordP . By definition, OV,P is the
subring of F that consists of all quotients s

u , where s, u are homogeneous elements of K[t] of the
same K[t]-degree with u /∈ P . Thus, each of them satisfies ordP

(
s
u

)
≥ 0. Since OV,P is the valuation

ring of ordP , each x ∈ F with ordP (x) ≥ 0 can be written as s
u with s, u as above. In particular, if

both s and u as above do not belong to P , then ordP
(
s
u

)
= 0.

(c) If π ∈ F satisfies ordP (π) ≥ 1 and we write π = p
v with p and v homogeneous elements of K[t] of the

same K[t]-degree with v /∈ P , then p ∈ P (otherwise π−1 = v
p ∈ OV,P , so ordP (π) = 0, in contrast to

our assumption).
Conversely, if f and u are homogeneous elements of K[t] of the same K[t]-degree, f ∈ P , and
u /∈ P , then f

u ∈ OV,P , hence ordP
(
f
u

)
≥ 0. If ordP

(
f
u

)
= 0, then u

f ∈ OV,P . This gives homogeneous

elements g, v in K[t] of the same K[t]-degree such that v /∈ P and u
f = g

v , hence uv = fg ∈ P in

contrast to the assumption that P is a prime ideal. It follows that ordP
(
f
u

)
≥ 1.

(d) If x is a homogeneous element of K(t) of K[t]-degree k, h ∈ K[t]k rP , and ordP
(
x
h

)
≥ 0, then by

(b), x
h = f

g , where f and g are homogeneous elements of K[t] of the same K[t]-degree with g /∈ P .

Thus, x = fh
g ∈ OV (k)P .

(e) Let x and u be homogeneous elements of K[t] of the same K[t]-degree such that u /∈ P and x ∈ P q
for some positive integer q. Since P is a homogeneous ideal of K[t], there exist a positive integer l and

homogeneous elements ti1, . . . , tiq ∈ K[t] that belong to P , i = 1, . . . , l, such that x =
∑l
i=1

∏q
j=1 tij ,

and under the setting d = degK[t](x) and dij = degK[t](tij) we have
∑q
j=1 dij = d for all i. We choose

a homogeneous element v ∈ K[t]1 with v /∈ P (e.g. one of the ti’s), divide x by vd and obtain

x

vd
=

l∑
i=1

q∏
j=1

tij
vdij

.

By (c), ordP
( tij
vdij

)
≥ 1 for all i, j. Hence, ordP

(
x
vd

)
≥ q. It follows that ordP

(
x
u

)
= ordP

(
x
vd

)
+

ordP
(
vd

u

)
≥ q.

2. Global Sections of Invertible Sheaves and Cartier Divisors

Following [Liu06, p. 266, Exer. 7.1.13], we associate effective Cartier divisors to global sections of invertible
sheaves on integral schemes and introduce their degrees.

2.1 Divisors on curves over a field. We consider a curve C over a field L. Thus, C is a separated
scheme of finite type over L, each of its irreducible components is of dimension 1. We assume that C
is integral and projective and let F be the function field of C. For each closed point p of C and each
non-zero f ∈ OC,p we write ordp(f) for the length of the OC,p-module OC,p/OC,pf [AtM69, p. 77]. This
function satisfies

(1) ordp(fg) = ordp(f) + ordp(g),

hence it extends to a function ordp on F× satisfying (1) for all f, g ∈ F× [BLR90, p. 237]. If p is a closed
normal point of C, then ordp coincides with the normalized valuation attached to the discrete valuation
ring OC,p as introduced in Example 1.6(b).

If (Ui, fi)i∈I is data that represent a Cartier divisor D on C, we define ordp(D) as ordp(fi) for each
i ∈ I such that p ∈ Ui. Then, the Weil divisor that corresponds to D is DWeil =

∑
ordp(D)p, where p

ranges over all closed points of C. The degree of D (and of DWeil) is then

(2) deg(D) =
∑
p

ordp(D)[L(p) : L].
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Here, L(p) is the residue field OC,p/mC,p of C at p. If an affine neighborhood of p in C is embedded in

AnL and one views p as an n-tuple of elements of L̃, then the field obtained from L by adjoining those
elements is L-isomorphic to L(p).

By (1), deg(D1 + D2) = deg(D1) + deg(D2) for any two Cartier (or Weil) divisors D1 and D2 on
C. A Cartier divisor on C that can be represented by a pair (C, f) with f ∈ F× is said to be principal
and is denoted by div(f). By [GoW10, p. 498, Thm. 15.32], deg(div(f)) = 0.

Recall that a Cartier divisor D on C which is represented by data (Ui, fi)i∈I naturally corresponds
to an invertible sheaf L on C such that Γ(Ui,L) = Γ(Ui,OC)f−1

i for each i ∈ I. Two Cartier divisors that
correspond to isomorphic invertible sheaves on C differ by a principal divisor [GoW10, p. 303, Prop. 11.26].
By the preceding paragraph, they have the same degree. Hence, one defines deg(L) = deg(D) for each
Cartier divisor D on C that corresponds to L. Since addition of divisors corresponds to tensor products
of the corresponding invertible sheaves, we have deg(L ⊗OC L′) = deg(L) + deg(L′).

By [GoW10, p. 498, Remark 15.30(2)], the degree of divisors (hence of invertible sheaves) on C is
invariant under a change of the base field.

2.2 Curves over schemes. Let f : C → S be an S-curve, i.e. f is a morphism of schemes of finite
presentation with one dimensional fibers. Under the assumption that f is flat and proper and that both S
and C are integral, [BLR90, p. 238, Prop. 2] generalizes the definition of the degree to invertible sheaves
on C (hence the definition of the degree of divisors on C). We restrict ourselves to the only case we use
in this work, where for each s ∈ S, the fiber Cs = Spec(k(s))×S C is an integral curve over the residue
field k(s) = OS,s/mS,s of S at s. Let is: Cs → C be the canonical morphism. We consider an invertible
sheaf L on C and for each s ∈ S let Ls be the pull-back i∗sL. It is an invertible sheaf on the fiber Cs
[BLR90, p. 238, last paragraph before Prop. 2]. Since S is integral, [BLR90, p. 238, Prop. 2] implies that
deg(Ls) (defined in Subsection 2.1) has a unique value on S, which we define as deg(L). It follows from
Subsection 2.1 that the degree is additive and invariant under base change. In particular, if S = Spec(R)
for some integral domain R with quotient field K, and we take s to be the generic point of S, we get that
deg(D) = deg(DK) for each Cartier divisor D on C.

Finally we note that the assumptions on f : C → S to be flat and proper are satisfied if S = Spec(R)
(resp. S = Spec(L)), where R is a Dedekind domain (resp. L is a field), and f is projective and surjective
(or at least dominating). See for example [Liu06, p. 137, Prop. 3.9] and [Liu06, p. 108, Thm. 3.30]. These
are the cases we consider in this work.

2.3 Subschemes attached to divisors. As in Subsection 2.2, let f : C → S be an S-curve. Recall
that a Cartier divisor D on C represented by data (Ui, fi)i∈I is said to be effective if fi ∈ Γ(Ui,OC)
for each i ∈ I. In this case, D gives rise to a closed subscheme C(D) of C such that Γ(Ui,OC(D)) =
Γ(Ui,OC)/fiΓ(Ui,OC) for each i ∈ I. We say thatD is flat (resp. finite) over S if C(D) is flat (resp. finite)
over S. We say that a subset C0 of C is disjoint from D, if C0 ∩ C(D) = ∅. Finally note that if
S = Spec(L) for some field L, then deg(D) = dimL Γ(C(D),OC(D)) [GoW10, p. 497, (15.9.1)].

2.4 Divisors of global sections. Let C be an integral scheme with function field F . We consider
an invertible sheaf L on C and a non-zero global section s ∈ Γ(C,L), and elaborate on [Liu06, p. 266,
Exer. 7.1.13] to associate an effective Cartier divisor div(s) to s.

By definition, C can be covered by open subsets Ui, i ∈ I, such that L|Ui is a free OC |Ui-module
of rank 1. Thus, for each i ∈ I there exists ei ∈ Γ(Ui,L) such that for each Zariski-open subset
U of Ui, the element ei|U is a free generator of the Γ(U,OC)-module Γ(U,L). In particular, there
exists a unique fi ∈ Γ(Ui,OC) such that s|Ui = fiei. Moreover, for each additional j ∈ I there exists
uij ∈ Γ(Ui ∩Uj ,OC)× such that ei|Ui∩Uj = uij · ej |Ui∩Uj , hence uij · fi|Ui∩Uj = fj |Ui∩Uj . Thus, the data
(Ui, fi)i∈I define an effective Cartier divisor div(s) on C.

For later use we say that ei is a free OC |Ui-generator of L|Ui .
By [Har77, p. 144, Def.], the invertible sheaf L(div(s)) associated with div(s) satisfies L(div(s))|Ui =

(OC |Ui)f−1
i for each i ∈ I. It follows from the construction made in the preceding paragraph that

the Γ(Ui,OC)-isomorphisms ϕi: Γ(Ui,L(div(s))) → Γ(Ui,L) defined by ϕi(s
′f−1
i ) = s′ei for each s′ ∈

Γ(Ui,OC) combine to an isomorphism ϕ: L(div(s))→ L of invertible sheaves on C.
Now we assume that C is an integral locally factorial proper curve over a Noetherian domain R

(possibly a field). As in [Har77, p. 141, first part of the proof of Prop. 6.11] or [GoW10, p. 307, (11.13.4)
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and Thm. 11.38(2)], the Weil divisor that corresponds to div(s) is

(3) divWeil(s) =
∑
P

ordP (div(s))P,

where P ranges over all prime divisors of C such that P ∩ Ui 6= ∅ and ordP (div(s)) = ordP (fi) for
each i ∈ I. Here, in analogy to the notation introduced in Example 1.6(b), ordP is the normalized
discrete valuation of F that corresponds to the valuation ring OC,P . Thus, ordP (fi) is non-negative and
independent of the i that satisfies P ∩Ui 6= ∅, so divWeil(s) is an effective Weil divisor. The finitely many
prime divisors P of C with ordP (div(s)) > 0 are called the zeros of s. In the notation of Subsection 2.3,
the set of zeros of s is the underlying topological set of C(div(s)). Hence, div(s) is disjoint to a subset
C0 of C if each of the zeros of s is disjoint to C0. We say that div(s) is flat and finite over an integral
domain R if C(div(s)) is flat and finite over R.

In addition to the assumptions made on C above we now assume that Cp is integral over k(p) =
Quot(R/p) for each p ∈ Spec(R) (this is the only case we use in this work). The degree of div(s) is
defined as in Subsection 2.1 if C is a curve over a field. If C is a curve over R, then by Subsection 2.2,
deg(div(s)) = deg(div(s)K), where K = Quot(R). Since L(div(s)) ∼= L, we deduce that deg(div(s)) =
deg(L). It follows that deg(div(s′)) = deg(div(s)) for each non-zero s′ ∈ Γ(C,L).

If the zeros of s belong to a Zariski-open subscheme C0 of C, we may consider div(s) also as a
divisor on C0.

2.5 The section 1D. Let C be an integral scheme with function field F . Let D be a Cartier divisor on
C with representing data (Ui, fi)i∈I . One attaches an invertible sheaf L(D) on C such that L(D)|Ui =
OC |Uif−1

i , hence Γ(Ui,L(D)) = Γ(Ui,OC)f−1
i for every i ∈ I [Har77, p. 144, Def.]. If D is an effective

divisor, then fi ∈ Γ(Ui,OC), so the unit of F , 1 = fif
−1
i belongs to Γ(Ui,L(D)) for each i ∈ I. Hence,

there exists a global section 1D ∈ Γ(C,L(D)) such that 1D|Ui = 1 for each i ∈ I.
In the notation of Subsection 2.4, the Cartier divisor on C that corresponds to 1D has (Ui, fi)i∈I

as representing data. Hence, div(1D) = D.

2.6 The ample sheaves OC(k). Let A0 be a Noetherian integral domain and let A =
⊕∞

k=0Ak be a
graded integral domain over A0 such that A1 =

∑r
i=0A0ti and A = A0[t] with t = (t0, . . . , tr). Then,

C = Proj(A) is isomorphic to a closed subscheme of PrA0
[Liu06, p. 53, Lemma 2.3.41], so C is projective

over A0. Hence, C is proper over A0 [Liu06, p. 108, Thm. 3.3.30]. We assume that C is a regular curve
over A0, in particular C is locally factorial [Liu06, p. 130, Thm. 4.2.16(b)]. As above, we also assume
that Cp is integral for each p ∈ Spec(A0). Let F be the function field of C. Following Subsection 2.4, we
attach to each non-zero s ∈ Ak with k large an effective Weil divisor divWeil(s) as follows:

We set U = A1 r{0} and consider u ∈ U . Recall that D+(u) = {p ∈ C | u /∈ p} and the ring
Γ(D+(u),OC) consists of all the quotients s

ul
, where s is a homogeneous element of A and degA(s) =

l. The Γ(D+(u),OC)-module Γ(D+(u),OC(k)) consists of all quotients s
uj , where s is a homogeneous

element of A and degA(s)−j = k (see the proof of [Har77, p. 117, Prop. II.5.12(a)]). Writing s
uj = s

uj+k
uk,

we see that uk is a free OC |D+(u)-generator of OC(k)|D+(u). In particular, OC(k) is an invertible sheaf
on C [Har77, p. 117, Prop. II.5.12(a)].

For large k, Lemma 1.3 identifies Γ(C,OC(k)) with Ak. Following Subsection 2.4, the Cartier
divisor that corresponds to an element s ∈ Ak (which we write as s

uk
uk) is (D+(u), s

uk
)u∈U . By our

assumptions on A, for each prime divisor P of C and, with p the homogeneous prime ideal of A underlying
P , there exists u ∈ U rp, so ordP

(
s
uk

)
is a non-negative integer that does not depend on u. Hence,

divWeil(s) =
∑

ordP
(
s
uk

)
P , where P ranges over all prime divisors of C.

It follows from this definition that if s′ is another homogeneous element of A of large A-degree,
then divWeil(ss

′) = divWeil(s) + divWeil(s
′).

2.7 Divisors of function fields. We assume in this subsection that the ring A0 introduced in
Subsection 2.6 is a field L. Then, the scheme C introduced in that section is a projective normal curve
over L. We identify the prime divisors P of F/L with the closed points of C such that the valuation
ring of P , considered as a prime divisor, coincides with the local ring of C at P , considered as a point of
C. In particular, the degree of P over L as a prime divisor coincides with its degree over L as a point
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of C. Then, a divisor of F/L is a formal sum D =
∑
kPP , where P ranges over all prime divisors

of F/L and all but finitely many of the integral coefficients kP are zero [FrJ08, Section 3.1]. As in (2),
deg(D) =

∑
P kP [L(P ) : L].

If f ∈ F×, we write div(f) =
∑
P ordP (f)P (in accordance with Subsection 2.1). We also write

div0(f) =
∑

ordP (f)>0

ordP (f)P and div∞(f) = −
∑

ordP (f)<0

ordP (f)P

for the zero divisor and the pole divisor, respectively, of f . Since div(f) = div0(f) − deg∞(f) and
deg(div(f)) = 0 [Che51, p. 18, Thm. 5], we have deg(div0(f)) = deg(div∞(f)). Note that if s and s′ are

non-zero homogeneous elements of A of the same A-degree, then f = s′

s ∈ F
×, so s′ = fs. For each divisor

P of C we choose u ∈ U rP . Then, by Section 2.6, ordP (divWeil(s
′)) = ordP

(
s′

uk

)
= ordP (f)+ordP

(
s
uk

)
=

ordP (divWeil(f)) + ordP (divWeil(s)). Hence,

(4) divWeil(s
′) = divWeil(f) + divWeil(s).

Therefore, deg(divWeil(s
′)) = deg(divWeil(s)).

In the sequel we omit the subscript “Weil” from Weil divisors. However, occasionally we add a
subscript L for the divisors of elements of F× to indicate the field of constants of F .

3. Continuity of Divisors

We apply the identification of global sections of high degrees of twisted sheaves on a projective scheme
with homogeneous polynomials to the case of a curve over a local field and prove a theorem about
continuity of divisors of functions.

Throughout this section we consider a field L and a graded ring A =
⊕∞

k=0Ak over L = A0 such
that A1 =

∑r
i=0 Lti and A = L[t0, . . . , tr], with t0, . . . , tr 6= 0. We assume that C = Proj(A) is an

absolutely integral normal projective curve over L with function field F . In particular, F is a regular
extension of L [FrJ08, p. 175, Cor. 10.2.2(b)].

3.1 Continuity. We assume in this section that L is a field equipped with an absolute value | | which
is either non-archimedean and Henselian or | | is archimedean and L is either real closed or algebraically
closed with C as the | |-completion. Note that, if L is separably closed, then L is Henselian with respect
to every non-archimedean absolute value [Jar91, Cor. 11.3].

We consider a normal absolutely integral projective curve C over L with function field F . We
extend | | to the algebraic closure L̃ of L in the unique possible way and prove that for each large k the
map s 7→ div(s) from Γ(C,OC(k)) to the set of divisors on C is | |-continuous in a sense that will become
clear in Lemma 3.4.

Following Subsection 2.7, we identify the set of L-rational points C(L) of C with the set of prime
divisors of F/L of degree 1. The absolute value | | of L induces a topology on C(L) (see [Mum88, p. 57,
Sec. I.10] or [GPR95, p. 68, Sec. 7]), so we may speak of an | |-open neighborhood U of a point p in
C(L). The set U is defined by inequalities involving | | and elements of L. If L′ is an algebraic extension
of L, then the same inequalities define a neighborhood U(L′) of the unique point pL′ of C(L′) that lies
over p. To simplify notation, we also write p rather than pL′ .

Here are some useful remarks about the interaction of the | |-topology with the Zariski-topology.
(a) Let V be an absolutely integral affine variety in AnL for some positive integer n. If U is a Zariski-open

subset of V , then U(L) is | |-open in V (L) [Mum88, p. 57, (i)]. On the other hand, if U(L) is a
| |-open subset of V (L) that contains a simple point (= non-singular point) of V , then U(L) is
Zariski-dense in V [GeJ02, Prop. 8.2(b)].

(b) If L is algebraically closed, and U is a non-empty Zariski-open subset of V , then U(L) is | |-dense in
V (L) [GeJ75, Lemma 2.2].

(c) If L is separably closed and U is a non-empty Zariski-open subset of V , then U(L) contains a simple
point of V [Lan58, p. 76, Prop. 9]. Hence, by (a), U(L) is | |-dense in V (L).
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3.2 Total splitting. Let D be an effective divisor of F/L and N a finite separable extension of L.
We say that D totally splits in FN if the extension DN of D to N is the sum

∑m
i=1 Pi of distinct prime

divisors of degree 1 of FN/N . In this case we also say that DN =
∑m
i=1 Pi is a total splitting of D in

FN . Note that Pi has in this case a unique extension to a prime divisor Pi,N ′ of N ′ for every separable
algebraic extension N ′ of N [Deu73, p. 128, Thm.]. Hence, if L′ is a separable algebraic extension of L
and we set N ′ = NL′, then DN ′ =

∑m
i=1 Pi,N ′ is a total splitting of D in FN ′.

Given a divisor D of F/L, we consider the vector space

L(D) = {f ∈ F× | div(f) +D ≥ 0} ∪ {0}

over L.

Lemma 3.3: In the above notation, let f be an element of F× with a total splitting div0(f)N =
∑m
i=1 Pi

of div0(f) in FN . For each i let Ui be an | |-open neighborhood of Pi in C(N). Let u1, . . . , ul be elements

of L(div∞(f)) and let b1, . . . , bl be elements of L satisfying f =
∑l
λ=1 bλuλ.

Then, there exists a real γ > 0 such that every separable algebraic extension L′ of L has the
following property: if b′1, . . . , b

′
l ∈ L′ satisfy |b′λ − bλ| < γ for 1 ≤ λ ≤ l and we set f ′ =

∑l
λ=1 b

′
λuλ and

N ′ = NL′, then div∞(f ′)N ′ = div∞(f)N ′ and div0(f ′)N ′ =
∑m
i=1 P

′
i is a total splitting of div0(f ′)L′ in

FN ′ with P ′i ∈ Ui(N ′) for all i.

Proof: We may assume that L′ = L and N ′ = N . Then, we choose an L-basis v1, . . . , vd for L(div∞(f))

and set uλ =
∑d
δ=1 aλδvδ for some aλδ ∈ L and λ = 1 . . . , l. This gives f =

∑d
δ=1(

∑l
λ=1 bλaλδ)vδ and

f ′ =
∑d
δ=1(

∑l
λ=1 b

′
λaλδ)vδ. Since the map

(b′1, . . . , b
′
l) 7→

( l∑
λ=1

b′λaλ1, . . . ,

l∑
λ=1

b′λaλd
)

is | |-continuous, we may replace u1, . . . , ul by v1, . . . , vd, if necessary, to assume that u1, . . . , ul form a
basis of L(div∞(f)). Now we may apply [JaR08, Prop. 4.3] to conclude the existence of γ > 0 that has
the properties of the conclusion of the lemma.

Lemma 3.4: As above we consider an absolute valued field (L, | |) which is Henselian, real closed, or alge-
braically closed. We also consider the normal absolutely integral projective curve C = Proj(L[t0, . . . , tr])
over L with function field F introduced at the beginning of this section.

Next we consider a finite Galois extension N of L, sections s, s1, . . . , se ∈ Γ(C,OC(k)) with k large
as in Remark 1.4, and elements a1, . . . , ae ∈ L such that s =

∑e
ε=1 aεsε and div(s)N =

∑m
i=1 Pi is a total

splitting of div(s) in FN . For each i let Ui be an | |-open neighborhood of Pi in C(N).
Then, there exists a real γ > 0 such that if L′ is a separable algebraic extension of L and a′1, . . . , a

′
e ∈

L′ satisfy |a′ε−aε| < γ for ε = 1, . . . , e and we set s′ =
∑e
ε=1 a

′
εsε andN ′ = NL′, then div(s′)N ′ =

∑m
i=1 P

′
i

is a total splitting of div(s′)L′ in FN ′ with P ′i ∈ Ui(N ′) for all i. Moreover, deg(div(s′)L′) = deg(div(s)L).

Proof: Again, we may assume that L′ = L and hence that N ′ = N . Since t0 is non-zero, it vanishes at
only finitely many points of C. Applying an invertible linear transformation over L on the coordinates
t0, . . . , tr, we may assume that

(1) t0(Pi) 6= 0 for all i.

Under this assumption we set t = s
tk0

=
∑e
ε=1 aε

sε
tk0

.

Claim: div0(t) = div(s). By (4) in Subsection 2.7,

(2) k · div(t0) + div(t) = div(s).

Consider a point p ∈ C(N). Since C is normal and N is a separable extension, CN is also normal [Lan58,
p. 146, Thm. 7], so the notation ordp makes sense. By (2),

(3) k · ordp(div(t0)N ) + ordp(t) = ordp(div(s)N ).
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By Subsection 2.4, div(t0) ≥ 0. If ordp(div(t0)N ) > 0, then t0(p) = 0, so by (1), p 6= P1, . . . , Pm.
Hence, s(p) 6= 0, that is ordp(div(s)N ) = 0. Hence, by (3), ordp(t) < 0. Therefore, ordp(div0(t)N ) = 0.
If ordp(div(t0)N ) = 0, then by (3), ordp(t) = ordp(div(s)N ) ≥ 0, so ordp(div0(t)N ) = ordp(div(s)N ).
Thus, the latter equality holds for all p ∈ C(N). This implies that div0(t)N = div(s)N . Since the map
of the group of divisors of C into the group of divisors of CN given by D 7→ DN is injective, we conclude
that div0(t) = div(s), as claimed.

Lemma 3.3 gives a real γ > 0 such that if a′1, . . . , a
′
e ∈ L satisfy |a′ε − aε| < γ for ε = 1, . . . , e, and

we set t′ =
∑e
ε=1 a

′
ε
sε
tk0

, then

(4a) div0(t′)N =
∑m
i=1 P

′
i is a total splitting of div0(t′) in FN and P ′i ∈ Ui(N) for i = 1, . . . ,m, and

(4b) div∞(t′)N = div∞(t)N .

Finally we observe that s′ =
∑e
ε=1 a

′
εsε satisfies t′ = s′

tk0
. As in (2), k ·div(t0)N+div(t′)N = div(s′)N .

Hence, by (2), div(s′)N −div(t′)N = div(s)N −div(t)N , so div(s′)N −div0(t′)N + div∞(t′)N = div(s)N −
div0(t)N + div∞(t)N . It follows from the claim and from (4b) that div(s′)N = div0(t′)N . We conclude
from (4a) that div(s′)N =

∑m
i=1 P

′
i is a total splitting of div(s′) in FN . Moreover, since F/L is regular,

the degree of divisors is preserved under the extension of the base field from L to N [Deu73, p. 126,
Thm.]. Hence, deg(div(s′)) = deg(div(s′)N ) = m = deg(div(s)N ) = deg(div(s)), as claimed.

4. Reduction Steps

We set up the arithmetical objects that appear in the proof of Theorem C and prove two reduction
lemmas. They allow us to replace V by an open subvariety and T by a larger finite subset of V. Finally
we reduce Theorem C to the case where V is a curve.

4.1 A global field. Let K be a global field, that is K is either a number field or an algebraic function
field of one variable over a finite field. Following Weil’s Foundation [Wei62], we choose an algebraically
closed field f that contains K and has a sufficiently large transcendence degree to contain all of the field
extensions of K that appear in this work. If F is a subfield of f, then Fsep and F̃ denote the unique
separable closure and the unique algebraic closure of F , respectively, in f. In particular, if F ′ is an
extension of F in f, then F̃ ⊆ F̃ ′. We denote the absolute Galois group Gal(Fsep/F ) of F by Gal(F ).

4.2 Convention for affine varieties. We follow [Liu06, p. 55, Def. 3.47] to define an affine variety
over K as an affine scheme associated to a finitely generated algebra over K.

Let V be an absolutely integral affine variety over K which we assume to be a closed K-subscheme
of AnK for some n (in which case we also say that V is an absolutely integral affine variety in AnK).
Thus, V = Spec(K[x]), where K[x] = K[X]/I with X = (X1, . . . , Xn), I is a prime ideal of K[X]
such that K̃[X]/K̃I is an integral domain, and x = (x1, . . . , xn) with xi = Xi + I for i = 1, . . . , n. In
the classical algebraic geometry V is said to be (or more accurately, closely related to) the absolutely
irreducible affine variety defined over K by I. Thus, in the classical language, V is just the set of
all a ∈ fn such that f(a) = 0 for all f ∈ I. This is the language used in our previous papers [FrJ08],
[GeJ75], [GeJ89], [GeJ02], [GJR00], [JaR94], [JaR95], [JaR98], and [JaR08] that we use in this work.
Following that convention, for each subset A of f we set V (A) = {a ∈ An | f(a) = 0 for all f ∈ I}.
Each a in V (A) is an A-rational point of V . Embedding F = K(x) in f, the n-tuple x is then a
generic point of V and F = K(x) is a function field of V . It is a regular extension of K [FrJ08, p. 175,
Cor. 10.2.2(a)]. As usual, if dim(V ) = 1, we speak about a “curve” rather than a “variety”.

We also write Vsimp for the Zariski-open subset of V that consists of all simple (= non-singular)
points of V .

4.3 Convention for projective varieties. By an absolutely integral projective variety in
PrK we mean a closed absolutely integral subscheme W of PrK . Thus, W = Proj(K[T]/I), where T =
(T0, . . . , Tr), I is a homogeneous prime ideal of the graded ring K[T] that does not contain every Ti, and
K̃[T]/K̃I is an integral domain. For each extension L of K, we use the classical notation and identify
W (L) = MorK(Spec(L),W ) with the set of all equivalence classes a = (a0: · · · :ar) of (r + 1)-tuples of
elements of L with respect to multiplication by an element of L× such that there exists 0 ≤ j ≤ r with
aj 6= 0 and (a0, . . . , ar) is a zero of I. In this case K(a) = K

(
a0

aj
, . . . , araj

)
is the residue field of a.
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In particular, a point t = (t0: · · · :tr) of W (f) is generic if the map (T0, . . . , Tr) 7→ (t0, . . . , tr)
induces a K-isomorphism K[T0, . . . , Tr]/I → K[t0, . . . , tr]. Equivalently, for each a ∈ W (f) the map
(t0, . . . , tr) 7→ (a0, . . . , ar) uniquely extends to a K-homomorphism K[t0, . . . , tr]→ K[a0, . . . , ar]. In this
case F = K(t) is the function field of W . This notation is independent of the representative (t0, . . . , tr)
of t. However, K[t0, . . . , tr] does depend on that representative of t. Nevertheless, we abuse our notation
and abbreviate K[t0, . . . , tr] by K[t] whenever t0, . . . , tr are given.

The points of W are the homogeneous prime ideals of K[t] that do not contain K[t]+, i.e. do not
contain the set {t0, . . . , tr}. If P ∈W , then K(P ) = OW,P /mW,P is the residue field of P . In particular,
if K(P ) = K, then P is a K-rational point of K that corresponds to a point a ∈ W (K) such that the
map t→ a defines a K-isomorphism K[t]/P ∼= K.

For a field extension L of K, a point Q of WL = W ×Spec(K) Spec(L) lies over P (equivalently,
over a) if Q ∩K[t] = P .

4.4 Local Fields. We denote the set of all primes of K by PK . For each p ∈ PK we fix a completion

K̂p of K at p in f and an absolute p-adic value | |p of K̂p. Then, we extend | |p to
˜̂
Kp in the unique

possible way. In particular, | |p is now also defined on K̃.

Let V be an absolutely integral affine variety in AnK (Subsection 4.2). The p-adic topology on
˜̂
Kp

defines a p-adic topology on V (
˜̂
Kp) (Subsection 3.1). For each extension L of K in

˜̂
Kp we refer to a

p-adically open (resp. closed) subsets of V (L) as p-open (resp. p-closed). Each p-open subset Ω of V (L)

is a union of open p-balls defined by parameters from L. If L′ is an extension of L in
˜̂
Kp, then the same

parameters define open p-balls in V (L′). Their union is a p-open subset of V (L′) that we denote by
Ω(L′). Note that a change in the parameters that define Ω does not effect the set Ω(L′). In particular,
Ω(L′) ∩ V (L) = Ω(L).

Next we consider the field Kp = Ksep ∩ K̂p and call it a p-closure of K at p. It is a Henselian

closure of K at p if p ∈ PK is non-archimedean, a real closure of K if p is archimedean and real, and K̃
if p is archimedean and complex.

If K is a number field, then char(K) = 0, so Ksep = K̃, hence Kp = K̃ ∩ K̂p. If K is a function field

of one variable over a finite field, then K̂p is a regular extension of Kp [Jar94, Lemma 2.2], in particular

Kp = K̃ ∩ K̂p. Thus, the latter relation holds in both cases.

4.5 Holomorphy domains. For each p ∈ PK and a subfield M of
˜̂
Kp we consider the closed disc

OM,p = {x ∈M | |x|p ≤ 1}

of M at p. We omit p from OM,p if K̂p ⊆ M ⊆ ˜̂
Kp. If p is non-archimedean, then OM,p is a valuation

ring of rank 1 of M .
Next we consider a subset U of PK and a field K ⊆M ⊆ K̃. Let UM be the set of all primes of M

that lie over U . If q ∈ UM lies over p ∈ U , then we denote the unique absolute value of M that extends
| |p to M and represents q by | |q. In this case there exists τ ∈ Gal(K) such that |x|q = |xτ |p for each
x ∈M . Conversely, the latter condition defines q. We set

OM,U =
⋂

q∈UM

{x ∈M | |x|q ≤ 1}

for the U-holomorphy domain of M ∗. If U consists of non-archimedean primes, then OM,U is the
integral closure of OK,U in M [Lan58, p. 12, Prop. 4]. If U is arbitrary but M is Galois over K, then

OM,U =
⋂
p∈U

⋂
τ∈Gal(K)

OτM,p .

Note that
(1) if U ⊆ U ′ ⊆ PK , then OM,U ′ ⊆ OM,U .

* Note that in general OM,{p} 6= OM,p.
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4.6 Basic Objects. In the number field case (i.e. char(K) = 0), we denote the set of all non-
archimedean primes of K by PK,fin. In the function field case, where p = char(K) > 0, we fix a
separating transcendence element tK for K/Fp and let PK,fin = {p ∈ PK | |tK |p ≤ 1}. In both cases
PK,fin is cofinite in PK and we set

OK = OK,PK,fin = {x ∈ K | |x|p ≤ 1 for all p ∈ PK,fin}.

If K is a number field, then OK is the integral closure of Z in K. In the function field case OK is the
integral closure of Fp[tK ] in K. In both cases OK is a Dedekind domain [CaF67, p. 13, Prop. 1]. Following
the convention in algebraic number theory, we call OK the ring of integers of K.

Next we choose a finite (possibly empty) subset S of PK , set

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p ,

and observe that Ktot,S is the maximal Galois extension of K in which each p ∈ S totally splits.
We also choose a non-empty proper subset V of PK that contains S.

4.7 Strong Approximation. Let T be a finite subset of V that contains S such that V r T ⊆ PK,fin.
Thus, by (1), OK ⊆ OK,V r T .

Given an absolutely integral affine variety V in AnK for some positive integer n, we consider for each
p ∈ T
(3a) a finite Galois extension Lp of Kp, such that Lp = Kp if p ∈ S, and
(3b) a non-empty p-open subset Ωp of Vsimp(Lp), invariant under the action of Gal(Lp/Kp).

Assuming that
(3c) V (OK̃,p) 6= ∅, equivalently that V (OKsep,p) 6= ∅ [GeJ75, Lemma 2.4], for each p ∈ V r T ,
we say that (Lp,Ωp)p∈T is approximation data for K,S, T ,V, V .

Given a field K ⊆M ⊆ Ktot,S , we write (M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT if
(4) there exists z ∈ V (OM,V r T ) such that zτ ∈ Ωp for all p ∈ T and all τ ∈ Gal(K).

We write (M,K,S,V, V ) |= SAT if
(5) (M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT for all finite subsets T of V that contain S such that V r T ⊆

PK,fin and for all approximation data (Lp,Ωp)p∈T for K,S, T ,V, V .
Finally, we write (M,K,S,V) |= SAT and say that M satisfies the strong approximation theo-

rem for K,S,V if
(6) (M,K,S,V, V ) |= SAT for every absolutely integral affine variety V in AnK for some positive integer

n.
Note that all p-closures of K at a given p ∈ PK are K-isomorphic. Hence, Conditions (3), (4), (5),

and (6) are independent of the choices of the closures.

4.8 Fixing K, S, and V. For the rest of the work we fix the global field K, the proper subset V of
PK , and the finite subset S of V, as in Subsection 4.6. Let T be a finite subset of V that contains S and
satisfies V r T ⊆ PK,fin. Let V be an absolutely integral affine variety over K in AnK for some positive
integer n and let (Lp,Ωp)p∈T be approximation data for K,S, T ,V, V .

Remark 4.9: Condition (3) can be reformulated in terms of completions instead of closures at primes of K.
Indeed, suppose that for each p ∈ T we are given a finite Galois extension L̂p of K̂p, such that L̂p = K̂p if

p ∈ S, and a non-empty p-open subset Ω̂p of Vsimp(L̂p), invariant under the action of Gal(L̂p/K̂p). Then,

with Lp = L̂p ∩Ksep, the p-open subset Ωp = Ω̂p ∩ V (Lp) of V (Lp) is non-empty.

Indeed, if p ∈ PK,fin, then by [JaR98, Remark 1.6], V (Lp) is p-dense in V (L̂p). If p ∈ PK,inf is

real, then Lp and L̂p are real closed, so L̂p is an elementary extension of Lp as ordered fields [Pre84,

p. 51, Cor. 5.2]. In particular, V (Lp) is p-dense in V (L̂p). Finally, if p ∈ PK,inf is complex, then Lp = Q̃,

L̂p is isomorphic to C and there exists a real closed field Lp,0 such that Lp = Lp,0(
√
−1), and the pair

(L̂p, L̂p,0), with L̂p,0 being the p-closure of Lp,0 in L̂p, is isomorphic to (C,R). The p-density of V (Lp)

in V (L̂p) follows in this case from the fact that L̂p,0 is an elementary extension of Lp,0 as ordered fields.
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Now we choose ẑ ∈ Ω̂p and ε > 0 such that {z ∈ V (L̂p) | |z− ẑ|p < ε} ⊆ Ω̂p. Since Lp is p-dense in

L̂p, there exists a ∈ Lnp that satisfies |a− ẑ|p < ε
2 . Since L̂p is an elementary extension of Lp as ordered

fields, there exists z ∈ V (Lp) such that |z− a|p < ε
2 . Then, |z− ẑ|p < ε, so z ∈ Ω̂p ∩ V (Lp), as desired.

Conversely, given Lp and Ωp as in (3b), we may consider L̂p = K̂pLp and let Ω̂p = Ωp(L̂p). Then,

Ω̂p is a non-empty p-open subset of Vsimp(L̂p).
By Abraham Robinson, the theory of algebraically closed valued fields (with nontrivial valuation) is

model complete [Pre86, p. 240, Kor. 4.18]. Hence, we could have replaced Condition (3c) by the condition:
V (O ˜̂

Kp

) 6= ∅ for each p ∈ V r T .

In proving the strong approximation theorem for K,S,V, we may choose T , V, (Lp,Ωp) with some
extra properties. This is proved in the following lemma.

Lemma 4.10: Let T be a finite subset of V that contains S such that V r T ⊆ PK,fin, V an abso-
lutely integral affine variety in AnK for some positive integer n, and (Lp,Ωp)p∈T approximation data for
K,S, T ,V, V . We consider a field extension M of K in Ktot,S . Then, in order to prove that

(M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT,

we may
(a) replace Ωp, for each p ∈ T , by Ωp ∩ U(Lp), where U is a given non-empty Zariski-open affine subset

of V defined by polynomial inequalities with coefficients in K,
(b) replace T by any larger finite subset T ′ of V and extend (Lp,Ωp)p∈T to any approximation data

(Lp,Ωp)p∈T ′ for K,S, T ′,V, V ,

(c) replace V by any absolutely integral affine variety V ′ in An′K , for some positive integer n′, which is
birationally equivalent to V , and

(d) replace V by any non-empty Zariski-open affine subvariety V0 of V defined by polynomial inequalities
with coefficients in K, considered as an affine variety in An+1

K ; in other words, if V = Spec(B) is
an affine variety over K, replace V by the Zariski-open subset D(f) = {p ∈ B | f /∈ p}, for some
non-zero f ∈ B, and identify D(f) with Spec(B[f−1]).

Proof of (a): Since U(Lp) is p-open in V (Lp) (Statement (a) of Subsection 3.1), Ω′p = Ωp∩U(Lp) is also
p-open in V (Lp). Since Ωp contains a simple point of V (by (3b)), Ωp is Zariski-dense in V (Statement (a)
of Subsection 3.1), hence Ω′p 6= ∅. Moreover, since Ωp is invariant under Gal(Lp/Kp), so is Ω′p. Finally, if
z ∈ U(OM,V r T ) and zτ ∈ Ω′p for all p ∈ T and τ ∈ Gal(K), then z ∈ V (OM,V r T ) and zτ ∈ Ωp for all
p ∈ T and τ ∈ Gal(K), as desired.

Proof of (b): Consider p ∈ T ′r T . By assumption, p is finite. By (3c), V (OKsep,p) 6= ∅. Since
Vsimp is non-empty and Zariski-open in V and V (OKsep,p) is p-open in V (Ksep), we have by Subsection
3.1(c), that Vsimp(OKsep,p) 6= ∅. Hence, we may choose a finite Galois extension Lp of Kp such that
Ωp = Vsimp(OLp,p) 6= ∅. Since Vsimp is Zariski-open in V and V (OLp,p) is p-open in V (Lp), the set Ωp

is p-open in V (Lp) (Subsection 3.1(a)). Since Vsimp is defined over K, the set Ωp is invariant under the
action of Gal(Lp/Kp).

Thus, (Lp,Ωp)p∈T ′ is approximation data for K,S, T ′,V, V . If z ∈ V (OM,V r T ′) and zτ ∈ Ωp for
all p ∈ T ′ and τ ∈ Gal(K), then zτ ∈ Ωp for all p ∈ T and τ ∈ Gal(K), and zτ ∈ Ωp ⊆ V (OLp,p) for all
p ∈ T ′r T and τ ∈ Gal(K). It follows that z ∈ V (OM,V r T ), as desired.

Proof of (c): Since V and V ′ are birationally equivalent over K, there exists a K-isomorphism ϕ of a
non-empty Zariski-open affine subset V0 of V onto a non-empty Zariski-open affine subset V ′0 of V ′. Both
V0 and V ′0 are absolutely integral affine varieties over K. Hence, ϕ corresponds to an isomorphism from
the coordinate ring of V ′0 onto the coordinate ring of V0 [Liu06, p. 48, Lemma 2.3.23]. Thus, both ϕ and
ϕ−1 are defined by polynomials with coefficients in K. We choose a finite subset T ′ of V that contains
T such that all of those coefficients belong to OK,V r T ′ .

Next we choose z0 ∈ V ′(K̃) and extend T ′ within V to assume that z0 ∈ V ′(OK̃,V r T ′). By (3b),
for each p ∈ T , Ωp is a non-empty p-open subset of Vsimp(Lp) which is invariant under Gal(Lp/Kp).
Hence, by Subsection 3.1(a), Ωp ∩ V0,simp(Lp) is a non-empty p-open subset of V0,simp(Lp) which is
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invariant under Gal(Lp/Kp). Moreover, ϕ maps V0,simp(Lp) p-homeomorphically onto V ′0,simp(Lp), so
Ω′p = ϕ(Ωp ∩ V0,simp(Lp)) is a non-empty p-open subset of V ′0,simp(Lp), hence also of V ′simp(Lp), which is
invariant under Gal(Lp/Kp).

By Condition (3c), for each p ∈ T ′r T , V (OKsep,p) 6= ∅. By Subsection 3.1(c), there exists
zp ∈ V0,simp(OKsep,p). Let Lp be a finite Galois extension of Kp with zp ∈ V0,simp(OLp,p). Then,
Ω′p = ϕ(V0,simp(OLp,p)) is a non-empty p-open subset of V ′0,simp(Lp), hence also of V ′simp(Lp), which is
invariant under the action of Gal(Lp/Kp). Thus, (Lp,Ω

′
p)p∈T ′ is approximation data for K,S, T ′,V, V ′.

We assume that there exists z′ ∈ V ′(OM,V r T ′) such that (z′)τ ∈ Ω′p for all p ∈ T ′ and τ ∈ Gal(K).

Since T ′ is non-empty and Ω′p ⊆ V ′0,simp(Lp) for p ∈ T ′, we have z′ ∈ V ′0(K̃). Moreover, since the
coordinates of z′ belong to OM,V r T ′ , we have z′ ∈ V ′0(OM,V r T ′). By the choice of T ′,

z = ϕ−1(z′) ∈ V0(OM,V r T ′) ∩
⋂

p∈T ′r T

⋂
τ∈Gal(K)

V0,simp(OτLp,p) ∩
⋂
p∈T

⋂
τ∈Gal(K)

Ωτp.

Hence, z ∈ V (OM,V r T ) and zτ ∈ Ωp for all p ∈ T and τ ∈ Gal(K), as desired.

Proof of (d): V0 is birationally equivalent over K to V , so we may use rule (c).

Example 4.11: Units. Let c be a non-zero element of Ksep, let T be a finite subset of V that contains
S such that V r T ⊆ PK,fin, and let M be an extension of K in Ktot,S . Consider the finite subset
T ′ = T ∪ {p ∈ V | |cτ |p 6= 1 for at least one τ ∈ Gal(K)} of V. Thus, |cτ |p = 1 for all p ∈ V r T ′ and all
τ ∈ Gal(K). Hence, c is a unit of OK(c),V r T ′ . It follows from Lemma 4.10 that in order to prove that
(M,K,S,V, V, T , (Lp,Ωp)p∈T ) |= SAT for a given absolutely integral affine variety V in AnK for some
positive integer n and approximation data (Lp,Ωp)p∈T for K,S, T ,V, V , we may assume that c is a unit
of OK(c),V r T .

We apply Lemma 4.10 to reduce the strong approximation theorem to the case of curves.

Lemma 4.12: Let M be an extension of K in Ktot,S . Suppose (M,K,S,V, C) |= SAT for every positive
integer m and every absolutely integral affine curve C in AmK . Then, (M,K,S,V) |= SAT.

Proof: Let V be an absolutely integral affine variety in AnK for some positive integer n. Let T be a
finite subset of V that contains S such that V r T ⊆ PK,fin. Let (Lp,Ωp)p∈T be approximation data for
K,S, T ,V, V . We choose a finite separable extension K ′ of K and a point z0 ∈ V (K ′). Then, we choose
a finite subset T ′ of V that contains T such that z0 ∈ V (OK′,V r T ′), hence also z0 ∈ V (OKsep,p), for
each p ∈ V r T ′. By Lemma 4.10, we may replace T by T ′ to assume that z0 ∈ V (OKsep,p) for each
p ∈ V r T .

Now we choose for each p ∈ T a point zp ∈ Ωp ⊆ V (Lp). Then we apply [JaR98, Lemma 10.1]
to find an absolutely integral affine curve C on V over K that goes through z0 and zp for every p ∈ T .
Moreover, since by (3b) each of the points zp with p ∈ T is simple on V , that lemma allows us to
choose C such that each of those zp is also simple on C. Thus, z0 ∈ C(OKsep,p) for each p ∈ V r T and
zp ∈ Ωp ∩ Csimp(Lp) ⊆ Csimp(Lp) for each p ∈ T .

It follows that (Lp,Ωp ∩ Csimp(Lp))p∈T is approximation data for K,S, T ,V, C. By assumption,
there exists z ∈ C(OM,V r T ) such that zτ ∈ Ωp ∩ Csimp(Lp) for all p ∈ T and τ ∈ Gal(K). Therefore,
z ∈ V (OM,V r T ) and zτ ∈ Ωp for all p ∈ T and τ ∈ Gal(K). We conclude that (M,K,S,V, V ) |= SAT.
It follows that (M,K,S,V) |= SAT, as claimed.

5. Curves

Following Lemma 4.12, we now concentrate on curves. We extend a given affine curve C over K to an
affine curve X over a subring R of K and complete X to an integral projective curve X̄ over R. We apply
Lemma 4.10 several times to make convenient assumptions on the associated data. These assumptions
are used in the sequel to prove the strong approximation theorem.
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5.1 An Affine Curve. Let K,PK ,Kp, K̂p,f,S, T ,V,M,OM,V r T be as in Section 4. In particular,
V r T ⊆ PK,fin. Let C be an absolutely integral affine curve in AnK . We choose a generic point x =
(x1, . . . , xn) for C over K with x1, . . . , xn ∈ f (Subsection 4.2). Moreover, enlarging f if necessary, we
choose x1, . . . , xn such that trans.deg(K(x)/K) = trans.deg(K̂p(x)/K̂p) for each p ∈ PK . Then, K(x)/K
is a regular extension of transcendence degree 1, F = K(x) is the function field of C over K. Moreover,
for each p ∈ PK , the field F is linearly disjoint from K̂p over K, so K̂p(x)/K̂p is also a regular extension
[FrJ08, Lemma 2.6.7].

We apply Lemma 4.10 to replace C by a Zariski-open subset of simple points and assume that
(1) C is smooth.

For each p ∈ T let Lp be a finite Galois extension of Kp such that Lp = Kp if p ∈ S. Then, let Ωp

be a non-empty p-open subset of C(Lp), invariant under the action of Gal(Lp/Kp). We also assume that
(2) C(OK̃,p) 6= ∅ for each p ∈ V r T .
Thus, (Lp,Ωp)p∈T is approximation data for K,S, T ,V, C.

5.2 Principal Ideal Domain. Recall that the class group of the ring of integers OK = OK,Pfin
of K

is finite (see [CaF67, p. 71] for the number field case and [Ros02, p. 243, Prop. 14.2] for the function field
case). Let a1, . . . , ah be ideals of OK that represent the group of fractional ideals of OK modulo principal
fractional ideals. Denote the union of T with the set of all prime divisors of a1, . . . , ah that belong to V
by T ′. Then, aiOK,V r T ′ = OK,V r T ′ for i = 1, . . . , h. Each ideal a of OK can be represented as a = b ·ai
for some i between 1 and h and b ∈ K×, so aOK,V r T ′ = b · OK,V r T ′ . Thus, OK,V r T ′ is a principal
ideal domain (see also [IsR05, p. 211, Prop. 8.9.7]).

Using Lemma 4.10, we replace T by T ′, if necessary, to assume
(3) R = OK,V r T is a principal ideal domain. In particular, R is integrally closed, hence a Dedekind

domain. Therefore, Rp is a regular local ring for each p ∈ Spec(R).
Note that whenever we replace T by a larger finite subset T ′ of V, we also replace R by its quotient ring
R′ = OK,V r T ′ , which is still a principal ideal domain.

In the case where V = T , the ring R is an intersection of an empty set of local subrings of K, so
R = K. In this case our results overlap with those of [GeJ02].

5.3 Nagata Rings. A Noetherian ring A (commutative with 1) is called a Nagata ring if for every
prime ideal P of A and every finite extension L of Quot(A/P ) the integral closure of A/P in L is a finitely
generated A/P -module [Mat80, p. 231]. In particular, every field is a Nagata ring. The main theorem
in this area, due to Nagata, says that each finitely generated ring extension of a Nagata ring is again a
Nagata ring [Mat80, p. 240, Thm. 72].

Lemma 5.4:
(a) Every Dedekind ring A of characteristic 0 is a Nagata ring.
(b) Suppose that A is a Dedekind ring and a Nagata ring. Then, every subring B of Quot(A) that

contains A is also a Dedekind ring and a Nagata ring.
(c) R is a Nagata ring.

Proof of (a): See [Liu06, p. 340, Example 8.2.28(b)].

Proof of (b) (Moret-Bailly): That B is a Dedekind ring is a classical theorem of Noether-Grell [FrJ08,
p. 32, Prop. 2.4.7]. We prove that B is also a Nagata ring.

Consider a prime ideal q of B. If q is maximal, then B/q is a field. Hence, if F is a finite extension
of B/q, then F is the integral closure of B/q in F and F is a finitely generated B/q-module.

Otherwise, q = 0 (because B is a Dedekind ring). Let L be a finite extension of Quot(A) and
consider the integral closures AL and BL of A and B, respectively, in L.

We consider a maximal ideal Q of B and set P = A∩Q. Since Quot(A) is the quotient field of both
A and B, we have P 6= 0. Hence, AP is a proper subring of Quot(A). Moreover, AP ⊆ BQ ⊂ Quot(A).
Since A is Dedekind, AP is a discrete valuation ring. Hence, AP = BQ [FrJ08, p. 23, Lemma 2.2.5].

Next let AL,P be the localization of the A-module AL at P and let BL,Q be the localization of the
B-module BL at Q. Since as a ring, BL,Q is integral over BQ = AP and AL,P is the integral closure of
AP in L, we have BL,Q ⊆ AL,P . Hence, BL,Q ⊆ AL,P = ALAP ⊆ (ALB)Q ⊆ BL,Q,
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Thus, BL,Q = (ALB)Q for all maximal ideals Q of B. It follows from [AtM69, p. 40, Prop. 3.9]
that BL = ALB. Since A is a Nagata ring, AL is a finitely generated A-module. Hence, BL is a finitely
generated B-module. We conclude that B is a Nagata ring, as claimed.

Proof of (c): By Subsection 4.6, OK is a Dedekind ring. If K is a number field, then OK is also a
Nagata ring, by (a). If K is a function field of one variable over a finite field of characteristic p, then by
Subsection 4.6, OK is an integral closure of Fp[tK ] in K. Since Fp is a Nagata ring, Nagata’s theorem
implies that OK is a Nagata ring.

Thus, (c) is a special case of (b) for A = OK and B = R.

5.5 Affine Scheme. Using the above notation, we consider the affine integral schemes Spec(R) and
X = Spec(R[x]), and let f : X → Spec(R) be the structure morphism given by f(P ) = P ∩ R. Then,
Spec(R) is a regular scheme of dimension 1 if R 6= K (resp. 0, if R = K) and dim(X) = 2 if R 6= K
(resp. 1 if R = K), because trans.deg(K(x)/K) = 1. By (3), R[x] is a Noetherian ring, hence X is a
Noetherian scheme.

By (2), for each non-zero p ∈ Spec(R), there exists a point a ∈ C(OK̃,p), where p is considered here
as an element of V r T . That point is an R-specialization of x. It follows that 1 /∈ pR[x]. Otherwise there

exist bi ∈ p and hi ∈ R[X], i = 1, . . . , l, such that 1 =
∑l
i=1 bihi(x). Then, 1 =

∑l
i=1 bihi(a) ∈ pOK̃,p, a

contradiction. Hence, the prime ideal p of R (which is actually a maximal ideal) extends to a prime ideal
of R[x]. Since the generic point of X is mapped onto the generic point of Spec(R), this implies that
(4) the morphism f : X → Spec(R) is surjective.

In fact, (4) also implies (2). But, as we don’t use this implication, we do not prove it here.
By Subsection 5.1, F/K is a regular extension of transcendence degree 1. We choose a separating

transcendence element tF ∈ R[x] for F/K. Then, R[tF ] is an integrally closed domain [ZaS75II, p. 85,
Thm. 29(a)] and F/K(tF ) is a finite separable extension. Let z ∈ R[x] be a primitive element for
F/K(tF ), integral over R[tF ]. The discriminant g of irr(z,K(tF )) is a non-zero element of R[tF ], hence
g is invertible in the ring R[tF , g

−1]. Multiply g, if necessary, by a non-zero element of R[tF ] to assume
that each xi is integral over R[tF , g

−1]. By [FrJ08, p. 109, Lemma 6.1.2], R[tF , g
−1, z] is the integral

closure of R[tF , g
−1] in F . Hence, R[x, g−1] = R[tF , g

−1, z] and the ring extension R[x, g−1]/R[tF , g
−1]

is étale [Ray70, p. 18, Remarques].
By Lemma 4.10(c), we may replace C by the affine curve with the generic point (x, g−1) over K.

Thus, we may assume without loss that g−1 is one of the coordinates of x, hence
(5) the ring R[x] = R[tF , g

−1, z] is integrally closed. Thus, X is normal.
Moreover, R[x] is étale over R[tF , g

−1]. Since Spec(R[tF , g
−1]) is étale over Spec(R[tF ]) [Liu06, p. 140,

Prop. 4.3.22(b)] and Spec(R[tF ]) is smooth over Spec(R), we conclude from [Liu06, p. 143, Prop. 4.3.38]
that
(6) the morphism f : X → Spec(R) is smooth.

Note that (5) and (6) remain true if we replace T by a larger finite subset of V, because integral
closedness and smoothness are preserved under a change of the base ring by a quotient ring.

For each p ∈ Spec(R) we consider the fiber Xp = X ×Spec(R) Spec(K̄p) of f at p, where K̄p = R/p.
Then, Xp = Spec(R[x]/R[x]p) = Spec(R[tF , g

−1, z]/R[tF , g
−1, z]p). Now we consider a polynomial h ∈

R[X0, Xn+1] such that h(tF , Xn+1) = irr(z,K(tF )). Since F/K is regular, h is absolutely irreducible
[FrJ08, p. 175, Cor. 10.2.2]. Since h is absolutely irreducible, it remains absolutely irreducible modulo
p for almost all p ∈ Spec(R) [FrJ08, p. 170, Prop. 9.4.3]. Moreover, g 6= 0 modulo p for almost all
p ∈ Spec(R). Adding the finitely many prime divisors of K that belong to V and correspond to the
exceptional p’s to T , we may assume by Lemma 4.10 that
(7) each of the fibers Xp of X over Spec(R) is absolutely integral.

Lemma 5.6: Starting from the Zariski-closed affine subscheme X of AnR, we consider the Zariski-closure
X ′ of X in PnR and let X̄ be the normalization of X ′ in F . Then:
(a) X̄ may be identified with Proj(R[t]), with t = (t0, . . . , tr), where R[t] is a graded ring over R with

R[t]1 =
∑r
i=0Rti. In particular, X̄ is a Noetherian scheme.

(b) Each of the elements t0, . . . , tr is transcendental over F . Thus, K(t)/K is a regular extension of
transcendence degree 2 and t0, . . . , tr 6= 0.

(c) R
[
t
t0

]
is integrally closed with quotient field F .
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(d) The scheme X may be identified with a Zariski-open subset of X̄ and f : X → Spec(R) lifts to a
surjective morphism f̄ : X̄ → Spec(R).

Proof: We write X ′ = Proj(R[s′]), where s′ = (s′0, . . . , s
′
n), R[s′] is a graded ring over R with R[s′]1 =∑n

i=0Rs
′
i such that s′0 6= 0 and xi =

s′i
s′0

for i = 1, . . . , n. Then, the inclusion map ξ: X ′ → PnR is a

closed immersion. Let πn: PnR → Spec(R) be the canonical morphism and let f ′: X ′ → Spec(R) be the
restriction of πn to X ′. By definition, f ′ is a projective morphism that extends f . Let π: X̄ → X ′ be
the normalization of X ′ [Liu06, p. 120, Prop. 4.1.22]. In particular, X̄ is an absolutely integral normal
scheme over R whose function field coincides with that of X ′, namely F . Moroever, π is an integral
morphism.

Claim A: π is a finite morphism. The scheme X ′ is covered by the affine Noetherian Zariski-open
sets Spec(R

[
s′

s′i

]
), where i ranges over all integers between 0 and n with s′i 6= 0. Each of the integral

domain R
[
s′

s′i

]
is a finitely generated R-algebra. Hence, for each Zariski-open affine subset U of X ′ the

ring Γ(U,OX′) is a finitely generated R-algebra whose quotient field is F [Mum88, p. 122, Def. 3 and
Prop. 1]. Moreover, the open set π−1(U) of X̄ is also affine [Liu06, p. 120, Def. 4.1.20] and Γ(π−1(U),OX̄)
is the integral closure of Γ(U,OX′) in F [Liu06, p. 121, comment following Definition 4.1.24]. By Lemma
5.4(c), R is a Nagata ring, so Γ(π−1(U),OX̄) is finitely generated as a Γ(U,OX′)-module. We conclude
that π is finite, as claimed.

Claim B: The map π is a projective morphism in the sense of [Har77, p. 103, Def.]. Indeed X ′ is a
closed subscheme of PnR, so the above mentioned definition of [Har77] coincides with that of [Gro61II,
p. 104, Def. 5.5.2]. Thus, by Claim A and [Gro61II, p. 113, Cor. 6.1.11], π is projective. See also, [GoW10,
p. 401, Cor. 13.77].

It follows from [Liu06, p. 108, Cor. 3.3.32(b)] that f ′ ◦ π: X̄ → Spec(R) is a projective morphism.
Thus, there exist a positive integer r and a closed immersion ϕ: X̄ → PrR such that f̄ = f ′ ◦ π = πr ◦ ϕ,
where πr is the canonical morphism PrR → Spec(R). This gives the following commutative diagram:

(8) π−1(X) //

��

X̄
ϕ //

π

��

PrR

πr

pp

X
ι //

f

%%KK
KKK

KKK
KKK

X ′
ξ //

f ′

��

PnR

πn{{ww
ww
ww
ww
w

Spec(R)

where ι: X → X ′ is the inclusion map. Since X is normal (by (5)), the restriction of π to π−1(X) is
an isomorphism onto X [GoW10, p. 340, Rem. 12.46]. We use that isomorphism to identify X with
π−1(X). Then, we identify X̄ with the closed subscheme ϕ(X̄) of PrR. By [Liu06, p. 168, Prop. 5.1.30],
R[T0, . . . , Tr] has a homogeneous ideal J such that X̄ = Proj(R[T0, . . . , Tr]/J). For each 0 ≤ i ≤ r let
ti = Ti + J and set t = (t0, . . . , tr). Then, R[t] is a graded ring over R with R[t]1 =

∑r
i=0Rti. By (3),

R is Noetherian, hence so is R[t]. Therefore, X̄ is a Noetherian scheme, as (a) asserts.
We omit all of the i’s between 0 and r with ti = 0, change r, and reenumerate the indices, if

necessary, to assume that ti 6= 0 for each 0 ≤ i ≤ r. Then, by Example 1.6, each ti is transcendental over
F . Since tj =

titj
ti

for all 0 ≤ i, j ≤ r, we haveK(t) = F (ti) for all 0 ≤ i ≤ r. Hence, trans.deg(K(t)/K) =
trans.deg(F/K)+1 = 2. Since by Subsection 5.1, F/K is a regular extension, so is K(t)/K [FrJ08, p. 41,
Cor. 2.6.8(b)], as claimed by (b).

Since X̄ is normal and R
[
t
t0

]
is the coordinate ring of the open affine subscheme of X̄ defined by

T0 6= 0, we have that R
[
t
t0

]
is an integrally closed ring with quotient field F , as claimed in (c).

Finally, we deduce from Diagram (8) that the morphism f̄ = f ′ ◦ π from X̄ to Spec(R) extends
f : X → Spec(R). Since, by (4), f is surjective, so is f̄ , as asserted by (d).
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5.7 Boundary. We consider the closed subset X̄ rX of X̄. Since X̄ is irreducible of dimension 2 if
R 6= K (resp. 1, if R = K) and X is open in X̄ and non-empty, dim(X̄ rX) ≤ 1. Let Z be the unique
reduced subscheme of X̄ with support X̄ rX. Thus, dim(Z) ≤ 1. Since K[x] is not finite over K, the
affine scheme C = XK is not proper [Liu06, p. 104, Lemma 3.3.17]. In particular, ZK (hence also Z) is
non-empty. Since dim(Spec(R)) = 1 if R 6= K (resp. dim(Spec(R)) = 0 if R = K), we conclude that

(9) dim(Z) = 1 if R 6= K (resp. dim(Z) = 0 if R = K).

Let Z =
⋃d(Z)
i=1 Zi, with d(Z) ≥ 1, be the decomposition of Z into its irreducible components over

R. We prove that, after a possible enlargement of T inside V,

(10) for each 1 ≤ i ≤ d(Z), Zi is a regular scheme over R with dim(Zi) = 1 if R 6= K (resp. dim(Zi) = 0
if R = K) and the restriction of f̄ to Zi is a finite, flat, and surjective morphism.

Indeed, for each 1 ≤ i ≤ d(Z) let fi: Zi → Spec(R) be the restriction of f̄ to Zi. Thus, fi is the
restriction of the natural morphism PrR → Spec(R) to the closed subset Zi of PrR. It follows that fi is a
projective morphism. By [Liu06, p. 108, Thm. 3.3.30], fi is proper. In particular, fi is a closed map, so
fi(Zi) is a closed subset of Spec(R). Since Spec(R) is an irreducible scheme of dimension ≤ 1, fi(Zi) is
either a closed point of Spec(R) or all of Spec(R). If in the first case the prime of K that corresponds to
fi(Zi) is in V, we adjoin it to T . Since R = OK,V r T (by (3)), Zi won’t be an irreducible component of
Z any more. Having done so for all of those i’s, we may assume that fi(Zi) = Spec(R) for all i. Since Z
is non-empty, the above procedure does not eliminate all of the Zi’s. In other words, we may still assume
that d(Z) ≥ 1.

The fiber of the generic point of Spec(R) (i.e. of the zero ideal) is the generic point of Zi. For each
closed point p ∈ Spec(R) the set f−1

i (p) of Zi is closed. Since Zi is irreducible of dimension ≤ 1, f−1
i (p)

is either a finite set or f−1
i (p) = Zi. In the latter case we have fi(Zi) = {p}, in contrast to the preceding

paragraph. It follows that the fibers of fi are finite.

We have therefore proved that the morphism fi is projective with finite fibers. By [Liu06, p. 152,
Cor. 4.4.7], fi is a finite morphism. Since Zi is reduced, we get by the definition of a finite morphism
and by the fact that fi: Zi → Spec(R) is surjective that Zi = Spec(Ri) is an affine scheme, where Ri
is an integral domain, finitely generated and integral over R. Since R is a Dedekind domain (by (3)),
[Liu06, p. 11, Cor. 1.2.14] implies that Ri is flat over R. Hence, fi is flat. Since the integral closure of R
in Quot(Ri) is also a finitely generated R-module (because R is a Nagata ring), we may enlarge T in V
to assume that Ri is integrally closed, hence a Dedekind domain. Thus, Zi is a Dedekind scheme [Liu06,
p. 116, Example 4.1.7] and therefore regular [Liu06, p. 117, Prop. 4.1.12 and p. 128, Example 4.2.9].
Moreover, since Ri is a finitely generated R-module, dim(Zi) = dim(R) = 1 if R 6= K (resp. dim(Zi) = 0
if R = K). This complete the proof of Statement (10).

Next we prove that, after another possible enlargement of T in V (Lemma 4.10),

(11) Z is a regular scheme over R of dimension 1 if R 6= K (resp. 0, if R = K) and the restriction fZ of
f̄ to Z is a finite, flat, and surjective morphism.

Indeed, if 1 ≤ i < j ≤ d(Z), then Zi ∩ Zj , as an intersection of distinct irreducible subschemes of
Z of dimension ≤ 1, is a scheme of dimension 0, hence finite. Therefore, fZ(Zi ∩ Zj) is a finite subset of
Spec(R). Adding the primes in V that correspond to this subset to T , we may assume that Zi ∩Zj = ∅.
In other words, we may assume that Z =

⋃
· d(Z)
i=1 Zi. Since each of the sets Zi is closed in Z, it is also

open.

As a disjoint union of open regular subschemes Zi (by (10)), the scheme Z is itself regular. Moreover,
the natural map fZ : Z → Spec(R), inducing for each i the map fi on Zi, is finite, flat, and surjective,
because by (10), fi has these properties for each i. This concludes the proof of (11).

5.8 The ideals I and Ii. Since Z is a closed subscheme of X̄ = Proj(R[t]), we may identify Z with
Proj(R[t]/I), where I is a homogeneous ideal of R[t] [Liu06, p. 168, Prop. 5.1.30]. Similarly, for each
1 ≤ i ≤ d(Z), there exists a homogeneous prime ideal Ii of R[t] that contains I and R[t]+ 6⊆ Ii such that
Zi = V+(Ii). Since Z is reduced, I is equal to its radical and the latter is equal to the intersection of all
homogeneous prime ideals that contain I and are minimal with this property [ZaS75II, p. 152, Thm. 8
and Corollary]. The set P of all these prime ideals is finite (because R[t]/I is Noetherian). The ideals
I1, . . . , Id(Z) belong to P. Let P1, . . . , Pm be all the other ideals in P and note that each of them contains
R[t]+. For each P ∈ P with P ∩ R 6= 0, we add the elements of V that correspond to prime ideals of
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R that divide a generator of P ∩ R (use (3)) to T . After this enlargement, P ∩ R = 0, so P ⊆ R[t]+
for each P ∈ P. In particular, Pj = R[t]+ for j = 1, . . . ,m. Note that for 1 ≤ i ≤ d(Z), the property
f̄(Zi) = Spec(R), which (10) guarantees, implies that Ii ∩ R = 0, so Ii ⊆ R[t]+. Hence, Ii ⊆ Pj for
each i = 1, . . . , d(Z) and j = 1, . . . ,m. It follows from the minimality of the elements in P that m = 0.

Therefore,
⋂d(Z)
i=1 Ii = I.

5.9 The boundary over K. The quotient ring of R[t] with respect to the multiplicative set Rr{0}
is K[t]. By Subsection 5.8, Ii ∩ R = 0 for i = 1, . . . , d(Z). Hence, KI1, . . . ,KId(Z) are distinct points
of X̄K . It follows that the generic fiber ZK = Proj(K[t]/KI) of Z consists of d(Z) distinct points
Z1,K , . . . , Zd(Z),K , corresponding to the points KI1, . . . ,KId(Z) of X̄K . Each of these points is closed,
so KIj 6⊆ KIi if j 6= i. It follows that

⋂
j 6=iKIj 6⊆ KIi for every 1 ≤ i ≤ d(Z). By Subsection 5.8,⋂d(Z)

i=1 KIi = KI.

We denote the degree of the divisor
∑d(Z)
i=1 Zi,K attached to ZK by degK(ZK).

5.10 Special fibers. We let X̄sing be the closed subset of all singular points of X̄. Since X̄ is normal,
each of its points of codimension 1 is nonsingular [Liu06, p. 268, Example 7.2.6]. Hence, X̄sing has
dimension 0, so X̄sing is finite. Following [MoB89, p. 187, (3.1.2)], we add the finitely many primes in V
corresponding to the finite subset f̄(X̄sing) of Spec(R) to T and assume that
(12) X̄ is regular.

Finally, we may apply the arguments that prove (7) to each of the finitely many affine Zariski-open
parts of X̄ and conclude, possibly after an additional enlargement of T in V, that
(13) each of the fibers X̄p of X̄ over Spec(R) is an absolutely integral projective curve.

5.11 Generic fibers. We consider the generic fibers XK = X ×Spec(R) Spec(K) = Spec(K[x]) and
X̄K = X̄ ×Spec(R) Spec(K) of X and X̄, respectively. Then, XK is an affine K-scheme which is actually
isomorphic to our original curve C. Since C is smooth (by (1)),
(14) XK is smooth.

Moroever, X̄K is the normalization of the projective closure of XK in PrK [Eis95, p. 126, Prop. 4.4.13,
and p. 127, last paragraph]. In particular, X̄K is normal.

By (7) and (13),
(15) XK and X̄K are absolutely integral.
Moreover, for each p ∈ T we may view the subset Ωp of C(Lp) introduced in Subsection 5.1 also as a
p-open subset of XK(Lp).

6. Closed Separable Point

We choose a closed separable point b of X over K, let E = K(b), denote the integral closure of R
in E by RE , choose a point B′ of X̄RE that lies over b, use the conjugates of B′ over K to construct
a homogeneous ideal B′′ of RE [t], and prove that V+(B′) ∩ V+(B′′) = ∅. We use the homogeneous
ideals B′ and B′′ of RE [t] in Section 9 to produce homogeneous coordinates s0, s1, . . . , sl ∈ R[t] of large
degree of a projective curve Y = Proj(K[s0, . . . , sl]) (Lemma 9.5), and to construct in Section 10 a
birational morhism ϕ: X̄K → Y which maps the smooth affine curve XK minus the point corresponding
to B = R[t]∩B′ isomorphically onto a Zariski-open smooth affine subset Y0 of Y , maps ZK onto a point
y0 ∈ Y (K), and maps the point of X̄K corresponding to B onto cusps y1, . . . ,ye ∈ Y (K̃) of multiplicity
q, where q is a large prime number, such that Y (K̃) = Y0(K̃)∪{y0,y1, . . . ,ye} (Lemmas 10.3 and 10.4).
We use that curve to construct a symmetrically stabilizing element for F/K using the main result of
[GRJ17] quoted here as Proposition 8.6.

6.1 Separable integral point. We assume without loss that t0, t1 form a separable transcendence
base for K(t)/K (Lemma 5.6(b) and [FrJ08, p. 38, Lemma 2.6.1]). Let h0, h1, . . . , hn ∈ R[T0, . . . , Tr] be

homogeneous polynomials of the same degree such that h0(t) 6= 0 and xj =
hj(t)
h0(t) for j = 1, . . . , n. Then,

we choose b1 ∈ Ksep rK and extend the map (t0, t1) 7→ (1, b1) to a K-homomorphism ϕ: K[t] → Ksep

such that with bi = ϕ(ti) for i = 2, . . . , r and b = (1:b1: · · · :br) we have h0(b) 6= 0. It follows that
b ∈ X(Ksep)rX(K). From a geometric point of view we can choose a separating transcendence base
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of F/K that leads to a nonconstant morphism f : C → A1, so there is a dense open U in A1 such that
f−1(U)→ U is finite étale, and choose b1 ∈ U(Ksep)rU(K) and b ∈ f−1(b1)(Ksep). Since X is smooth
(Subsection 5.1, (1)), b ∈ X̄simp(Ksep). Let E = K(b1, . . . , br), set e = [E : K], and note that e ≥ 2, by
the choice of b1. We choose a non-zero element b′ of R such that b′bi is integral over R for i = 1, . . . , r.
Adjoining the prime divisors of b′ that are in V to T and using Lemma 4.10, we may assume that b1, . . . , br
are integral over R. Geometrically, we can consider the point b as a section Spec(E) → C. Then, after
enlarging T if necessary, it extends to a section Spec(RE)→ X.

For each ideal a of a graded ring A we let ah be the ideal generated by all of the homogeneous
elements of a. Then, ah is the maximal homogeneous ideal of A contained in a. By [Liu06, p. 51, Lemma
2.3.35(a)], ah is a prime ideal, if a is.

Having made this definition, we consider the homogeneous prime ideal B = Ker(ϕ)h ∩R[t] of R[t].
Geometrically, B is the generic point of the image of the section Spec(RE)→ X. Note that t0 /∈ Ker(ϕ)
(because ϕ(t0) = 1), hence t0 /∈ B. Thus, B can be also considered as a point of X̄ that belongs to X.
Moreover, B lies under b.

Since Ker(ϕ)h is a prime ideal of K[t], its intersection with K× is empty, hence
(1) B ∩R = 0.
Since K[t] is the quotient ring of R[t] with respect to the multiplicative set Rr{0} and B is disjoint to
that set (by (1)), we have
(2) KB ∩R[t] = B and KB = Ker(ϕ)h.

6.2 The ring RE. Following Subsection 6.1, we consider the separable field extension E = K(b) of
K and let RE be the integral closure of R in E. By Subsection 6.1, b1, . . . , br are integral over R, so
b1, . . . , br ∈ RE .

Since R is a principal ideal domain (Subsection 5.2) and E/K is a finite separable extension, RE is
a finitely generated free R-module [Wae91, p. 175, Sec. 17.3]. Then RE has an R-basis w1, . . . , we which
is also a basis for E/K.

We choose σ1, . . . , σe ∈ Aut(K̃/K) whose restrictions to E are the distinct K-embeddings of E into
K̃ and σ1 is the identity map of E. Since K(t)/K is a regular extension (Lemma 5.6(b)), we may extend
σ1, . . . , σe to elements of Aut(K̃(t)/K(t)) having the same names.

Since E/K is a separable extension det(w
σj
i ) 6= 0 [Lan93, p. 286, Cor. 5.4]. Moreover, det(w

σj
i )i,j=1,...,e

belongs to the integral closure R̃ of R in K̃. We use Lemma 4.10 to enlarge T such that
(3) det(w

σj
i ) is invertible in R̃.

Having made this assumption, we prove that
(4) RE

[
t
t0

]
is integrally closed.

Indeed, let f ∈ E
(
t
t0

)
be integral over RE

[
t
t0

]
. Since E

(
t
t0

)
= E · K

(
t
t0

)
=
∑e
i=1Kwi · K

(
t
t0

)
=∑e

i=1 wiK
(
t
t0

)
, we may write f =

∑e
i=1 wifi with f1, . . . , fe ∈ K

(
t
t0

)
. Applying σj on the latter equality,

we get fσj =
∑e
i=1 w

σj
i fi, j = 1, . . . , e. Applying Kramer’s rule to the latter system of equations, we find

for each 1 ≤ k ≤ e that fk = f ′k/ det(w
σj
i ) with f ′k in the integral closure of R

[
t
t0

]
in K

(
t
t0

)
. It follows

from (3) that fk belongs to the integral closure of R
[
t
t0

]
in K

(
t
t0

)
. Since R

[
t
t0

]
is integrally closed (Lemma

5.6(c)), fk ∈ R
[
t
t0

]
. It follows that f ∈ RE

[
t
t0

]
.

Notation 6.3: We consider the homogeneous ideals

B̃j =

r∑
i=1

K̃[t](ti − b
σj
i t0), j = 1, . . . , e,

B′ =

r∑
i=1

RE [t](ti − bit0), B′′ =

e⋂
j=2

(RE [t] ∩ B̃j)

of K̃[t] and RE [t], respectively, and note that B̃j = B̃
σj
1 for j = 1, . . . , e. Note also that K̃[t]/B̃j

is isomorphic to the integral domain K̃[t0], so B̃j is a prime ideal of K̃[t] for j = 1, . . . , e. Similarly
RE [t]/B′ ∼= RE [t0], so B′ is a prime ideal of RE [t].
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Lemma 6.4: B′ = RE [t] ∩ B̃1.

Proof: It suffices to prove that each f ∈ RE [t] ∩ B̃1 belongs to B′. To that end we choose a basis
(w̃1, w̃2, w̃3, . . .) for K̃/E with w̃1 = 1. Then, we note that since K(t)/K is a regular extension (Lemma
5.6(b)), also E(t)/E is a regular extension. Hence, w̃1, w̃2, w̃3, . . . also form a basis for K̃[t] over E[t].
By definition, f =

∑r
i=1 fi(ti − bit0) with fi ∈ K̃[t] for i = 1, . . . , r. For each 1 ≤ i ≤ r we write

fi =
∑∞
k=1 fikw̃k with fik ∈ E[t] for all k and all but finitely many of the fik’s are 0. Then, f =∑∞

k=1

(∑r
i=1 fik(ti−bit0))w̃k. Comparing the coefficients of w̃1 on both sides, we have f =

∑r
i=1 fi1(ti−

bit0) ∈ E[t]B′ ∩RE [t].
Since the RE [t]-degree of each non-zero element of B′ is at least 1, we have B′∩RE = 0. In addition

observe that E[t] is the quotient ring of RE [t] with respect to the multiplicative subset RE r{0}. Since
B′ is a prime ideal of RE [t] (Notation 6.3), it follows that E[t]B′ ∩ RE [t] = B′, so f ∈ B′, as claimed.

Lemma 6.5: B = R[t] ∩ B̃j for j = 1, . . . , e, B ⊆ B′ ∩ B′′, and K̃B =
⋂e
j=1 B̃j . Thus, B̃1, . . . , B̃e are

exactly the points of XK̃ that lie over B. Each of them is simple. Moreover, B̃j 6⊆ B̃j′ if j 6= j′.

Proof: Since K(t)/K is a regular extension, we may uniquely extend the K-homomorphism ϕ introduced
in Subsection 6.1 to a K̃-homomorphism ϕ̃: K̃[t]→ K̃. Then, Ker(ϕ̃)h is a homogeneous prime ideal of
K̃[t] that belongs to XK̃ and ϕ̃(t) = b. For each f ∈ Ker(ϕ̃)h we apply the Taylor expansion around
b
b0

to f
(
t
t0

)
(with b0 = 1) and then multiply the resulting expression by t

deg(f)
0 . We find that Ker(ϕ̃)h =∑r

i=1 K̃[t](ti − bit0). It follows that B = R[t] ∩Ker(ϕ)h = R[t] ∩Ker(ϕ̃)h = R[t] ∩
∑r
i=1 K̃[t](ti − bit0).

Applying σj on both sides, we get

(5) B = R[t] ∩
∑r
i=1 K̃[t](ti − b

σj
i t0) = R[t] ∩ B̃j for j = 1, . . . , e.

The point B̃1 of XK̃ corresponds to b, so B̃1 is simple. Hence, B̃j = B̃
σj
1 is also simple for

j = 1, . . . , e.
By (5) and by Lemma 6.4, B = R[t] ∩ B̃1 ⊆ RE [t] ∩ B̃1 = B′. Also, B ⊆

⋂e
j=2(RE [t] ∩ B̃j) = B′′.

Let P ′ be a point of XK̃ that contains K̃B and let b′ = (1:b′1: · · · :b′r) be the corresponding point in

X(K̃) (note that t0 /∈ P ′, otherwise t0 ∈ K[t] ∩ P ′ = KB). Let ϕ′: K[t]→ K̃ be the K-homomorphism
mapping t onto b′. Then, Ker(ϕ′)h = KB = Ker(ϕ)h (because KB is a closed point of XK). It follows
that there exists σ ∈ Aut(K̃/K) such that b′ = bσ. Hence, P ′ is one of the B̃j ’s, as claimed.

Finally, we prove that B̃j 6⊆ B̃j′ if j 6= j′. Indeed, it suffices to prove that B̃j ⊆ B̃1 implies that

j = 1. Indeed, the latter assumption implies that for all 1 ≤ i, i′ ≤ r there exist fi,i′ ∈ K̃[T0, . . . , Tr] such
that ti − b

σj
i t0 =

∑r
i′=1 fi,i′(t)(ti′ − bi′t0). Applying ϕ̃ on both sides, we get bi − b

σj
i = 0 for i = 1, . . . , r.

Since E = K(b1, . . . , br), we conclude from the choice of σ1, . . . , σe in Subsection 6.2 that j = 1, as
claimed.

Since t0 ∈ R[t], B̃j ∩R[t] = B (Lemma 6.5), and t0 /∈ B (Subsection 6.1), we have:

Corollary 6.6: For each 1 ≤ j ≤ e we have t0 /∈ B̃j .

Notation 6.7: By the choice of σ1, . . . , σe, the r-tuples (b
σj
1 , . . . , b

σj
r ), j = 1, . . . , e are distinct. Since the

ring R is infinite, it contains c1, . . . , cr such that

r∑
i=1

ci(bi − b
σj
i ) 6= 0, j = 2, . . . , e.

We consider the non-zero element c =
∏e
j=2

∑r
i=1 ci(bi−b

σj
i ) of R̃. By Example 4.11, we may add finitely

many primes in V to T , if necessary, to assume that c is invertible in R̃.

Lemma 6.8: V+(B′) ∩ V+(B′′) = ∅.

Proof: We break up the proof into several parts.
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Part A: The elements t̃1, . . . , t̃e. For each 1 ≤ j ≤ e let t̃j =
∑r
i=1 ci(ti − b

σj
i t0). Since b1, . . . , br are

separable over K, integral over R, and t̃j ∈ R̃[t]1,

(6)
t̃j
t0

is separable over K
(
t
t0

)
and integral over R

[
t
t0

]
, j = 1, . . . , e.

By definition,
(7) t̃j ∈ B̃j for j = 1, . . . , e.

We claim that
(8) there exists a positive integer k0 such that tk0

0

∏e
j=2 t̃j ∈ B′′.

Indeed, each σ ∈ Gal(K(t)) permutes t̃1
t0
, . . . , t̃et0 , so by (6),

∏e
j=1

t̃j
t0
∈ K

(
t
t0

)
. In addition, t̃1

t0
∈

E
(
t
t0

)
. Therefore,

e∏
j=2

t̃j
t0

=
( e∏
j=1

t̃j
t0

)/ t̃1
t0
∈ E

(
t

t0

)
.

By (6),
∏e
j=2

t̃j
t0

is integral over R
[
t
t0

]
, hence also over RE

[
t
t0

]
. Since by (4), RE

[
t
t0

]
is integrally closed in

E
(
t
t0

)
, we have

∏e
j=2

t̃j
t0
∈ RE

[
t
t0

]
. Hence, there exists a positive integer k0 such that tk0

0

∏e
j=2 t̃j ∈ RE [t].

It follows from (7) that tk0
0

∏e
j=2 t̃j ∈

⋂e
j=2 B̃j ∩RE [t] = B′′, as claimed.

Part B: A power of t0. We note that

tk0
0

e∏
j=2

t̃j = tk0
0

e∏
j=2

r∑
i=1

ci(ti − b
σj
i t0)

= tk0
0

e∏
j=2

r∑
i=1

ci(ti − bit0 + bit0 − b
σj
i t0)

= tk0
0 u+ tk0

0

e∏
j=2

r∑
i=1

ci(bi − b
σj
i )t0

= tk0
0 u+ tk0+e−1

0 c,

where c is the invertible element of R̃ introduced in Notation 6.7, and u is a sum of products of e − 1
elements of R̃[t], one of which is ci(ti − bit0) for some 1 ≤ i ≤ r, so belongs to B′, and the others have
the form ci(bi − b

σj
i )t0, so they belong to R̃[t]. Thus, u ∈ R̃[t]B′. Since c is invertible in R̃, we have, by

(8), that
(9) tk0+e−1

0 = −c−1tk0
0 u+ c−1tk0

0

∏e
j=2 t̃j ∈ R̃[t]B′ + R̃[t]B′′.

End of proof: We recall that V+(B′) (resp. V+(B′′)) is the set of all homogeneous prime ideals of
RE [t] that contain B′ (resp. B′′) but do not contain the set {t0, . . . , tr}. If P ∈ V+(B′) ∩ V+(B′′),
then B′ + B′′ ⊆ P . Since R̃[t] is an integral extension of RE [t], there exists a prime ideal P̃ of R̃[t]
whose intersection with RE [t] is P . In particular, R̃[t]B′ + R̃[t]B′′ ⊆ P̃ . By (9), tk0+e−1

0 ∈ P̃ . Hence,
tk0+e−1
0 ∈ P̃ ∩ RE [t] = P , so t0 ∈ P . Since for each 1 ≤ i ≤ e, we have ti − bit0 ∈ B′ ⊆ P , we have
ti = (ti − bit0) + bit0 ∈ P . Thus, {t0, . . . , tr} ⊆ P . This contradiction implies that P as above does not
exist.

Remark 6.9: We could save the introduction of this section if XK had a K-rational point. But in view
of Falting’s theorem, many of the absolutely integral curves over K have no K-rational points, if K is
a number field. Still, we could simplify the proof of the properties of B if we could choose b as Galois
over K, that is such that E = K(b) is a Galois extension of K. But unfortunately, it seems to be
unknown if each absolutely integral curve over a global field has a Galois point [JaP16]. So, we have
chosen b as a separable algebraic point over K which is not K-rational. The latter condition makes the
proofs of the properties of b somewhat simpler in that we need not distinguish between the cases where
b is K-rational or not.
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6.10 The closed subschemes ZqB. Along with the closed subscheme Z of X̄ we consider also the
closed subscheme ZB = Proj(R[t]/B) and for each positive integer q the closed subscheme ZqB =
Proj(R[t]/Bq) of X̄. All of the subschemes ZqB are actually contained in X and have the same un-
derlying topological space. As for Z, we have dim(ZqB) = 1 if R 6= K (resp. dim(ZqB) = 0 if R = K) and

the extensions ZqB,K = Proj(K[t]/KBq) and ZqB,K̃ = Proj(K̃[t]/K̃Bq) have dimension 0. Moreover,
since X ∩ Z = ∅, we have ZqB ∩ Z = ∅. In particular, ZB,K ∩ ZK = ∅ and I 6⊆ B.

7. From Picard Group to Free Modules

We present a result of [MoB89, Section 3] that gives a big set of effective Cartier divisors on X whose
irreducible components are finite and surjective over Spec(R) and satisfy certain approximation conditions
at each p ∈ T . Lemma 7.10 then says that the above mentioned big set is in a sense T -open.

7.1 Divisors. For each positive integer d we consider the fiber product
Xd = X ×Spec(R) · · · ×Spec(R) X = Spec(R[x] ⊗R · · · ⊗R R[x]) of d copies of X (resp. d copies of R[x]).

Let the symmetric group Sd act on Xd by permutation. Then, the quotient

X(d) = Xd/Sd

is an affine scheme over Spec(R) and Sd acts transitively on each fiber of Xd → X(d). Moreover,
since Spec(R) is a Noetherian scheme, the natural projection Xd → X(d) is finite [GoW10, p. 331,
Prop. 12.27(4)].

The fat diagonal ∆ of Xd is the closed subscheme such that

∆(L) =
⋃
i 6=j

{(p1, . . . ,pd) ∈ Xd(L) | pi = pj}

for every ring extension L of R. Note that Sd leaves ∆ invariant. Hence, it makes sense to set

Ud = (Xdr∆)/Sd.

Also, note that the inertia group in Sd of each (p1, . . . ,pd) ∈ Xdr∆ is trivial. Hence, by [Liu06, p. 147,
Exer. 4.3.19], the map Xd → X(d) is étale along Xdr∆.

Now let S be an R-scheme. Since X is smooth over Spec(R) (Statement (6) of Section 5), [MoB89,
(3.2.3)] says that there is a functorial bijection between X(d)(S) and
(1) the set of all effective Cartier divisors D on XS = X ×Spec(R) S that are finite and flat of degree d

over S,
with deg(D) as defined in Subsection 2.2.

7.2 Global sections. We consider again the graded ring R[t] = R[t0, . . . , tr] introduced in Lemma
5.6 such that X̄ = Proj(R[t]). We also consider the closed reduced subscheme Z = X̄ rX introduced
in Subsection 5.7 and recall that Z = Proj(R[t]/I), where I is a homogeneous ideal of R[t] (Subsection
5.8). For each large positive integer k, Remark 1.4 gives a commutative diagram

(2) 0 // R[t]k ∩ I // R[t]k
π

(k)

X̄,Z // (R[t]/I)k // 0

0 // Ker(ρ
(k)

X̄,Z
) // Γ(X̄,OX̄(k))

ρ
(k)

X̄,Z // Γ(Z,OZ(k)) // 0

where the upper and lower rows are short exact sequences which have been identified via canonical maps.

Also, π
(k)

X̄,Z
is the quotient map and ρ

(k)

X̄,Z
is the restriction map from X̄ to Z. Changing the base from R
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to a field L that contains K, Diagram (2) becomes

(3) 0 // L[t]k ∩ LI // L[t]k
π

(k)

X̄L,ZL // (L[t]/LI)k // 0

0 // Ker(ρ
(k)

X̄L,ZL
) // Γ(X̄L,OX̄L(k))

ρ
(k)

X̄L,ZL// Γ(ZL,OZL(k)) // 0 .

7.3 Generalized Picard functor. In this subsection we let L be a ring extension of R and consider
the category C(L) whose objects are the couples (L, α), where L is an invertible sheaf on X̄L and α: OZL →
L|ZL is an isomorphism. A morphism (L, α) → (L′, α′) between two objects of C(L) is an isomorphism
ϕ: L → L′ such that ϕ|ZL ◦ α = α′.

In particular, if D is a Cartier divisor on X̄L which is disjoint from ZL (Subsection 2.3) and
(Um, fm)m∈M is data that represent D, then for all m ∈ M and p ∈ Um ∩ ZL, the image fm,p of fm
in OX̄L,p is invertible, so f−1

m,pOX̄L,p = OX̄L,p. On the other hand, L(D)p = f−1
m,pOX̄L,p (with L(D) as

in Subsection 2.5), so L(D)p = OX̄L,p. It follows that L(D)|ZL ∼= OZL . Finally, since for each m ∈ M ,
1D|Um is the unit element of Γ(Um,L(D)) (Subsection 2.5), we may consider 1D|ZL as the identity map
OZL → L(D)|ZL . Thus, (LX̄L(D), 1D) is one of the objects of C(L) mentioned in the preceding paragraph.

If (L, α), (L′, α′) ∈ C(L), then (L⊗OX̄LL
′, α⊗α′) ∈ C(L) and morphisms of objects of C(L) commute

with tensor products.
If L is a field extension of K, we denote for each non-negative integer d the subcategory of C(L) of

all objects (L, α) with deg(L) = d by Cd(L).
We note in passing that [MoB89, Subsection 3.4] denotes the group of isomorphism classes of objects

of Cd(L) by PGd(X̄, Z)(L) and call it the generalized Picard functor relative to Z.

7.4 Generalized Picard functors over K̂p. We use the convention of Subsection 5.1. For each

p ∈ T let L̂p = LpK̂p and let Ω̂
[d]
p be the set of effective Weil divisors D on XK̂p

of degree d with

DL̂p
=
∑d
i=1 pi, where p1, . . . ,pd are distinct points in Ωp(L̂p) (notation of Subsection 4.4). Thus, D

totally splits in FL̂p in the sense of Subsection 3.2, where F is the function field of XK introduced in

Subsection 5.1. Moreover, each D ∈ Ω̂
[d]
p can be considered as a point of Ud(L̂p) which is fixed under the

action of Gal(L̂p/K̂p). Therefore, Ω̂
[d]
p may be viewed as a subset of Ud(K̂p) (notation of Subsection 7.1),

hence of X(d)(K̂p).

Next we let W
[d]
p be the set of all pairs (L, α) ∈ Cd(K̂p) that are equivalent to (LX̄K̂p

(D), 1D) for

some D ∈ Ω̂
[d]
p . We quote two results from [MoB89] that rely on the assumptions we made on X, X̄, Z,

and f in Section 5.

Lemma 7.5: The following statements hold for each p ∈ T .

(a) Ω̂
[d]
p is p-open in Ud(K̂p) [MoB89, Lemma 3.3(a)].

(b) Let d and d′ be non-negative integers such that d ≥ 2 · genus(X̄K) + degK(ZK) (see Subsection 5.9

for the definition of degK(ZK)). Then, W
[d]
p W

[d′]
p ⊆W [d+d′]

p , where the product on the left hand side
is defined by the tensor product introduced in Subsection 7.3 [MoB89, Lemma 3.7.2(ii)].

Next we draw a consequence of [MoB89, Lemma 3.8] and [MoB89, Lemma 3.9]. To that end we use
[Har77, p. 117, Prop. II.5.12(c)] to identify OX̄(k)|Z (which implicitly appears in the above mentioned
lemmas of [MoB89]) with OZ(k).

Proposition 7.6: There exist a positive integer k0 and an isomorphism α(k0): OZ → OZ(k0) such that
for each integral positive multiple k of k0 the positive integer dk = deg(OX̄K (k)) (in the notation of

Subsection 2.1) and the isomorphism α(k) = (α(k0))⊗(k/k0): OZ → OZ(k) satisfy the following condition:

There is a section s
(k)
0 ∈ Γ(X̄,OX̄(k)) such that, in the notation of Diagram (2),
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(a) α(k)(Z)(1) = ρ
(k)

X̄,Z
(s

(k)
0 ), where α(k)(Z): Γ(Z,OZ)→ Γ(Z,OZ(k)) is the corresponding isomorphism

of Γ(Z,OZ)-modules,

(b) (OX̄K̂p
(k), α

(k)
p ) ∈W [dk]

p , and

(c) div(s
(k)
0,p) ∈ Ω̂

[dk]
p , for each p ∈ T ,

where 1 is the unit element of the ring Γ(Z,OZ), and α
(k)
p and s

(k)
0,p are the isomorphism and the section

obtained from α(k) and s0 by base change from R to K̂p.
In addition, the identifications made in Diagrams (2) and (3) and their commutativity are valid for

R and for every field extension L of K.

Proof: By [MoB89, Lemma 3.9], applied to the ample invertible sheaf OX̄(1) on X̄ [GoW10, p. 386,
Example 13.45] rather than to M0, there exist a positive integer k0 and an isomorphism α(k0): OZ →
OZ(k0) such that
(4a) d0 = dk0

= deg(OX̄K (k0)) ≥ 2 · genus(X̄K) + degK(ZK) and

(4b) (OX̄K̂p
(k0), α

(k0)
p ) ∈W [d0]

p for each p ∈ T .

Now consider an integral positive multiple k of k0 and let k1 = k/k0. Recall that OX̄(k) is naturally
isomorphic to OX̄(k0)⊗k1 [Har77, p. 117, Prop. II.5.12(b)] and OX̄(k0) is a free OX̄ -module of rank 1, so
α(k) = (α(k0))⊗k1 is an isomorphism of OZ onto OZ(k) and dk = k1d0 = deg(OX̄K (k)) (Subsection 2.1).

By (4a) and Lemma 7.5(b), (W
[d0]
p )k1 ⊆ W

[dk]
p for each p ∈ T . Hence, by (4b), Condition (b) holds for

each p ∈ T .

By [MoB89, Lemma 3.8], there exists s
(k)
0 ∈ Γ(X̄,OX̄(k)) such that (a) and (c) are satisfied, as

claimed.
The last assertion of the proposition holds if we eventually replace k0 by a sufficiently large integral

positive multiple of itself.

7.7 Generators of global sections. In the notation of Proposition 7.6 let k be an integral positive
multiple of k0 and let

Γ(X̄,OX̄(k), α(k)) = {s ∈ Γ(X̄,OX̄(k)) | ρ(k)

X̄,Z
(s) = α(k)(Z)(1)}.

The bijection given in (1) for the scheme Spec(R) and the bijection given in [MoB89, p. 189, (3.5.4)]
prove part (a) of the following result:

Lemma 7.8: If s ∈ Γ(X̄,OX̄(k), α(k)), then
(a) div(s) is an effective Cartier divisor on X, finite and flat over Spec(R) of degree dk = deg(OX̄K (k)),

and
(b) each irreducible component of div(s) is finite and surjective over Spec(R).

Proof of (b): Let f : X → Spec(R) be the morphism introduced in Subsection 5.5, let Y be the closed
subscheme of X attached to div(s) (Subsection 2.3). By Subsection 5.5, X is Noetherian, hence so is
Y [Liu06, p. 55, Prop. 2.3.46(a)]. Consider an irreducible component Y ′ of Y . Since f |Y is finite, it is
proper [GoW10, p. 344, Example 12.56(3)], hence closed. By (a), f is flat on Y . Hence, by [Liu06, p. 136,
Lemma 4.3.7], f(Y ′) is dense in Spec(R), so f(Y ′) = Spec(R). By [GoW10, p. 325, Prop. 12.11(1)], the
closed immersion Y ′ → Y is finite. Composing it with f |Y , we conclude that f |Y ′ is a finite morphism
[GoW10, p. 325, Prop. 12.11(2)].

7.9 Divisors of sections in open sets. Let k be an integral positive multiple of k0 and consider

elements s1, . . . , sl in Ker(ρ
(k)

X̄,Z
), that is elements of Γ(X̄,OX̄(k)) that vanish on Z. Let s

(k)
0 be the

section introduced in Proposition 7.6. We set s = (s
(k)
0 , s1, . . . , sl) and

(5) Γ(k)
s = {s(k)

0 +

l∑
i=1

aisi | a1, . . . , al ∈ R}.
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Then, Γ
(k)
s ⊆ Γ(X̄,OX̄(k), α(k)), hence Lemma 7.8 holds for every s ∈ Γ

(k)
s .

For each p ∈ T and every algebraic extension K ′ of K let Ω̂
[dk]
p,K′ be the set of Cartier divisors D

on XK̂pK′
that are effective of degree dk = deg(OX̄K (k)), étale, totally split in FL̂pK

′ in the sense of

Subsection 3.2 (where F is the function field of XK introduced in Subsection 5.1), whose irreducible
L̂pK

′-components are in Ωp(L̂pK
′). We also set

(6) Γ
(k)
s,p,K′ to be the set of all s ∈ Γ(X̄K̂pK′

,OX̄K̂pK′
(k)) of the form s = s

(k)
0 +

∑l
i=1 aisi with a1, . . . , al ∈

K̂pK
′ such that div(s) ∈ Ω̂

[dk]
p,K′ .

By Lemma 7.5(a), Ω̂
[dk]
p,K′ is p-open in Ud(K̂pK

′). Hence, an application of Lemma 3.4 to the Galois

extension L̂pK
′/K̂pK

′, with p ∈ T , yields the following result:

Lemma 7.10: Let k0 be the integer introduced in Proposition 7.6, let k be an integral positive multiple

of k0, and let s
(k)
0 be an element of Γ(X̄,OX̄(k)) that Proposition 7.6 gives. In addition let s1, . . . , sl be

elements of Ker(ρ
(k)

X̄,Z
) and set s = (s

(k)
0 , s1, . . . , sl). Then, there exists a positive real number γ such that

if K ′ is a separable algebraic extension of K, then the following holds: If a1, . . . , al ∈ K ′ satisfy |aσi |p < γ

for all 1 ≤ i ≤ l, σ ∈ Gal(K), and p ∈ T , then s
(k)
0 +

∑l
i=1 aisi ∈ Γ

(k)
s,p,K′ for each p ∈ T .

8. A Stabilizing Element

Let K, F , R, X, X̄, and Z be as in Subsections 4.1, 5.1, 5.2, 5.5, Lemma 5.6, and Subsection 5.7,
respectively. In particular F is a finitely generated regular extension of K of transcendence degree 1.
Thus, F has a transcendental element t over K such that F/K(t) is a finite separable extension. Let F̂
be the Galois closure of F/K(t). We say that t symmetrically stabilizes F/K if Gal(F̂ K̃/K̃(t)) is
isomorphic to the symmetric group of rank [F : K(t)]. In this case Gal(F̂ K̃/K̃(t)) ∼= Gal(F̂ /K(t)) [FrJ08,
p. 391, Lemma 18.9.2], hence F̂ /K is a regular extension. The existence of symmetrically stabilizing
elements is proved in [GeJ89] in the case where F/K is conservative (in particular, if K is perfect), and
in [Neu98] in the general case. In [GeJ02, Thm. 16.2] we prove that t can be chosen as a quotient of linear
combinations of a basis of the linear space L(D) (introduced just before Lemma 3.3) attached to a certain
very ample divisor D of F/K. In this section and in the three following ones we refine that construction
and choose the coefficient of the first element of the basis to be 1, keeping the other coefficients in given
non-empty T -open subsets of R, where T is a finite subset of V that contains S such that V r T ⊆ PK,fin.
Here we call a subset U of R T -open if U is the union of basic T -open sets. The latter are intersections
of p-open discs of K, where p ranges over all elements of T .

Our construction depends on the main result of [GJR17] that we now start to explain.

8.1 Matrices. Let f be the universal field extension of K chosen in Subsection 4.1. For each pair
(i, j) of positive integers we consider the affine variety Mij over K such that the set Mij(f) consists of

all i × j matrices with entries in f. Thus, Mij is naturally isomorphic to the affine space AijK . If i ≤ j,
we write M∗ij for the non-empty Zariski-open subset of Mij consisting of all matrices in Mij of rank i, i.e.
with linearly independent rows. We fix a positive integer l for this section, let

M(l) = M∗2,3 ×M∗3,4 × · · · ×M∗l,l+1,

and define a morphism µ(l): M(l) →M2,l+1 by multiplication:

µ(l)(A2, A3, . . . , Al) = A2A3 · · ·Al ,

and observe that actually µ(l) maps M(l)(K) onto M∗2,l+1(K) [GeJ02, §3]. For each i ≥ 2, we define

a map ψi: M∗i,i+1 → Pi mapping each A ∈ M∗i,i+1(f) onto the unique point (y0: · · · :yi) of Pi(f) that

satisfies A

 y0
...
yi

 =

 0
...
0

. Kramer’s rule implies that ψi is a morphism. Let P(l) = P2 × · · · × Pl and

27



ψ(l) = ψ2 × · · · × ψl: M(l) → P(l). Then ψ(l) is a morphism that maps M(l)(K) onto P(l)(K) [GeJ02, §3].
Both maps from M(l) appear in the following row:

(1) P(l) M(l)ψ(l)

oo µ(l)

// M∗2,l+1 .

8.2 F. K. Schmidt’s derivatives. Let ∆ = Proj(K[s0, s1, . . . , sl]) be an absolutely integral pro-
jective curve in PlK with function field F , where K[s0, s1, . . . , sl] is a graded domain over K with

K[s0, s1, . . . , sl]1 =
∑l
i=0Ksi. We set ∆̃ = ∆K̃ = Proj(K̃[s0, s1, . . . , sl]).

Over each point p ∈ ∆̃(K̃) there lie only finitely many prime divisors P1, . . . , Pe of FK̃/K̃ (alter-
natively, finitely many points of the normalization of ∆̃), with e ≥ 1. For each 1 ≤ i ≤ e let mi be the
maximal ideal of the discrete valuation ring Oi of FK̃ that corresponds to Pi and let πi be a generator of
mi. Then, O∆̃,p ⊆ Oi and mi∩O∆̃,p = m∆̃,p. We identify Oi/mi with K̃. If an element f of FK̃ belongs

to Oi, we denote its residue modulo mi in K̃ by f(Pi), otherwise we set f(Pi) =∞. In the former case,

one may express f as a formal power series f =
∑∞
k=0

Dkf
Dπki

(Pi)π
k
i , with coefficients in K̃, where Dkf

Dπki
is

an element of Oi called the F. K. Schmidt derivative of degree k of f with respect to Pi [GJR17,
Section 4].

8.3 Characteristic-0 like curves. For each 1 ≤ i ≤ e there exists ui ∈ K̃(s0, . . . , sl) such that for
each 0 ≤ j ≤ l we have uisj ∈ Oi and there is 0 ≤ j′ ≤ l such that uisj′ /∈ mi. Then, we write s(Pi) for
the point

p = (uis)(Pi) = ((uis0)(Pi):(uis1)(Pi): · · · :(uisl)(Pi))

of ∆̃(K̃) and note that p does not depend on ui. However, for each k ≥ 1, the expression Dk(uis)

Dπki
(Pi) may

depend on ui and on πi. Nevertheless, we denote it by s[k](Pi) and make sure that each of the objects
that depend on this symbol does not depend on ui nor on πi.

For example, by [GJR17, Lemma 4.2], the condition

(2) rank(p s[1](Pi)) = 2

(where both p and s[1](Pi) are considered here as columns of height l + 1 and (p s[1](Pi)) is the cor-
responding (l + 1) × 2 matrix) is independent of ui and πi. By [GJR17, Lemma 5.1], Condition (2)
is equivalent to the condition that s[1](Pi) is not a column of zeros. Thus, the latter condition is also
independent of ui and πi. By [GJR17, Lemma 5.2], p is a simple point of ∆̃ if and only if FK̃/K̃ has
a unique prime divisor P over p and s[1](P ) is not a column of zeros. In this case we write s[1](p) for
s[1](P ). Then, the linear form pY0 + s[1](p)Y1 is a parametric presentation of the tangent T∆̃,p to ∆̃ at
p.

We say that p is an inflection point of ∆̃ if p is simple and

rank(p s[1](p) s[2](p)) = 2.

Again, by [GJR17, Lemma 4.2], this condition is independent of the parameters. By [GeJ89, Lemma 3.1
and the paragraph before Lemma 1.1], our definition of an inflection point coincides with the traditional
one if ∆̃ is a plane curve [Har77, p. 148].

If char(K) = 0, then ∆̃ has only finitely many double tangents (i.e. tangents at two simple points
or more) and only finitely many inflection points. Moreover, if ∆̃ is not a line, it is non-strange. This
means that there exists no point in Pl(K̃) through which infinitely many tangents to ∆̃ at simple points
go [GJR17, first paragraph of Section 11]. In positive characteristic one or more of these properties may
fail for some curves. So, we say for arbitrary characteristic that ∆ is a characteristic-0-like curve if
∆̃ has only finitely many double tangents, finitely many inflection points, and it is non-strange.

The point p is a cusp of ∆̃ if p is singular and FK̃/K̃ has a unique prime divisor that lies over p.
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8.4 Multiplicities. Consider a point p ∈ ∆̃(K̃) and let m = m∆̃,p be the maximal ideal of the local

ring O∆̃,p. Let P1, . . . , Pe be the distinct prime divisors of FK̃/K̃ that lie over p. For each 1 ≤ i ≤ e we

define the multiplicity of ∆̃ at Pi as

mult(∆̃, Pi) = min
a∈m

ordPi(a),

where ordPi is the normalized discrete valuation of FK̃/K̃ attached to Pi. We also note that dimK̃ mk/mk+1

becomes a constant positive integer for all large positive integers k [GJR17, Remark 6.2]. We call that
integer the multiplicity of ∆̃ at p and denote it by mult(∆̃,p). Thus,

mult(∆̃,p) = dimK̃ mk/mk+1

for each large k. By [GJR17, Lemma 6.4],

mult(∆̃,p) =

e∑
i=1

mult(∆̃, Pi).

In particular, if p is normal (i.e., in this case, simple), FK̃/K̃ has a unique prime divisor P over p and

mult(∆̃,p) = mult(∆̃, P ) = min
a∈m

ordP (a) = 1.

If FK̃/K̃ has a unique prime divisor P that lies over p and mult(∆̃, P ) > 1, then O∆̃,p is a proper

subring of the valuation ring of FK̃/K̃ at P , so O∆̃,p is not a discrete valuation ring of FK̃/K̃. Hence,

p is a singular point of ∆̃, so p is a cusp of ∆̃.

Definition 8.5: Let q be a positive integer. A q-curve over K̃ is an integral projective curve ∆̃ over K̃
which
(3a) is characteristic-0-like,
(3b) has a cusp of multiplicity q, and
(3c) maxq∈∆̃(K̃) mult(∆̃,q) = q.

We may now quote [GJR17, Thm. 16.1] for our global field K:

Proposition 8.6: Let ∆ = Proj(K[s0, . . . , sl]) be an absolutely integral projective curve in PlK , where

K[s0, . . . , sl] is a graded ring over K with K[s0, . . . , sl]1 =
∑l
i=0Ksi. Let F be the function field of ∆

and suppose that ∆̃ = ∆K̃ is a q-curve for some prime number q.
Then, there exists a non-empty Zariski-open subset Ui of Pi

K̃
, i = 2, 3, . . . , l, such that with U =

U2 × U3 × · · · × Ul ⊆ P(l), for each A ∈ (ψ(l))−1(U(K)) and with µ(l)(A) =

(
a
b

)
, the element t =∑l

i=0 aisi/
∑l
i=0 bisi [F : K(t)]-symmetrically stabilizes F/K.

Remark 8.7: Theorem 16.1 of [GJR17] assumes that s0, s1, . . . , sl are elements of F . We may achieve

this condition by choosing a non-zero element s′ of
∑l
i=0Ksi. Then, ( s0s′ : · · · : sls′ ) is a generic point of

∆ with coordinates in F and
∑l
i=0 ai

si
s′ /
∑l
i=0 bi

si
s′ = t.

9. Homogeneous Generic Point

In the next section we construct a birational morphism of X̄K onto a q-curve Y over K, with a large
prime number q, on which Proposition 8.6 will be applied. The aim of this section is to construct the
homogeneous coordinates of the generic point of Y .

Recall from Lemma 5.6 that X̄ = Proj(R[t]), where t = (t0, . . . , tr), R[t] is a graded ring with
R[t]0 = R, R[t]1 =

∑r
i=0Rti, and t0, . . . , tr 6= 0.
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Lemma 9.1: Let k be a positive integer and s0, . . . , sr′ non-zero generators of the K-vector-space K[t]k.
Then, for every 0 ≤ i ≤ r and 0 ≤ i′ ≤ r′ we have

(1) K
( t0
ti
, . . . ,

tr
ti

)
= K

( s0

si′
, . . . ,

sr′

si′

)
.

Proof: The left hand side of (1) is the function field F of X and of X̄. For each 0 ≤ i′ ≤ r′ there exists
a homogeneous polynomial fi′ ∈ K[T0, . . . , Tr] of degree k with si′ = fi′(t). Hence, for each 0 ≤ j′ ≤ r′

we have

(2)
sj′

si′
=
fj′(t0, . . . , tr)

tk0

/fi′(t0, . . . , tr)
tk0

= fj′
(
1,
t1
t0
, . . . ,

tr
t0

)/
fi′
(
1,
t1
t0
, . . . ,

tr
t0

)
∈ F.

Conversely, we denote the right hand side of (1) by F ′. For each 0 ≤ i ≤ r there exist a0, . . . , ar′

and b0, . . . , br′ in K such that tit
k−1
0 = a0s0 + · · ·+ ar′sr′ and tk0 = b0s0 + · · ·+ br′sr′ . Then,

(3)
ti
t0

=
tit
k−1
0

tk0
=
a0s0 + · · ·+ ar′sr′

si′

/b0s0 + · · ·+ br′sr′

si′
∈ F ′.

It follows from (2) and (3) that F = F ′, as claimed.

The following result is [GJR17, Prop. 19.1]:

Proposition 9.2: Let F be an algebraic function field of one variable over K̃ and consider an ele-
ment t ∈ F×. Let s = (s0:s1: · · · :sm) be a generic point of an integral projective curve ∆ in Pm

K̃
with

s0, s1, . . . , sm ∈ F . Let x′ = (x′0:x′1: · · · :x′n′) be a generic point of an integral projective curve Λ in

Pn′
K̃

with x′0, x
′
1, . . . , x

′
n′ ∈ F . Suppose ∆ is characteristic-0-like. In addition suppose that for each

(j, k) ∈ {0, . . . ,m} × {0, . . . , n′} there exists ajk ∈ K̃ such that tsj =
∑n′

k=0 ajkx
′
k. Then, Λ is also

characteristic-0-like curve.

Setup 9.3: Let R be the principal ideal domain with quotient field K introduced in Subsection 5.2, X
the affine scheme over R introduced in Subsection 5.5, and X̄ the projective scheme over R introduced
in Lemma 5.6. Subsection 6.1 introduces a separable point B of X that we consider as a homogeneous
prime ideal of R[t] and a point b = (1:b1: · · · :br) of X(Ksep) that lies over B with b1, . . . , br integral over
R. As in Subsection 6.2, we set E = K(b) = K(B) and let RE = OE,V r T be the integral closure of R
in E.

As in Subsection 6.2, let w1, . . . , we be an R-basis of RE (hence, also a K-basis of E) and let
σ1, . . . , σe be elements of Aut(K̃(t)/K(t)) whose restrictions to E are the distinct K-embeddings of E
into K̃ and σ1 is the identity map of E. The choices made in that subsection imply that det(w

σj
i )i,j=1,...,e

is invertible in the integral closure R̃ of R in K̃ and the ring RE
[
t
t0

]
is integrally closed. Finally,

(4a) we consider the simple points B̃j =
∑r
i=1 K̃[t](ti − b

σj
i t0), j = 1, . . . , e, of XK̃ that lie over B and

the corresponding points bj = (1:b
σj
1 : · · · :bσjr ) = bσj of X(K̃) (so, in the notation of Subsection

6.10, ZB(K̃) = {b1, . . . ,be}). Note that since E = K(b) is a separable extension of K of degree e,
the points b1, . . . ,be form a complete system of conjugate separable points of X̄(K̃) that lie over
B and none of the ideals B̃1, . . . , B̃e of K̃[t] contains another one,

(4b) we consider the homogeneous ideals B′ =
∑r
i=1RE [t](ti − bit0) = RE [t] ∩ B̃1 (Lemma 6.4) and

B′′ =
⋂e
j=2RE [t] ∩ B̃j of RE [t] introduced in Notation 6.3 that satisfy V+(B′) ∩ V+(B′′) = ∅

(Lemma 6.8),
(4c) we consider the positive integer k0 mentioned in Proposition 7.6,
(4d) we recall that Z = Proj(R[t]/I), where I is a non-zero homogeneous ideal of R[t] (Subsection 5.8)

such that I 6⊆ B (Subsection 6.10), choose a non-zero homogeneous element sI of I rB, and set
kI = degK[t](sI), and

(4e) for each large multiple k of k0, we consider the isomorphism α(k)(Z): Γ(Z,OZ)→ Γ(Z,OZ(k)) that
appears in Proposition 7.6 and the homomorphism

ρ
(k)

X̄,Z
: Γ(X̄,OX̄(k))→ Γ(Z,OZ(k))
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that appears in the commutative diagram (2) in Subsection 7.2.

Lemma 9.4: Under Setup 9.3, let a1, . . . , ar be elements of R and set

s̃ =

e∏
j=1

(a1(t1 − b
σj
1 t0) + · · ·+ ar(tr − bσjr t0)).

Then, s̃ ∈ R[t].

Proof: We consider the independent variables T0, . . . , Tr and the element

(5) S̃ =

e∏
j=1

(a1(T1 − b
σj
1 T0) + · · ·+ ar(Tr − bσjr T0))

of K̃(T), where T = (T0, . . . , Tr). Using the distributive law we may rewrite (5) as

(6) S̃ =
m∑
i=1

hi(b
σ1 , . . . , bσe)µi(T),

where h1, . . . , hm are polynomials with coefficients in R, b = (b1, . . . , br), and µ1(T), . . . , µm(T) are
distinct monomials in T0, . . . , Tr of degree e.

We extend σ1, . . . , σe to elements of G = Aut(K̃(t,T)/K(t,T)) with the same names. Since
b1, . . . , br ∈ E (Setup 9.3), the choice of σ1, . . . , σe, implies for each τ ∈ G that the e-tuple (bσ1τ , . . . , bσeτ )
is a permutation of (bσ1 , . . . , bσe). Therefore, applying τ on (5) gives S̃τ = S̃. On the other hand,
applying τ on (6) gives S̃τ =

∑m
i=1 hi(b

σ1 , . . . , bσe)τµi(T). Hence,
∑m
i=1 hi(b

σ1 , . . . , bσe)µi(T) = S̃ =

S̃τ =
∑m
i=1 hi(b

σ1 , . . . , bσe)τµi(T). Since µ1(T), . . . , µm(T) are linearly independent over K̃, we get
hi(b

σ1 , . . . , bσe)τ = hi(b
σ1 , . . . , bσe) for i = 1, . . . ,m. Since b1, . . . , br ∈ Ksep (Setup 9.3), we get that

hi(b
σ1 , . . . , bσe) ∈ K for i = 1, . . . ,m. Since hi(b

σ1 , . . . , bσe) are integral over R (because b1, . . . , br
are integral over R, as mentioned in Setup 9.3) and R is integrally closed (Subsection 5.2), we have
hi(b

σ1 , . . . , bσe) ∈ R for i = 1, . . . ,m.
Finally, we observe that the specialization T→ t, extends to a K̃-homomorphism ϕ: K̃[T]→ K̃[t].

It follows from (5) and (6) that s̃ = ϕ(S̃) =
∑m
i=1 hi(b

σ1 , . . . , bσe)µi(t) ∈ R[t], as claimed.

Lemma 9.5: Under Setup 9.3, let q be a positive integer and let k be a large multiple of k0. Then,

R[t]k = Γ(X̄,OX̄(k)) has elements s
(k)
0 , s

(k)
1 , . . . , s

(k)
l(k) with l(k) ≥ e such that the following holds:

(a) s
(k)
0 |Z = ρ

(k)

X̄,Z
(s

(k)
0 ) = α(k)(Z)(1) 6= 0. Moreover, s

(k)
0 vanishes at no point of Z(K̃) and div(s

(k)
0,p) ∈

Ω̂
[dk]
p (notation of Proposition 7.6) for each p ∈ T .

(b) s
(k)
0 /∈ B̃j for j = 1, . . . , e.

(c) s
(k)
i |Z = 0, so s

(k)
i ∈ I, hence s

(k)
i ∈ Ij for i = 1, . . . , l(k) and j = 1, . . . , d(Z) (in the notation of

Subsection 5.8).

(d) s
(k)
i ≡ wσji s

(k)
0 mod B̃qj , in particular s

(k)
i (B̃j) = w

σj
i s

(k)
0 (B̃j), for i, j = 1, . . . , e.

(e) s
(k)
i ∈ B̃qj for i = e+ 1, . . . , l(k) and j = 1, . . . , e.

(f) s
(k)
e+1, . . . , s

(k)
l(k) form an R-basis for the free R-module L(k) = Ker(ρ

(k)

X̄,Z∪ZqB
) = R[t]k ∩ I ∩Bq, hence

also a K-basis for the vector space L
(k)
K = Ker(ρ

(k)

X̄K ,ZK∪ZqB,K
) = K[t]k ∩KI ∩KBq over K.

(g) The function field of Proj(K[s
(k)
0 , . . . , s

(k)
l(k)]) is F .

(h) Proj(K̃[s
(k)
0 , . . . , s

(k)
l(k)]) is a characteristic-0-like integral projective curve in Pl(k)

K̃
.

Proof: We break up the proof into several parts.
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Part A: Choosing s
(k)
0 ∈ Γ(X̄,OX̄(k)). Let k be a large multiple of k0. Let ZB be the closed reduced

subscheme Proj(R[t]/B) of X̄ (introduced in Subsection 6.10). Since X and Z are disjoint (Subsection
5.7) and ZB is a closed subscheme of X̄ which is contained in X (Subsection 6.10), restriction of sections
gives rise (by Lemma 1.5) to an epimorphism

(7) Γ(X̄,OX̄(k)) −→ Γ(Z,OZ(k))× Γ(ZB ,OZB (k)).

Recall that we are identifying Γ(X̄,OX̄(k)), Γ(Z,OZ(k)), and Γ(ZB ,OZB (k)) with R[t]k,
R[t]k/(R[t]k ∩ I), and R[t]k/(R[t]k ∩ B), respectively (Remark 1.4). The restriction maps of (7) are
replaced under these identifications by the quotient maps. Thus, in these terms, the epimorphism (7) is
given by

s 7→ (s+ (R[t]k ∩ I), s+ (R[t]k ∩B)).

By Proposition 7.6, there exists an isomorphism of sheaves α(k): OZ → OZ(k) of OZ-modules such
that Γ(Z,OZ(k)) = α(k)(Z)(1) · Γ(Z,OZ), where 1 is the unit element of the ring Γ(Z,OZ). Moreover,

there exists s
(k)
0 ∈ Γ(X̄,OX̄(k)) = R[t]k with

(8) s
(k)
0 |Z = ρ

(k)

X̄,Z
(s

(k)
0 ) = α(k)(Z)(1) 6= 0. Also, the germ α(k)(Z)(1)P of α(k)(Z)(1) at each point P ∈ Z

is non-zero, so s
(k)
0 vanishes at no point of Z(K̃),

as stated in (a). Moreover,

(9) div(s
(k)
0,p) ∈ Ω̂

[dk]
p for each p ∈ T , where dk = deg(OX̄K (k)).

We choose by (7) a section sIB ∈ Γ(X̄,OX̄(k)) = R[t]k that belongs to I but not to B. By Lemma

7.10, we may replace s
(k)
0 , if necessary, by s

(k)
0 + asIB with a ∈ R which is sufficiently T -close to 0 to

assume that, in addition to (8) and (9),

(10) s
(k)
0 /∈ B. Hence, by Lemma 6.5, s

(k)
0 /∈ B̃j for j = 1, . . . , e,

so (b) holds.

Part B: Choosing s′1, . . . , s
′
e ∈ Γ(X̄,OX̄(k)). We use Setup 9.3(4b) to set

ZqB′ = Proj(RE [t]/(B′)q) and ZqB′′ = Proj(RE [t]/(B′′)q).

Both are disjoint closed subschemes of X̄RE which are contained in XRE , so are disjoint from the closed
subscheme ZRE of X̄RE . Hence, by Lemma 1.5, restriction of sections gives rise to an epimorphism

(11) Γ(X̄RE ,OX̄RE (k))→ Γ(ZRE ,OZRE (k))× Γ(ZqB′ ,OZqB′ (k))× Γ(ZqB′′ ,OZqB′′ (k)).

Thus, there exists s′1 ∈ Γ(X̄RE ,OX̄RE (k)) = RE [t]k such that s′1|ZRE = 0, s′1|ZqB′ = s
(k)
0 |ZqB′ , and

s′1|ZqB′′ = 0. Then, for each large multiple k of k0, we have by Remark 1.4 that

(12) s′1 ∈ REI, s′1 − s
(k)
0 ∈ (B′)q, and s′1 ∈ (B′′)q.

This implies that s′1 /∈ B̃1 (otherwise it would follow from s′1 − s
(k)
0 ∈ (B′)q ⊆ B′ ⊆ B̃1 that s

(k)
0 ∈

R[t] ∩ B̃1 = B (Lemma 6.5), which contradicts (10)) and s′1 ∈ B̃
q
j for j = 2, . . . , e.

Next we write s′1 = f ′1(t), where f ′1 ∈ RE [T0, . . . , Tr]k and recall that R̃ = OK̃,V r T is the integral

closure of R in K̃ (Subsection 4.5). We set s′j = (s′1)σj = (f ′1)σj (t) ∈ R̃[t]k for j = 2, . . . , e. Then, by the
preceding paragraph,

(13) s′j |ZR̃ = 0, s′j − s
(k)
0 ∈ B̃qj , and s′j′ ∈ B̃

q
j for j′ 6= j. In particular, by (10), s′j(B̃j) = s

(k)
0 (B̃j) 6= 0 for

j = 1, . . . , e and s′j(B̃j′) = 0 for j′ 6= j.
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Part C: Choosing s
(k)
1 , . . . , s

(k)
e . For each 1 ≤ i ≤ e let

(14) s
(k)
i =

∑e
j=1 w

σj
i s
′
j =

∑e
j=1(wif

′
1)σj (t).

Then, each of the coefficients of the monomials in t0, . . . , tr on the right hand side of (14) is an element
of K which is integral over R. Since the latter ring is integrally closed (Subsection 5.2), each of those

coefficients belong to R. Hence, s
(k)
i ∈ R[t]. Moreover, since f ′1 ∈ RE [T0, . . . , Tr]k, we have s

(k)
i ∈ R[t]k.

By (13),

(15) s
(k)
i |Z = 0 for i = 1, . . . , e,

as stated in (c). Again, by (13),

(16) s
(k)
i =

∑e
j′=1 w

σj′
i s′j′ ≡ w

σj
i s
′
j ≡ w

σj
i s

(k)
0 mod B̃qj for i, j = 1, . . . , e,

as stated in (d).

Part D: The free modules L(k) and the linear spaces L
(k)
K . We choose a non-zero homogeneous element

sB of B and let kB = degK[t](sB) (Section 1).
(17) We choose a large multiple k1 of k0 such that k1 ≥ kI + qkB + 1, where kI is as in (4d).

For each large integer k let

(18) L(k) = Ker(ρ
(k)

X̄,Z∪ZqB
) = R[t]k ∩ I ∩Bq (Remark 1.4).

Since Γ(X̄,OX̄(k)) = R[t]k is a finitely generated R-module and R is Noetherian, L(k) is a finitely
generated R-module. Moreover, since both R and L(k) are submodules of the field K(t), L(k) is torsion-
free as an R-module. In addition, R is a principal ideal domain (Setup 9.3). So, L(k) is a finitely generated
free R-module [Lan93, p. 148, Thm. 7.1]. It satisfies the following rule:
(19) If s ∈ L(k) and s′ ∈ R[t]k′ , then ss′ ∈ L(k+k′).

Similarly we consider the vector space

(20) L
(k)
K = Ker(ρ

(k)

X̄K ,ZK∪ZqB,K
) = K[t]k ∩KI ∩ (KB)q

over K and observe that Rule (19) holds also for these vector spaces.

Let s
[k1]
0 , . . . , s

[k1]
m be an R-basis of L(k1) and consider the scheme Λ = Proj(R[s

[k1]
0 , . . . , s

[k1]
m ]). By

(19) and (18),

(21) sIs
q
BK[t]k1−kI−qkB ⊆ K[t]k1

∩KI ∩KBq = L
(k1)
K , where sI is introduced in (4d).

Since k1 − kI − qkB ≥ 1 (by (17)), Lemma 9.1 implies that the quotients of the elements of
K[t]k1−kI−qkB by a chosen non-zero element of this K-vector-space generate the field F over K. Since
sIs

q
B 6= 0, Relation (21) implies that the function field of ΛK is F .

Part E: Characteristic-0-like curve. We follow [GJR17, Remark 18.1] and let s
[3k1]
0 , . . . , s

[3k1]
m∗ be all of

the elements of the form s
[k1]
h s

[k1]
i s

[k1]
j with 0 ≤ h, i, j ≤ m. By (19), s

[3k1]
0 , . . . , s

[3k1]
m∗ ∈ L(3k1) ⊆ R[t]3k1

.

Thus, R[s
[3k1]
0 , . . . , s

[3k1]
m∗ ] is a graded ring over R with R[s

[3k1]
0 , . . . , s

[3k1]
m∗ ]1 =

∑m∗

i=0Rs
[3k1]
i and Λ∗ =

Proj(R[s
[3k1]
0 , . . . , s

[3k1]
m∗ ]) is the image of Λ under the 3-fold Veronese embedding. In particular, the func-

tion field of Λ∗K is F . Also, Λ∗
K̃

= Proj(K̃[s
[3k1]
0 , . . . , s

[3k1]
m∗ ]) is the image of ΛK̃ = Proj(K̃[s

[k1]
0 , . . . , s

[k1]
m ])

under the 3-fold Veronese embedding. Therefore, by [GJR17, Prop. 18.6],
(22) the curve Λ∗

K̃
is characteristic-0-like.

Let k ≥ 3k1 be a large multiple of k0. For each 0 ≤ i ≤ m∗ we set s∗i = tk−3k1
0 s

[3k1]
i ∈ L(k) (by

(19)). In addition, we choose s
(k)
e+1, . . . , s

(k)
l(k) in R[t]k that form an R-basis of L(k) (as stated in (f)). In

particular,

(23) s
(k)
e+1, . . . , s

(k)
l(k) vanish on Z.

Together with (15), Statement (23) verifies (c). Also, R[s
(k)
0 , . . . , s

(k)
l(k)] is a graded ring over R with

R[s
(k)
0 , . . . , s

(k)]
l(k)]1 =

∑l(k)
i=0 Rs

(k)
i . Since s

(k)
e+1, . . . , s

(k)
l(k) generate L

(k)
K over K, we have s∗0, . . . , s

∗
m∗ ∈∑l(k)

i=0 Ks
(k)
i . Hence,

(24)
s
[3k1]
i

t
3k1
0

=
s∗i
tk0
∈
∑l(k)
j=0K

s
(k)
j

tk0
for i = 0, . . . ,m∗.
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Since the function field of Λ∗K is F , it follows from (24) that F is contained in the function field of

Proj(K[s
(k)
0 , . . . , s

(k)
l(k)]). The latter is contained in F . Hence, the function field of Proj(K[s

(k)
0 , . . . , s

(k)
l(k)])

is F , as stated in (g).

Now observe that
( s[3k1]

0

t
3k1
0

: · · · : s
[3k1]

m∗

t
3k1
0

)
is a generic point of Λ∗

K̃
with coordinates in F , hence in FK̃.

Also,
( s(k)

0

tk0
: · · · :

s
(k)

l(k)

tk0

)
is a generic point of Proj(K̃[s

(k)
0 , . . . , s

(k)
l(k)]) with coordinates in F , hence in FK̃.

Therefore, by (22), (24), and Proposition 9.2, Proj(K̃[s
(k)
0 , . . . , s

(k)
l(k)]) is a characteristic-0-like curve, as

(h) claims.

By the definition of L(k) in Part D, s
(k)
e+1, . . . , s

(k)
l(k) vanish on ZqB , hence they all belong to Bq and

therefore to B̃qj , j = 1, . . . , e, as claimd by (e).

Lemma 9.6: In the notation of Lemma 9.5, the following holds for each large multiple k of k0:

(a) the sections s
(k)
0 , s

(k)
1 , . . . , s

(k)
l(k) have no common zero in X̄(K̃) and

(b) the sections s
(k)
e+1, . . . , s

(k)
l(k) have no common zero in X̄(K̃)r(Z(K̃) ∪ ZB(K̃)).

Proof: By Lemma 9.5(a),(b), s
(k)
0 vanishes at no point of Z(K̃) ∪ ZB(K̃). Hence, in order to complete

the proof of the claim, it suffices to prove (b).
Since Z(K̃) ∪ ZB(K̃) is a finite subset of X̄(K̃), there exists a homogeneous polynomial h0 ∈

K[T0, . . . , Tr] that vanish on Z(K̃)∪ZB(K̃) but not on X̄(K̃). Replacing h0 by its qth power (with q as
in Lemma 9.5), we may assume that h0(t) ∈ KBq. Then, we choose r0 ∈ X̄(K̃)r(Z(K̃) ∪ ZB(K̃)) such
that h0(r0) 6= 0.

Since dim(X̄K) = 1, the polynomial h0 vanishes only at finitely many points of X̄(K̃). Let r1, . . . , rm
be the finitely many points in X(K̃)rZB(K̃) at which h0 vanishes. For each i between 1 and m we
choose a homogeneous polynomial hi ∈ K[T0, . . . , Tr] that vanishes on Z(K̃) but not at ri such that
hi(t) ∈ KBq. Then we set k2 = max(deg(h0), . . . ,deg(hm)).

We consider a positive multiple k of k0 with k ≥ k2. Given a point p ∈ X(K̃)rZB(K̃), we choose
an index 0 ≤ j ≤ r such that tj(p) 6= 0. If p = ri for some i between 1 and m, then hi(p) 6= 0 (by the
choice of hi). If p 6= r1, . . . , rm, then, h0(p) 6= 0 (by the defining property of r1, . . . , rm). Thus, in any

case, there exists 0 ≤ i ≤ m with hi(p) 6= 0. It follows that h(T0, . . . , Tr) = T
k−deg(hi)
j hi(T0, . . . , Tr) is

a homogeneous polynomial of degree k with coefficients in K that vanishes on Z(K̃), hence on ZK , but

not at p. Moreover, h(t) ∈ KBq. In particular, h(t) ∈ Ker(ρ
(k)

X̄K ,ZK∪ZqB,K
). By Lemma 9.5(f), the set

{s(k)
e+1, . . . , s

(k)
l(k)} is a K-basis of Ker(ρ

(k)

X̄K ,ZK∪ZqB,K
). Hence, h(t) is a linear combination of s

(k)
e+1, · · · , s

(k)
l(k)

with coefficients in K, so h(p) is a linear combination of s
(k)
e+1(p), . . . , s

(k)
l(k)(p) with coefficients in K.

Therefore, at least one of the elements s
(k)
e+1(p), . . . , s

(k)
l(k)(p) of K̃ is non-zero. This proves (b) and

completes the proof of the lemma.

10. The Curve Y

We construct a birational morphism of X̄K onto a projective q-curve Y over K for each given positive
integer q ≥ 2. Choosing q to be a large prime number, we then apply Proposition 8.6 to construct a
symmetrically stabilizing element for F/K with a special form.

Setup 10.1: We replace k0 (Proposition 7.6) by a large multiple of itself to assume that Lemmas
9.5 and 9.6 hold for each positive multiple k of k0. Under Setup 9.3, we consider a large multiple

k of k0, a positive integer q, and the elements s
(k)
0 , . . . , s

(k)
l(k) of R[t]k that Lemma 9.5 produces. In

particular, K[s
(k)
0 , . . . , s

(k)
l(k)] is a graded ring over K such that K[s

(k)
0 , . . . , s

(k)
l(k)]1 =

∑l(k)
i=0 Ks

(k)
i . Let

Y = Proj(K[s
(k)
0 , . . . , s

(k)
l(k)]) and let ϕ = ϕ(k): X̄K → Y be the rational map defined by ϕ(t) = s(k). Since

s
(k)
0 , . . . , s

(k)
l(k) have no common zero in X̄(K̃) (Lemma 9.6), ϕ is a morphism.
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Let ϕ̃ = ϕ
(k)

K̃
: X̄K̃ → YK̃ be the extension of ϕ created by changing the base field from K to K̃.

We consider the points

y0 = (1:0: · · · :0)

y1 = (1:wσ1
1 : · · · :wσ1

e :0: · · · :0)

· · ·
ye = (1:wσe1 : · · · :wσee :0: · · · :0)

of Pl(k)(K̃).

Lemma 10.2: Let Γ be an absolutely integral projective curve over a field L and let Γ0 be a non-empty
Zariski-open subset of Γ with Γ0 6= Γ. Then, Γ0 is an absolutely integral affine curve over L.

Proof: By a result of Goodman, Γ0,L̃ is affine [Goo69, p. 167, Prop. 5]. It follows from [GoW10, p. 442,
Prop. 14.51(6)] that Γ0 is also affine. (We are indebted to Ulrich Görtz for this argument.)

Alternatively, we may point out that Γ0 is not a proper scheme and use [Liu06, Exer. 7.5.5, p. 315].
Another possibility communicated to us by David Harbater is to construct an effective Cartier

divisor D on Γ whose support is ΓrΓ0 and then conclude from [Liu06, Prop. 7.5.5, p. 305] that D is
ample. Thus, for some positive integer n0, the divisor n0D is very ample. Hence, L(n0D) admits a
set of global sections that provide an embedding of Γ into some projective space PmL such that D is the
(set-theoretic) inverse image of the hyperplane at infinity. Therefore, Γ0 is the inverse image of AmL , hence
is affine, because closed immersions are finite [GoW10, p. 325, Prop. 12.11(1)].

Lemma 10.3: The morphism ϕ of Setup 10.1 maps the affine curve XK rZB,K isomorphically onto a
Zariski-open smooth affine subset Y0 of Y . Moreover,
(a) the morphism ϕ: X̄K → Y is birational,
(b) y0 ∈ Y (K) and ϕ−1(y0) = ZK ,
(c) yj ∈ Y (K̃) and ϕ̃−1(yj) = bj for j = 1, . . . , e,
(d) Y0 = Y r (ϕ(ZK) ∪ ϕ(ZB,K)

)
, and

(e) Y0(K̃) = Y (K̃)r{y0,y1, . . . ,ye).

Proof: Recall that XK = Spec(K[x1, . . . , xn]) (Subsection 5.11). By Lemma 10.2, the Zariski-open
subset

XK rZB,K = X̄K r(ZK ∪ ZB,K)

of XK (with ZB,K as introduced in Subsection 6.10) is an absolutely integral affine curve over K, hence
may be written as Spec(K[x1, . . . , xn′ ]), for some n′ ≥ n and elements xn+1, . . . , xn′ of F that do not
vanish on ZB,K . The rest of the proof breaks up into several parts.

Part A: The affine subset Y0 of Y . By Subsection 5.11, X̄K is a normal curve. Hence, for each Q ∈ X̄K ,
the local ring OX̄K ,Q is a discrete valuation ring of F [Lan58, p. 151, Thm. 1]. In particular, this statement
holds for each of the points KI1, . . . ,KId(Z) of X̄K that correspond to the points Z1,K , . . . , Zd(Z),K of
ZK and which are introduced in Subsection 5.9. The statement also applies to the point KB of XK

introduced in Subsection 6.1. We choose a positive integer e′ that satisfies the following condition:
(1) ordKIi(xj′) + e′ ≥ 0 and ordKB(xj′) + e′q ≥ 0 for i = 1, . . . , d(Z) and j′ = 1, . . . , n′.

Now we set k′ = e′k0 and suppose that k ≥ k′. For each 0 ≤ i ≤ l(k) we choose (by Setup 10.1)

a homogeneous polynomial fi ∈ K[T0, . . . , Tr] of degree k such that s
(k)
i = fi(t). By Setup 10.1, the

morphism ϕ̃ = ϕ
(k)

K̃
: X̄K̃ → YK̃ is defined by

(2) ϕ̃(t) = (f0(t):f1(t): · · · :fl(k)(t)).

By Lemma 9.5(a), s
(k)
0 does not vanish on Z, by Lemma 9.5(c), s

(k)
j |Z = 0 for j = 1, . . . , l(k).

Hence,
(3) ϕ̃(ZK̃) = {y0}, so ϕ(ZK) = {y0} and ϕ̃(Z(K̃)) = {y0}, in particular y0 ∈ Y (K).

Next note in the notation of Setup 9.3 that

(4) ZB(K̃) = {b1, . . . ,be}.
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We consider j between 1 and e. By Lemma 9.5(b), s
(k)
0 (B̃j) 6= 0. Also, for i = 1, . . . , e we have

by Lemma 9.5(d) that s
(k)
i (B̃j) = w

σj
i s

(k)
0 (B̃j). By Lemma 9.5(e), s

(k)
i (B̃j) = 0 for i = e + 1, . . . , l(k).

Hence,

yj = (1 : w
σj
1 : · · · : wσje : 0 : · · · : 0)(5)

= (s
(k)
0 (B̃j) : w

σj
1 s

(k)
0 (B̃j) : · · · : wσje s

(k)
0 (B̃j) : 0 : · · · : 0)

= (s
(k)
0 (B̃j) : s

(k)
1 (B̃j) : · · · : s(k)

e (B̃j) : s
(k)
e+1(B̃j) : · · · : s(k)

l(k)(B̃j))

= (f0(bj) : f1(bj) : · · · : fe(bj) : fe+1(bj) : · · · : fl(k)(bj)) = ϕ̃(bj) ∈ Y (K̃).

It follows from (3), (4), and (5) that
(6) ϕ̃(ZB(K̃)) = {y1, . . . ,ye} and ϕ̃(Z(K̃) ∪ ZB(K̃)) = {y0,y1, . . . ,ye}.

By Setup 9.3, b1, . . . ,be form a complete system of K-conjugate separable points of X̄(K̃) that
lie over KB, so they are all of the points of X̄(K̃) that lie over KB. Similarly, y1, . . . ,ye form a
complete system of K-conjugate separable points of Y (K̃) that lie over ϕ(KB). By [Lan58, p. 74,
the equivalence of C6 and C7], Y has a Zariski-closed subset Y1,1 with Y1,1(K̃) = {y1, . . . ,ye}. Then,
Y1 = {y0} ∪ Y1,1 is a Zariski-closed subset of Y , Y0 = Y rY1 is a non-empty Zariski-open subset of Y

and Y0(K̃) = Y (K̃)r{y0,y1, . . . ,ye}.

Part B: Inclusion of coordinate rings. We consider a point p of X(K̃)rZB(K̃). For each positive
multiple k of k0, Lemma 9.6(b) gives e + 1 ≤ i ≤ l(k) such that fi(p) 6= 0. Hence, by (2) and the
definition of the yj ’s,

ϕ̃(p) = (f0(p):f1(p): · · · :fl(k)(p)) 6= yj , j = 0, 1, . . . , e,

so ϕ̃(p) ∈ Y0(K̃). Thus,
(7) ϕ̃(X(K̃)rZB(K̃)) ⊆ Y0(K̃).

By (3), ϕ̃(Z(K̃)) = {y0} 6⊆ Y0(K̃), hence the morphism ϕ̃: X̄K̃ → YK̃ of integral projective curves

over K̃ is non-constant. Since morphisms of projective curves are closed [Mum88, p. 77, Thm. I.9.1],
ϕ̃(X̄K̃) = YK̃ . It follows from (7) and (6) that ϕ̃(X(K̃)rZB(K̃)) = Y0(K̃), hence also
(8) ϕ(XK rZB,K) = Y0. It follows from (6) that ϕ−1(Y0) = XK rZB,K .

By Lemma 10.2, Y0 is an affine curve over K. Hence, there is an inclusion

(9) K[Y0] ⊆ K[XK rZB,K ]

of the coordinate rings of the affine schemes Y0 and XK rZB,K [Liu06, p. 48, Prop. 2.3.25].

Part C: Equality of coordinate rings. We choose non-zero homogeneous elements a0 ∈ KI and b0 ∈
KB of K[t]. Then, both Zariski-closed subsets V+(a0K[t]) and V+(b0K[t]) of X̄K are of dimension 0.
Therefore, (XK rZB,K)∩ (V+(a0K[t])∪V+(b0K[t])) is a finite set, say {P1, . . . , Pm}. For each i between
1 and m we choose non-zero homogeneous elements ai ∈ KI rPi and bi ∈ KBrPi of K[t]. Note that
Pi /∈ ZK , because XK and ZK are disjoint.

Now we assume, in addition to the conditions we have put so far on k, that

(10) k ≥ k′ + max
0≤i≤m

(degK[t](ai) + q degK[t](bi)),

where k′ = e′k0 (Part A).
We consider P ∈ XK rZB,K . If P /∈ V+(a0K[t]) ∪ V+(b0K[t]), we set aP = a0 and bP = b0.

Otherwise P = Pi for some i between 1 and m and we set aP = ai and bP = bi. In each case
(11) aP ∈ (KI rP ) ∩ {a0, . . . , am} and bP ∈ (KBrP ) ∩ {b0, . . . , bm}.

By Lemma 9.6(b), there exists i′ between e + 1 and l(k0) such that s
(k0)
i′ /∈ P . By Lemma 9.5(f),

s
(k0)
i′ ∈ K[t]k0 ∩KI ∩KBq. We set s′ = (s

(k0)
i′ )e

′
. Then,

(12) s′ ∈ K[t]k′ ∩KI ∩KBq and s′ /∈ P .
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For each 1 ≤ j ≤ n′ we consider the element x′j = xjs
′ of K(t). Since xj ∈ F ,

(13) degK[t](x
′
j) = degK[t](s

′) = k′ (second and third paragraphs of Example 1.6).
Since XK rZB,K = Spec(K[x1, . . . , xn′ ]), we have ordQ(xj) ≥ 0 for each Q ∈ XK rZB,K and

every 1 ≤ j ≤ n′. We choose u1 ∈ K[t]1 rQ (e.g. one of the elements t0, . . . , tr) and write

(14)
x′j
uk
′

1

= xj ·
(
s

(k0)
i′ )

uk0
1

)e′
.

By Example 1.6(b), ordQ
(s(k0)

i′

u
k0
1

)
≥ 0. Hence, by (14),

(15a) ordQ

(
x′j
uk
′

1

)
= ordQ(xj) + e′ · ordQ

(
s

(k0)
i′

uk0
1

)
≥ 0.

Given an i between 1 and d(Z), we choose u2 ∈ K[t]1 rKIi (e.g. one of the elements t0, . . . , tr).

By Lemma 9.5(c), s
(k0)
i′ ∈ Ii, hence by Example 1.6(c), ordKIi

(s(k0)

i′

u
k0
2

)
≥ 1. Therefore, by (14) (with u2

replacing u1) and (1),

(15b) ordKIi

( x′j
uk
′

2

)
= ordKIi(xj) + e′ · ordKIi

(
s

(k0)
i′

uk0
2

)
≥ ordKIi(xj) + e′ ≥ 0.

Finally, we choose u3 in K[t]1 rKB. Since s
(k0)
i′ ∈ (KB)q (Lemma 9.5(f)), we have by Example 1.6(e)

that ordKB
(s(k0)

i′

u
k0
3

)
≥ q. Hence, by (14) (with u3 replacing u1) and (1),

(15c) ordKB

(
x′j
uk
′

3

)
= ordKB(xj) + e′ · ordKB

(
s

(k0)
i′

uk0
3

)
≥ ordKB(xj) + e′q ≥ 0.

By (13), degK[t](x
′
j) = k′. It follows from (15) and Example 1.6(d) that x′j ∈ OX̄K (k′)Q for each

Q ∈ X̄K . Hence, by Example 1.6(a), x′j ∈ K[t]k′ (note that, by the last paragraph of Proposition 7.6,
each positive multiple of k0 satisfies Diagrams (2) and (3) of Subsection 7.2). Now we choose 0 ≤ j′ ≤ r
such that tj′ /∈ P . We use (10), (11), (12), and (13) to set x′′j = t

k−degK[t](aP )−q degK[t](bP )−k′

j′ aP b
q
Px
′
j ∈

K[t]k ∩KI ∩ (KB)q and s = t
k−degK[t](aP )−q degK[t](bP )−k′

j′ aP b
q
P s
′ ∈ K[t]k ∩KI ∩ (KB)q rP . By Lemma

9.5(f),

(16) x′′j , s ∈
∑l(k)
i=e+1Ks

(k)
i .

By (7), ϕ(P ) ∈ Y0. Since Y = Proj(K[s
(k)
0 , . . . , s

(k)
l(k)]), we have by the definition of ϕ that ϕ(P ) =

P ∩ K[s
(k)
0 , . . . , s

(k)
l(k)]. Since s ∈ K[s

(k)
0 , . . . , s

(k)
l(k)]rP , we conclude that s /∈ ϕ(P ). Hence, by (16),

xj =
x′j
s′ =

x′′j
s ∈ OY,ϕ(P ) = OY0,ϕ(P ).

It follows from (8) that each xj with 1 ≤ j ≤ n′ lies in OY0,P0 for each P0 ∈ Y0, so xj ∈ K[Y0]
[Lan58, p. 31, Thm. 6]. Thus, K[XK rZB,K ] = K[x1, . . . , xn′ ] ⊆ K[Y0]. We conclude from (9) that
K[Y0] = K[XK rZB,K ].

Part D: End of proof. By (8) and by the conclusion of Part C, ϕ maps the affine curve XK rZB,K
isomorphically onto Y0. Since XK is smooth (Statement (14) in Subsection 5.11),
(17) Y0 is smooth
and the morphism ϕ: X̄K → Y is birational. We know that X̄(K̃) is the disjoint union of (X rZB)(K̃),
{b1}, . . . , {be}, and Z(K̃). By (5), ϕ̃(bj) = yj for j = 1, . . . , e and, by (3), ϕ̃(Z(K̃)) = {y0}. We
conclude that
(18) ϕ−1(y0) = ZK and ϕ̃−1(yj) = bj , j = 1, . . . , e.

This settles all of the statements of the lemma.
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Lemma 10.4: Suppose q ≥ 2. Then, for each 1 ≤ j ≤ e, the point yj of Y (K̃) is a cusp of multiplicity q.

Proof: We consider 1 ≤ j ≤ e. By Lemma 10.3(c), the simple point B̃j of XK̃ is the unique point of X̄K̃

that ϕ̃ maps onto yj . Thus, OX̄K̃ ,B̃j is the unique valuation ring of K̃F/K̃ that contains the local ring

OYK̃ ,yj . Let m be the maximal ideal of OYK̃ ,yj . Since q ≥ 2, it suffices to prove that q = minm∈m ordB̃j (m)

(Subsection 8.4).

Part A: Lower bound. By Lemma 9.5(b), s
(k)
0 /∈ B̃j . Hence, K̃

[ s(k)
1

s
(k)
0

, . . . ,
s
(k)

l(k)

s
(k)
0

]
is the coordinate ring

of an open affine neighborhood of yj in YK̃ . Therefore, by Lemma 9.5(d),(e),

(19) m is generated by the elements
s
(k)
1

s
(k)
0

− wσj1 , . . . ,
s(k)
e

s
(k)
0

− wσje ,
s
(k)
e+1

s
(k)
0

, . . . ,
s
(k)

l(k)

s
(k)
0

.

Moreover, by Lemma 9.5(d),(e), ordB̃j
( s(k)

i

s
(k)
0

− w
σj
i

)
≥ q for i = 1, . . . , e and ordB̃j

( s(k)
i

s
(k)
0

)
≥ q for i =

e+ 1, . . . , l(k). Hence, ordB̃j (m) ≥ q for all m ∈ m.

Part B: Vector spaces. The proof of the lemma will be complete, once we produce an element of
OYK̃ ,yj whose ordB̃j -value is q. To this end we consider the K-vector-spaces

Vj = {(a1, . . . , ar) ∈ Kr | ordB̃j
( r∑
i=1

ai(
ti
t0
− bσji )

)
≥ 1}

V
(2)
j = {(a1, . . . , ar) ∈ Kr | ordB̃j

( r∑
i=1

ai(
ti
t0
− bσji )

)
≥ 2},

We also consider for each j′ 6= j the K-vector-space

Vj′ = {(a1, . . . , ar) ∈ Kr | ordB̃j
( r∑
i=1

ai(
ti
t0
− bσj′i )

)
≥ 1}.

Claim B1: Vj 6⊆ V (2)
j . Indeed, since B̃j is a simple point of the curve X̄K̃ (Lemma 6.5), mX̄K̃ ,B̃j

is the

maximal ideal of the discrete valuation ring OX̄K̃ ,B̃j . By Notation 6.3, B̃j =
∑r
i=1 K̃[t](ti− b

σj
i t0). Since

t0 /∈ B̃j (Corollary 6.6), we have mX̄K̃ ,B̃j
=
∑r
i=1OX̄K̃ ,B̃j

(
ti
t0
− bσji

)
. Hence, there exists 1 ≤ i ≤ r such

that ordB̃j (
ti
t0
− bσji ) = 1. By definition, (0, . . . , 0, 1, 0, . . . , 0) ∈ Vj rV

(2)
j , where 1 stands in the ith place,

as desired.

Claim B2: Vj 6⊆ Vj′ for each j′ 6= j. Assume toward contradiction that Vj ⊆ Vj′ for some j′ 6= j. Then,
for each (a1, . . . , ar) ∈ Kr we have

(20) ordB̃j
( r∑
i=1

ai(
ti
t0
− bσji )

)
≥ 1 implies ordB̃j

( r∑
i=1

ai(
ti
t0
− bσj′i )

)
≥ 1.

For each 1 ≤ i ≤ r we have ti − b
σj
i t0 ∈ B̃j , so by Example 1.6(c), ordB̃j (

ti
t0
− b

σj
i ) ≥ 1. By (20),

ordB̃j (
ti
t0
− bσj′i ) ≥ 1. Since B̃j′ =

∑r
i=1 K̃[t](ti − b

σj′
i t0), we get B̃j′ ⊆ B̃j in contrast to Lemma 6.5.

It follows from Claims B1 and B2 that V
(2)
j and Vj ∩ Vj′ for j′ 6= j are proper subspaces of Vj .

Since K is an infinite field, there exists (a1, . . . , ar) ∈ Vj r(V
(2)
j ∪

⋃
j′ 6=j Vj′). In other words,

(21) ordB̃j
( r∑
i=1

ai(
ti
t0
− bσji )

)
= 1 and ordB̃j

( r∑
i=1

ai(
ti
t0
− bσj′i )

)
= 0 for j′ 6= j.

We multiply a1, . . . , ar by a non-zero element of R to assume that a1, . . . , ar are in R.
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Part C: An element of R[t]k ∩ I ∩Bq. We consider the element

(22) s̃ =

e∏
j′=1

(a1(t1 − b
σj′
1 t0) + · · ·+ ar(tr − b

σj′
r t0)

)
of K̃[t]e. By Lemma 9.4, s̃ ∈ R[t], hence s̃ ∈ R[t]e. By the first statement of (21) and by Example 1.6(c),∑r
i=1 ai(ti − b

σj
i t0) ∈ B̃j . Hence, by (22), s̃ ∈ R[t] ∩ B̃j = B (Lemma 6.5).

Assuming that k ≥ kI + eq, we set s = tk−kI−eq0 sI s̃
q, where sI is the homogeneous element of I rB

chosen in Setup 9.3(4d) and kI = degK[t](sI). Then,
(23) s ∈ R[t]k ∩ I ∩Bq.

Part D: The ordB̃j -value of s

s
(k)
0

. By (21) and (22), the ordB̃j -value of the j-factor of the product on

the right hand side of

(24)
s

tk0
=

sI

tkI0

e∏
j′=1

(
a1

( t1
t0
− bσj′1

)
+ · · ·+ ar

( tr
t0
− bσj′r

))q
is q and the ordB̃j -value of the j′th factor is 0 for each j′ 6= j. Since sI , t0 /∈ B̃j (because sI ∈ R[t]rB),

we have ordB̃j
(
sI

t
kI
0

)
= 0 (Example 1.6(b)). Therefore, by (24), ordB̃j

(
s
tk0

)
= q. Finally, since t0, s

(k)
0 /∈ B̃j ,

we have ordB̃j
(
s

s
(k)
0

)
= q.

End of proof: By Lemma 9.5(f), s
(k)
e+1, . . . , s

(k)
l(k) generate R[t]k ∩ I ∩Bq over R. Hence, by (23), there

exist a′e+1, . . . , a
′
l(k) ∈ R such that s =

∑l(k)
i=e+1 a

′
is

(k)
i . It follows from (19) that s

s
(k)
0

=
∑l(k)
i=e+1 a

′
i
s
(k)
i

s
(k)
0

∈ m,

as desired.

Proposition 10.5: Let q be a large positive integer. Then, for each large positive multiple k of the
integer k0 introduced in Proposition 7.6, there exists a birational morphism ϕ of X̄K onto an absolutely

integral projective curve Y in Pl(k)
K such that YK̃ is a q-curve (Definition 8.5).

Proof: In the notation of Subsection 5.9, let ZK(K̃) = {z1, . . . , zd̃}. Since each point of X̄K and in

particular each point of ZK is normal (Subsection 5.11), each zδ with 1 ≤ δ ≤ d̃ is simple or a cusp of
X̄K̃ [Neu98, p. 234, Lemma 2.14]. In each case zδ lies under a unique prime divisor Z̃δ of K̃F/K̃.

In the other direction, zδ lies over the point Zi(δ),K of ZK for a unique i(δ) between 1 and d(Z)
(Subsection 5.9). Since KIi(δ) is a normal point of X̄K , we may identify Zi(δ),K with the restriction of

Z̃δ to F . Let zδ be a generator of mX̄K ,Zi(δ),K . Then, ordZ̃δ(zδ) is the ramification index eZ̃δ/Zi(δ),K of Z̃δ

over Zi(δ),K . We consider an integer

(25) q ≥
∑d̃
δ=1 eZ̃δ/Zi(δ),K =

∑d̃
δ=1 ordZ̃δ(zδ).

Next we choose a large positive multiple k of k0 that satisfies the conditions of the preceding lemmas

of this section. In particular, Y = Proj(K[s
(k)
0 , . . . , s

(k)
l(k)]) is the integral projective curve in Pl(k)

K and

ϕ: X̄K → Y is the morphism with ϕ(t) = s(k) introduced in Setup 10.1.
By Lemma 10.3(a), ϕ is a birational morphism. Since X̄K is absolutely integral, so is Y . By Lemma

9.5(h), Y is a characteristic-0-like curve.
By Lemma 10.3, each of the points of Y (K̃) except possibly y0,y1, . . . ,ye is simple, hence of

multiplicity 1 in YK̃ (Subsection 8.4). By Lemma 10.4, each of the points y1, . . . ,ye is a cusp of YK̃ of
multiplicity q. Therefore, it suffices to prove that mult(YK̃ ,y0) ≤ q (Definition 8.5).

By Lemma 10.3(b), ϕ−1(y0) = ZK . Hence, by Subsection 8.4, mult(YK̃ ,y0) =
∑d̃
δ=1 mult(YK̃ , Z̃δ),

so if for each 1 ≤ δ ≤ d̃ we produce
(26) yδ ∈ mY,y0

with ordZ̃δ(yδ) = ordZ̃δ(zδ),
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then, by (25),

mult(YK̃ ,y0) =

d̃∑
δ=1

mult(YK̃ , Z̃δ) ≤
d̃∑
δ=1

ordZ̃δ(yδ) =

d̃∑
δ=1

ordZ̃δ(zδ) ≤ q,

and we will be done.
In order to produce yδ as in (26), we recall that ZB,K and ZK are disjoint (Subsection 6.10), in

particular KBq 6⊆ KIi(δ). Thus, we may choose a positive integer k′ and an element ν ∈ (K[t]k′ ∩
KBq)rKIi(δ).

By Subsection 5.9, the point Zi(δ),K of ZK corresponds to the homogeneous prime ideal KIi(δ) of
K[t] that contains KI. Since zδ ∈ mX̄K ,Zi(δ),K , we may write

(27) zδ = µ′′

λ , where µ′′, λ ∈ K[t]k′′ for some positive integer k′′ such that µ′′ ∈ KIi(δ) and λ /∈ KIi(δ)
(Example 1.6(c)).
Next we choose a homogeneous element ρ′ ∈ (

⋂
j 6=i(δ)KIj)rKIi(δ) (Subsection 5.9) and an 0 ≤

i′ ≤ r with ti′ /∈ KIi(δ).
Observe that k′, k′′, and ρ′ depend on X̄K but not on Y , so we may assume that k > k′ +

k′′ + degK[t](ρ
′). This assumption allows us to set ρ = t

k−k′−k′′−degK[t](ρ
′)

i′ ρ′. Then, ρ ∈ K[t]k−k′−k′′ ∩
(
⋂
j 6=i(δ)KIj)rKIi(δ), so µ′′ρ ∈

⋂d(Z)
j=1 KIj = KI (Subsection 5.9) and degK[t](µ

′′ρ) = k − k′.
It follows that µ = µ′′νρ ∈ K[t]k ∩ KI ∩ KBq. By Lemma 9.5(f), µ is a linear combination of

s
(k)
e+1, . . . , s

(k)
l(k) with coefficients in K. Since µ belongs to KI, it vanishes on ZK , hence also at y0. By

Lemma 9.5(a), s
(k)
0 does not vanish on Z(K̃), hence s

(k)
0 does not vanish at y0 (which is the image of

Z(K̃) under ϕ̃, by Lemma 10.3(b)). Therefore, yδ = µ

s
(k)
0

∈ mY,y0
(Example 1.6(c)).

In order to compute ordZ̃δ(yδ), we choose 0 ≤ j ≤ r with tj(zδ) 6= 0. Since ν, ρ ∈ K[t]rKIi(δ), we

also have ν(zδ) 6= 0, ρ(zδ) 6= 0, and s
(k)
0 (zδ) 6= 0. Hence, each of the elements ν

tk
′
j

, ρ

tk−k
′−k′′

j

, and
λtk−k

′′
j

s
(k)
0

of OX̄K̃ ,zδ is invertible. Therefore, the ordZ̃δ -value of these elements is 0. Writing

yδ =
µ′′

λ
· ν
tk
′
j

· ρ

tk−k
′−k′′

j

·
λtk−k

′′

j

s
(k)
0

we get from (27) that

ordZ̃δ(yδ) = ordZ̃δ

(
µ′′

λ

)
+ ordZ̃δ

(
ν

tk
′
j

)
+ ordZ̃δ

(
ρ

tk−k
′−k′′

j

)
+ ordZ̃δ

(
λtk−k

′′

j

s
(k)
0

)
= ordZ̃δ(zδ),

as desired.

Having established in Proposition 10.5 that the absolutely integral projective curve Y = Proj(K[s
(k)
0 , . . . , s

(k)
l(k)])

is a q-curve with function field F for a large positive multiple k of k0 and a large positive integer q, we
choose q as a large prime number and apply Proposition 8.6 with Y replacing ∆ to deduce the following
mile stone of the work:

Proposition 10.6: Under Setup 10.1 and in the notation of Subsection 8.1, the following statement
holds for every large positive multiple k of k0:

There exists a non-empty Zariski-open subset Ui of PiK , i = 2, 3, . . . , l(k), such that with U = U2×
U3×· · ·×Ul(k), for each A ∈ (ψ(k))−1(U(K)) and with

(
a
b

)
= µ(k)(A), the element t =

∑l(k)
i=0 ais

(k)
i /

∑l(k)
i=0 bis

(k)
i

[F : K(t)]-symmetrically stabilizes F/K.
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Remark 10.7: The case where K is a number field is much simpler. In this case K̃ is a separable
extension of K. Hence, the normal absolutely integral curve X̄K remains normal under the base change
from K to K̃. Thus, in this case X̄K̃ is a smooth projective curve. This allows us to forget about the
special separable point B of X constructed in Section 6. The birational morphism ϕ: X̄K → Y now maps
XK isomorphically onto Y0. However, we have to take extra care of the point y0 = ϕ(ZK). Over K̃,
y0 is a higher ordinary point of YK̃ . In other words, the tangents to X̄K̃ at points that lie over y0 are
distinct. Then, we may use a much simple version of Proposition 8.6 that makes a big part of the paper
[GJR17] redundant.

11. A Normalized Stabilizing Element

Proposition 11.2 below allows us to choose the stabilizing element more carefully. We prove that t can
be chosen in Proposition 10.6 such that a0 = 1, b0 = 1, b1 = a1 + 1, and (a1, . . . , al(k)) and (b2, . . . , bl(k))

respectively belong to given T -open subsets of Rl(k) and Rl(k)−1, where the T -topologies on powers of R
are the product T -topologies.

Lemma 11.1: Let m be a positive integer and C a non-empty T -open subset of Rm. Then, C is Zariski-
dense in AmK .

Proof: It suffices to prove that if f ∈ K[X1, . . . , Xm] is non-zero, then there exists x ∈ C such that
f(x) 6= 0. In order to do it we first choose a point c = (c1, . . . , cm) ∈ C and a positive real number ε such
that if x ∈ Rm satisfies |x − c|p < ε for all p ∈ T , then x ∈ C. Using induction, we may assume that
m = 1. Then, we use the strong approximation theorem of algebraic number theorey [CaF67, p. 67] to
choose a ∈ R such that |a|p < ε for all p ∈ T . Then x = c1 + ay ∈ C for each y ∈ R. Hence, f(x) 6= 0 for
all but finitely many x ∈ C.

Proposition 11.2: Under Setup 10.1, let k be a large positive multiple of k0 such that Proposition 10.6

holds. Let A and B be non-empty T -open subsets of Rl(k) and Rl(k)−1, respectively. Set si = s
(k)
i for

i = 0, . . . , l(k). Then, there exist (a1, . . . , al(k)) ∈ A and (b2, . . . , bl(k)) ∈ B such that with b1 = a1 + 1

the quotient t =
s0+a1s1+···+al(k)sl(k)

s0+b1s1+···+bl(k)sl(k)
symmetrically stabilizes F/K.

Proof: We write l = l(k) and simplify the notation introduced in Subsection 8.1 by setting M = M(l),
µ = µ(l), P = P(l), and ψ = ψ(k). Then, (1) of that subsection simplifies to the row

(1) P M
ψoo µ // M∗2,l+1.

For each 2 ≤ i ≤ l let Ui be the non-empty Zariski-open subset of PiK that Proposition 10.6 supplies.
Shrink Ui, if necessary, to assume that
(2) each (a1: · · · :ai:ai+1) ∈ Ui(K̃) satisfies ai+1 6= 0.

Let U = U2 × · · · × Ul. By Proposition 10.6,

(3) for each A ∈ ψ−1(U(K)) and with µ(A) =

(
a0 a1 · · · al
b0 b1 · · · bl

)
, the element t = a0s0+···+alsl

b0s0+···+blsl

symmetrically stabilizes F/K.

We are going to extend row (1) to a commutative diagram:

(4) P = P2 × · · · × Pl M = M∗2 × · · · ×M∗l
ψoo µ // M∗2,l+1

A = A2 × · · · × Al

ρ

OO

M′ = M′2 × · · · ×M′l
ψ′oo µ′ //

?�

OO

A2l−1 .

θ′

OO
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The subset M′ of M: Let M′2 be the Zariski-closed subset of M∗2 such that M′2(f) consists of all
matrices of the form

(5) A2 =

(
1 a11 a12

1 a11 + 1 a22

)
.

For each 3 ≤ i ≤ l let M′i be the Zariski-closed subset of M∗i such that M′i(f) consists of all matrices of
the form

(6) Ai =


1 a11 · · · · a1i

0 1 · · · · a2i
...

...
. . .

...
...

0 0 · · · 1 aii

 .

Then, for each 2 ≤ i ≤ l, M′i is naturally isomorphic to the affine space Ai(i+1)/2. We define a closed
immersion θ′: A2l−1 →M∗2,l+1 by

(7) θ′(a1, . . . , al, b2, . . . , bl) =

(
1 a1 a2 · · · al
1 a1 + 1 b2 · · · bl

)
.

Now we set M′ = M′2 × · · · ×M′l and observe by induction on l that µ(M′) ⊆ θ′(A2l−1). Hence, there
exists a unique morphism µ′: M′ → A2l−1 such that θ′ ◦ µ′ = µ|M′ .
The morphism ρ: For each 2 ≤ i ≤ l we define an embedding ρi: Ai → Pi by

ρi(a1, . . . , ai) = (a1: · · · :ai:1).

Let A = A2 × · · · × Al and consider the morphism ρ = ρ2 × · · · × ρl from A to P.

The morphism ψ′i: M′i → Ai: In the notation of (5) and by Subsection 8.1, ψ2(A2) = (y0:y1:y2) is the
unique element of P2 that satisfies

(8)

(
1 a11

1 a11 + 1

)(
y0

y1

)
+

(
a12

a22

)
y2 =

(
1 a11 a12

1 a11 + 1 a22

) y0

y1

y2

 = 0 .

Let A′2 =

(
1 a11

1 a11 + 1

)
. Since yi 6= 0 for at least one i and det(A′2) = 1, we have y2 6= 0. Hence, we

may assume that y2 = 1 and conclude that ψ2(A2) = (y0:y1:1) = ρ2(y0, y1).
Similarly, for i = 3, . . . , l we consider a matrix Ai as in (6). Then ψi(Ai) = (y0: · · · :yi) is the unique

element of Pi that satisfies

(9)


1 a11 · · · a1,i−1

0 1 · · · a2,i−1

...
0 0 · · · 1




y0

y1

· · ·
yi−1

+


a1i

a2i

· · ·
aii

 yi = 0 .

Again, the determinant of the i× i matrix A′i on the left hand side of (9) is 1, hence yi 6= 0, so we may
assume that yi = 1. As in the previous case, we conclude that

(10) ψi(Ai) = (y0: · · · :yi−1:1) = ρi(y0, . . . , yi−1).

Let ỹi and ãi be the first and the second columns of height i that appear in (8) if i = 2 and in (9)
if 3 ≤ i ≤ l. Then, A′iỹi + ãi = 0 and we define the morphism ψ′i: M′i → Ai by the formula

(11) ψ′i(Ai) = ỹi = −(A′i)
−1ãi

and consider ψ′i(Ai) in the sequel as a row. It follows from (10) and (11) that ρi ◦ ψ′i = ψi|M′i . Writing
ψ′ = ψ′2 × · · · × ψ′l, this establishes the left part of Diagram (4).
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Claim A: For each 2 ≤ i ≤ l we have ψ′i(M′i) = Ai. Indeed, let y0, y1, . . . , yi−1 ∈ f. For i = 2 we set
a11 = 0, a12 = −y0, and a22 = −y0 − y1 in A2. Then, (8) holds for y2 = 1, so by (11), ψ′2(A2) = (y0, y1).

When l > 2, we set for each 3 ≤ i ≤ l,

Ai =


1 0 · · · 0 −y0

0 1 · · · 0 −y1
...

...
. . .

...
...

0 0 · · · 1 −yi−1

 ∈M′i.

Substituting the corresponding values for the parameters appearing in (9) and setting yi = 1, we get that
ψ′i(Ai) = (y0, . . . , yi−1), as desired.

Claim B: µ′(M′(R)) = A2l−1(R). First observe that if A ∈ M′(R), then µ(A) ∈ θ′(A2l−1(R)), hence
by (4) and (7), µ′(A) = (θ′)−1(µ(A)) ∈ A2l−1(R).

To prove the inclusion in the other direction, we consider (a1, . . . , al, b2, . . . , bl) ∈ A2l−1(R). If l = 2,

let A2 =

(
1 a1 a2

1 a1 + 1 b2

)
∈M′2(R). If l > 2, let

A2 =

(
1 0 0
1 1 0

)
∈M′2(R), Ai =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 ∈M′i(R)

for i = 3, . . . , l − 1, and

Al =


1 a1 a2 a3 · · · al−1 al
0 1 b2 − a2 b3 − a3 · · · bl−1 − al−1 bl − al
0 0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 0

 ∈M′l(R) .

Then,

A2A3 · · ·Al−1 =

(
1 0 0 · · · 0
1 1 0 · · · 0

)
∈M2,l(R).

Thus, in both cases,

µ(A) = A2 · · ·Al−1 ·Al =

(
1 a1 a2 · · · al
1 a1 + 1 b2 · · · bl

)
= θ′(a1, . . . , al, b2, . . . , bl).

Hence, by the commutativity of (4), (a1, . . . , al, b2, . . . , bl) = (θ′)−1(µ(A)) = µ′(A) ∈ µ′(M′(R)), as
desired.

Conclusion of the proof: The product A×B is a non-empty T -open subset of A2l−1(R). By Claim
B, µ′(M′(R)) = A2l−1(R). Hence, the T -open subset (µ′)−1(A×B) of M′(R) is non-empty. By definition,
M′ is isomorphic to an affine space. Hence, by Lemma 11.1, (µ′)−1(A× B) is Zariski-dense in M′.

Since ai+1 6= 0 for each 2 ≤ i ≤ l and every (a1: · · · :ai:ai+1) ∈ Ui (by (2)), we have Ui ⊆ ρi(Ai),
hence U ⊆ ρ(A). Therefore, U ′ = ρ−1(U) is a non-empty Zariski-open subset of A.

By Claim A, ψ′(M′) = A, hence (ψ′)−1(U ′) is a non-empty Zariski-open subset of M′. Therefore,
there exists A ∈ (µ′)−1(A×B)∩ (ψ′)−1(U ′). Let (a1, . . . , al, b2, . . . , bl) = µ′(A). Then, a = (a1, . . . , al) ∈

A, b = (b2, . . . , bl) ∈ B, µ(A) = θ′(µ′(A)) =

(
1 a1 · · · al
1 b1 · · · bl)

)
with b1 = a1 + 1, and ψ(A) =

ρ(ψ′(A)) ∈ U(K). By (3), the element t = s0+a1s1+···+alsl
s0+b1s1+···+blsl symmetrically stabilizes F/K, as desired.
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12. M-points on Varieties Defined over K

Using the notation of Subsection 4.8, we fix a global field K, a proper subset V of the set PK of all
primes of K, and a finite subset S of V. We also consider a finite subset T of V that contains S such
that V r T ⊆ PK,fin. The following definition puts together those properties of the fields Ktot,S [σ] that
are used in the proof of Theorem C. Then, Proposition 12.3 restates Theorem C for curves for algebraic
extensions of K having those properties.

Definition 12.1: [GJR00, Def. 1.10]. Let M be an extension of K in Ktot,S and let O be a subset of
M . We say that M is weakly (resp. weakly symmetrically) K-stably PSC over O if for every
absolutely irreducible polynomial h ∈ K[T, Y ] monic in Y with d = degY (h) and every polynomial
g ∈ K[T ] satisfying
(1a) h(0, Y ) has d distinct roots in Ktot,S , g(0) 6= 0, and

(1b) Gal(h(T, Y ),K(T )) ∼= Gal(h(T, Y ), K̃(T )) (resp. and is isomorphic to the symmetric group Sd).
there exists (a, b) ∈ O ×M such that h(a, b) = 0 and g(a) 6= 0.

Note that in that case, if M ⊆ M ′ ⊆ Ktot,S , then M ′ is also weakly K-stably PSC over O. Also
note that if M is weakly K-stably PSC over O, then M is also weakly symmetrically K-stably PSC over
O.

Setup 12.2: Proposition 7.6 introduces a positive integer k0, for each positive multiple k of k0 an iso-

morphism α(k): OZ → OZ(k) of sheaves and an element s
(k)
0 ∈ Γ(X̄,OX̄(k)) such that the isomorphism

α(k)(Z): Γ(Z,OZ)→ Γ(Z,OZ(k)) of Γ(Z,OZ)-modules induced by α(k) satisfies ρ
(k)

X̄,Z
(s

(k)
0 ) = α(k)(Z)(1),

where 1 is the unit element of the ring Γ(Z,OZ). We choose k sufficiently large such that Proposition

10.6 holds. Then, we consider the elements s
(k)
1 , . . . , s

(k)
l(k) of Ker(ρ

(k)

X̄,Z
) that appear in Proposition 10.6

and set s = (s
(k)
0 , s

(k)
1 , . . . , s

(k)
l(k)).

As in Subsection 7.9, for each algebraic extension K ′ of K and every p ∈ T let Γ
(k)
s,p,K′ be the set

of all s ∈ Γ(X̄K̂pK′
,OX̄K̂pK′

(k)) of the form s = s
(k)
0 +

∑l(k)
i=1 ais

(k)
i with a1, . . . , al(k) ∈ K̂pK

′ such that

div(s) ∈ Ω̂
[dk]
p,K′ , where dk = deg(OX̄K (k)). In particular, div(s) totally splits in FL̂pK

′ into dk distinct

components each of which is a point that belongs to Ωp(L̂pK
′) (Subsection 7.4).

Proposition 12.3: Let K,S, T ,V be as in the first paragraph of this section. Let C be an absolutely
integral affine curve over K and let (Lp,Ωp)p∈T be approximation data for K,S, T ,V, C (as in Subsection
4.7). Let M be a subfield of Ktot,S that contains K. Suppose M is weakly symmetrically K-stably PSC
over OK,V (resp. OM,V). Then, there exists z ∈ C(OM,V r T ) such that zτ ∈

⋂
p∈T Ωp (resp. zτ ∈⋂

p∈S Ωp ∩
⋂

p∈T rS Ωp(LpKtot,S)) for each τ ∈ Gal(K).

Proof: We let X and X̄ be as in Subsection 5.5 and Lemma 5.6, respectively, and write F for the
common function field of X and X̄. Following Lemma 4.10, we change C and T , if necessary, to meet all

of the assumptions of Sections 5 and 6. We also simplify our notation by setting l = l(k) and si = s
(k)
i

for i = 0, . . . , l. We set s = (s0, s1, . . . , sl).
The rest of the proof naturally breaks up into six parts.

Part A: The subset A of Rl. Lemma 7.10 supplies a T -open neighborhood A of (0, . . . , 0) in Rl such
that if L is an algebraic extension of K, if RL is the integral closure of R in L, and if (a1, . . . , al) belongs
to the TL-open neighborhood A(RL) of (0, . . . , 0) in RlL induced by A, then, in the notation of Setup

12.2, (s0 +
∑l
i=1 aisi)p ∈ Γ

(k)
s,p,L for each p ∈ T , where for s ∈ Γ(X̄RL ,OX̄RL (k)), sp is the section in

Γ(X̄K̂pL
,OX̄K̂pL

(k)) obtained from s by base change from RL to K̂pL. We set B = Rl−1.

Proposition 11.2 gives a = (a1, . . . , al) ∈ A and (b2, . . . , bl) ∈ B such that, with b1 = a1 + 1,

s = s0 +
∑l
i=1 aisi and s∗ = s0 +

∑l
i=1 bisi, the element t = s

s∗ symmetrically stabilizes F/K.

Part B: Ktot,S -rational points of X. By Subsection 7.9, s and s∗ are elements of Γ
(k)
s , hence they

belong to Γ(X̄,OX̄(k), α(k)) (Setup 12.2). Moreover, by Part A, sp ∈ Γ
(k)
s,p,K for each p ∈ T . Following
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Subsection 2.6, we consider div(s) as an effective Weil divisor on X̄. By Lemma 4.10, we may assume

that T is non-empty. By Setup 12.2, for each p ∈ T , div(sp) belongs to Ω̂
[dk]
p,K , where dk = deg(OX̄K (k)),

hence div(sp) totally splits in FL̂p. The components of div(sp) are points in X(L̂p) and there are exactly

dk of them (Subsection 7.4). When p ∈ S, we have L̂p = K̂p, so the components of div(sp) are in this case

(K̃ ∩ K̂p)-rational points of X. By Subsection 4.4, they are Kp-rational points. Since div(s) is invariant
under the action of Gal(K), each of those components is Kτ

p -rational for all τ ∈ Gal(K) and p ∈ S.
Therefore, with N = Ktot,S and RN the integral closure of R in N , we have
(2) div(s)RN = div(s) ×Spec(R) Spec(RN ) is a formal sum of dk Ktot,S -rational points of X, each with

multiplicity 1.
Note that if S is empty, then Ktot,S = Ksep, so (2) also holds in this case.

Part C: Choosing y. The homogeneous element s∗ ∈ K[t0, . . . , tr] gives rise to the Zariski-open affine
subscheme C0 = D+(s∗) of X̄K [Liu06, p. 51, Lemma 3.36(a)]. Thus, C0 = Spec(A), where A is an
integrally closed domain (because X̄K is normal) with quotient field F . Therefore,

A =
⋂

p∈X̄K
s∗ /∈p

OX̄K ,p.

In particular, t = s
s∗ ∈ A and A is integral over K[t].

By (4) in Subsection 2.7, div(t) = div(s) − div(s∗). Hence, since div(s) and div(s∗) are effective
Weil divisors (Subsection 2.4), div0(t) ≤ div(s), so each zero of t is also a zero of s. It follows from (2)
that t has at most dk zeros, each with multiplicity 1.

We choose y ∈ A such that F = K(t, y) and let h0 ∈ K[T, Y ] be the absolutely irreducible
polynomial, monic in Y , such that h0(t, y) = 0. Let d = [F : K(t)], let y1, . . . , yd be the roots of h0(t, Y )
in K(t)sep with y1 = y, and let ∆(t) =

∏
i 6=j(yi − yj) ∈ K[t]. Since h0 is separable in Y , ∆(t) 6= 0. We

write h0(T, Y ) = Y d + fd−1(T )Y d−1 + · · ·+ f0(T ) with f0, . . . , fd−1 ∈ K[T ]. Since the roots of h0(0, Y )
bijectively correspond to the zeros of t, it follows from the preceding paragraph, that h0(0, Y ) has d
distinct roots, ȳ1, . . . , ȳd in Ksep and d ≤ dk, so ∆(0) =

∏
i 6=j(ȳi − ȳj) 6= 0.

Part D: Another stabilizing element. For each 1 6= a0 ∈ K we have

∑l
i=1(ai − a0bi)si

1− a0
=

l∑
i=1

(
ai + (ai − bi)

a0

1− a0

)
si,

hence

(3) t0 =
t− a0

1− a0
=
s0 +

∑l
i=1(ai + (ai − bi) a0

1−a0
)si

s0 +
∑l
i=1 bisi

.

Note that K(t0) = K(t), so also t0 symmetrically stabilizes F/K. Since A is T -open, there exists a
positive real number γa such that
(4) if c ∈ RlN satisfies |c− a|p < γa for each p ∈ TN , then c ∈ A(RN ).

We use the strong approximation theorem for K [CaF67, p. 67] to choose a non-zero m ∈ R =
OK,V r T such that

(5) |(ai − bi)m|p < γa

for all 1 ≤ i ≤ l and p ∈ T . In particular, for i = 1, we get |m|p < γa for all p ∈ T .

Let t′ = t
m(1−t) and note that t = mt′

1+mt′ . We let j′ be a positive integer such that

h1(t′, Y ) =
(1 +mt′

m

)j′ · h0

( mt′

1 +mt′
, Y
)
∈ K[t′, Y ]
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and write h1(t′, Y ) = f∗d (t′)Y d + f∗d−1(t′)Y d−1 + · · · + f∗0 (t′) with f∗0 , . . . , f
∗
d ∈ K[T ′] and f∗d (T ′) =(

1+mT ′

m

)j′
. In particular, f∗d (0) = m−j

′ 6= 0. We set Y ′ = f∗d (t′)Y and h(T ′, Y ′) = f∗d (T ′)d−1 · h1(T ′, Y ).
Then, h ∈ K[T ′, Y ′] is monic of degree d in Y ′ and y∗1 = f∗d (t′)y1, . . . , y

∗
d = f∗d (t′)yd are the roots of

h(t′, Y ′). Let ∆∗(t′) =
∏
i6=j(y

∗
i − y∗j ) ∈ K[t′]. Then,

∆∗(t′) = f∗d (t′)d(d−1) ·
∏
i 6=j

(yi − yj) = f∗d (t′)d(d−1) ·∆
( mt′

1 +mt′
)
.

In particular, by Part C, ∆∗(0) = f∗d (0)d(d−1)∆(0) 6= 0, so h(0, Y ′) has d distinct roots.

Since K(t′) = K(t) ⊆ F , we may consider a prime divisor Q of FK̃/K̃ such that t′(Q) = 0. Then,

t(Q) = mt′(Q)
1+mt′(Q) = 0. Let q be the point of X̄(K̃) that lies under Q. Then, q is a zero of t, hence of s,

so by (2), q ∈ X(Ktot,S).
Since f∗d (t′) 6= 0, we have K(t′, y∗1) = K(t′, f∗d (t′)y) = K(t′, y) = K(t, y) = F . Also, since h(T ′, Y ′)

is absolutely irreducible, the d distinct roots of h(0, Y ′) are the images of y∗1 at the distinct prime divisors
of FK̃/K̃ which are zeros of t′ [Lan58, p. 10, Thm. 2]. By the preceding paragraph each of these roots
lies in Ktot,S . Thus, h(T ′, Y ′) satisfies Condition (1a) (with (T ′, Y ′) replacing (T, Y )). Since t is a
symmetrically stabilizing element for F/K, so is t′. Hence, h(T ′, Y ′) also satisfies Condition (1b), with
Gal(h(T ′, Y ′),K(T ′)) ∼= Sd.

Part E: A prime divisor of FM/M of degree 1. By the assumption on M , there exists (t̄, ȳ) ∈ OK,V×M
(resp. (t̄, ȳ) ∈ OM,V×M) such that h(t̄, ȳ) = 0, h(t̄, Y ) is separable, mt̄+1 6= 0, and x1, . . . , xn (introduced
in Subsection 5.1) belong to the local ring of M [t′, y∗1 ] at (t̄, ȳ). Since C is a smooth curve (Statement (1)
of Section 5), there exists a prime divisor P of FM/M of degree 1 such that t′(P ) = t̄ is in OK,V (resp. in

OM,V), 1 +mt′(P ) 6= 0, and z = x(P ) ∈ C(M). Hence, t = mt′

1+mt′ is defined at P , a0 = t(P ) 6= 1, P is

a zero of t−a0

1−a0
, and

(6) a0

1−a0
= mt′(P ) is in mOK,V (resp. in mOM,V).

Let a′ = a + (a − b) a0

1−a0
and set s′ = s0 +

∑l
i=1 a

′
isi. Since P is a zero of the left hand side of

(3), P is also a zero of the right hand side of (3). The latter is s′

s∗ . Again, since div(s′) and div(s∗) are
effective divisors, P is a zero of s′.

By the properties of t′(P ) mentioned in the preceding paragraph, by (6), and by (5), |a′i − ai|p =∣∣(ai − bi)
a0

1−a0

∣∣
p

= |(ai − bi)mt
′(P )|p < γa for all 1 ≤ i ≤ l and p ∈ T (resp. p ∈ TM ). By (4),

a′ ∈ A(RN ) ∩ Kl (resp. a′ ∈ A(RN ) ∩ M l), hence a′ ∈ A (resp. a′ ∈ A(RM )). Therefore, by Part

A, for each p ∈ T the section s′p lies in Γ
(k)
s,p,K (resp. in Γ

(k)
s,p,M ). In particular, div(s′p) has no multiple

components (Setup 12.2), so div(s′)RN has no multiple components.

Part F: The irreducible components of div(s′)RN . Let p be an irreducible component of div(s′)RN . By
Lemma 7.8(b) (for s′ replacing s), the restriction of the morphism fRN : X×Spec(R)Spec(RN )→ Spec(RN )
(induced from the morphism f which is introduced in Subsection 5.5) to p is finite and surjective over
Spec(RN ). Since p is not a multiple component of div(s′)RN , we may consider p as a prime ideal of
RN [x]. If p0 = p ∩RN 6= 0, then the image of p considered as an irreducible component of div(s′)RN in
Spec(RN ) contains exactly one element, namely p0, in contrast to the surjectivity of fRN on p. Thus,
p ∩ RN = 0, so the coordinates z′1, . . . , z

′
n of z′ = (x1 + p, . . . , xn + p) are algebraic over K. Since p is

finite over Spec(RN ), the ring RN [z′1, . . . , z
′
n] is a finitely generated RN -module. Hence, z′1, . . . , z

′
n are

integral over RN (hence, over R). In addition, by Setup 12.2, z′ ∈ Ωp (resp. z′ ∈ Ωp(LpM)) for each
p ∈ T . Since z′ is algebraic over K, we have z′ ∈ Ωp (resp. z′ ∈ Ωp(LpM)) for each p ∈ T .

If p is the irreducible component of div(s′)RN that corresponds to P , then by Part E, z = x(P ) ∈
C(M). Since z1, . . . , zn are integral over R, we have z ∈ C(OM,V r T ).

Next observe that for each τ ∈ Gal(K) (resp. τ ∈ Gal(M)) we have div(s′)τ = div(s′), because
a′1, . . . , a

′
l ∈ K (resp. because a′1, . . . , a

′
l ∈ M). Hence, pτ is also an irreducible component of div(s′)RN .

Therefore, by the paragraph preceding the latter one, zτ ∈ Ωp (resp. zτ ∈ Ωp(LpM)) for each p ∈ T .
In the alternative case (i.e. when M is weakly symmetrically K-stably PSC over OM,V), we note

that if p ∈ S, then M ⊆ Ktot,S ⊆ Kp = Lp. Hence, Ωp(LpM) = Ωp, so by the preceding paragraph,
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zτ ∈ Ωp. If p ∈ T rS, then by the preceding paragraph, zτ ∈ Ωp(LpM) ⊆ Ωp(LpKtot,S), as desired.

Proposition 12.4: Let K,S,V be as in Subsection 4.8. Let M be a subfield of Ktot,S that contains K
and is weakly symmetrically K-stably PSC over OK,V . Then, (M,K,S,V) |= SAT (Subsection 4.7).

Proof: By Proposition 12.3, (M,K,S,V, C) |= SAT for every absolutely integral affine curve C over K.
Hence, by Lemma 4.12, (M,K,S,V) |= SAT, as claimed.

13. Varieties over M

We use the strong approximation theorem for varieties defined over K to prove the strong approximation
theorem for varieties defined over M . The first step is to remove the adverb “symmetrically K-stably”
from the condition “M is weakly symmetrically K-stably PSC over OM,V” that appears in Proposition
12.4 and allow instead the polynomial h that appears in Definition 12.1 to have coefficients in M (and
not only in K). This is done via Weil’s descent.

Definition 13.1: [GJR00, Def. 1.10]. Let M be an extension of K in Ktot,S and let O be a subset of M .
We say that M is weakly PSC over O if for every absolutely irreducible polynomial h ∈M [T, Y ] monic
in Y such that h(0, Y ) decomposes into distinct monic linear factors over Ktot,S and every polynomial
g ∈M [T ] with g(0) 6= 0 there exists (a, b) ∈ O ×M such that h(a, b) = 0 and g(a) 6= 0.

Lemma 13.2: Let M be an extension of K in Ktot,S which is weakly symmetrically K-stably PSC over
OK,V . Then, M is weakly PSC over OM,V .

Proof: Let h ∈ M [T, Y ] and g ∈ M [T ] be as in Definition 13.1 We prove that there exists (a, b) ∈
OM,V ×M such that h(a, b) = 0 and g(a) 6= 0.

Part A: Weil’s descent. Let L be a finite extension of K in M with h ∈ L[T, Y ] and g ∈ L[T ]. Let V
be the absolutely integral affine curve in A3

L defined by h(T, Y ) = 0 and g(T )Z − 1 = 0.
Let d = [L : K] and let σ1, . . . , σd with σ1 = 1 be elements of Gal(K) whose restrictions to L are

all of the K-embeddings of L into K̃. Let ω1, . . . , ωd ∈ OL be a basis for L/K, where OL is the ring of
integers of the global field L (Subsection 4.6).

Consider the linear morphism λ: A3d
L → A3

L defined by

λ(a,b, c) =
( d∑
i=1

ωiai,

d∑
i=1

ωibi,

d∑
i=1

ωici
)
,

where a = (a1, . . . , ad), b = (b1, . . . , bd), and c = (c1, . . . , cd). By Weil’s descent [FrJ08, p. 183, Prop.
10.6.2], there exists an absolutely integral affine variety W in A3d

K such that the restriction of λσ1

K̃
×· · ·×λσd

K̃

to WK̃ is an isomorphism Λ: WK̃ → V σ1

K̃
× · · · × V σd

K̃
which is defined by

(1) Λ(a,b, c) =
( d∑
i=1

ωσ1
i ai,

d∑
i=1

ωσ1
i bi,

d∑
i=1

ωσ1
i ci, . . . ,

d∑
i=1

ωσdi ai,

d∑
i=1

ωσdi bi,

d∑
i=1

ωσdi ci
)
.

Part B: Approximation data. Let t0 ∈ Ksep be a root of h(0, Y ). By assumption x0 = (0, t0, g(0)−1) ∈
Vsimp(Ktot,S). Let L′ be a finite Galois extension of K in Ktot,S that contains L(t0). Then, x0 ∈ Vsimp(L′),
so xσi0 ∈ V

σi
simp(L′), i = 1, . . . , d. Hence, since Λ is defined over L′,

(2) z0 = Λ−1
(
xσ1

0 , . . . ,xσd0

)
∈Wsimp(L′).

Let T be a finite subset of V such that S ⊆ T , V r T ⊆ PK,fin, and z0 ∈W (OL′,V r T ).
For each p ∈ T let Lp = KpL

′ and

Ωp = {(a,b, c) ∈Wsimp(Lp) | |a|p ≤ 1 if p ∈ PK,fin and(3)

|a|p < δp if p ∈ PK,inf},
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where δp =
(
d ·max1≤i,j≤d |ω

σj
i |p

)−1
if p ∈ PK,inf . If p ∈ S, then Lp = Kp, because L′ ⊂ Ktot,S ⊂ Kp.

Let a0,b0, c0 be the points of (L′)d such that z0 = (a0,b0, c0). By (1) and (2),

(0, tσ1
0 ,(g(0)−1)σ1 , . . . , 0, tσd0 , (g(0)−1)σd) = (xσ1

0 , . . . ,xσd0 ) = Λ(z0) = Λ(a0,b0, c0)

=
( d∑
i=1

ωσ1
i a0,i,

d∑
i=1

ωσ1
i b0,i,

d∑
i=1

ωσ1
i c0,i, . . . ,

d∑
i=1

ωσdi a0,i,

d∑
i=1

ωσdi b0,i,

d∑
i=1

ωσdi c0,i
)
.

Let Q =
(
ω
σj
i

)
1≤i,j≤d ∈ GLd(L

′) [Lan93, p. 286, consequence of Cor. 5.4]. Then, Qa0 = 0 (where a0 is

now considered as a column), so a0 = 0. Hence, by (3), z0 ∈ Ωp for each p ∈ T . Therefore, Ωp is a non-
empty p-open subset of Wsimp(Lp), invariant under Gal(Lp/Kp), for each p ∈ T . Since z0 ∈W (OL′,V r T ),
we have z0 ∈ W (OK̃,p) for each p ∈ V r T . It follows that (Lp,Ωp)p∈T is approximation data for
K,S, T ,V,W .

Part C: Conclusion of the proof. By Proposition 12.4,

(M,K,S,V,W, T , (Lp,Ωp)p∈T ) |= SAT.

Hence, there exists z = (a,b, c) ∈W (OM,V r T ) such that zτ ∈ Ωp for each p ∈ T and each τ ∈ Gal(K).

Let (a, b, c) = λ(z) =
(∑d

i=1 ωiai,
∑d
i=1 ωibi,

∑d
i=1 ωici

)
. Since ω1, . . . , ωd ∈ L ⊆ M , we have (a, b, c) ∈

V (M). Hence, a, b, c ∈ M , h(a, b) = 0, and g(a)c = 1, so g(a) 6= 0. Moreover, a =
∑d
i=1 ωiai ∈

OM,V r T (because ω1, . . . , ωd ∈ OL) and, by (3), |aτ |p ≤ 1 for each p ∈ T and each τ ∈ Gal(K).

(Note that if p ∈ T ∩ PK,inf , then |aτ |p ≤
∑d
i=1 |ωτi |p|aτi |p < d · max1≤i,j≤d |ω

σj
i |p · δp = 1.) Hence,

a ∈ OM,V r T ∩ OM,T = OM,V , as desired.

Lemma 13.2 makes it possible to generalize the strong approximation theorem from varieties V
defined over K to varieties V defined over finite extensions of K in Ktot,S .

To this end we choose for each finite extension K ′ of K in Ktot,S and for each p ∈ PK′ a completion

K̂ ′p of K ′ at p and an embedding of K̃ into the algebraic closure of K̂ ′p, as we do in Subsection 4.1. Then
the notions defined with respect to K are also well defined for K ′. In particular, SK′ , TK′ , and VK′ are
the sets of all p ∈ PK′ that lie over S, T , and V, respectively. Note that SK′ and TK′ are finite sets, VK′
is a proper subset of PK′ , SK′ ⊆ TK′ ⊆ VK′ , and VK′ r TK′ ⊆ PK′,fin. Moreover, K ′p = K̂ ′p ∩ K̃, for all
p ∈ TK′ . Finally, observe that K ′tot,SK′ = Ktot,S .

Proposition 13.3: Let K,S, T ,V be as in Subsection 4.8, let K ′ be a finite extension of K in Ktot,S . Let
M be an extension of K ′ in Ktot,S which is weakly symmetrically K-stably PSC over OK,V . Consider an
absolutely integral affine variety V in AnK′ for some positive integer n. Let (Lp,Ωp)p∈TK′ be approximation
data for K ′,SK′ , TK′ ,VK′ , V . Then there exists z ∈ V (OM,V r T ) such that zτ ∈ Ωp(LpKtot,S) for all
p ∈ TK′ and τ ∈ Gal(K ′).

Proof: First we assume that V is a curve. By Lemma 13.2, M is weakly PSC over OM,V . By definition,
OM,VK′ r TK′ = OM,V r T . Moreover, M is also weakly symmetrically K ′-stably PSK′C over OM,VK′ .
Hence, we may apply Proposition 12.3 to K ′ rather than to K and find z ∈ V (OM,V r T ) such that
zτ ∈ Ωp(LpKtot,S) for all p ∈ TK′ and τ ∈ Gal(K ′).

Finally, the reduction lemmas 4.10 and 4.12 work if we replace K by K ′ and the condition “zτ ∈ Ωp

for all τ ∈ Gal(K) and p ∈ T ” by the condition “zτ ∈ Ωp(LpKtot,S) for all τ ∈ Gal(K ′) and p ∈ TK′”.
Hence, the case where V is a curve implies the general case.

An interesting special case of Proposition 13.3 is the local-global principle stated in Proposition
13.4 below. It is a consequence of Lemma 13.2 and [JaR08, Thm. 2.5]. However, since the latter theorem
is one of the main results of [JaR08] and its proof extends over all of that paper, we prefer to give a proof
that relies on the results of the present work.

Given a field K ⊆M ⊆ Ktot,S and a prime q ∈ VM we set

DM,q = {x ∈M | |x|q ≤ 1 if q|K ∈ PK,fin and |x|q < 1 if q|K ∈ PK,inf}.
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We also let DM,V =
⋂

q∈VM DM,q. Given p ∈ VK′ for some extension K ′ of K in Ktot,S and a field

K ′p ⊆ L ⊆ K̃, we set

D(L) = Dp(L) = {x ∈ L | |x|p ≤ 1 if p|K ∈ PK,fin and |x|p < 1 if p|K ∈ PK,inf} .

Proposition 13.4 (Local-global principle): Let K be a global field, V a proper subset of PK , and S a
finite subset of V. Let M be an extension of K in Ktot,S . Suppose M is weakly symmetrically K-stably
PSC over OK,V . Let V be an absolutely integral affine variety in AnM for some positive integer n such
that Vsimp(D(Mq)) 6= ∅ for each q ∈ SM and V (D(Mq)) 6= ∅ for all q ∈ VM rSM . Then, V (DM,V) 6= ∅.

Proof: We choose a finite extension K ′ of K in M over which V is defined [Lan58, Sec. III.5, p. 74]. For
each p ∈ SK′ the p-closure K ′p of K ′ that we have chosen contains Ktot,S , hence also M . Thus, K ′p = Mq,
where q is the prime of M induced by K ′p. By assumption, Ωp = Vsimp(D(K ′p)) is non-empty. We set
Lp = K ′p.

Next we choose a finite subset T of V that contains S ∪ (V ∩ PK,inf). For each p ∈ TK′ rSK′
the p-adic topology on MK ′p (which is actually Ksep, by [GJR00, p. 220, Prop. 1.15]) induces a prime
q ∈ TM rSM , so MK ′p contains Mq. Since V (D(Mq)) 6= ∅, there exists zp ∈ V (D(MK ′p)). We choose a
finite Galois extension Lp of K ′p such that zp ∈ V (Lp) and set Ωp = V (D(Lp)). Then, zp ∈ Ωp.

The collection (Lp,Ωp)p∈TK′ obtained in this way is approximation data for K ′,SK′ , TK′ ,VK′ , V .
By Proposition 13.3, there exists z ∈ V (OM,V r T ) such that zτ ∈ Ωp(LpKtot,S) for all p ∈ TK′ and all
τ ∈ Gal(K ′). The latter condition implies that z ∈ DM,q for every coordinate z of z and every q ∈ TM .
Combining this conclusion with the former condition, we conclude that z ∈ V (DM,V), as desired.

Definition 13.5: We say that a field M0 is PAC over a subset O if for every absolutely irreducible
polynomial f ∈M0[X,Y ] which is separable in Y there exist infinitely many points (a, b) ∈ O×M0 such
that f(a, b) = 0.

The next two results contain notation introduced in the second paragraph of the introduction.

Lemma 13.6 ([GJR00, p. 218, Lemma 1.12]): Let M0 be an algebraic extension of K, M = M0∩Ktot,S ,
and e a positive integer. Suppose that M0 is PAC over OK,V . Then:
(a) M is weakly PSC over OK,V . In particular, Ktot,S is weakly PSC over OK,V and Ktot,S(σ) is weakly

PSC over OK,V for almost all σ ∈ Gal(K)e.
(b) Let M ′ be the maximal Galois extension of K inside M . Then M ′ is weakly K-stably PSC over
OK,V . In particular, Ktot,S [σ] is weakly K-stably PSC over OK,V for almost all σ ∈ Gal(K)e.

We conclude our work with the main result.

Theorem 13.7: Let K be a global field, e a non-negative integer, V a proper subset of the set of all
primes of K, and S a finite subset of V. Then, for almost all σ ∈ Gal(K)e and for every subfield M of
Ktot,S that contains Ktot,S [σ], we have:
(a) M is weakly PSC over OM,V .
(b) (M,K,S,V) |= SAT.
(c) M satisfies the local-global principle 13.4.

Proof: For almost all σ ∈ Gal(K)e, Lemma 13.6 assures that Ktot,S [σ] is weakly K-stably PSC over
OK,V . Hence, by Definition 12.1, M is also weakly symmetrically K-stably PSC over OK,V . It follows
from Proposition 12.4 that (M,K,S,V) |= SAT. Moreover, M satisfies the local-global principle 13.4.
Finally, by Lemma 13.2, M is weakly PSC over OM,V .

Remark 13.8:
(a) Statements (a) and (c) of Theorem 13.7 settle a question posed in [Jar06, p. 376, Remark 6] when

K = Q and S = ∅.
(b) Let M be an extension of K in Ktot,S . It is possible to prove Proposition 13.3 under the assumption

that M is weakly PSC over OM,V (rather that M is weakly symmetrically K-stably PSC over OK,V).
Conversely, one may use the arguments of the proof of Lemma 13.2 to prove that if M satisfies the
conclusion of Proposition 13.3, then M is weakly PSC over OM,V .

49



(c) The local global principle mentioned in the abstract is a quick consequence of Theorem 13.7(c).
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