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Abstract: Let K be a global field, V a proper subset of the set of all primes of K, S a finite subset
of V, and K (resp. Kyp) a fixed algebraic (resp. separable algebraic) closure of K. Let Gal(K) =
Gal(Kgep/K) be the absolute Galois group of K. For each p € V we choose a Henselian (respectively, a
real or algebraic) closure K, of K at p in K if p is non-archimedean (respectively, archimedean). Then,
Kiot,s = yes ﬂTeGal(K) Ky is the maximal Galois extension of K in Ksep in which each p € S totally
splits. For each p € V we choose a p-adic absolute value | |, of K, and extend it in the unique possible
way to K.

For o = (01,...,0.) € Gal(K)° let Ko s[o] be the maximal Galois extension of K in Ky s fixed
by 01,...,0c. Then, for almost all o € Gal(K)® (with respect to the Haar measure), the field Ko s[0]
satisfies the following local-global principle:

Let V' be an absolutely integral affine variety in A’%. Suppose that for each p € S there exists
2y € Viimp(K,) and for each p € VNS there exists z, € V(K) such that in both cases |z,|, < 1 if p is
non-archimedean and |z,|, < 1if p is archimedean. Then, there exists z € V(Ko 5[0]) such that for all
p € V and for all 7 € Gal(K) we have: 27|, < 1if p is archimedean and |27 |, < 1 if p is non-archimedean.

Introduction

The strong approximation theorem for a global field K gives an x € K that lies in given p-adically open
discs for finitely many given primes p of K such that the absolute p-adic value of = is at most 1 for
all other primes p except possibly one [CaF67, p. 67]. A possible generalization of that theorem to an
arbitrary absolutely integral affine variety V over K fails, because in general, V(K) is a small set. For
example, if V' is a curve of genus at least 2, then V(K) is finite (by Faltings). This obstruction disappears
as soon as we switch to “large Galois extensions” of K. We prove in this work a strong approximation
theorem for absolutely integral affine varieties over each “large Galois extension” of K.

To be more precise, let K be an algebraic closure of K, K, the separable closure of K in

K, Gal(K) = Gal(Kgep/K) the absolute Galois group of K, and e a non-negative integer. We equip
Gal(K)¢ with the normalized Haar measure [FrJ08, Section 18.5] and use the expression “for almost all
o € Gal(K)®” to mean “for all o in Gal(K)® outside a set of measure zero”. For each o = (01,...,0.) €
Gal(K)¢ let Keep(o) = {2 € Keep| 7" = z, fori = 1,...,e} and let Kyp[o| be the maximal Galois
extension of K in Kgep (o).

Let Pk be the set of all primes of K, Pk gy the set of all finite (i.e. non-archimedean) primes and
P ine the set of all infinite (i.e. archimedean) primes. We fix a proper subset V of Pk, a finite subset

T of V, and a subset S of T such that VT C Pk g,. For each p € V we fix a completion Xp of K
at p and embed K in an algebraic closure I/é; of Kp. Then, we extend the normalized absolute value
| |p of Kp to Ifg in the unique possible way. In particular, this defines |z|, for each = € K. As usual, if
x = (21,...,2,) € K™, we write |x|, = max(|z1]p,...,|Tnlp)-

We set K, = KN Kp and note that K, is a Henselian closure of K at p if p € Pg an and a real or
the algebraic closure of K at p if p € P inr. Thus,

Kes=(] [\ XK
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is the maximal Galois extension of K in which each p € S totally splits. For each o € Gal(K)® we set
Kt0t78(o') = Ksep(o') N Ktot,S and Ktot,S[o'] = Ksep [0'] N Ktot,S-

For each extension M of K in K and every p € Pg, NV we consider the valuation ring O Mmp ={x €
M| |z|, <1} of M at p. For each U C V we define Opry to be the set of all € M such that |z7|, <1
for all p € U and 7 € Gal(K). Note that if U C Pk gy, then Oy is an intersection of valuation rings,
hence it is an integrally closed domain. Note however that Oy ;p; is different from Oy .

In this notation the following result is a reformulation of [JaR08, Thm. 2.2]. Throughout this paper,
for each positive integer n, by an affine variety in A7, we mean a closed subscheme of A% (Subsection
4.2).

PROPOSITION A: For almost all o € Gal(K)® the field M = Ko s(o) satisfies the following strong
approximation theorem: Let V be an affine absolutely integral variety in A%, for some positive integer
n. For each p € S let z, € Vimp(K,), for each p € TS let z, € V(K), and for each p € VT let
zy € V(Og ). Then, for every € > 0 there exists z € V(M) such that |z — zy|, < ¢ for all p € T and
T € Gal(K) and |z7|, <1 forallp € VT and 7 € Gal(K).

When e = 0, we have Kyt s(0) = Kiors and we retrieve [MoB89, Thm. 1.3]. For arbitrary
e > 0, Proposition A implies the following analog of Rumely’s local-global principle for almost all fields

Ktot,S(o'):

PROPOSITION B: For almost all o € Gal(K)® the field M = Ko s(0) satisfies the following local-global
principle: Let V' be an affine absolutely integral variety in A%, for some positive integer n. Suppose for
each p € S there exists z, € Vimp(K,) and for each p € VNS there exists z, € V(K) such that in each
case the following holds: |zy|, <1 ifp € Prgn and |zp|, <1 if'p € P ins.

Then, there exists z € V(M) such that for all T € Gal(K) we have: |27 |, <1 for eachp € VNPk gn

and |z"|, <1 for each p € V NPk ins.

For K = Q, e = 0, and V = Pg,,, Proposition B specializes to Rumely’s local-global principle for
the ring 7 of all algebraic integers [Rum86]. That principle yields an affirmative answer to Hilbert’s 10th
problem for Z [Rum86, p. 130, Thm. 2], answering a question of Julia Robinson from the 1970’ties. L.
v. d. Dries applies the local-global principle to prove that the elementary theory of Z is decidable [Dri88,
p. 190, Cor.].

The proof of Proposition A is carried out along the lines of the proof of the local-global principle
for Kiot,s of [GPRY5]. In addition it uses that for almost all o € Gal(K)® the field Kyp(o) is PAC
over Ok y. This means that for every absolutely irreducible polynomial f € K[X,Y] which is separable
in Y there exist infinitely many points (a,b) € Ok vy X Keep(o) such that f(a,b) = 0. This implies that
Keep(0o) is also PAC over Oy, for every extension L of K in Kgep(o).

Unfortunately, as [BaJ08, Thm. B] proves, no Galois extension of K except Kgep is PAC over K,
let alone over Ok y. In particular, if o # 1, then Kgplo] is not PAC over Ok y. Thus, the proof
of Proposition A breaks down for the fields Kgep[o]. However, almost all of the fields M = Kgep|o]
have a weaker property than being PAC over Ok, namely they are “weakly K-stably PAC over Ok y”
(Definition12.1 for § = ). This would almost help to adjust the proof of Proposition A given in [JaR08§]
to a proof of the analogous theorem for almost all of the fields Ko s[o]. However, as in [JaR08], we
would need to replace K somewhere along the proof by a finite extension L that lies in Kot s[o] and
then proceed with Lot s, [0], where Sy, is the set of all primes of L lying over S. Although it is still true
that Leep(0) = Kgep(o) and Keep (o) is weakly L-stably PAC over Oy (for almost all o € Gal(L)®),
the field Lgep[o] may properly contain Kgep[o] even if we choose L to be Galois over K, so nothing that
we prove on Lot s, [o] would apply to Kot s[o].

Fortunately, the proof of [MoB89, Thm. 1.3] does not enlarge K as [JaR08] does. We combine the
method of that proof with the method of the proof of the main result of [GeJ02]. In our case the latter
result says that Kio s[o] is PSC for almost all o € Gal(K)¢. This means that if V' is an absolutely
integral affine variety in A?(mt’s[a] for some positive integer n and Vsimp(Kg ) # 0 for every p € S and

7 € Gal(K), then V(Kiot,s[o]) # 0. One of the main ingredients of the proof of that theorem is the main
result of [GJR17] which produces a “symmetrically stabilizing” element ¢ for a given function field F' of
one variable over K with zeros and poles in given S-adically open neighborhoods in V(Kiot,s)-
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The construction of ¢ in the present work has to be done with extra care. We prove the following
analog of Proposition A (see Theorem 13.7):

THEOREM C (Strong approximation theorem): Let K,S,T,V, e, Pk an be as above. In particular, K is
a global field and VT C Py fy. Then, for almost all o € Gal(K)® the field M = Ko 5[0 satisfies the
strong approximation theorem, that is M has the following property:

Let V' be an absolutely integral affine variety in A, for some positive integer n. For each p € S
let Qy, be a non-empty p-open subset of Viinp(K,). For each p € TS let Q, be a non-empty p-open
subset of V(K), invariant under the action of Gal(K,). Finally, for each p € VT we assume that
V(Og,) # 0. Then,

(1) VOuy~m)n () (] @5 #0.

peT T€Gal(K)

The first three sections of this work introduce necessary prerequisites. Section 4 reduces the proof
of the strong approximation theorem for an intermediate field M of Kiot,s/K from absolutely integral
affine varieties over the given global field K to absolutely integral affine curves over K. In particular
it allows us to increase 7 within V and replace V by a non-empty Zariski-open subset, if necessary.
Given an absolutely integral affine curve C over K, we use this flexibility in Section 5 to construct a
principal ideal domain R = Ok, 7 with quotient field K and a smooth affine curve X over R such
that Xx = C. Then, following [MoB89], we embed X as a Zariski-open subset of a projective regular
curve X = Proj(Rlto,...,t,]|), where Rlto,...,t,] =Y poy Rlto ..., t:]x is a graded integral domain over
R such that Rl[to,...,tJo = R and Rlto,...,t;]1 = > ._, Rt; (Lemma 5.6).

The main result of [MoB89] produces for every large positive integer k a section so € I'(X, Ox(k))
such that each of the irreducible components of the effective divisor div(sg) yields distinct points of
X (Kiot,s) that belong to the left hand side of (1) with C replacing V' and Kios replacing M. In
particular, sy does not vanish on Z = X \ X (essentially Proposition 7.6 and Lemma 7.8).

In order to find such points in C(Opry~ 7), We construct a surjective morphism ¢ from Xk
onto a projective curve Y = Proj(K]|so,...,s/]), where sg,s1,...,s are elements of Rlty,...,t]; for
an appropriately chosen large k£ and sg is as in the preceding paragraph. Moreover, s1,...,s; vanish on
Z. Changing the base from R to K, the curve Y has some special properties. It is a non-strange curve
with only finitely many inflection points and finitely many double tangents, and it has cusps with a given
large multiplicity ¢ such that the multiplicities of all other points of Y; are at most ¢ (Proposition 10.5).

Choosing ¢ as a large prime number, the main result of [GJR17] and Proposition 11.2 give an
element

So+aisy +...+as;

t =
S0 +b1s1+ -+ bs;

of the function field F' of Xj such that F/K(t) is a finite separable extension and the Galois clo-
sure I of F/K(t) is a regular extension of K (we call ¢ a “stabilizing element” of F/K). Moreover,
ay,...,a;,by,....,p € R, by = 1+ ay, and (a1,...,a;,be,...,b;) can be chosen in a T-open subset of
R2171.

By a result of [GJR00] (quoted here as Lemma 13.6), for almost all o € Gal(K)®, every extension
M of Kio slo] in Kiot, s is “weakly K-stably PSC over Ok " (Definition 12.1). If we take a1,...,a;in R
sufficiently close to 0 in the 7-adic topology and bo, ..., b € R, then that property yields an M-rational
place of FM with residue field M such that, with s’ = sg + a181 + -+ + a;5;, the zero of div(s’) that
corresponds to this place belongs to C(Oar,y~7) NNyer Nrecaix) 4 # @ (Proposition 12.3). Thus, M
satisfies the strong approximation theorem.

Finally, we denote the compositum of all finite Galois extensions of K with symmetric Galois groups
by Ksymm. In a forthcoming work we prove the following result:

THEOREM D: In the notation of Theorem C, the field Kio,.s N Ksymm satisfies the strong approximation
theorem.
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1. Twisted Sheaves

Recall that a ring A (commutative with 1) is graded if A = @;_, Ax, where each summand Ay is a
commutative group under the addition of A and ApA; C Agyy for all k,1 > 0. In particular, Ag is a
subring of A and each Ay is an Ag-module. We then say that A is a graded ring over Ay. Each
non-zero s € A has a unique presentation s = Z,?;O Sk, where s, € Ay, for each k > 0 and s, = 0 for
all large k. The elements of (J;, Ay are said to be homogeneous and the elements sy above are the
homogeneous components of s.

If a homogeneous element s of A belongs to Ay, we say that the A-degree of s is k and write
deg 4(s) = k. If s’ is an additional homogeneous element of A, then deg 4(ss’) = deg4(s) + deg4(s').

If sg,...,s; are elements of Ay for some k > 0, then T = Ag[so, ..., s is a graded ring over Ay
with T}, being the Ag-module generated by all of the monomials in s, ..., s; whose A-degree is km. In
particular, To = AO and T1 = 22:0 A()Si.

An A-module M is graded if M = @;-, M, where each M, is an additive subgroup of M and
Ale g Mk+l for all k, l.

An ideal a of A is homogeneous if a is homogeneous as a graded A-module; alternatively, if
a = @, (an Ag); alternatively, if each of the homogeneous components of every a € a belongs to
a; alternatively, if a is generated by homogeneous elements. An example of a homogeneous ideal is
Ay = @2, A;. The homogeneous prime ideals of A not containing Ay form a set Proj(A) that has a
natural sheaf structure [Liu06, p. 52, Prop. 2.3.38].

If (a;);cs is a family of homogeneous ideals of A, then each of the following ideals is homogeneous:
> ier %is [Lier ai (= the set of all finite sums of finite products a;, - - - a;, with a;; € a;,,...,a;, € a4,
and 41,. ..,y distinct elements of I), and (1, a;.

Setup 1.1: Let A = @)-, Ax be a Noetherian graded ring. Then, the ideal A of A is finitely generated,
so Ay =Y i_, Aot; is a finitely generated Ag-module. We assume that A = Aglto, ..., t,]. Then, we set
V = Proj(A) and consider for each k the twisted sheaf Oy (k) [Har77, pp. 116-117] and the abelian
group I'(V, Oy (k)) of its global sections. Each t € I'(V, Oy (k)) can be viewed as an element of the direct
product [[ p(, Ap which is locally a fraction of degree k. This means that each Py € V has a Zariski-open
neighborhood V) and there exist homogeneous elements f and g of A such that deg,(f) — deg4(g) = k,
g¢ P,and tp = 5 in Ap for each P € Vj. If a € A;, then at is an element of I'(V, Oy (j + k)), which is

defined in the latter notation by (at)p = % for each P € Vj. This definition makes @;-,['(V, Ov (k))
into a graded A-module. It also gives a natural homomorphism 8 = By: A — @, ['(V,Ov(k)) of

graded A-modules mapping each s € Ay onto the element of [] 5.\, Ap whose Pth coordinate is {. Let
Br = Bv: Ay = T'(V, Oy (k)) be the kth homogeneous component of 3. ]

For the convenience of the reader we supply a proof to a special case of [Gro611III, p. 446, Thm. 2.3.1].
It says that [y is an isomorphism for all large k.

LEMMA 1.2: The following statements hold under Setup 1.1:

(a) Let I be an ideal of A such that A; C V1. Then, A,, C I for all large m.

(b) Let s be a homogeneous element of A whose annihilator I = {a € A| as = 0} is contained in no
P € Proj(A). Then, A,, C I for all large m.

Proof of (a): For each 0 <14 < r there exists e; such that ¢;" € I. Let e = >.._,(e; — 1) and let m > e.
I Tt € A, then >0 m; =m > >.._(e; — 1), so there exists 0 < i < r with m; > e;, hence
[I;_oti"" € I. Since A,, is generated as an A-module by the monomials of degree m in to,..., ¢, we
conclude that A4,, C I.

Proof of (b): First note that I = 0:As = {a € A| as = 0} is a homogeneous ideal of A [ZaS75II, p. 152,
Thm. 8]. Therefore, by the same theorem, VT is also homogeneous. By [Bou89, p. 283, Prop. 1], VT is
an intersection of homogeneous prime ideals P of A. By assumption, none of those P is in Proj(A4), so
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all of them contain A, hence also A;. It follows that A; C V1. By Part (a), Ay, C I for all large m.
[ |

LEMMA 1.3: Under Setup 1.1, the natural homomorphism Si: A — T'(V, Oy (k)) is an isomorphism for
all large k.

Proof: We break up the proof into two parts.

PART A: For all large k, the map f is injective. Since B: A — @, T(V, Oy (k)) is a homomorphism
of graded A-modules, I = Ker(f) is a homogeneous ideal of A. Since A is Noetherian, I = Y"1 | Ab;
with b; € Ay, for some distinct non-negative integers k;, ¢ = 1,...,n. By the convention in Setup 1.1,

(%)Pev = B, (b;) = 0, where for each P € V, the quotient % is taken in the local ring Ap. Thus, there

exists b € AN P with bb; = 0. It follows that N; = {a € A| ab; =0} € P. Lemma 1.2(b) gives an [; such
that Ay C N; for all k > I;. Let lop = max(ky + l1,...,k, +1,). For each [ > Iy and for each 1 < i <n
we have [ — k; > l;, so Aj_, € N;, hence A;_j,b; = 0. Using the presentation I = E:L:l Ab; and the
homogeneity of I, we get I} = Z:;l Aj_k,b;. Therefore, I; = 0 for each [ > ly. This means that f; is
injective for all I > .

PART B: For all large k, the map [y, is surjective. Let X = P = Proj(R), with R = Ag[Ty, ..., T;],
be the projective space of dimension r over Spec(Ap). Let J be the kernel of the Ag-epimorphism R — A
that maps each T; onto t;, i =0,...,7. Let J be the sheaf of ideals associated with J, that is the sheaf
appearing in the following exact sequence of sheafs:

j#

(1) 0 J Ox j.Ov 0,

where j: V' — X is the inclusion map [Har77, p. 115, Definition]. Since Ox (k) is an invertible sheaf on
X [Har77, p. 117, Prop. 11.5.12(a)], the tensor product of (1) with Ox (k) remains exact. In other words,
the sequence 0 — J (k) — Ox (k) — j«Ov (k) — 0 is exact. Indeed, one may check the exactness locally
at each P € X [GoW10, p. 172] using that Ox (k) p is a free Ox p-module. This yields an exact sequence
of cohomology groups:

(2) 0 — (X, J (k) = T(X,Ox (k) = (X, (j.0v)(k)) = H' (X, T (k))

[Har77, p. 208, Prop. I11.2.6 or Liu06, p. 184, Prop. 5.2.15]. Since J (k) is a coherent sheaf on X [Har77,
p. 116, Prop. I1.5.9], a theorem of Serre [Har77, p. 228, Thm. IT1.5.2(b) or Liu06, p. 195, Thm. 5.3.2(b)]
asserts that H*(X,J(k)) = 0 for all large k. By [Har77, p. 117, Prop. 11.5.12(c)] applied to the Ao-
epimorphism R — A that maps T; onto ¢;, i = 0,...,7, we have j.(Oy(k)) = (j.Ov)(k). It follows from
the definition of the direct image [Har77, p. 65, Def.] that I'(X, (5.Ov)(k)) = T'(V, Oy (k)). Thus, (2)
becomes:

(3) 0= D(X, T (k) — D(X, Ox (k) — D(V, O (k) — 0.

Adding the maps Bx ; and Sy of Setup 1.1 to (3), we get the following commutative diagram:

(4) 0—T(X,J(k)) —T(X,0x(k)) —=T(V,0v(k)) —=0
ﬁx,kT Tﬁv‘k
Ry Ap

By [Har77, p. 118, Prop. I1.5.13], Sx j is an isomorphism for all k. Since the two horizontal maps of the
commutative square of (4) are surjective, By is surjective for all large k. |



Remark 1.4: Under Setup 1.1, let V'’ be a closed subscheme of V' and let I be a homogeneous ideal of A
such that V' = Proj(A/I) [Liu06, p. 168, Prop. 5.1.30]. Then, A" = A/T = @, ,(Ax/ArNI) is a graded
ring over Ay = Ay/AyNI. Moreover, A} = >""_ Ajt: with ¢} =t; + I, and A" = A{[t),... ]

For each integer k& > 0 let ﬂ"(/]f 2/': A — A} be the epimorphism of abelian groups induced by

the epimorphism A — A/I of rings and let p&f},,: I(V,0vy(k)) — T(V',Ovp/(k)) be the restriction
homomorphism induced by the closed immersion V' C V. We set 8, = By, and 3}, = By i (Setup 1.1).
By Lemma 1.3, we have for each large k that S and j;, are isomorphisms. Since By is natural in V', we

have p&f},, ok =B o ﬂ%,’f%,,. It follows that ; maps the kernel Ay NI of ﬂgf%/, onto Ker(p&f%/,). Also,

since ﬂ"(/lf %,, is surjective, so is pﬁf’ %/,. This gives the following commutative diagram with two short exact

sequences:

)
(5) 00— A,nI A d Al 0
5k¢ ﬂkt lﬁ;’c
(k)

v,v/

0 — Ker(plf},,) —=T(V, Oy (k) — T(V", Oy (k)) —= 0

The maps wg,]fz/, and p&%/, combine to epimorphisms of A-modules 7y, y: A — A" and py,v: @pe  T(V, Ov(k)) —>I

B T(V',Ov(k)) that satisfy py,v: o fy = By o Ty
Following this observation, we categorically identify Aj with I'(V, Oy (k)) via Sy and identify

A N I with Ker(pgf%,,) for all large k. |

LEMMA 1.5: In the notation of Setup 1.1, let Vi,...,V,, be closed pairwise disjoint subschemes of the
projective scheme V and let k be a sufficiently large positive integer. For each 1 < i < m let s; €
I'(V;, Oy, (k)). Then, there exists an s € I'(V, Oy (k)) such that s|y, = s; fori=1,...,m.

Proof: We consider the closed subscheme V' = U;il V; of V. The sets Vi,...,V,, are closed and
disjoint in V’. Hence, they are also open in V'. If i # j, then the restrictions of both s; and s; to
(0, Oy (k)) is the unique element 0 of the latter module. By the basic property of sheaves, there exists
s € T(V',0v/(k)) such that s'|y, = s; for ¢ = 1,...,m. Since V' is a closed subscheme of V, the

surjectivity of pgﬁ,, in (5) gives an s € T'(V, Oy (k)) such that s|y» = ¢', hence s|y, = s; fori =1,...,m.

Example 1.6: Let K be a field and ty,...,t,. non-zero elements of a field extension of K. We set
t = (to,...,t;) and assume that K[t] is a graded ring over K such that K[t]; = .., Kt;. Then, for all
distinct integers i, j between 0 and r the element ¢; is transcendental over K(i—?, ceey %) [ZaST7511, p. 168,

Lemma]. Also, for each k > 0, K[t]; is the vector space over K generated by all monomials in tg, ..., %,
of degree k with coefficients in K.
A homogeneous element of the quotient field K(t) of K[t] is a quotient 5 of homogeneous

elements of K[t] with g # 0. We set degg (5) = deg gy (f) — deggy (9) and observe that deggyy is a

well defined homomorphism from the multiplicative group of homogeneous elements of K(t)* onto Z.

We consider the integral projective variety V = Proj(K|[t]) over K. Then, for each 0 < i < r,
F = K(%, cee %) is the function field of V. It can also be described as the set of all homogeneous
elements of K (t) of K[t]-degree 0. Indeed, if f(t),g(t) are homogeneous elements of K[t] of the same

K|[t]-degree k with g # 0, then % = % eF.

Recall that the local ring of V' at a point P is the ring Oy, p of all quotients 5, where f and g are
homogeneous elements of Kt] of the same K[t]-degree and g ¢ P. Likewise for each k > 0 the stalk
c ~ g . . i
Oy (k) p is the K-vector-space that consists of all quotients 7 where f and g are homogeneous elements
of K[t] such that degy;(f) — degkpy(9) = k and g ¢ P. By Lemma 1.3,

(a) for every large positive integer k an element = of K(t) belongs to K[t if and only if x € Oy (k)p
forall Pe V.



Next we assume that V is an integral normal projective curve over K. Then,

(b) for each closed point P of V, the local ring Oy, p is a valuation ring of F' [Lan58, p. 151, Thm. 1].
We denote the corresponding normalized discrete valuation of F' by ordp. By definition, Oy, p is the
subring of F' that consists of all quotients -, where s,u are homogeneous elements of K[t] of the
same K[t]-degree with w ¢ P. Thus, each of them satlsﬁes ordp(£) > 0. Since Oy, p is the valuation
ring of ordp, each x € F with ordp( ) > 0 can be written as  with s,u as above. In particular, if
both s and w as above do not belong to P, then ordp (5) = 0.

(c) If m € F satisfies ordp(m) > 1 and we write m = £ with p and v homogeneous elements of K[t] of the
same K [t]-degree with v ¢ P, then p € P (otherwise 77! = > € Oy,p, so ordp(m) = 0, in contrast to
our assumption).

Conversely, if f and u are homogeneous elements of K[t] of the same KJt]-degree, f € P, and
u ¢ P, then 5 € Oy, p, hence ordp (5) > 0. If ordp (5) =0, then % € Oy, p. This gives homogeneous
elements g,v in K[t] of the same K([t]-degree such that v ¢ P and % = £, hence uv = fg € P in

contrast to the assumption that P is a prime ideal. It follows that ordp (i) > 1.
(d) If z is a homogeneous element of K (t) of K[t]-degree k, h € K[t], > P, and ordp (%) > 0, then by

(b), ¥ = 5, where f and g are homogeneous elements of K[t] of the same K[t]-degree with g ¢ P.

Thus, z = % € Oy(k)p
(e) Let z and u be homogeneous elements of K[t] of the same K|[t]-degree such that u ¢ P and x € P?
for some positive integer ¢q. Since P is a homogeneous ideal of K[t], there exist a positive integer [ and

homogeneous elements ¢;1, .. .,t;; € K[t] that belong to P, i =1,...,[, such that x = Zl 1 tijs
and under the setting d = deg ) () and d;; = deg g (ti;) we have Z?Zl d;; = d for all i. We Choose
a homogeneous element v € K|[t]; with v ¢ P (e.g. one of the t;’s), divide z by v¢ and obtain

ZHW -

=1 j5=1

By (c), ordp( tif]) > 1 for all ¢,j. Hence, ordp (U%) > ¢q. It follows that ordp (%) = ordp(%) +
ordp( ) >q. |

2. Global Sections of Invertible Sheaves and Cartier Divisors

Following [Liu06, p. 266, Exer. 7.1.13], we associate effective Cartier divisors to global sections of invertible
sheaves on integral schemes and introduce their degrees.

2.1 DIVISORS ON CURVES OVER A FIELD. We consider a curve C over a field L. Thus, C'is a separated
scheme of finite type over L, each of its irreducible components is of dimension 1. We assume that C
is integral and projective and let F' be the function field of C'. For each closed point p of C' and each
non-zero f € O¢ p we write ordp (f) for the length of the O¢ p-module O¢ p/Oc p f [AtM69, p. 77]. This
function satisfies

(1) Ordp(fg) = Ordp(f) + ordp(g),

hence it extends to a function ord, on F'* satisfying (1) for all f,g € F* [BLR90, p. 237]. If p is a closed
normal point of C, then ordy, coincides with the normalized valuation attached to the discrete valuation
ring O¢ p as introduced in Example 1.6(b).

If (U, fi)ier is data that represent a Cartier divisor D on C, we define ordy, (D) as ordp(f;) for each
i € I such that p € U;. Then, the Weil divisor that corresponds to D is Dweil = Y ordp(D)p, where p
ranges over all closed points of C. The degree of D (and of D) is then

(2) deg(D Z ordp( L.



Here, L(p) is the residue field O¢ p/mecp of C at p. If an affine neighborhood of p in C' is embedded in

A" and one views p as an n-tuple of elements of L, then the field obtained from L by adjoining those
elements is L-isomorphic to L(p).

By (1), deg(Dy 4+ D2) = deg(D1) + deg(D3) for any two Cartier (or Weil) divisors Dy and Dy on
C. A Cartier divisor on C that can be represented by a pair (C, f) with f € F'* is said to be principal
and is denoted by div(f). By [GoW10, p. 498, Thm. 15.32], deg(div(f)) = 0.

Recall that a Cartier divisor D on C which is represented by data (U, f;)iesr naturally corresponds
to an invertible sheaf £ on C such that T'(U;, £) = T(U;, O¢) f;* for each i € I. Two Cartier divisors that
correspond to isomorphic invertible sheaves on C differ by a principal divisor [GoW10, p. 303, Prop. 11.26].
By the preceding paragraph, they have the same degree. Hence, one defines deg(£) = deg(D) for each
Cartier divisor D on C that corresponds to L. Since addition of divisors corresponds to tensor products
of the corresponding invertible sheaves, we have deg(£ ®o. L') = deg(L) + deg(L’).

By [GoW10, p. 498, Remark 15.30(2)], the degree of divisors (hence of invertible sheaves) on C is
invariant under a change of the base field.

2.2 CURVES OVER SCHEMES. Let f: C — S be an S-curve, i.e. f is a morphism of schemes of finite
presentation with one dimensional fibers. Under the assumption that f is flat and proper and that both S
and C are integral, [BLR90, p. 238, Prop. 2] generalizes the definition of the degree to invertible sheaves
on C (hence the definition of the degree of divisors on C). We restrict ourselves to the only case we use
in this work, where for each s € S, the fiber Cs = Spec(k(s)) xg C is an integral curve over the residue
field k(s) = Og s/mgs of S at s. Let i5: Cs — C be the canonical morphism. We consider an invertible
sheaf £ on C and for each s € S let L, be the pull-back ¢¥£. It is an invertible sheaf on the fiber C;
[BLROO, p. 238, last paragraph before Prop. 2]. Since S is integral, [BLR90, p. 238, Prop. 2] implies that
deg(Ls) (defined in Subsection 2.1) has a unique value on S, which we define as deg(L). It follows from
Subsection 2.1 that the degree is additive and invariant under base change. In particular, if S = Spec(R)
for some integral domain R with quotient field K, and we take s to be the generic point of .S, we get that
deg(D) = deg(Dg) for each Cartier divisor D on C.

Finally we note that the assumptions on f: C'— S to be flat and proper are satisfied if S = Spec(R)
(resp. S = Spec(L)), where R is a Dedekind domain (resp. L is a field), and f is projective and surjective
(or at least dominating). See for example [Liu06, p. 137, Prop. 3.9] and [Liu06, p. 108, Thm. 3.30]. These
are the cases we consider in this work.

2.3 SUBSCHEMES ATTACHED TO DIVISORS. As in Subsection 2.2, let f: C' — S be an S-curve. Recall
that a Cartier divisor D on C represented by data (U, f;)ier is said to be effective if f; € T'(U;, O¢)
for each i € I. In this case, D gives rise to a closed subscheme C(D) of C such that I'(U;, O¢(p)) =
L(U;, Oc¢)/ fiT(U;, O¢) for each i € I. We say that D is flat (resp. finite) over S if C'(D) is flat (resp. finite)
over S. We say that a subset Cy of C is disjoint from D, if Co N C(D) = (). Finally note that if
S = Spec(L) for some field L, then deg(D) = dimz, I'(C(D), O¢(py) [GoW10, p. 497, (15.9.1)].

2.4 DIVISORS OF GLOBAL SECTIONS. Let C be an integral scheme with function field F'. We consider
an invertible sheaf £ on C and a non-zero global section s € T'(C, L), and elaborate on [Liu06, p. 266,
Exer. 7.1.13] to associate an effective Cartier divisor div(s) to s.

By definition, C' can be covered by open subsets U;, ¢ € I, such that L|y, is a free O¢|y,-module
of rank 1. Thus, for each ¢ € I there exists e; € I'(U;, L) such that for each Zariski-open subset
U of U;, the element ¢;|y is a free generator of the T'(U, O¢)-module I'(U, £). In particular, there
exists a unique f; € T'(U;, O¢) such that s|y, = fie;. Moreover, for each additional j € I there exists
ui; € D(U; N U;, Oc)™ such that e;|u,nu; = uij - €j|v,nu;, hence g - filv,nv, = fjlv.nv,- Thus, the data
(Us, fi)icr define an effective Cartier divisor div(s) on C.

For later use we say that e; is a free O¢|y,-generator of L|y,.

By [Har77, p. 144, Def.], the invertible sheaf £(div(s)) associated with div(s) satisfies L(div(s))|y, =
(Oclu,) f[l for each ¢ € I. It follows from the construction made in the preceding paragraph that
the T(U;, O¢)-isomorphisms ¢;: T'(Uy, £(div(s))) — T(U;, £) defined by ¢;(s'f;!) = s'e; for each s’ €
I'(U;, O¢) combine to an isomorphism ¢: £(div(s)) — £ of invertible sheaves on C.

Now we assume that C' is an integral locally factorial proper curve over a Noetherian domain R
(possibly a field). As in [Har77, p. 141, first part of the proof of Prop. 6.11] or [GoW10, p. 307, (11.13.4)
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and Thm. 11.38(2)], the Weil divisor that corresponds to div(s) is

(3) divien(s) = Y _ ordp(div(s)) P,
P

where P ranges over all prime divisors of C' such that P N U; # 0 and ordp(div(s)) = ordp(f;) for
each ¢ € I. Here, in analogy to the notation introduced in Example 1.6(b), ordp is the normalized
discrete valuation of F' that corresponds to the valuation ring Oc p. Thus, ordp(f;) is non-negative and
independent of the i that satisfies PNU; # (), so divweii(s) is an effective Weil divisor. The finitely many
prime divisors P of C with ordp(div(s)) > 0 are called the zeros of s. In the notation of Subsection 2.3,
the set of zeros of s is the underlying topological set of C(div(s)). Hence, div(s) is disjoint to a subset
Cy of C if each of the zeros of s is disjoint to Cy. We say that div(s) is flat and finite over an integral
domain R if C(div(s)) is flat and finite over R.

In addition to the assumptions made on C' above we now assume that C, is integral over k(p) =
Quot(R/p) for each p € Spec(R) (this is the only case we use in this work). The degree of div(s) is
defined as in Subsection 2.1 if C' is a curve over a field. If C is a curve over R, then by Subsection 2.2,
deg(div(s)) = deg(div(s)x), where K = Quot(R). Since L(div(s)) & L, we deduce that deg(div(s)) =
deg(L). Tt follows that deg(div(s’)) = deg(div(s)) for each non-zero s’ € I'(C, £).

If the zeros of s belong to a Zariski-open subscheme Cy of C, we may consider div(s) also as a
divisor on Cj.

2.5 THE SECTION 1p. Let C be an integral scheme with function field F'. Let D be a Cartier divisor on
C' with representing data (U;, fi)icr. One attaches an invertible sheaf £(D) on C such that £L(D)|y, =
Ocluv, f; !, hence T(U;, L(D)) = T(U;, Oc) f;* for every i € I [Har77, p. 144, Def.]. If D is an effective
divisor, then f; € T'(U;, O¢), so the unit of F, 1 = fifi_1 belongs to I'(U;, £(D)) for each i € I. Hence,
there exists a global section 1p € I'(C, £L(D)) such that 1p|y, =1 for each i € I.

In the notation of Subsection 2.4, the Cartier divisor on C that corresponds to 1p has (U;, fi)icr
as representing data. Hence, div(1p) = D.

2.6 THE AMPLE SHEAVES O¢(k). Let Ay be a Noetherian integral domain and let A = @, , A be a
graded integral domain over Ay such that A; = >0, Aot; and A = Ag[t] with t = (fo,...,t,). Then,
C = Proj(A) is isomorphic to a closed subscheme of P’y = [Liu06, p. 53, Lemma 2.3.41], so C'is projective
over Ag. Hence, C is proper over Ay [Liu06, p. 108, Thm. 3.3.30]. We assume that C' is a regular curve
over Ay, in particular C' is locally factorial [Liu06, p. 130, Thm. 4.2.16(b)]. As above, we also assume
that C is integral for each p € Spec(Ay). Let F' be the function field of C'. Following Subsection 2.4, we
attach to each non-zero s € Ay, with k large an effective Weil divisor divei(s) as follows:

We set U = A; {0} and consider u € U. Recall that D, (u) = {p € C| v ¢ p} and the ring
I'(Dy(u),Oc) consists of all the quotients %, where s is a homogeneous element of A and deg,(s) =
I. The I'(Dy(u), Oc)-module I'(D (u), Oc(k)) consists of all quotients %, where s is a homogeneous
clement of A and deg 4(s)—j = k (see the proof of [Har77, p. 117, Prop. IL.5.12(a)]). Writing -5 = —*7u*,
we see that u* is a free Oc|p, (u)-generator of Oc(k)|p, (u)- In particular, Oc (k) is an invertible sheaf
on C [Har77, p. 117, Prop. 11.5.12(a)].

For large k, Lemma 1.3 identifies I'(C, Oc(k)) with Aj. Following Subsection 2.4, the Cartier
divisor that corresponds to an element s € A, (which we write as “tu”) is (Dy(u), 5% )uev. By our
assumptions on A, for each prime divisor P of C and, with p the homogeneous prime ideal of A underlying
P, there exists u € U\ p, so ordp (uik) is a non-negative integer that does not depend on w. Hence,

divwei (s) = > ordp (uik)P7 where P ranges over all prime divisors of C.
It follows from this definition that if s’ is another homogeneous element of A of large A-degree,
then diVWeil(SS/) = diVWeﬂ(S) —+ diVWeﬂ(S/).

2.7 DIVISORS OF FUNCTION FIELDS. We assume in this subsection that the ring Aj introduced in
Subsection 2.6 is a field L. Then, the scheme C' introduced in that section is a projective normal curve
over L. We identify the prime divisors P of F/L with the closed points of C' such that the valuation
ring of P, considered as a prime divisor, coincides with the local ring of C' at P, considered as a point of
C. In particular, the degree of P over L as a prime divisor coincides with its degree over L as a point
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of C. Then, a divisor of F/L is a formal sum D = Y kpP, where P ranges over all prime divisors
of F/L and all but finitely many of the integral coefficients kp are zero [FrJ08, Section 3.1]. As in (2),
deg(D) = > pkp[L(P): L].

If f e F*, we write div(f) = > pordp(f)P (in accordance with Subsection 2.1). We also write

divo(f)= Y ordp(f)P and divee(f) =~ > ordp(f)P

ordp(f)>0 ordp(f)<0

for the zero divisor and the pole divisor, respectively, of f. Since div(f) = divo(f) — deg,.(f) and
deg(div(f)) = 0 [Cheb1, p. 18, Thm. 5], we have deg(divo(f)) = deg(dive(f)). Note that if s and s’ are

non-zero homogeneous elements of A of the same A-degree, then f = %’ € ¥, s0 s’ = fs. For each divisor

P of C we choose u € U P. Then, by Section 2.6, ord p(divweii(s')) = ordp (;—;) = ordp(f)+ordp (uik) =
ordp(divwei (f)) + ord p(divwei (s)). Hence,

(4) diVWCil(S/) = dinCil(f) + diVWcil(s)-

Therefore, deg(divwei(s')) = deg(divweil(s)).
In the sequel we omit the subscript “Weil” from Weil divisors. However, occasionally we add a
subscript L for the divisors of elements of F'* to indicate the field of constants of F.

3. Continuity of Divisors

We apply the identification of global sections of high degrees of twisted sheaves on a projective scheme
with homogeneous polynomials to the case of a curve over a local field and prove a theorem about
continuity of divisors of functions.

Throughout this section we consider a field L and a graded ring A = @, , A over L = Ay such
that Ay = Y/ o Lt; and A = Llto,...,t,], with to,..., ¢, # 0. We assume that C = Proj(A) is an
absolutely integral normal projective curve over L with function field F. In particular, F is a regular
extension of L [FrJ08, p. 175, Cor. 10.2.2(b)].

3.1 CONTINUITY. We assume in this section that L is a field equipped with an absolute value | | which
is either non-archimedean and Henselian or | | is archimedean and L is either real closed or algebraically
closed with C as the | |-completion. Note that, if L is separably closed, then L is Henselian with respect
to every non-archimedean absolute value [Jar91, Cor. 11.3].
We consider a normal absolutely integral projective curve C' over L with function field F. We
extend | | to the algebraic closure L of L in the unique possible way and prove that for each large k the
map s — div(s) from I'(C, O¢(k)) to the set of divisors on C' is | |-continuous in a sense that will become
clear in Lemma 3.4.
Following Subsection 2.7, we identify the set of L-rational points C(L) of C' with the set of prime
divisors of F//L of degree 1. The absolute value | | of L induces a topology on C(L) (see [Mum88, p. 57,
Sec. 1.10] or [GPRY5, p. 68, Sec. 7]), so we may speak of an | |-open neighborhood U of a point p in
C(L). The set U is defined by inequalities involving | | and elements of L. If L is an algebraic extension
of L, then the same inequalities define a neighborhood U(L’) of the unique point py, of C(L’) that lies
over p. To simplify notation, we also write p rather than py.
Here are some useful remarks about the interaction of the | |-topology with the Zariski-topology.
(a) Let V be an absolutely integral affine variety in A7 for some positive integer n. If U is a Zariski-open
subset of V', then U(L) is | |-open in V(L) [Mum88, p. 57, (i)]. On the other hand, if U(L) is a
| |-open subset of V(L) that contains a simple point (= non-singular point) of V', then U(L) is
Zariski-dense in V' [GeJ02, Prop. 8.2(b)].

(b) If L is algebraically closed, and U is a non-empty Zariski-open subset of V', then U(L) is | |-dense in
V(L) [GeJ75, Lemma 2.2].

(c) If L is separably closed and U is a non-empty Zariski-open subset of V', then U(L) contains a simple
point of V' [Lan58, p. 76, Prop. 9]. Hence, by (a), U(L) is | |-dense in V(L).



3.2 TOTAL SPLITTING. Let D be an effective divisor of F/L and N a finite separable extension of L.
We say that D totally splits in FN if the extension Dy of D to N is the sum Y ;" | P; of distinct prime
divisors of degree 1 of FN/N. In this case we also say that Dy = Y .- P; is a total splitting of D in
FN. Note that P; has in this case a unique extension to a prime divisor P; - of N’ for every separable
algebraic extension N’ of N [Deu73, p. 128, Thm.]. Hence, if L’ is a separable algebraic extension of L
and we set N’ = NL’, then Dy, = > | P; v is a total splitting of D in FN'.

Given a divisor D of F//L, we consider the vector space

(D) ={f € F*| div(f) + D > 0} U {0}

over L.

LEMMA 3.3: In the above notation, let f be an element of F* with a total splitting divo(f)ny = Y ivy P;
of divg(f) in F'N. For each i let U; be an | |-open neighborhood of P; in C(N). Let uy,...,u; be elements
of £(diveo(f)) and let by, ..., b be elements of L satisfying f = Zl)\:1 baty.

Then, there exists a real v > 0 such that every separable algebraic extension L' of L has the
following property: if by,...,b) € L' satisty |by —by| < v for 1 < A <1 and we set f' = 23:1 biuy and
N’ = NL', then diveo (f') v = diveo(f)n and divo(f')ne = >oivy P/ is a total splitting of divo(f’)r/ in
FN' with P! € U;(N') for all i.

Proof: 'We may assume that L' = L and N’ = N. Then, we choose an L-basis vy, ...,vq for £(dive(f))
and set uy = Z?Zl axsvs for some ays € L and A = 1...,l. This gives f = Zgﬂ(zl)\ﬂ braxs)vs and

= Z§:1(Zl>\:1 bl axs)vs. Since the map

l l
(B, b)) = (D bhanr,..., > bhaxa)
A=1 A=1

is | |-continuous, we may replace u,...,u; by v1,...,vq, if necessary, to assume that ug,...,u; form a
basis of £(dive(f)). Now we may apply [JaR08, Prop. 4.3] to conclude the existence of v > 0 that has
the properties of the conclusion of the lemma. |

LEMMA 3.4: As above we consider an absolute valued field (L, | |) which is Henselian, real closed, or alge-

braically closed. We also consider the normal absolutely integral projective curve C = Proj(L[to, ..., t;])
over L with function field F' introduced at the beginning of this section.

Next we consider a finite Galois extension N of L, sections s, s1,...,s. € I'(C,Oc(k)) with k large
as in Remark 1.4, and elements aq,...,a. € L such that s = 22:1 asse and div(s)ny = EZ1 P; is a total
splitting of div(s) in FN. For each i let U; be an | |-open neighborhood of P; in C'(N).

Then, there exists a real v > 0 such that if L’ is a separable algebraic extension of L and af, ..., a. €

L' satisfy |a.—a.| < yfore =1,...,eand wesets' =3 °_  als. and N' = NL', thendiv(s')y = > 1o, P/
is a total splitting of div(s')r, in FN' with P/ € U;(N’) for all i. Moreover, deg(div(s’)r) = deg(div(s)r).

Proof: Again, we may assume that L' = L and hence that N’ = N. Since t( is non-zero, it vanishes at
only finitely many points of C. Applying an invertible linear transformation over L on the coordinates
to,...,t,, we may assume that

(1) to(P;) # 0 for all 4.
Under this assumption we set t = % =>°, aej—o,i.

Cram: divg(t) = div(s). By (4) in Subsection 2.7,

(2) k - div(to) + div(t) = div(s).

Consider a point p € C'(N). Since C is normal and N is a separable extension, Cy is also normal [Lan58,
p. 146, Thm. 7], so the notation ordp makes sense. By (2),

(3) k - ordp (div(to)n) + ordp(t) = ordp (div(s)n).
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By Subsection 2.4, div(tg) > 0. If ordp(div(to)n) > 0, then to(p) = 0, so by (1), p # Pi1,..., P,
Hence, s(p) # 0, that is ordp(div(s)n) = 0. Hence, by (3), ordp(t) < 0. Therefore, ordp(dive(¢)n) = 0.
If ordp(div(to)n) = 0, then by (3), ordp(t) = ordp(div(s)n) > 0, so ordp(dive(t)n) = ordp(div(s)n).
Thus, the latter equality holds for all p € C(NNV). This implies that divg(t)y = div(s)y. Since the map
of the group of divisors of C' into the group of divisors of Cy given by D — Dy is injective, we conclude
that divo(t) = div(s), as claimed.

Lemma 3.3 gives a real v > 0 such that if a},...,a, € L satisfy |a. —a.| <~y fore=1,...,e, and

! _ € ! Se
wesett' =) "_ al i then

(4a) divo(t')n = Y v, P/ is a total splitting of divy(t') in FN and P} € U;(N) for i =1,...,m, and
(4b) divee (t)n = diveo () n-

Finally we observe that s’ = Y ¢_, als. satisfies ¢’ = % Asin (2), k-div(te) y +div(t )y = div(s')n.
Hence, by (2), div(s")y — div(t')y = div(s)y —div(t) n, so div(s")y — dive(t) v + divee (') vy = div(s)y —
divo(t)ny + divee (t) . It follows from the claim and from (4b) that div(s')y = divo(t')n. We conclude
from (4a) that div(s’)y = Y-, P/ is a total splitting of div(s’) in FN. Moreover, since F/L is regular,
the degree of divisors is preserved under the extension of the base field from L to N [Deu73, p. 126,
Thm.]. Hence, deg(div(s’)) = deg(div(s')n) = m = deg(div(s)y) = deg(div(s)), as claimed. |

4. Reduction Steps

We set up the arithmetical objects that appear in the proof of Theorem C and prove two reduction
lemmas. They allow us to replace V' by an open subvariety and 7 by a larger finite subset of V. Finally
we reduce Theorem C to the case where V is a curve.

4.1 A GLOBAL FIELD. Let K be a global field, that is K is either a number field or an algebraic function
field of one variable over a finite field. Following Weil’s Foundation [Wei62], we choose an algebraically
closed field U that contains K and has a sufficiently large transcendence degree to contain all of the field
extensions of K that appear in this work. If F'is a subfield of U, then Fy., and F denote the unique
separable closure and the unique algebraic closure of F', respectively, in U. In particular, if F’ is an
extension of F in U, then F' C F’. We denote the absolute Galois group Gal(Fiep/F) of F by Gal(F).

4.2 CONVENTION FOR AFFINE VARIETIES. We follow [Liu06, p. 55, Def. 3.47] to define an affine variety
over K as an affine scheme associated to a finitely generated algebra over K.

Let V' be an absolutely integral affine variety over K which we assume to be a closed K-subscheme
of A% for some n (in which case we also say that V' is an absolutely integral affine variety in A%).
Thus, V = Spec(K|[x]), where K[x] = K[X]/I with X = (X1,...,X,), I is a prime ideal of K[X]
such that R[X]/KI is an integral domain, and x = (21,...,2,) with 2; = X; + T fori=1,...,n. In
the classical algebraic geometry V is said to be (or more accurately, closely related to) the absolutely
irreducible affine variety defined over K by I. Thus, in the classical language, V is just the set of
all a € U" such that f(a) = 0 for all f € I. This is the language used in our previous papers [FrJ08],
[GeJ75], [GeJ89], [GeJ02], [GJRO0], [JaR94], [JaR95], [JaR98], and [JaR08] that we use in this work.
Following that convention, for each subset A of U we set V(A) = {a € A"| f(a) = 0forall f € I}.
Each a in V(A) is an A-rational point of V. Embedding F' = K(x) in U, the n-tuple x is then a
generic point of V and F = K(x) is a function field of V. It is a regular extension of K [FrJ08, p. 175,
Cor. 10.2.2(a)]. As usual, if dim(V') = 1, we speak about a “curve” rather than a “variety”.

We also write Vi for the Zariski-open subset of V' that consists of all simple (= non-singular)
points of V.

4.3 CONVENTION FOR PROJECTIVE VARIETIES. By an absolutely integral projective variety in
P} we mean a closed absolutely integral subscheme W of P}.. Thus, W = Proj(K[T]/I), where T =
(To, ..., T,), I is a homogeneous prime ideal of the graded ring K[T] that does not contain every T;, and
K [T]/ KI is an integral domain. For each extension L of K, we use the classical notation and identify
W (L) = Morg (Spec(L), W) with the set of all equivalence classes a = (ag:---:a,) of (r + 1)-tuples of
elements of L with respect to multiplication by an element of L* such that there exists 0 < j < r with
a; # 0 and (ao, ..., a,) is a zero of I. In this case K(a) = K (2 ,Z—:) is the residue field of a.

@
aj
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In particular, a point t = (¢o:---:t.) of W(U) is generic if the map (Tp,...,T) — (to,...,tr)
induces a K-isomorphism K[Ty,...,T,]/I — Klto,...,t;]. Equivalently, for each a € W(U) the map

(toy...,tr) — (ag,...,a,) uniquely extends to a K-homomorphism Klto,...,t,] = Klag,...,a,]. In this
case F' = K (t) is the function field of W. This notation is independent of the representative (to, ..., )
of t. However, K|tg,...,t,] does depend on that representative of t. Nevertheless, we abuse our notation
and abbreviate Klto,...,t,] by K[t] whenever t,...,t, are given.

The points of W are the homogeneous prime ideals of K[t] that do not contain K[t];, i.e. do not
contain the set {to,...,t.}. If P € W, then K(P) = Ow,p/mw,p is the residue field of P. In particular,
if K(P) = K, then P is a K-rational point of K that corresponds to a point a € W (K) such that the
map t — a defines a K-isomorphism KJt]/P = K.

For a field extension L of K, a point @ of Wi = W Xg,ec(k) Spec(L) lies over P (equivalently,
over a) if QN K[t] = P.

4.4 LocAL FIELDS. We denote the set of all primes of K by Pg. For each p € P g we fix a completion

K, of K at p in U and an absolute p-adic value | |, of K,. Then, we extend | |, to K, in the unique
possible way. In particular, | |, is now also defined on K.

Let V be an absolutely integral affine variety in A% (Subsection 4.2). The p-adic topology on f(p

defines a p-adic topology on V(K,) (Subsection 3.1). For each extension L of K in K, we refer to a
p-adically open (resp. closed) subsets of V(L) as p-open (resp. p-closed). Each p-open subset  of V(L)

is a union of open p-balls defined by parameters from L. If I’ is an extension of L in kp, then the same
parameters define open p-balls in V(L'). Their union is a p-open subset of V(L') that we denote by
Q(L’). Note that a change in the parameters that define Q does not effect the set Q(L’). In particular,
QLYNV(L) =Q(L).

Next we consider the field K, = Kgp N Kp and call it a p-closure of K at p. It is a Henselian
closure of K at p if p € Pg is non-archimedean, a real closure of K if p is archimedean and real, and K
if p is archimedean and complex.

If K is a number field, then char(K) = 0, so Kgep = f(, hence K, = IN(HKP. If K is a function field
of one variable over a finite field, then Kp is a regular extension of K, [Jar94, Lemma 2.2], in particular

K, = Kn Kp. Thus, the latter relation holds in both cases.

4.5 HOLOMORPHY DOMAINS. For each p € Pg and a subfield M of kp we consider the closed disc

Omyp={zeM| |z|, <1}

of M at p. We omit p from Oy, if f(p CMC Rp. If p is non-archimedean, then Oy, is a valuation
ring of rank 1 of M.

Next we consider a subset U of Pg and a field K C M C K. Let Uy be the set of all primes of M
that lie over U. If q € Uy, lies over p € U, then we denote the unique absolute value of M that extends
| |[p to M and represents q by | |q. In this case there exists 7 € Gal(K) such that |z|; = [27|, for each
x € M. Conversely, the latter condition defines q. We set

Omu= () {zxeM| |z, <1}
q€UM

for the U/-holomorphy domain of M *. If U consists of non-archimedean primes, then Ou;y is the
integral closure of Ok in M [Lanb8, p. 12, Prop. 4]. If U is arbitrary but M is Galois over K, then

Omu=1(] () Ohyp-
pEU T€Gal(K)

Note that
(1) ifd CU C Pg, then OMJ,{/ - OM,Z,{-

* Note that in general O, (3 7# Onyp-
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4.6 Basic OBJECTS. In the number field case (i.e. char(K) = 0), we denote the set of all non-
archimedean primes of K by Pgg,. In the function field case, where p = char(K) > 0, we fix a
separating transcendence element tx for K/F, and let Pr s, = {p € Pk | [tx|p < 1}. In both cases
Pk fn is cofinite in Px and we set

Ox = Oxcpicn = {# € K| |oly <1 forall p € Pren}-

If K is a number field, then Ok is the integral closure of Z in K. In the function field case Ok is the
integral closure of Fp[tx] in K. In both cases O is a Dedekind domain [CaF67, p. 13, Prop. 1]. Following
the convention in algebraic number theory, we call Ok the ring of integers of K.

Next we choose a finite (possibly empty) subset S of P, set

Ktot,S = ﬂ ﬂ K;—a

pES T€Gal(K)

and observe that K. s is the maximal Galois extension of K in which each p € S totally splits.
We also choose a non-empty proper subset V of Pg that contains S.

4.7 STRONG APPROXIMATION. Let 7 be a finite subset of V that contains S such that V7T C Pk gn.
Thus, by (1), OK - OK,V\'T-

Given an absolutely integral affine variety V' in A’ for some positive integer n, we consider for each
peT
(3a) a finite Galois extension L, of K, such that L, = K, if p € S, and
(3b) a non-empty p-open subset Q, of Viimp(Lyp), invariant under the action of Gal(L,/K}).

Assuming that
(3c) V(Og ,,) # 0, equivalently that V(Ok.,,,p) # 0 [GeJ75, Lemma 2.4], for each p € VT,
we say that (Ly,Qy,)per is approximation data for K,S,7,V,V.

Given a field K C M C Kiot,s, we write (M, K, S,V,V,T,(Lp,Q)per) = SAT if
(4) there exists z € V/(Opy,p~ 7) such that 27 € Q, for all p € 7 and all 7 € Gal(K).

We write (M, K,S,V,V) = SAT if
(5) (M,K,S,V,V,T,(Lp,Qp)per) = SAT for all finite subsets 7 of V that contain S such that VT C

P sn and for all approximation data (Ly,Qp)per for K,8,7,V, V.

Finally, we write (M, K,S,V) = SAT and say that M satisfies the strong approximation theo-
rem for K, S,V if
(6) (M,K,S,V,V) [= SAT for every absolutely integral affine variety V' in A% for some positive integer

n.

Note that all p-closures of K at a given p € Pg are K-isomorphic. Hence, Conditions (3), (4), (5),
and (6) are independent of the choices of the closures.

4.8 Fixinég K, §, AND V. For the rest of the work we fix the global field K, the proper subset V of
Py, and the finite subset S of V, as in Subsection 4.6. Let T be a finite subset of V that contains S and
satisfies VT C Pk sn. Let V be an absolutely integral affine variety over K in A} for some positive
integer n and let (L, 2,)pe7 be approximation data for K,S,7,V,V.

Remark 4.9: Condition (3) can be reformulated in terms of completions instead of closures at primes of K.
Indeed, suppose that for each p € 7 we are given a finite Galois extension L, of Ky, such that L, = K, if
p € §, and a non-empty p-open subset Qp of Vsimp(ﬁp), invariant under the action of Gal(ﬁp/Kp). Then,
with Ly = Ly N Kyp, the p-open subset Q, = Q, N V(L) of V(L) is non-empty.

Indeed, if p € P iy, then by [JaR98, Remark 1.6], V(L,) is p-dense in V(ﬁp). If p € Pgint is
real, then L, and fjp are real closed, so f}p is an elementary extension of L, as ordered fields [Pre84,
p. 51, Cor. 5.2]. In particular, V/(L,) is p-dense in V(I:,,). Finally, if p € Pk int is complex, then L, = Q,
pr is isomorphic to C and there exists a real closed field Ly o such that L, = Ly ¢(v/—1), and the pair
(Lp, Lypo), with Ly ¢ being the p-closure of Ly ¢ in Ly, is isomorphic to (C,R). The p-density of V(L)
in V(ﬁp) follows in this case from the fact that I:pp is an elementary extension of L, ¢ as ordered fields.
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Now we choose 7 € €, and € > 0 such that {z € V(L) | |z — 2|, < e} C Q. Since L, is p-dense in
]ip, there exists a € L, that satisfies [a — 2|, < 5. Since IA/p is an elementary extension of L, as ordered
fields, there exists z € V(L) such that |z —a|, < §. Then, |z — 2|, <¢,s0z € Q, NV(Ly), as desired.

Conversely, given L, and €, as in (3b), we may consider ﬁp = Kpr and let Qp = Qp(ﬁp). Then,

Qp is a non-empty p-open subset of Y/Simp(f/p).
By Abraham Robinson, the theory of algebraically closed valued fields (with nontrivial valuation) is
model complete [Pre86, p. 240, Kor. 4.18]. Hence, we could have replaced Condition (3c¢) by the condition:

V(O}:{v);«é@foreachpGV\T. 1

In proving the strong approximation theorem for K,S,V, we may choose T,V, (L,,,) with some
extra properties. This is proved in the following lemma.

LEMMA 4.10: Let T be a finite subset of V that contains & such that VT C Pgg,, V an abso-
lutely integral affine variety in A’ for some positive integer n, and (Ly,Qy)per approximation data for
K,S,T,V,V. We consider a field extension M of K in Ko s. Then, in order to prove that

(M7 K787V7 MT7 (va QP)FGT) ': SAT’

we may

(a) replace 2y, for each p € T, by Q, NU(Ly), where U is a given non-empty Zariski-open affine subset
of V' defined by polynomial inequalities with coefficients in K,

(b) replace T by any larger finite subset 7' of V and extend (Ly,p)pe7 to any approximation data
(Lp, Qp)pET’ for K, S, T/, V, V,

(c) replace V by any absolutely integral affine variety V' in A%, for some positive integer n', which is
birationally equivalent to V', and

(d) replace V' by any non-empty Zariski-open affine subvariety Vy of V' defined by polynomial inequalities
with coefficients in K, considered as an affine variety in A?(H; in other words, if V' = Spec(B) is
an affine variety over K, replace V' by the Zariski-open subset D(f) = {p € B| f ¢ p}, for some
non-zero f € B, and identify D(f) with Spec(B[f~]).

Proof of (a): Since U(Ly) is p-open in V(Ly) (Statement (a) of Subsection 3.1), Q) = Q,NU(Ly) is also
p-open in V(L,). Since Q, contains a simple point of V' (by (3b)), 2, is Zariski-dense in V' (Statement (a)
of Subsection 3.1), hence Q;, # (). Moreover, since €, is invariant under Gal(L,/K}), so is €. Finally, if
z € U(Opy~ 1) and 27 € Q for all p € T and 7 € Gal(K), then z € V(Opp~ 7) and 27 € Q, for all
p €T and 7 € Gal(K), as desired.

Proof of (b):  Consider p € T'~T. By assumption, p is finite. By (3c), V(Ok,.,,p) # 0. Since
Viimp is non-empty and Zariski-open in V' and V(Ok.,,, ;) is p-open in V(Kep), we have by Subsection
3.1(c), that Viimp(Ok..,,p) # 0. Hence, we may choose a finite Galois extension L, of K, such that
Qp = Vaimp(OL, p) # 0. Since Viimp is Zariski-open in V' and V(Oy, p) is p-open in V(L,), the set €,
is p-open in V(L,) (Subsection 3.1(a)). Since Viimp is defined over K, the set €, is invariant under the
action of Gal(L,/K,).

Thus, (Ly,Qp)per is approximation data for K,S,7",V,V. If z € V(Opp~ 1) and 27 € Q, for
all p € 7" and 7 € Gal(K), then z™ € Q, for all p € 7 and 7 € Gal(K), and z" € Q, C V(Op, ;) for all
peT'NT and 7 € Gal(K). It follows that z € V(O 7), as desired.

Proof of (¢): Since V and V' are birationally equivalent over K, there exists a K-isomorphism ¢ of a
non-empty Zariski-open affine subset Vj of V onto a non-empty Zariski-open affine subset Vjj of V'. Both
Vo and Vj are absolutely integral affine varieties over K. Hence, ¢ corresponds to an isomorphism from
the coordinate ring of V{j onto the coordinate ring of V; [Liu06, p. 48, Lemma 2.3.23]. Thus, both ¢ and
@~ 1 are defined by polynomials with coefficients in K. We choose a finite subset 7’ of V that contains

T such that all of those coeflicients belong to Ok v« 7.

Next we choose zg € V'(K) and extend 77 within V to assume that zy € V(Og v 1) By (3b),
for each p € T, Q, is a non-empty p-open subset of Viimp(Ly) which is invariant under Gal(L,/K,).
Hence, by Subsection 3.1(a), Q, NV simp(Ly) is a non-empty p-open subset of Vj gimp(Lyp) which is
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invariant under Gal(Ly/Ky). Moreover, ¢ maps Vp simp(Lp) p-homeomorphically onto V{ ;... (Lp), so
Q= (2 N Vo simp(Lyp)) is a non-empty p-open subset of Vj ;. (Ly), hence also of Vi, (L), which is
invariant under Gal(L,/K,).

By Condition (3c), for each p € T'NT, V(Ok,, ) # 0. By Subsection 3.1(c), there exists
zp € Vosimp(OK,ep.p)- Let Ly be a finite Galois extension of K, with z, € Vogimp(Or, p). Then,
Q, = ©(Vo,simp(OL, p)) is a non-empty p-open subset of Vi . (Ly), hence also of Vi, (Ly), which is
invariant under the action of Gal(Ly/Ky). Thus, (Ly, Y, )pe7 is approximation data for K,S,7",V,V".

We assume that there exists z' € V'(Opyy < 77) such that (z')" € Qy, for all p € 7" and 7 € Gal(K).
Since 7" is non-empty and Q, C Vg g, (Ly) for p € T7, we have 7z’ € Vy(K). Moreover, since the
coordinates of z’ belong to Opsy < 77, we have 2’ € Vj(Opr,p < 7). By the choice of T7,

zZ = (pil(Z,) S VO(OM,V\T/) N ﬂ ﬂ VO ,simp (DLp p m ﬂ QT

peT’' N T 1€Gal(K) peT TEGal(K

Hence, z € V(Opp~ 1) and 27 € Q, for all p € T and 7 € Gal(K), as desired.
Proof of (d): Vj is birationally equivalent over K to V, so we may use rule (c). |

Example 4.11: Units. Let ¢ be a non-zero element of Kgep,, let 7 be a finite subset of V that contains
S such that VT C Pk gy, and let M be an extension of K in Kio,s. Consider the finite subset
T =TU{peV]| ||, #1 for at least one 7 € Gal(K)} of V. Thus, |¢"|, =1 for all p € VT and all
7 € Gal(K). Hence, c is a unit of Ok, v~ 7. It follows from Lemma 4.10 that in order to prove that
(M, K,S,V,V,T,(Lp,Q)pe7) = SAT for a given absolutely integral affine variety V' in A% for some
positive integer n and approximation data (Ly,Qy)per for K, S,7T,V,V, we may assume that ¢ is a unit
of Og),v~7- |

We apply Lemma 4.10 to reduce the strong approximation theorem to the case of curves.

LEMMA 4.12: Let M be an extension of K in Ko s. Suppose (M, K,S,V,C) = SAT for every positive
integer m and every absolutely integral affine curve C' in A}. Then, (M, K,S,V) = SAT.

Proof: Let V be an absolutely integral affine variety in A} for some positive integer n. Let 7 be a
finite subset of V that contains S such that VT C Pg gn. Let (L, Qp)pe7 be approximation data for
K,S,T,V,V. We choose a finite separable extension K’ of K and a point zg € V(K’). Then, we choose
a finite subset 7' of V that contains 7 such that zg € V(Og/y < 7/), hence also zg € V(Ok,,, p), for
each p € VNT'. By Lemma 4.10, we may replace 7 by 7' to assume that zg € V(Ok,,, ) for each
peVYNT.

Now we choose for each p € T a point z, € Q, C V(L,). Then we apply [JaR98, Lemma 10.1]
to find an absolutely integral affine curve C' on V over K that goes through z¢ and z, for every p € 7.
Moreover, since by (3b) each of the points z, with p € 7 is simple on V, that lemma allows us to
choose C' such that each of those z, is also simple on C. Thus, zy € C(Ok,,,,») for each p € VT and
zp € Qy N Cyimp(Lyp) € Caimp(Lyp) for each p € T.

It follows that (Lp, €y N Csimp(Lyp))per is approximation data for K,S,7,V,C. By assumption,
there exists z € C(Op,y~ 7) such that 27 € Qp N Cgimp(Ly) for all p € T and 7 € Gal(K). Therefore,
z € V(Opy~7)and 27 € Q, for all p € T and 7 € Gal(K). We conclude that (M, K,S,V,V) = SAT.
It follows that (M, K,S,V) = SAT, as claimed. |

5. Curves

Following Lemma 4.12, we now concentrate on curves. We extend a given affine curve C over K to an
affine curve X over a subring R of K and complete X to an integral projective curve X over R. We apply
Lemma 4.10 several times to make convenient assumptions on the associated data. These assumptions
are used in the sequel to prove the strong approximation theorem.
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5.1 AN AFFINE CURVE. Let K, PK7KP,KP,U,S,T,V,M, Oumy~ 71 be as in Section 4. In particular,
VT C Pggn. Let C be an absolutely integral affine curve in Aj,. We choose a generic point x =
(z1,...,2p) for C over K with z1,...,2, € U (Subsection 4.2). Moreover, enlarging U if necessary, we
choose 1, . . ., x, such that trans.deg(K (x)/K) = trans.deg(K,(x)/K,) for each p € Pg. Then, K (x)/K
is a regular extension of transcendence degree 1, F' = K (x) is the function field of C over K. Moreover,
for each p € Pk, the field F' is linearly disjoint from ffp over K, so f{p (X)/K,3 is also a regular extension
[FrJ08, Lemma 2.6.7].

We apply Lemma 4.10 to replace C' by a Zariski-open subset of simple points and assume that
(1) C is smooth.

For each p € T let L, be a finite Galois extension of K, such that L, = K, if p € S. Then, let €,
be a non-empty p-open subset of C(L,), invariant under the action of Gal(L,/K,). We also assume that
(2) C(Og,) # 0 for each p € VNT.

Thus, (Ly,Qp)pe7 is approximation data for K,S,7,V,C.

5.2 PRINCIPAL IDEAL DOMAIN. Recall that the class group of the ring of integers Ox = O py, of K
is finite (see [CaF67, p. 71] for the number field case and [Ros02, p. 243, Prop. 14.2] for the function field
case). Let ay,...,ap be ideals of Ok that represent the group of fractional ideals of Ok modulo principal
fractional ideals. Denote the union of 7 with the set of all prime divisors of ay, ..., a, that belong to V
by T'. Then, 0,0k v~ 7 = Ok y~ 7 fori=1,..., h. Each ideal a of Ok can be represented as a = b-a;
for some i between 1 and h and b € K*, so aOg y~ 7 =b- Ok p 7. Thus, Ok 7 is a principal
ideal domain (see also [IsR05, p. 211, Prop. 8.9.7]).

Using Lemma 4.10, we replace 7 by T, if necessary, to assume
(3) R = Ok,y~ 7 is a principal ideal domain. In particular, R is integrally closed, hence a Dedekind

domain. Therefore, R, is a regular local ring for each p € Spec(R).

Note that whenever we replace T by a larger finite subset 7’ of V, we also replace R by its quotient ring
R' = Ok y 7+, which is still a principal ideal domain.

In the case where ¥V = T, the ring R is an intersection of an empty set of local subrings of K, so
R = K. In this case our results overlap with those of [GeJ02].

5.3 NAGATA RINGS. A Noetherian ring A (commutative with 1) is called a Nagata ring if for every
prime ideal P of A and every finite extension L of Quot(A/P) the integral closure of A/P in L is a finitely
generated A/P-module [Mat80, p. 231]. In particular, every field is a Nagata ring. The main theorem
in this area, due to Nagata, says that each finitely generated ring extension of a Nagata ring is again a
Nagata ring [Mat80, p. 240, Thm. 72].

LEMMA 5.4:

(a) Every Dedekind ring A of characteristic 0 is a Nagata ring.

(b) Suppose that A is a Dedekind ring and a Nagata ring. Then, every subring B of Quot(A) that
contains A is also a Dedekind ring and a Nagata ring.

(¢) R is a Nagata ring.

Proof of (a): See [Liu06, p. 340, Example 8.2.28(b)].

Proof of (b) (Moret-Bailly): That B is a Dedekind ring is a classical theorem of Noether-Grell [FrJ08,
p. 32, Prop. 2.4.7]. We prove that B is also a Nagata ring.

Consider a prime ideal q of B. If q is maximal, then B/q is a field. Hence, if F' is a finite extension
of B/q, then F is the integral closure of B/q in F and F is a finitely generated B/g-module.

Otherwise, ¢ = 0 (because B is a Dedekind ring). Let L be a finite extension of Quot(A) and
consider the integral closures Ay, and By of A and B, respectively, in L.

We consider a maximal ideal @ of B and set P = ANQ. Since Quot(A) is the quotient field of both
A and B, we have P # 0. Hence, Ap is a proper subring of Quot(A4). Moreover, Ap C Bg C Quot(A).
Since A is Dedekind, Ap is a discrete valuation ring. Hence, Ap = Bg [FrJ08, p. 23, Lemma 2.2.5].

Next let Az, p be the localization of the A-module Ay, at P and let By, g be the localization of the
B-module By, at Q. Since as a ring, By, ¢ is integral over Bg = Ap and A p is the integral closure of
AP in L, we have BL,Q g AL,P~ Hence, BL,Q g AL,P = ALAP g (ALB)Q Q BL,Q,
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Thus, Br,g = (ALB)g for all maximal ideals @ of B. It follows from [AtM69, p. 40, Prop. 3.9]
that By, = A B. Since A is a Nagata ring, Ay is a finitely generated A-module. Hence, By, is a finitely
generated B-module. We conclude that B is a Nagata ring, as claimed.

Proof of (¢): By Subsection 4.6, Ok is a Dedekind ring. If K is a number field, then Ok is also a
Nagata ring, by (a). If K is a function field of one variable over a finite field of characteristic p, then by
Subsection 4.6, Ok is an integral closure of Fp[tx]| in K. Since F, is a Nagata ring, Nagata’s theorem
implies that O is a Nagata ring.

Thus, (c) is a special case of (b) for A = Ok and B = R. |

5.5 AFFINE SCHEME. Using the above notation, we consider the affine integral schemes Spec(R) and
X = Spec(R[x]), and let f: X — Spec(R) be the structure morphism given by f(P) = PN R. Then,
Spec(R) is a regular scheme of dimension 1 if R # K (resp. 0, if R = K) and dim(X) =2 if R # K
(resp. 1 if R = K), because trans.deg(K(x)/K) = 1. By (3), R[x] is a Noetherian ring, hence X is a
Noetherian scheme.

By (2), for each non-zero p € Spec(R), there exists a point a € C(Of ,,), where p is considered here
as an element of V 7. That point is an R-specialization of x. It follows that 1 ¢ pR[x]. Otherwise there
exist b; € p and h; € R[X], i =1,...,1, such that 1 = Y°0_, bih;(x). Then, 1 = 3;_, bshi(a) € pOg . a
contradiction. Hence, the prime ideal p of R (which is actually a maximal ideal) extends to a prime ideal
of R[x]. Since the generic point of X is mapped onto the generic point of Spec(R), this implies that
(4) the morphism f: X — Spec(R) is surjective.

In fact, (4) also implies (2). But, as we don’t use this implication, we do not prove it here.

By Subsection 5.1, F/K is a regular extension of transcendence degree 1. We choose a separating
transcendence element tr € R[x| for F//K. Then, R[tr| is an integrally closed domain [ZaS75II, p. 85,
Thm. 29(a)] and F/K(tg) is a finite separable extension. Let z € R[x] be a primitive element for
F/K(tr), integral over R[tr]. The discriminant g of irr(z, K (¢r)) is a non-zero element of R[tr], hence
g is invertible in the ring R[tr, g~ !]. Multiply g, if necessary, by a non-zero element of R[tr| to assume
that each w; is integral over R[tr,g~']. By [FrJ08, p. 109, Lemma 6.1.2], R[tr,g ', z] is the integral
closure of R[tr,g7'] in F. Hence, R[x,g7 '] = R[tr,g7!, 2] and the ring extension R[x, g ']/R[tr, 9]
is étale [Ray70, p. 18, Remarques].

By Lemma 4.10(c), we may replace C by the affine curve with the generic point (x,g7!) over K.
Thus, we may assume without loss that ¢! is one of the coordinates of x, hence
(5) the ring R[x] = R[tr, g™}, 2] is integrally closed. Thus, X is normal.

Moreover, R[x] is étale over R[tr, g ']. Since Spec(R[tr,g~1]) is étale over Spec(R[tr]) [Liu06, p. 140,
Prop. 4.3.22(b)] and Spec(R[tr]) is smooth over Spec(R), we conclude from [Liu06, p. 143, Prop. 4.3.38]
that

(6) the morphism f: X — Spec(R) is smooth.

Note that (5) and (6) remain true if we replace 7 by a larger finite subset of V, because integral
closedness and smoothness are preserved under a change of the base ring by a quotient ring.

For each p € Spec(R) we consider the fiber X, = X Xgpec(r) Spec(Ky) of f at p, where K, = R/p.
Then, X, = Spec(R[x|/R[x]|p) = Spec(R[tr,g ", 2]/R[tr,g7 ", 2]p). Now we consider a polynomial h €
R[Xo, Xpn+1] such that h(tp, X,41) = irr(z, K(tr)). Since F/K is regular, h is absolutely irreducible
[FrJO8, p. 175, Cor. 10.2.2]. Since h is absolutely irreducible, it remains absolutely irreducible modulo
p for almost all p € Spec(R) [FrJ08, p. 170, Prop. 9.4.3]. Moreover, g # 0 modulo p for almost all
p € Spec(R). Adding the finitely many prime divisors of K that belong to V and correspond to the
exceptional p’s to 7, we may assume by Lemma 4.10 that
(7) each of the fibers X, of X over Spec(R) is absolutely integral.

LEMMA 5.6: Starting from the Zariski-closed affine subscheme X of A';, we consider the Zariski-closure

X' of X in P?% and let X be the normalization of X' in F. Then:

(a) X may be identified with Proj(R[t]), with t = (to,...,t,), where R[t] is a graded ring over R with
R[t]y = >°I_, Rt;. In particular, X is a Noetherian scheme.

(b) Each of the elements to,...,t, is transcendental over F. Thus, K(t)/K is a regular extension of
transcendence degree 2 and tg, ...t # 0.

(c) R%} is integrally closed with quotient field F.
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(d) The scheme X may be identified with a Zariski-open subset of X and f: X — Spec(R) lifts to a
surjective morphism f: X — Spec(R).

Proof:  We write X’ = Proj(R[s']), where s’ = (sy,...,s},), R[s'] is a graded ring over R with R[s']; =

oo Rs; such that s{ # 0 and z; = j—,; for ¢ = 1,...,n. Then, the inclusion map §& X' — P} is a
9

closed immersion. Let m,: P, — Spec(R) be the canonical morphism and let f: X’ — Spec(R) be the

restriction of 7, to X'. By definition, f’ is a projective morphism that extends f. Let m: X — X' be

the normalization of X’ [Liu06, p. 120, Prop. 4.1.22]. In particular, X is an absolutely integral normal

scheme over R whose function field coincides with that of X’, namely F. Moroever, 7 is an integral
morphism.

CLAIM A: 7 is a finite morphism. The scheme X’ is covered by the affine Noetherian Zariski-open
sets Spec(R|[%]), where i ranges over all integers between 0 and n with s} # 0. Each of the integral

domain R[z—:] is a finitely generated R-algebra. Hence, for each Zariski-open affine subset U of X’ the

ring I'(U, Ox-) is a finitely generated R-algebra whose quotient field is F' [Mum88, p. 122, Def. 3 and
Prop. 1]. Moreover, the open set 7~!(U) of X is also affine [Liu06, p. 120, Def. 4.1.20] and T'(z~1(U), O%)
is the integral closure of T'(U, Ox/) in F' [Liu06, p. 121, comment following Definition 4.1.24]. By Lemma
5.4(c), R is a Nagata ring, so I'(m~1(U), Ox) is finitely generated as a I'(U, Ox)-module. We conclude
that 7 is finite, as claimed.

CraM B: The map 7 is a projective morphism in the sense of [Har77, p. 103, Def.]. Indeed X’ is a
closed subscheme of P}, so the above mentioned definition of [Har77] coincides with that of [Gro61II,
p. 104, Def. 5.5.2]. Thus, by Claim A and [Gro611I, p. 113, Cor. 6.1.11], 7 is projective. See also, [GoW10,
p. 401, Cor. 13.77].

It follows from [Liu06, p. 108, Cor. 3.3.32(b)] that f’ o m: X — Spec(R) is a projective morphism.
Thus, there exist a positive integer » and a closed immersion ¢: X — P% such that f=fom=m o0,
where 7, is the canonical morphism P, — Spec(R). This gives the following commutative diagram:

8) WIX) 1( Py,
X\)I : P

Spec(R

where 11 X — X’ is the inclusion map. Since X is normal (by (5)), the restriction of 7 to 7~(X) is
an isomorphism onto X [GoWlO p. 340, Rem. 12.46]. We ‘use that isomorphism to identify X with
7~ 1(X). Then, we identify X with the closed subscheme ¢(X) of P%,. By [Liu06, p. 168, Prop. 5.1.30],
R[Ty, ..., T,] has a homogeneous ideal J such that X = PrOJ(R[TO, ..., T;]/J). For each 0 < ¢ < r let
t; =T; + J and set t = (fo,...,t.). Then, R[t] is a graded ring over R with R[t]; = >_|_, Rt;. By (3),
R is Noetherian, hence so is R[t]. Therefore, X is a Noetherian scheme, as (a) asserts.

We omit all of the i’s between 0 and r with ¢; = 0, change r, and reenumerate the indices, if
necessary, to assume that ¢; ;é 0 for each 0 <4 < r. Then, by Example 1.6, each ¢; is transcendental over
F. Since t; (t) = F(t;) forall 0 < i < r. Hence, trans.deg(K (t)/K) =
trans. deg(F/K) +1=2. Smce by Subsectlon 5.1, F/K is a regular extension, so is K (t)/K [FrJ08, p. 41,
Cor. 2.6.8(b)], as claimed by (b).

Since X is normal and R[ﬂ is the coordinate ring of the open affine subscheme of X defined by

Ty # 0, we have that R[%] is an integrally closed ring with quotient field F, as claimed in (c).

Finally, we deduce from Diagram (8) that the morphism f = f'on from X to Spec(R) extends
f: X — Spec(R). Since, by (4), f is surjective, so is f, as asserted by (d). |
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5.7 BOUNDARY. We consider the closed subset X \ X of X. Since X is irreducible of dimension 2 if
R # K (resp. 1, if R = K) and X is open in X and non-empty, dim(X ™ X) < 1. Let Z be the unique
reduced subscheme of X with support X ~ X. Thus, dim(Z) < 1. Since K[x] is not finite over K, the
affine scheme C' = X is not proper [Liu06, p. 104, Lemma 3.3.17]. In particular, Zx (hence also Z) is
non-empty. Since dim(Spec(R)) =1 if R # K (resp. dim(Spec(R)) =0 if R = K), we conclude that

(9) dim(Z) =1if R# K (resp. dim(Z) =0if R = K).

Let Z = U;iizl) Z;, with d(Z) > 1, be the decomposition of Z into its irreducible components over
R. We prove that, after a possible enlargement of 7 inside V,

(10) for each 1 <i < d(Z), Z; is a regular scheme over R with dim(Z;) = 1if R # K (resp. dim(Z;) =0
if R = K) and the restriction of f to Z; is a finite, flat, and surjective morphism.

Indeed, for each 1 < i < d(Z) let f;: Z; — Spec(R) be the restriction of f to Z;. Thus, f; is the
restriction of the natural morphism P}, — Spec(R) to the closed subset Z; of P},. It follows that f; is a
projective morphism. By [Liu06, p. 108, Thm. 3.3.30], f; is proper. In particular, f; is a closed map, so
fi(Z;) is a closed subset of Spec(R). Since Spec(R) is an irreducible scheme of dimension < 1, f;(Z;) is
either a closed point of Spec(R) or all of Spec(R). If in the first case the prime of K that corresponds to
fi(Z;) is in V, we adjoin it to 7. Since R = Ok y~ 7 (by (3)), Z; won’t be an irreducible component of
Z any more. Having done so for all of those i’s, we may assume that f;(Z;) = Spec(R) for all i. Since Z
is non-empty, the above procedure does not eliminate all of the Z;’s. In other words, we may still assume
that d(Z) > 1.

The fiber of the generic point of Spec(R) (i.e. of the zero ideal) is the generic point of Z;. For each
closed point p € Spec(R) the set f; ' (p) of Z; is closed. Since Z; is irreducible of dimension < 1, f; ' (p)
is either a finite set or f;'(p) = Z;. In the latter case we have f;(Z;) = {p}, in contrast to the preceding
paragraph. It follows that the fibers of f; are finite.

We have therefore proved that the morphism f; is projective with finite fibers. By [Liu06, p. 152,
Cor. 4.4.7], f; is a finite morphism. Since Z; is reduced, we get by the definition of a finite morphism
and by the fact that f;: Z; — Spec(R) is surjective that Z; = Spec(R;) is an affine scheme, where R;
is an integral domain, finitely generated and integral over R. Since R is a Dedekind domain (by (3)),
[Liu06, p. 11, Cor. 1.2.14] implies that R; is flat over R. Hence, f; is flat. Since the integral closure of R
in Quot(R;) is also a finitely generated R-module (because R is a Nagata ring), we may enlarge 7 in V
to assume that R; is integrally closed, hence a Dedekind domain. Thus, Z; is a Dedekind scheme [Liu06,
p. 116, Example 4.1.7] and therefore regular [Liu06, p. 117, Prop. 4.1.12 and p. 128, Example 4.2.9].
Moreover, since R; is a finitely generated R-module, dim(Z;) = dim(R) = 1 if R # K (resp. dim(Z;) =0
if R = K). This complete the proof of Statement (10).

Next we prove that, after another possible enlargement of 7 in V (Lemma 4.10),

(11) Z is a regular scheme over R of dimension 1 if R # K (resp. 0, if R = K) and the restriction fz of

f to Z is a finite, flat, and surjective morphism.

Indeed, if 1 <14 < j < d(Z), then Z; N Z;, as an intersection of distinct irreducible subschemes of
Z of dimension < 1, is a scheme of dimension 0, hence finite. Therefore, fz(Z; N Z;) is a finite subset of
Spec(R). Adding the primes in V that correspond to this subset to 7, we may assume that Z; N Z; = 0.

In other words, we may assume that Z = Ufizl) Z;. Since each of the sets Z; is closed in Z, it is also
open.

As a disjoint union of open regular subschemes Z; (by (10)), the scheme Z is itself regular. Moreover,
the natural map fz: Z — Spec(R), inducing for each ¢ the map f; on Z;, is finite, flat, and surjective,
because by (10), f; has these properties for each i. This concludes the proof of (11).

5.8 THE IDEALS I AND [;. Since Z is a closed subscheme of X = Proj(R][t]), we may identify Z with
Proj(R[t]/I), where I is a homogeneous ideal of R[t] [Liu06, p. 168, Prop. 5.1.30]. Similarly, for each
1 <4 < d(Z), there exists a homogeneous prime ideal I; of R[t] that contains I and R[t]; < I; such that
Z; = Vi (I;). Since Z is reduced, I is equal to its radical and the latter is equal to the intersection of all
homogeneous prime ideals that contain I and are minimal with this property [ZaS7511, p. 152, Thm. 8
and Corollary]. The set P of all these prime ideals is finite (because R[t]/I is Noetherian). The ideals
I, ..., Iqz) belong to P. Let P1,..., Py be all the other ideals in P and note that each of them contains
R[t]+. For each P € P with PN R # 0, we add the elements of V that correspond to prime ideals of
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R that divide a generator of P N R (use (3)) to 7. After this enlargement, PN R = 0, so P C R[t]+
for each P € P. In particular, P; = R[t], for j = 1,...,m. Note that for 1 < i < d(Z), the property
f(Z;) = Spec(R), which (10) guarantees, implies that I; N R = 0, so I; C R[t]+. Hence, I; C P; for
eachi=1,...,d(Z)and j =1,...,m. It follows from the minimality of the elements in P that m = 0.
Therefore, ﬂfi? I, =1

5.9 THE BOUNDARY OVER K. The quotient ring of R[t] with respect to the multiplicative set R ~{0}
is K[t]. By Subsection 5.8, [; "R = 0 for i = 1,...,d(Z). Hence, KIy,..., Ky are distinct points
of Xg. It follows that the generic fiber Zx = Proj(K[t]/KI) of Z consists of d(Z) distinct points
Z1,K5 -+ Zd(z),K, corresponding to the points K1y,..., Klyz) of Xg. Each of these points is closed,
so KI; ¢ K1, if j # 4. 1t follows that (;,, KI; € KI; for every 1 < i < d(Z). By Subsection 5.8,

NA% KT, = KT
We denote the degree of the divisor Efizl) Z; i attached to Zg by degy (Zk).

5.10 SPECIAL FIBERS. We let Xsing be the closed subset of all singular points of X. Since X is normal,
each of its points of codimension 1 is nonsingular [Liu06, p. 268, Example 7.2.6]. Hence, Xgng has
dimension 0, so Xing is finite. Following [MoB89, p. 187, (3.1.2)], we add the finitely many primes in V
corresponding to the finite subset f(Xgng) of Spec(R) to T and assume that
(12) X is regular.

Finally, we may apply the arguments that prove (7) to each of the finitely many affine Zariski-open
parts of X and conclude, possibly after an additional enlargement of 7 in V, that
(13) each of the fibers X, of X over Spec(R) is an absolutely integral projective curve.

5.11 GENERIC FIBERS. We consider the generic fibers Xx = X Xgpec(r) Spec(K) = Spec(K[x]) and
Xk = X Xgpee(r) Spec(K) of X and X, respectively. Then, X is an affine K-scheme which is actually
isomorphic to our original curve C. Since C' is smooth (by (1)),
(14) Xk is smooth.

Moroever, X g is the normalization of the projective closure of X g in P [Eis95, p. 126, Prop. 4.4.13,
and p. 127, last paragraph]. In particular, Xy is normal.

By (7) and (13),
(15) Xg and Xg are absolutely integral.
Moreover, for each p € 7 we may view the subset Q, of C(L,) introduced in Subsection 5.1 also as a
p-open subset of X g (Ly).

6. Closed Separable Point

We choose a closed separable point b of X over K, let E = K(b), denote the integral closure of R
in £ by Rg, choose a point B’ of X, that lies over b, use the conjugates of B’ over K to construct
a homogeneous ideal B” of Rglt], and prove that Vi (B') N Vi (B”) = 0. We use the homogeneous
ideals B" and B” of Rglt] in Section 9 to produce homogeneous coordinates sg, s1, ..., s € R[t] of large
degree of a projective curve Y = Proj(K]|so,...,s]) (Lemma 9.5), and to construct in Section 10 a
birational morhism ¢: Xz — Y which maps the smooth affine curve X minus the point corresponding
to B = R[t] N B’ isomorphically onto a Zariski-open smooth affine subset Yy of Y, maps Zx onto a point
yo € Y(K), and maps the point of X corresponding to B onto cusps y1,...,y. € Y (K) of multiplicity
¢, where ¢ is a large prime number, such that Y (K) = Yo(K)U{yo,y1,.-.,ye} (Lemmas 10.3 and 10.4).
We use that curve to construct a symmetrically stabilizing element for F//K using the main result of
[GRJ17] quoted here as Proposition 8.6.

6.1 SEPARABLE INTEGRAL POINT. We assume without loss that tg,¢; form a separable transcendence
base for K(t)/K (Lemma 5.6(b) and [FrJ08, p. 38, Lemma 2.6.1]). Let hg, h1,...,hy, € R[Ty,...,T;] be

homogeneous polynomials of the same degree such that ho(t) # 0 and z; = Z;E:; for j=1,...,n. Then,

we choose b1 € Kgep ™ K and extend the map (to,¢1) — (1,b1) to a K-homomorphism ¢: K[t] — Kgep
such that with b; = @(¢;) for ¢ = 2,...,r and b = (1:by:---:b,) we have ho(b) # 0. It follows that
b € X(Ksep) > X(K). From a geometric point of view we can choose a separating transcendence base
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of F/K that leads to a nonconstant morphism f: C' — A!, so there is a dense open U in A! such that
f71(U) — U is finite étale, and choose by € U(Ksep) NU(K) and b € f=1(b1)(Ksep). Since X is smooth
(Subsection 5.1, (1)), b € Xgimp(Ksep). Let E = K(by,...,b,), set e = [E : K], and note that e > 2, by
the choice of b;. We choose a non-zero element b’ of R such that 'b; is integral over R for i = 1,...,r.
Adjoining the prime divisors of b’ that are in V to T and using Lemma 4.10, we may assume that by, ..., b,
are integral over R. Geometrically, we can consider the point b as a section Spec(E) — C. Then, after
enlarging 7T if necessary, it extends to a section Spec(Rg) — X.

For each ideal a of a graded ring A we let a® be the ideal generated by all of the homogeneous
elements of a. Then, a” is the maximal homogeneous ideal of A contained in a. By [Liu06, p. 51, Lemma
2.3.35(a)], a” is a prime ideal, if a is.

Having made this definition, we consider the homogeneous prime ideal B = Ker(p)" N R[t] of R[t].
Geometrically, B is the generic point of the image of the section Spec(Rg) — X. Note that ¢y ¢ Ker(y)
(because p(tg) = 1), hence ¢ty ¢ B. Thus, B can be also considered as a point of X that belongs to X.
Moreover, B lies under b.

Since Ker(p)" is a prime ideal of K[t], its intersection with K is empty, hence
(1) BhR=0.

Since K[t] is the quotient ring of R[t] with respect to the multiplicative set R {0} and B is disjoint to
that set (by (1)), we have
(2) KBNR[t] = B and KB = Ker(p)".

6.2 THE RING Rg. Following Subsection 6.1, we consider the separable field extension E = K(b) of
K and let Rg be the integral closure of R in E. By Subsection 6.1, by,...,b, are integral over R, so
bi,...,b € Rp.

Since R is a principal ideal domain (Subsection 5.2) and E/K is a finite separable extension, Rp is
a finitely generated free R-module [Wae91, p. 175, Sec. 17.3]. Then Rg has an R-basis wy, ..., w,. which
is also a basis for E/K.

We choose 071, ..., 0. € Aut(K /K) whose restrictions to E are the distinct K-embeddings of E into
K and o is the identity map of E. Since K (t)/K is a regular extension (Lemma 5.6(b)), we may extend
01,...,0¢ to elements of Aut(K(t)/K (t)) having the same names.

Since E/K is a separable extension det(w;?) # 0 [Lan93, p. 286, Cor. 5.4]. Moreover, det(w;”); j=1, ...}
belongs to the integral closure R of R in K. We use Lemma 4.10 to enlarge 7 such that
(3) det(w{’) is invertible in R.

Having made this assumption, we prove that
(4) Rg [ﬂ is integrally closed.

Indeed, let f € E(i) be integral over Rg [ﬂ Since E(%) =F- K(i) =y  Kw - K(%) =
Oy wiK(%), we may write f =Y, w;f; with f1,..., fe € K(i) Applying o; on the latter equality,
we get f79 = >0 | wi’ f;; 5 =1,...,e. Applying Kramer’s rule to the latter system of equations, we find
for each 1 < k < e that fi, = fi/det(w;’) with f] in the integral closure of R[ﬂ in K(%) It follows
from (3) that fi belongs to the integral closure of R%] in K (%) Since R[%] is integrally closed (Lemma

5.6(c)), fr € R[¢]. Tt follows that f € Rp[£].

Notation 6.3: We consider the homogeneous ideals

Bj = KIt|(t; = b7’t0), j=1,...,¢,
=1

(&

B =3 Reldt—bto). 5= (V(eleln )
i=1

Jj=2

of K[t] and Rglt], respectively, and note that B; = Bj’ for j = 1,...,e. Note also that K[t]/B;

is isomorphic to the integral domain K[to], so Bj is a prime ideal of K[t] for j = 1,...,e. Similarly
Rg[t]/B’ = Rglto], so B’ is a prime ideal of Rg[t]. 1
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LEMMA 6.4: B' = Rg[t] N By.

Proof: It suffices to prove that each f € Rg[t] N By belongs to B’. To that end we choose a basis
(w1, g, W3, . ..) for K/E with @ = 1. Then, we note that since K (t)/K is a regular extension (Lemma
5.6(b)), also E(t)/FE is a regular extension. Hence, wy,Ws,Ws, ... also form a basis for K[t] over E[t].
By definition, f = >°._, fi(t; — bito) with f; € K[t] for i = 1,...,r. For each 1 < i < r we write
fi = Y opey iy, with fi € E[t] for all k and all but finitely many of the f;,’s are 0. Then, f =
Sret (D0 fik(ti —bito))iwy,. Comparing the coefficients of w; on both sides, we have f = 37| fi1(t; —
bito) S E[t]B/ n RE[t}

Since the Rp[t]-degree of each non-zero element of B’ is at least 1, we have B'N R = 0. In addition
observe that E[t] is the quotient ring of Rg[t] with respect to the multiplicative subset Rg “{0}. Since
B’ is a prime ideal of Rg[t] (Notation 6.3), it follows that E[t]B’ N Rg[t] = B’, so f € B’, as claimed.
|

LEMMA 6.5: B = R[t|NB; forj =1,...,e, BC B'NB", and KB = (\;_, B;. Thus, By, ..., B, are
exactly the points of X that lie over B. Each of them is simple. Moreover, Bj g Bj/ if j# 4"
Proof: Since K (t)/K is a regular extension, we may uniquely extend the K-homomorphism ¢ introduced

in Subsection 6.1 to a K-homomorphism ¢: K[t] — K. Then, Ker()" is a homogeneous prime ideal of
K[t] that belongs to Xz and $(t) = b. For each f € Ker(¢)" we apply the Taylor expansion around

% to f(%) (with by = 1) and then multiply the resulting expression by tgeg(f). We find that Ker(p)" =
ST K[t)(t; — bito). Tt follows that B = R[t] N Ker(p)" = R[t] N Ker(p)" = R[t] N 1_, K[t](t; — bito).
Applying o; on both sides, we get
(5) B=R[t]NnY_, K[t](t; — b]’to) = R[t] N B; for j =1,...,e.
The point B; of X corresponds to b, so B is simple. Hence, Bj = ij is also simple for
=1,...,e.
’ By (5) and by Lemma 6.4, B = R[t| N By € Rg[t]n By = B'. Also, B C (;_,(Rg[t]N B;) = B”.
Let P’ be a point of Xz that contains KB and let b’ = (1:b;: - --:b.) be the corresponding point in

X(K) (note that to ¢ P', otherwise to € K[t] N P’ = KB). Let ¢': K[t] — K be the K-homomorphism
mapping t onto b’. Then, Ker(¢')" = KB = Ker(p)" (because KB is a closed point of Xf). It follows
that there exists o € Aut(K/K) such that b’ = b?. Hence, P’ is one of the B;’s, as claimed.

Finally, we prove that B]- Z Bj/ if j # j'. Indeed, it suffices to prove that Bj C B; implies that
j = 1. Indeed, the latter assumption implies that for all 1 < 4,4’ < r there exist f; ; € K[Ty,...,T,] such
that t; — b to = >_5_y fi.w (t)(ts — birto). Applying @ on both sides, we get b; —b;’ =0fori=1,...,r.
Since F = K(by,...,b.), we conclude from the choice of o1,...,0, in Subsection 6.2 that j = 1, as
claimed. |

Since to € R[t], B; N R[t] = B (Lemma 6.5), and to ¢ B (Subsection 6.1), we have:
COROLLARY 6.6: For each 1 < j < e we have ty ¢ Bj.

Notation 6.7: By the choice of o1, .., 0., the r-tuples (b]’,...,b;?), j = 1,...,e are distinct. Since the
ring R is infinite, it contains cq, ..., ¢, such that

Ci(bi—b?j)#o, j:2,...,e.

=1

We consider the non-zero element ¢ = [5_, >°7_; ¢i(bi = b;7) of R. By Example 4.11, we may add finitely

many primes in V to T, if necessary, to assume that c is invertible in R. |
LEMMA 6.8: V(B )NV, (B")=0.

Proof: 'We break up the proof into several parts.
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PART A: The elements ti,...,t.. Foreach 1 < j <elet fj =yt bg7t0) Since b1, ...,b, are
separable over K, integral over R, and ¢; € fi[t]h

(6) % is separable over K(%) and integral over R[%], j=1,...e.
By definition,

(7) t; € B; for j = 1,.
We claim that

(8) there exists a positive integer ko such that t° H;:2 t; € B".
Indeed, each o € Gal(K(t)) permutes & ... = so by (6), [[_, £ € K(t ) In addition, # €

to ? to =1 tg
E (i) Therefore
to )

Sy
o |~

By (6), Hj 5 f—’ is integral over R[%], hence also over Rp [%] Since by (4), Rg [%] is integrally closed in

E(E ) we have H] s to € Rp[t ] Hence, there exists a positive integer ko such that 5° H§:2 t; € Rit].
It follows from (7) that th° IT5= o1 € Nj=2 B; N Rg[t] = B”, as claimed.

PART B: A power of ty. We note that

t’gOﬁij:t HZC i — b7 to)
j=2

Jj=21=1

e r
= tlgo H Z Ci(ti — bito + bitg — b?j to)

j=2i=1

= tlg“u + t’5° f[ ZT: ci(b; — b7 )to

j=2i=1

_ 4k k+el
=1t,0u +t° c,

where ¢ is the invertible element of R introduced in Notation 6.7, and u is a sum of products of e — 1
elements of R[t], one of which is ¢;(t; — b; ito) for some 1 < i < r, so belongs to B’, and the others have
the form ¢;(b; — bY”)to, so they belong to R[t]. Thus, u € R[t]B’. Since c is 1nvert1b1e in R, we have, by
(8), that

(9) tforemt = 1Ry 4 ¢l [l t; € R[t|B’ + R[t]B".

END OF PROOF: We recall that Vi (B') (resp. V4 (B")) is the set of all homogeneous prime ideals of
Rp[t] that contain B’ (resp. B”) but do not contain the set {to,...,t.}. If P € V (B')NV,(B"),
then B’ + B” C P. Since R[t] is an integral extension of Rp[t], there exists a prime ideal P of R[t]
whose intersection with Rg[t] is P. In particular, R[t]B’ 4+ R[t]|B” C P. By (9), ti*™*~' € P. Hence,
t’gﬁe*l cPn Rglt] = P, so tg € P. Since for each 1 < ¢ < e, we have t; — bitg € B’ C P, we have
t; = (t; — bitg) + bitg € P. Thus, {to,...,t.} € P. This contradiction implies that P as above does not
exist. |

Remark 6.9: We could save the introduction of this section if X had a K-rational point. But in view
of Falting’s theorem, many of the absolutely integral curves over K have no K-rational points, if K is
a number field. Still, we could simplify the proof of the properties of B if we could choose b as Galois
over K, that is such that E = K(b) is a Galois extension of K. But unfortunately, it seems to be
unknown if each absolutely integral curve over a global field has a Galois point [JaP16]. So, we have
chosen b as a separable algebraic point over K which is not K-rational. The latter condition makes the
proofs of the properties of b somewhat simpler in that we need not distinguish between the cases where
b is K-rational or not. |
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6.10 THE CLOSED SUBSCHEMES Z,p. Along with the closed subscheme Z of X we consider also the
closed subscheme Zp = Proj(R[t]/B) and for each positive integer ¢ the closed subscheme Z,p =
Proj(R[t]/B?) of X. All of the subschemes Z,p are actually contained in X and have the same un-
derlying topological space. As for Z, we have dim(Z,5) = 1 if R # K (resp. dim(Z,5) = 0if R = K) and
the extensions Zgp,x = Proj(K[t]/KBY) and Z g = Proj(K[t]/K B9) have dimension 0. Moreover,
since X N Z =0, we have Z,g N Z = (). In particular, Zp x N Zx =0 and I  B.

7. From Picard Group to Free Modules

We present a result of [MoB89, Section 3] that gives a big set of effective Cartier divisors on X whose
irreducible components are finite and surjective over Spec(R) and satisfy certain approximation conditions
at each p € T. Lemma 7.10 then says that the above mentioned big set is in a sense T-open.

7.1 Divisors. For each  positive integer d we  consider the fiber  product
X4 = X Xgpece(Rr) "+ Xspec(r) X = Spec(R[x] ®g - -+ ®r R[x]) of d copies of X (resp. d copies of R[x]).
Let the symmetric group &4 act on X% by permutation. Then, the quotient

X9 =x1/6,

is an affine scheme over Spec(R) and &, acts transitively on each fiber of X? — X(@ . Moreover,
since Spec(R) is a Noetherian scheme, the natural projection X¢ — X4 is finite [GoW10, p. 331,
Prop. 12.27(4)].

The fat diagonal A of X< is the closed subscheme such that

AL) = J{(p1,...,pa) € X L)| pi = p;}
i#j

for every ring extension L of R. Note that &4 leaves A invariant. Hence, it makes sense to set
Ug = (X9NA)/&,.

Also, note that the inertia group in &4 of each (py,...,pq) € X4\ A is trivial. Hence, by [Liu06, p. 147,
Exer. 4.3.19], the map X% — X (@ is étale along X4\ A.
Now let S be an R-scheme. Since X is smooth over Spec(R) (Statement (6) of Section 5), [MoB8&9,
(3.2.3)] says that there is a functorial bijection between X (¥ (S) and
(1) the set of all effective Cartier divisors D on Xg = X Xgpec(r) S that are finite and flat of degree d
over S,
with deg(D) as defined in Subsection 2.2.

7.2 GLOBAL SECTIONS. We consider again the graded ring R[t] = RJ[to,...,t,] introduced in Lemma
5.6 such that X = Proj(R[t]). We also consider the closed reduced subscheme Z = X \ X introduced
in Subsection 5.7 and recall that Z = Proj(R|[t]/I), where I is a homogeneous ideal of R[t] (Subsection
5.8). For each large positive integer k, Remark 1.4 gives a commutative diagram

(2) 0——R[tlyNI R[t], =2 > (R[t)/I), —=0
0 —Ker(p§),) —=T(X, 05 (k) —>T(Z,0z(k)) —=0

where the upper and lower rows are short exact sequences which have been identified via canonical maps.

(k)

Also, wg—f) is the quotient map and py’, is the restriction map from X to Z. Changing the base from R

Z
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to a field L that contains K, Diagram (2) becomes

(k)
Xr.Z1

p®
z

0 — Ker( *>1—‘XL70XL )Lﬁ ['(ZL,0z,(k)) —=0.

p)‘(Lyz )

7.3 GENERALIZED PICARD FUNCTOR. In this subsection we let L be a ring extension of R and consider
the category C(L) whose objects are the couples (£, ), where £ is an invertible sheaf on X1, and a: Oz, —
L|z, is an isomorphism. A morphism (£,a) — (L', &) between two objects of C(L) is an isomorphism
w: L — L' such that ¢|z, ca=da’.

In particular, if D is a Cartier divisor on X; which is disjoint from Z (Subsection 2.3) and
(Ums fm)mem is data that represent D, then for all m € M and p € U, N Zy, the image f,p of fim,
in Og, , is invertible, so f,,}. 0%, , = Ox, ,- On the other hand, L(D);, = f,,1, 0%, , (with £(D) as
in Subsection 2.5), so L(D)p = Ox, ,,. It follows that £(D)|z, = Oz, . Finally, since for each m € M,
1plu,, is the unit element of I'(U,,, £(D)) (Subsection 2.5), we may consider 1p|z, as the identity map
Oz, — L(D)|z,. Thus, (L%, (D), 1p) is one of the objects of C(L) mentioned in the preceding paragraph.

If (£, ), (L',a') € C(L), then (L®oy L',a®a’) € C(L) and morphisms of objects of C(L) commute
with tensor products.

If L is a field extension of K, we denote for each non-negative integer d the subcategory of C(L) of
all objects (£, ) with deg(L) = d by C4(L).

We note in passing that [MoB89, Subsection 3.4] denotes the group of isomorphism classes of objects
of C4(L) by PG4(X, Z)(L) and call it the generalized Picard functor relative to Z.

7.4 GENERALIZED PICARD FUNCTORS OVER kp. We use the convention of Subsection 5.1. For each
p e T let ﬁp = Lpf(p and let QLd] be the set of effective Weil divisors D on ka of degree d with
Dip = 2?21 pi, where pi,...,pq are distinct points in Qp(ﬁp) (notation of Subsection 4.4). Thus, D
totally splits in F’ ﬁp in the sense of Subsection 3.2, where F' is the function field of Xy introduced in
Subsection 5.1. Moreover, each D € QLd] can be considered as a point of Ud(f/p) which is fixed under the
action of Gal(L,/Ky). Therefore, QLd] may be viewed as a subset of Uy(K,) (notation of Subsection 7.1),
hence of X (@ (K,).

Next we let Wp[d} be the set of all pairs (£,a) € Cq(K,) that are equivalent to (£)-(Kp (D),1p) for
some D € QLd]. We quote two results from [MoB89] that rely on the assumptions we made on X, X, Z,
and f in Section 5.

LEMMA 7.5: The following statements hold for each p € T .

(a) Q,[Jd] is p-open in Uy(K,) [MoB89, Lemma 3.3(a)].

(b) Let d and d' be non-negative integers such that d > 2 - genus(Xg) + degy (Zk) (see Subsection 5.9
for the definition of degy (Zx)). Then, Wp[d] Wp[d/] C nger/], where the product on the left hand side
is defined by the tensor product introduced in Subsection 7.3 [MoB89, Lemma 3.7.2(ii)].

Next we draw a consequence of [MoB89, Lemma 3.8] and [MoB89, Lemma 3.9]. To that end we use
[Har77, p. 117, Prop. 11.5.12(c)] to identify Ox(k)|z (which implicitly appears in the above mentioned
lemmas of [MoB89]) with Oz(k).

PROPOSITION 7.6: There exist a positive integer kg and an isomorphism alko). 0, — Oz(ky) such that
for each integral positive multiple k of ko the positive integer dj, = deg(Ox, (k)) (in the notation of

Subsection 2.1) and the isomorphism a®) = (a(F0))®(k/k0). @, — O, (k) satisfy the following condition:
There is a section s( ) e ['(X,Ox(k)) such that, in the notation of Diagram (2),
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(a) o (2)(1) = pg;)z(sék)), where o\¥)(Z): T(Z,04) — T'(Z,04(k)) is the corresponding isomorphism

of T'(Z, Oz)-modules,
(b) (O, (k), o) e W™ and

(c) div(s(()]fg) € QLd’“], for eachp € T,

where 1 is the unit element of the ring I'(Z,Oyz), and a'gk)

and s(()]fg are the isomorphism and the section

obtained from a®) and sy by base change from R to K.
In addition, the identifications made in Diagrams (2) and (3) and their commutativity are valid for
R and for every field extension L of K.

Proof: By [MoB89, Lemma 3.9], applied to the ample invertible sheaf O (1) on X [GoW10, p. 386,
Example 13.45] rather than to My, there exist a positive integer ky and an isomorphism alko): 0, —
Oz(ko) such that B
(4a) do = dy, = deg(Ox,. (ko)) > 2 - genus(Xg ) + deg (Zx) and
(4b) (Ox, (ko). ap™)) € W3™ for each p € T.
p

Now consider an integral positive multiple k of ko and let k1 = k/kg. Recall that O 5 (k) is naturally
isomorphic to O g (ko)®** [Har77, p. 117, Prop. I11.5.12(b)] and O (ko) is a free O g-module of rank 1, so
a®) = (ako))®k1 5 an isomorphism of Oz onto Oz (k) and dj, = ki1dp = deg(Ox, (k)) (Subsection 2.1).
By (4a) and Lemma 7.5(b), (Wi™!)k C W™ for each p € T. Hence, by (4b), Condition (b) holds for
eachp e T.

By [MoB89, Lemma 3.8], there exists s(()k) € I'(X,0x(k)) such that (a) and (c) are satisfied, as
claimed.

The last assertion of the proposition holds if we eventually replace kg by a sufficiently large integral
positive multiple of itself. |

7.7 GENERATORS OF GLOBAL SECTIONS. In the notation of Proposition 7.6 let k be an integral positive
multiple of ky and let

[(X,0x(k),aM) = {s € T(X, 05 (k)| p’,(5) = a®(2)(1)}.

The bijection given in (1) for the scheme Spec(R) and the bijection given in [MoB89, p. 189, (3.5.4)]
prove part (a) of the following result:

LEMMA 7.8: If s € T'(X, 0% (k),a®), then

(a) div(s) is an effective Cartier divisor on X, finite and flat over Spec(R) of degree dy = deg(Ox,. (k)),
and

(b) each irreducible component of div(s) is finite and surjective over Spec(R).

Proof of (b): Let f: X — Spec(R) be the morphism introduced in Subsection 5.5, let Y be the closed
subscheme of X attached to div(s) (Subsection 2.3). By Subsection 5.5, X is Noetherian, hence so is
Y [Liu06, p. 55, Prop. 2.3.46(a)]. Consider an irreducible component Y’ of Y. Since f|y is finite, it is
proper [GoW10, p. 344, Example 12.56(3)], hence closed. By (a), f is flat on Y. Hence, by [Liu06, p. 136,
Lemma 4.3.7], f(Y”) is dense in Spec(R), so f(Y') = Spec(R). By [GoW10, p. 325, Prop. 12.11(1)], the
closed immersion Y’ — Y is finite. Composing it with f|y, we conclude that f|y: is a finite morphism
[GoW10, p. 325, Prop. 12.11(2)].

7.9 DIVISORS OF SECTIONS IN OPEN SETS. Let k be an integral positive multiple of ky and consider
elements sq,...,s in Ker(pg?)z), that is elements of I'(X,Og(k)) that vanish on Z. Let sék) be the
(k)

section introduced in Proposition 7.6. We set s = (s /, s1, ..., ;) and

l
(5) Fék) = {Sék) + Zaisi | ay,...,aq; € R}

i=1
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Then, I’ék) CI'(X,0%(k),a®), hence Lemma 7.8 holds for every s € I’ék).

For each p € T and every algebraic extension K’ of K let QE’;}, be the set of Cartier divisors D

on Xf(pK’ that are effective of degree dp = deg(Ox,. (k)), étale, totally split in FﬁPK’ in the sense of

Subsection 3.2 (where F' is the function field of Xx introduced in Subsection 5.1), whose irreducible
L, K’-components are in Q,(L,K"). We also set

(6) Fgfp)yK, to be the set of all s € F(Xf(pK/, Oka (k)) of the form s = Sék) +Zé=1 a;s; with aq,...,a; €

K/
K,K' such that div(s) € QL{%,.

By Lemma 7.5(a), QE%, is p-open in Ud(KpK’). Hence, an application of Lemma 3.4 to the Galois

extension ﬁpK ] KPK . with p € T, yields the following result:

LEMMA 7.10: Let kg be the integer introduced in Proposition 7.6, let k be an integral positive multiple
of ko, and let sék) be an element of T'(X,O(k)) that Proposition 7.6 gives. In addition let s1,...,s; be
%)Z) and set s = (sgk)7 S1,...,81). Then, there exists a positive real number v such that
if K’ is a separable algebraic extension of K, then the following holds: If a1, ...,a; € K’ satisty |aJ|, <~y

forall1<i<l, o€ Gal(K), and p € T, then sgk) + 22:1 a;s; € Fgfp),K, for each p € T.

elements of Ker(p

8. A Stabilizing Element

Let K, F, R, X, X, and Z be as in Subsections 4.1, 5.1, 5.2, 5.5, Lemma 5.6, and Subsection 5.7,
respectively. In particular F' is a finitely generated regular extension of K of transcendence degree 1.
Thus, F has a transcendental element ¢ over K such that F/K(t) is a finite separable extension. Let F
be the Galois closure of F/K(t). We say that ¢+ symmetrically stabilizes F/K if Gal(FK /K (t)) is
isomorphic to the symmetric group of rank [F : K (t)]. In this case Gal(FK /K (t)) = Gal(F'/K (t)) [FrJ08,
p. 391, Lemma 18.9.2], hence F /K is a regular extension. The existence of symmetrically stabilizing
elements is proved in [GeJ89] in the case where F/K is conservative (in particular, if K is perfect), and
in [Neu98] in the general case. In [GeJ02, Thm. 16.2] we prove that ¢ can be chosen as a quotient of linear
combinations of a basis of the linear space £(D) (introduced just before Lemma 3.3) attached to a certain
very ample divisor D of F//K. In this section and in the three following ones we refine that construction
and choose the coefficient of the first element of the basis to be 1, keeping the other coefficients in given
non-empty 7-open subsets of R, where 7T is a finite subset of V that contains S such that VT C P gy.
Here we call a subset U of R T-open if U is the union of basic T-open sets. The latter are intersections
of p-open discs of K, where p ranges over all elements of 7.
Our construction depends on the main result of [GJR17] that we now start to explain.

8.1 MATRICES. Let U be the universal field extension of K chosen in Subsection 4.1. For each pair
(i,) of positive integers we consider the affine variety M;; over K such that the set M;;(U) consists of

all ¢ x j matrices with entries in U. Thus, M;; is naturally isomorphic to the affine space AZIJ( Ifi <y,
we write M, for the non-empty Zariski-open subset of M;; consisting of all matrices in M;; of rank 4, i.e.
with linearly independent rows. We fix a positive integer [ for this section, let

M® — M g X M, % -+ x M4,
and define a morphism p®: M® — M4y by multiplication:
lu(l)(AQ,AS., .. .,Al) = A2A3 .. 'Al7

and observe that actually ) maps MW" (K) onto M3 ;44 (K) [GeJ02, §3]. For each i > 2, we define

a map ¥;: M, ., — P* mapping each A € M, ,(0) onto the unique point (yo:---:y;) of P{(0) that
Yo 0

satisfies A | : = [ ¢ |. Kramer’s rule implies that v; is a morphism. Let P®) = P2 x ... x P! and

Yi 0
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PO = ahy x - x b MO — PO, Then ¢® is a morphism that maps M® (K) onto P (K) [GeJ02, §3].
Both maps from M®) appear in the following row:

[©)

®
(1) PO L MO s
8.2 F. K. SCHMIDT’S DERIVATIVES. Let A = Proj(K|[so,s1,-..,s]) be an absolutely integral pro-
jective curve in ]P’lK with function field F, where K[sg,s1,...,5] is a graded domain over K with

K[s0,81,...,811 = Zi:o Ks;. We set A = Ap = Proj(f([so, S1ye-vy81))-

Over each point p € A(K’) there lie only finitely many prime divisors P, ..., P, of Ff(/f( (alter-
natively, finitely many points of the normalization of A), with e > 1. For each 1 <14 < e let m; be the
maximal ideal of the discrete valuation ring O; of F'K that corresponds to P; and let m; be a generator of
m;. Then, O , € O; and m; NOg , = mg . We identify O;/m; with K. If an element f of FK belongs

to O;, we denote its residue modulo m; in K by f(P;), otherwise we set f(P;) = co. In the former case,

k
one may express f as a formal power series f = Y 7o g—ﬂ{:(P )¥, with coefficients in K, where gﬂ{: is

an element of O; called the F. K. Schmidt derivative of degree k of f with respect to P; [GIJR17,
Section 4].

8.3 CHARACTERISTIC-0 LIKE CURVES. For each 1 < i < e there exists u; € k(so, ..., 81) such that for
each 0 < j <! we have u;s; € O; and there is 0 < j° <1 such that u;s;; ¢ m;. Then, we write s(P;) for
the point

P = (u;8)(P;) = ((uiso)(Pr):(wis1)(Fy): -+ - :(uisi) (Pr))

~ ~ k
of A(K) and note that p does not depend on u;. However, for each k > 1, the expression %(R) may

depend on u; and on 7;. Nevertheless, we denote it by s/ (P;) and make sure that each of the objects
that depend on this symbol does not depend on u; nor on ;.
For example, by [GJR17, Lemma 4.2], the condition

(2) rank(p sl/(P))) =2

(where both p and s!'/(P;) are considered here as columns of height [ + 1 and (p s!Y(P)) is the cor-
responding (I + 1) X 2 matrix) is independent of w; and m;. By [GJR17, Lemma 5.1}, Condition (2)
is equivalent to the condition that s!/(P;) is not a column of zeros. Thus, the latter condition is also
independent of u; and ;. By [GJR17, Lemma 5.2], p is a simple point of A if and only if FR'/R has
a unique prime divisor P over p and sl!l(P) is not a column of zeros. In this case we write s!!/(p) for
sl(P). Then, the linear form pYy + s!*(p)Y; is a parametric presentation of the tangent Tx , to A at
p.
We say that p is an inflection point of A if p is simple and

rank(p s!'(p) s (p)) = 2.

Again, by [GJR17, Lemma 4.2], this condition is independent of the parameters. By [GeJ89, Lemma 3.1
and the paragraph before Lemma 1.1], our definition of an inflection point coincides with the traditional
one if A is a plane curve [Har77, p. 148].

If char(K) = 0, then A has only finitely many double tangents (i.e. tangents at two simple points
or more) and only finitely many inflection points. Moreover, if A is not a line, it is non-strange. This
means that there exists no point in P!(K) through which infinitely many tangents to A at simple points
go [GJR17, first paragraph of Section 11]. In positive characteristic one or more of these properties may
fail for some curves. So, we say for arbitrary characteristic that A is a characteristic-0-like curve if
A has only finitely many double tangents, finitely many inflection points, and it is non-strange.

The point p is a cusp of A if p is singular and F' K / K has a unique prime divisor that lies over p.
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8.4 MuLTIPLICITIES. Consider a point p € A(f() and let m = my  be the maximal ideal of the local
ring (’)&p. Let Py, ..., P. be the distinct prime divisors of Ff(/f( that lie over p. For each 1 < i < e we
define the multiplicity of A at P; as

mult(A, P;) = minordp, (a),

acem

where ord p, is the normalized discrete valuation of FK /K attached to P;. We also note that dim z m* /m*+1J]
becomes a constant positive integer for all large positive integers & [GJR17, Remark 6.2]. We call that
integer the multiplicity of A at p and denote it by mult(A, p). Thus,

mult(A, p) = dim gz m* /m*+1

for each large k. By [GJR17, Lemma 6.4],

mult(A, p) = Z mult(A, B).

i=1
In particular, if p is normal (i.e., in this case, simple), FK / K has a unique prime divisor P over p and

mult(A,p) = mult(A,P) = II’(IC_iDOI‘dp(a> =1.
acm

If Ff(/f( has a unique prime divisor P that lies over p and mult(A,P) > 1, then OA,p is a proper
subring of the valuation ring of FIN(/f( at P, so Og , is not a discrete valuation ring of F[N(/[N( Hence,
p is a singular point of A, so p is a cusp of A.

Definition 8.5: Let g be a positive integer. A g-curve over K is an integral projective curve A over K
which

(3a) is characteristic-0-like,

(3b) has a cusp of multiplicity ¢, and

(3c) maX e A () mult(A, q) = gq. |

We may now quote [GJR17, Thm. 16.1] for our global field K:

PROPOSITION 8.6: Let A = Proj(K[so,...,s]) be an absolutely integral projective curve in Pl , where
K|so,...,s1] Is a graded ring over K with K[sg,...,s)]1 = Zé:o Ks;. Let F be the function field of A

and suppose that A = A is a g-curve for some prime number q.
Then, there exists a non-empty Zariski-open subset U; of ]P”f(, t=2,3,...,l, such that with U =

Uy x Uz x -+ x U € PO, for each A € (¢V)"Y(U(K)) and with uV(A) = (E), the element t =

Zé:o a;si/ Zi:o bis; [F : K(t)]-symmetrically stabilizes F/K.

Remark 8.7: Theorem 16.1 of [GJR17] assumes that sg, s1,...,s; are elements of F. We may achieve
this condition by choosing a non-zero element s’ of Zé:o Ks;. Then, (3% :---: %) is a generic point of
A with coordinates in F' and Zé:o af:—// 22:0 b =t. |

9. Homogeneous Generic Point

In the next section we construct a birational morphism of Xx onto a g-curve Y over K, with a large
prime number ¢, on which Proposition 8.6 will be applied. The aim of this section is to construct the
homogeneous coordinates of the generic point of Y.

Recall from Lemma 5.6 that X = Proj(R[t]), where t = (to,...,t,), R[t] is a graded ring with
R[tlo =R, R[t]y =Y.._, Rt;, and to,...,t, #0.
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LEMMA 9.1: Let k be a positive integer and sy, . . ., $,» non-zero generators of the K-vector-space Kt].
Then, for every 0 <i <r and 0 <4’ <1’ we have

t t, ”
(1) K(ﬂw“,—):K<%V“,S).
t; t; Sy Sy

Proof: The left hand side of (1) is the function field F' of X and of X. For each 0 <4’ < 7/ there exists
a homogeneous polynomial f; € K[Ty,...,T;] of degree k with s;; = fi/(t). Hence, for each 0 < j" <7/
we have

S f'/ (to e ,tr) fi/(to N tr) t1 28 t1 ty
9 5 Jirtto, / AL ZVLﬁMf/ykWW*EF
( ) Sir t]a; t(k); f] ( tO tO ) f ( tO tO)

Conversely, we denote the right hand side of (1) by F’. For each 0 < i < r there exist ag, ..., a
and bg,...,b~ in K such that titlgfl =apSg + -+ + a8, and t(lﬁ = bysg + - -+ + byrs,. Then,

(3) ti _ t,»t’i_l _ GoSo + -+ ar sy /boso + o bpsy c P
to tO Sy St
It follows from (2) and (3) that F' = F’, as claimed. |

The following result is [GJR17, Prop. 19.1]:

PROPOSITION 9.2: Let F' be an algebraic function field of one variable over K and consider an ele-

ment t € F*. Let s = (sg:81:---:8,,) be a generic point of an integral projective curve A in ]P’% with
$0,81,---,8m € F. Let x' = (x{:x}:---:xl,) be a generic point of an integral projective curve A in
IP”IE(, with xg,z},...,x,, € F. Suppose A is characteristic-0-like. In addition suppose that for each

(j, k) € {0,...,m} x {0,...,n'} there exists aj, € K such that ts; = ZZ';O a;xzy. Then, A is also
characteristic-0-like curve.

Setup 9.3: Let R be the principal ideal domain with quotient field K introduced in Subsection 5.2, X
the affine scheme over R introduced in Subsection 5.5, and X the projective scheme over R introduced
in Lemma 5.6. Subsection 6.1 introduces a separable point B of X that we consider as a homogeneous
prime ideal of R[t] and a point b = (1:b;:---:b,) of X (Ksep) that lies over B with by, ..., b, integral over
R. As in Subsection 6.2, we set £ = K(b) = K(B) and let Rg = Og 1« 7 be the integral closure of R
in F.

As in Subsection 6.2, let wy,...,w. be an R-basis of Rg (hence, also a K-basis of F) and let

01,...,0c be elements of Aut(K(t)/K(t)) whose restrictions to E are the distinct K-embeddings of £
into K and o is the identity map of E. The choices made in that subsection imply that det(w;’j )ig=1,....c

is invertible in the integral closure R of R in K and the ring Rp [%} is integrally closed. Finally,

(4a) we consider the simple points Bj =3, f([t}(ti —b}7tg), j =1,...,e, of X that lie over B and
the corresponding points b; = (1:b]7:---:b7’) = b% of X(K) (so0, in the notation of Subsection
6.10, Zg(K) = {by,...,b.}). Note that since E = K (b) is a separable extension of K of degree e,
the points by, ...,b. form a complete system of conjugate separable points of )_((f() that lie over
B and none of the ideals By, ..., B, of K[t] contains another one,

(4b) we consider the homogeneous ideals B’ = S°I_| Rp(t](t; — bito) = Rp[t] N By (Lemma 6.4) and
B" = (j_y Relt] N B; of Rg[t] introduced in Notation 6.3 that satisfy Vi (B’) N Vy(B") = 0
(Lemma 6.8),

(4c) we consider the positive integer ko mentioned in Proposition 7.6,

(4d) we recall that Z = Proj(R[t]/I), where I is a non-zero homogeneous ideal of R[t] (Subsection 5.8)
such that I ¢ B (Subsection 6.10), choose a non-zero homogeneous element s; of I\ B, and set
ki = deggpy(s1), and

(4e) for each large multiple k of ko, we consider the isomorphism a(®)(Z): T\(Z,0z) — I'(Z, Oz (k)) that
appears in Proposition 7.6 and the homomorphism

e, (X, Ox (k) = T(Z, 02(k))
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that appears in the commutative diagram (2) in Subsection 7.2. |

LEMMA 9.4: Under Setup 9.3, let ay, ..., a, be elements of R and set

€

§=[J(ar(tr = b7 t0) + -+ + ar(t, — b to)).

j=1
Then, § € RJt].
Proof: We consider the independent variables Ty, ..., T, and the element
(5) S=[J(ar(Ty =07 Tp) + -+ - + ar (T — b3 Tp))
j=1

of K(T), where T = (Ty,...,T,). Using the distributive law we may rewrite (5) as
N m
(6) S=> @™, .. 07 )m(T),
i=1

where hi,...,h,, are polynomials with coefficients in R, b = (b1,...,b.), and pu1(T),..., um(T) are
distinct monomials in Ty, ..., T, of degree e.

We extend o71,...,0, to elements of G = Aut(K(t,T)/K(t,T)) with the same names. Since
bi,...,b. € E (Setup 9.3), the choice of g1, ..., 0., implies for each 7 € G that the e-tuple (b7*7,...,b7°7)
is a permutation of (b”,...,b%¢). Therefore, applying 7 on (5) gives ST = S. On the other hand,
applying 7 on (6) gives ST = Y7 hi(b7",...,b7¢) i (T). Hence, S0 hy(b7, ..., 07 )ui(T) = S =
ST =" (7., 07) ui(T). Since pi(T), ..., pm(T) are linearly 1ndependent over K, we get
hi(07*,...,07°)" = hy(b7,...,0%¢) for i = 1,...,m. Since by,...,b, € Kgep (Setup 9.3), we get that
hi(d°,...,0%¢) € K for i = 1,...,m. Since h;(b°,...,b%¢) are integral over R (because by,...,b,
are integral over R, as mentioned in Setup 9.3) and R is integrally closed (Subsection 5.2), we have
hi(0°t,...b%¢) e Rfori=1,...,m

Finally, we observe that the specialization T — t, extends to a K-homomorphism ¢: K[T] — K][t].
It follows from (5) and (6) that 5 = ¢(S) = 32" k(b7 ..., b7 )ui(t) € R[t], as claimed. |

LEMMA 9.5: Under Setup 9.3, let q be a positive integer and let k be a large multiple of kg. Then,

R[t]y = T'(X,0x(k)) has elements sé ), (k)7 . (f)) with [(k) > e such that the following holds:
(a) sék)| = pg?)z( () = o) (Z)(1) # 0. Moreover, s vanishes at no point of Z(K) and div(sékg) €

(notatmn of Proposition 7.6) for each p € T.
(b) s ¢ B; for j=1,.
(c) sz(-k)|z =0, so s(k) € I hence s ) € Ij fori =1,...,l(k) and j = 1,...,d(Z) (in the notation of
Subsection 5.8).
(d) sgk) =w’ sék) mod B?, in particular sz(-k)(B ) w;? s(gk)( B)), fori,j =1,.
(e) (k)Equori—e—i—l Sl(k) and j =1,.

() ((jr)l, . sl(k) form an R-basis for the free R-module L) = Ker(pgf)ZUZ ) = R[t]x NI N B9, hence

also a K -basis for the vector space L( ) = Ker(pg];})( Ik UZen K) = K[t]y N KINKB? over K.
q

(g) The function field of Proj (K[sék), . sl(f))}) is F.

(h) Proj(K [s(()k), . sl(é%]) is a characteristic-0-like integral projective curve in Pl(k)

Proof:  We break up the proof into several parts.
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PART A: Choosing S( ) e ['(X,0%(k)). Let k be a large multiple of k. Let Zp be the closed reduced
subscheme Proj(R[t] / B) of X (introduced in Subsection 6.10). Since X and Z are disjoint (Subsection
5.7) and Zp is a closed subscheme of X which is contained in X (Subsection 6.10), restriction of sections
gives rise (by Lemma 1.5) to an epimorphism

(7) ['(X,0x(k)) — T(Z,0z(k)) x T(Zg, Oz, (k)).

Recall that we are identifying T'(X,0Ox(k)), I'(Z,Oz(k)), and T'(Zp,Oz,(k)) with Rlt]x,
R[t]i/(R[t]x N I), and R[t]i/(R[t]x N B), respectively (Remark 1.4). The restriction maps of (7) are
replaced under these identifications by the quotient maps. Thus, in these terms, the epimorphism (7) is
given by
— (s+ (R[t]x N ), s+ (R[t]x N B)).
By Proposition 7.6, there exists an isomorphism of sheaves a*): O, — Oz(k) of Oz-modules such
that T'(Z, OZ( )) a®(Z)(1) -T(Z,0z), where 1 is the unit element of the ring I'(Z,O). Moreover,
there exists 50 € I'(X,0%(k)) = R[t]y with

(8) s )| = pg];)z( (k)) a®)(Z)(1) # 0. Also, the germ o®)(Z)(1)p of a'®) (Z)(1) at each point P € Z
(k)

is non-zero, so sy vanishes at no point of Z(K),
as stated in (a). Moreover,

(9) div(s(()kg) € QLd"'] for each p € T, where dy, = deg(Ox,. (k)).
We choose by (7) a section s;p € T'(X, O¢(k)) = R[t] that belongs to I but not to B. By Lemma

7.10, we may replace s(() , if necessary, by s( ) asyp with a € R which is sufficiently 7-close to 0 to

assume that, in addition to (8) and (9),

(10) s((Jk) ¢ B. Hence, by Lemma 6.5, s(()k) ¢ Bj for j=1,...,e,
o (b) holds.

PART B: Choosing s}, ...,s, € [(X,0x(k)). We use Setup 9.3(4b) to set
Zuwr = Proj(Rp[t]/(B)?) and Zyg = Proj(Rut]/(B")7).

Both are disjoint closed subschemes of Xpg,, which are contained in Xg,, so are disjoint from the closed
subscheme Zg,, of Xg,. Hence, by Lemma 1.5, restriction of sections gives rise to an epimorphism

(11) F(XRE ; OXRE (k)) — F(ZRE y OZRE (k)) X F(ZQB/v OZqB/ (k)) X F(Z(IB”v OZqBH (k))

Thus, there exists s} € F(XRE’OXRE (k)) = Rg[t]y such that si|z, = 0, si|z
sh Zypn = 0. Then, for each large multiple k£ of kg, we have by Remark 1.4 that

—
s = S0 12,5, and

(12) sy € Rgl, s —s% e (B, and s e (B")q.

This implies that s} ¢ B (otherwise it would follow from s} — s(()k) (B’)q C B' C B that s(k)
R[t]N B; = B (Lemma 6.5), which contradicts (10)) and s} € Bq for j =2,.

Next we write s} = f{(t), where f] € Rg[Ty,...,T,], and recall that R = OK,V\ 7 is the integral

closure of R in K (Subsection 4.5). We set s =(s1)7 = (f1)7(t) € RJ[t]; for j =2,...,e. Then, by the
preceding paragraph,

(13) silz, =0, s, — s(k) € Bq and s}, € B‘? for j' # j. In particular, by (10), sg(B ) = sgk (Bj) # 0 for
ji=1,.. eands( )—Oforj £ j.
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PArT C: Choosing s(k), e sgk). For each 1 <1i<elet
k gj o;
(14) 5" = S5, wf”sh = S5, (wiff) 7 (b).
Then, each of the coefficients of the monomials in tg, ..., ¢, on the right hand side of (14) is an element
of K which is integral over R. Since the latter ring is integrally closed (Subsection 5.2), each of those

coefficients belong to R. Hence, s ) e RJt]. Moreover, since f; € Rg[Tp, ..., T |k, we have sz(-k) € R[t]y.
By (13),

(15) s, =0fori=1,... e,

as stated in (c). Again, by (13),

(16) s (k) 22,21 w; ' sl = wy ]s; = w; sék) mod B? fori,j=1,...,¢,

as stated in (d).

PART D: The free modules L'*) and the linear spaces Ly;). We choose a non-zero homogeneous element
sp of B and let kp = degg(sp) (Section 1).
(17) We choose a large multiple k; of ko such that ky > k; 4+ gkp + 1, where k;y is as in (4d).

For each large integer k let

(18) L™ = Ker(p()];)zuz ) = R[t], NI N B? (Remark 1.4).

Since T'(X,Ox(k)) = R[t]; is a finitely generated R-module and R is Noetherian, L) is a finitely
generated R-module. Moreover, since both R and L(*) are submodules of the field K (t), L is torsion-
free as an R-module. In addition, R is a principal ideal domain (Setup 9.3). So, L(*) is a finitely generated
free R-module [Lan93, p. 148, Thm. 7.1]. It satisfies the following rule:
(19) If s € L™ and s’ € R[t]u, then ss’ € LK*++),

Similarly we consider the vector space

k k
(20) L) =Ker(p§) ez ) = K[t NEIN (KB

over K and observe that Rule (19) holds also for these vector spaces.

Let s[kl} , s be an R-basis of L)) and consider the scheme A = Proj(R[sg“], e 57[7]21]]). By
(19) and (18)
(21) s18LK[t)ky—k;—gks € K[t]g, N KIN KB = Lg’;l), where sy is introduced in (4d).

Since k1 — k;r — gk > 1 (by (17)), Lemma 9.1 implies that the quotients of the elements of

K[t]k,—k;—qkp by a chosen non-zero element of this K-vector-space generate the field F over K. Since
s1sh # 0, Relation (21) implies that the function field of Ak is F.

PART E: Characteristic-0-like curve. We follow [GJR17, Remark 18.1] and let s 3k1], ce Tikll be all of
the elements of the form s£k1]5£ y E " with 0 < h,i,5 < m. By (19), s([]%l}7 e ﬁlil] € LBk C Rlt]sy,.
Thus, R[s; skl ,[i]iﬂ] is a graded ring over R with R[s; [3k1] ...,sgﬁl]] Z;Tjo Rs?kl] and A* =
Proj (R[s([)?’kl], e [Tikl]]) is the image of A under the 3-fold Veronese embedding. In particular, the func-
tion field of Aj is F. Also, A% = = Proj(K|s [Bkl], ce sgkl]]) is the image of Ay = Proj(f([sg“], ce siii”])

under the 3-fold Veronese embeddlng Therefore, by [GJR17, Prop. 18.6],
(22) the curve A7 is characteristic-O-like.

Let k > 3k; be a large multiple of ky. For each 0 < i < m* we set s} = tgigkls?kl] c LK) (by
(19)). In addition, we choose sgi)l, . (( )) in R[t]; that form an R-basis of L(¥) (as stated in (f)). In
particular,

(23) sgi)l, . sl((k)) vanish on Z.

Together with (15), Statement (23) verifies (c). Also, R[sék),.. sl(flz)} is a graded ring over R with
R[sék),.. sl(é“k)%] = Zi(zkg ngk). Since sgfgl,.. sl(?k)) generate L(K) over K, we have sg,...,s),. €

Doie Lk )Ks(k) Hence,
RELEY

(24) %Tl:tk GZ

to
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Since the function field of A% is F, it follows from (24) that F is contained in the function field of
Proj (K[sék), ce sl((k,z)]) The latter is contained in F'. Hence, the function field of Proj(K[s(()k)7 e sl(fk))])
is F, as stated in (g).

[3k1] [3k1] ~
Now observe that (st%,—ki HERR- t’g—kl) is a generic point of A*f( with coordinates in F', hence in FK.
0 0
(k) s®) . ~
Also, (étOT R %) is a generic point of Proj(K[s[()k), cee sl(éc,z)]) with coordinates in F', hence in F K.
0 0
Therefore, by (22), (24), and Proposition 9.2, Proj (f([sék), ce sl((k,g)]) is a characteristic-0-like curve, as
(h) claims.
By the definition of L®*) in Part D, sgj_)l, ey sl(f,z) vanish on Z;p, hence they all belong to B¢ and
therefore to B?, j=1,...,e, as claimd by (e). [ |

LEMMA 9.6: In the notation of Lemma 9.5, the following holds for each large multiple k of ko:
(a) the sections sék), sgk), ey sl(fk)) have no common zero in X (K) and

(b) the sections sgj_)l, e sl(éck)) have no common zero in X (K)~(Z(K)U Zg(K)).

Proof: By Lemma 9.5(a),(b), s(()k) vanishes at no point of Z(K)U Zg(K). Hence, in order to complete
the proof of the claim, it suffices to prove (b).

Since Z(K) U Zp(K) is a finite subset of X (K), there exists a homogeneous polynomial hy €
K|[Ty,...,T,] that vanish on Z(K)U Zz(K) but not on X (K). Replacing hg by its gth power (with ¢ as
in Lemma 9.5), we may assume that ho(t) € K B9. Then, we choose ro € X(K)~(Z(K)U Zp(K)) such
that ho(ro) 7é 0.

Since dim(Xg) = 1, the polynomial hg vanishes only at finitely many points of X(K). Letry,...,rp,

be the finitely many points in X (K)\ Zg(K) at which hg vanishes. For each i between 1 and m we
choose a homogeneous polynomial h; € K[Ty,...,T,] that vanishes on Z (f{ ) but not at r; such that
h;(t) € KB%. Then we set ko = max(deg(hg),...,deg(hy)).

We consider a positive multiple k of kg with & > ko. Given a point p € X(f() N ZB(IE'), we choose
an index 0 < j < r such that ¢;(p) # 0. If p = r; for some ¢ between 1 and m, then h;(p) # 0 (by the

choice of h;). If p # r1,...,1ry, then, ho(p) # 0 (by the defining property of ry,...,r,,). Thus, in any
case, there exists 0 < i < m with h;(p) # 0. It follows that h(Tp,...,T,) = Tf_deg(hi)hi(To, oo T ds

a homogeneous polynomial of degree k with coeflicients in K that vanishes on Z(K), hence on Zk, but

not at p. Moreover, h(t) € KB?. In particular, h(t) € Ker(pg;; Zi0Zon ). BY Lemma 9.5(f), the set
(k) (k)

{5.(3’3-)1» e sl(fk))} is a K-basis of Ker(p%i,ZKuqu,K)' Hence, h(t) is a linear combination of s/}, -, S0
(k) (k)

with coefficients in K, so h(p) is a linear combination of s,;(p),.. - S1(k) (p) with coefficients in K.

Therefore, at least one of the elements s(elj_)l (p),-- .,sl(é“k)) (p) of K is non-zero. This proves (b) and

completes the proof of the lemma. |

10. The Curve Y

We construct a birational morphism of X onto a projective g-curve Y over K for each given positive
integer ¢ > 2. Choosing ¢ to be a large prime number, we then apply Proposition 8.6 to construct a
symmetrically stabilizing element for F//K with a special form.

Setup 10.1: We replace ko (Proposition 7.6) by a large multiple of itself to assume that Lemmas
9.5 and 9.6 hold for each positive multiple k& of ky. Under Setup 9.3, we consider a large multiple
k of kg, a positive integer ¢, and the elements sék), .. -,Sl(éf,z) of R[t]; that Lemma 9.5 produces. In

particular, K[s(()k), . ,sl(?k))] is a graded ring over K such that K[sék), . -751(?12)]1 = Zi(:ko) Ksl(.k). Let

Y = Proj(K[sék), cee sl((kk))]) and let o = o®): X — Y be the rational map defined by ¢(t) = s(*). Since
s(()k), e sl(?,g) have no common zero in X (K) (Lemma 9.6), ¢ is a morphism.
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Let ¢ = gp(k) X — Y be the extension of ¢ created by changing the base field from K to K.
We consider the pOlIltb

yvo = (1:0:---:0)

of PR (K). ]

LEMMA 10.2: Let I' be an absolutely integral projective curve over a field L and let Ty be a non-empty
Zariski-open subset of I' with T'g # I'. Then, 'y is an absolutely integral affine curve over L.

Proof: By a result of Goodman, T'y ; is affine [Goo69, p. 167, Prop. 5]. It follows from [GoW10, p. 442,
Prop. 14.51(6)] that I'g is also affine. (We are indebted to Ulrich Gortz for this argument.)

Alternatively, we may point out that I'y is not a proper scheme and use [Liu06, Exer. 7.5.5, p. 315].

Another possibility communicated to us by David Harbater is to construct an effective Cartier
divisor D on I' whose support is I' NIy and then conclude from [Liu06, Prop. 7.5.5, p. 305] that D is
ample. Thus, for some positive integer ng, the divisor noD is very ample. Hence, L(noD) admits a
set of global sections that provide an embedding of I' into some projective space P7* such that D is the
(set-theoretic) inverse image of the hyperplane at infinity. Therefore, I'g is the inverse image of A7”, hence
is affine, because closed immersions are finite [GoW10, p. 325, Prop. 12.11(1)]. |

LEMMA 10.3: The morphism ¢ of Setup 10.1 maps the affine curve Xi ~ Zp g isomorphically onto a
Zariski-open smooth affine subset Yy of Y. Moreover,

(a) the morphism ¢: Xx — Y is birational,

(b) yo € Y(K) and ¢~ 1( 0) = Zk,

(c) yj GY( K) and ¢~ Yyj)=Dbjforj=1,... e,

(d) Y N (v(Zk) U w(Zp k), and

(e) Yo ( ) =Y (K)yo.y1,---,¥e)-

Proof:  Recall that X = Spec(K|z1,...,zy,]) (Subsection 5.11). By Lemma 10.2, the Zariski-open
subset B
Xk ~NZprk =Xk N2k UZp k)

of X (with Zp k as introduced in Subsection 6.10) is an absolutely integral affine curve over K, hence
may be written as Spec(K[z1,...,2z,]), for some n’ > n and elements ,11,...,z, of F that do not
vanish on Zp k. The rest of the proof breaks up into several parts.

PART A: The affine subset Yy of Y. By Subsection 5.11, X is a normal curve. Hence, for each Q € Xg,
the local ring O, is a discrete valuation ring of /' [Lan58 p. 151, Thm. 1]. In particular, this statement
holds for each of the points K1y,..., Klz) of X that correspond to the points Z1 k, ..., Zyz),x of
Zxk and which are introduced in Subsectlon 5.9. The statement also applies to the pomt KB of Xk
introduced in Subsection 6.1. We choose a positive integer ¢’ that satisfies the following condition:
(1) ordgy,(z;:) +€ >0 and ordgp(xj) +e'g>0fori=1,...,d(Z) and j'=1,...,n.

Now we set k' = ¢’ky and suppose that k& > k’. For each 0 < i < [(k) we choose (by Setup 10.1)
a homogeneous polynomial f; € K[Tp,...,T,] of degree k such that sgk) = f;(t). By Setup 10.1, the
morphism ¢ = gpg): )_(f( — Y is defined by
(2) @(t) = (folt):f1(t): - fiw (£)).

By Lemma 9.5(a), s(()k) does not vanish on Z, by Lemma 9.5(c), s§.k)|Z =0forj=1,...,0k).
Hence,

(3) ¢(Zz) ={yo}, so ¢(Zk) = {yo} and ¢(Z(K )) = {yo}, in particular yo € Y(K).
Next note in the notation of Setup 9.3 that

(4) Zp(K) = {b1,...,b.}.
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We consider j between 1 and e. By Lemma 9.5(b), s; (k) (B;) # 0. Also, for i = 1,...,e we have

by Lemma 9.5(d) that sgk)(Bj) = wa”sék)(Bj). By Lemma 9.5(e), (k)(B )=0fori=e+1,...,1(k).
Hence,

(5) yJ:(lzwfj wd?:0:---:0)
= (s0”(By) w5 (By) 1+ s wP s (By) 02 0)
= (s07(By) : s\ (B)) : ---:sé’% 3) s (By) 5552)@]»))
= (fo(by) : fi(by) s+ = folby) + feyr(by) -2 figy (b)) = B(by) € Y (K).

It follows from (3), (4), and (5) that
(©) PZ(I)) = s,y ) and G2 U Z5() = {031 .. ..3e).

By Setup 9.3, by,...,b. form a complete system of K-conjugate separable points of X (K) that
lie over KB, so they are all of the points of X(K) that lie over KB. Similarly, yi,...,y. form a
complete system of K-conjugate separable points of Y(f() that lie over (K B). By [Lan58, p. 74,
the equivalence of C6 and C7], Y has a Zariski-closed subset Y71 with Y7 1(K) = {y1,...,¥e}. Then,
Y1 = {yo} UYi is a Zariski-closed subset of Y, Yy = Y \ Y} is a non-empty Zariski-open subset of ¥’

and YO(K) = Y(}%) \{yanlv e 7ye}'
PART B: Inclusion of coordinate rings. We consider a point p of X(K)~ Zg(K). For each positive

multiple &k of ko, Lemma 9.6(b) gives e + 1 < ¢ < I(k) such that f;(p) # 0. Hence, by (2) and the
definition of the y;’s,

o) = (fo(p):fr(P): -~ fiy(P)) #¥yjs F=0,1,... ¢,

so p(p) € YO(K) Thus, .
(1) G(X(K)~ Zn(K)) € Yo(K).

By (3), p(Z(K)) = {yo} € Yo(K), hence the morphism ¢: X — Y of integral projective curves
over K is non-constant. Since morphisms of projective curves are closed [Mum88, p. 77, Thm. 1.9.1],
@(XK) =Y. It follows from (7) and (6) that (X (K) AN ZB(K)) Yo (K), hence also
(8) p(Xx ™ ZB,K) =Yp. It follows from (6) that o1 (Yy) = Xk ™ Zp k.

By Lemma 10.2, Yj is an affine curve over K. Hence, there is an inclusion

(9) K[Yy] C K[ Xk ™ Zp k]

of the coordinate rings of the affine schemes Yy and Xx ~ Zp i [Liu06, p. 48, Prop. 2.3.25].

PART C: Equality of coordinate rings. We choose non-zero homogeneous elements ag € KI and by €
KB of K[t]. Then, both Zariski-closed subsets V, (agK[t]) and V, (bgK[t]) of Xf are of dimension 0.
Therefore, (Xx ™ Zp k)N (Vi (aoK[t]) UVL(boK[t])) is a finite set, say {Pi,..., Py, }. For each ¢ between
1 and m we choose non-zero homogeneous elements a; € KI~ P, and b; € KB P; of K[t]. Note that
P, ¢ Zk, because Xk and Zk are disjoint.

Now we assume, in addition to the conditions we have put so far on k, that

/ . .
(10) k>k + Ogl%ﬁ(degmt] (a;) + qdeg g (b)),

where k' = e'ky (Part A).
We consider P € Xg ~Zp . If P ¢ Vi(apK[t]) U Vi(boK][t]), we set ap = ag and bp = by.
Otherwise P = P; for some ¢ between 1 and m and we set ap = a; and bp = b;. In each case
(11) ap € (KI~P)Nn{ao,...,am} and bp € (KB~ P)N{bo,..., b}
By Lemma 9.6(b), there exists i’ between e + 1 and I(kg) such that s i §é P. By Lemma 9.5(f),
s € Kltlg, N KIN KB We set s’ = (s°))¢'. Then,
(12) s' € K[tly NKINKBY and ' ¢ P.
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For each 1 < j < n’ we consider the element x; =x;5" of K(t). Since z; € F,
(13) deggp(z)) = deggp(s’) = k" (second and third paragraphs of Example 1.6).

Since Xx ™ Zp x = Spec(K|z1,...,zy]), we have ordg(z;) > 0 for each @ € X~ Zp i and
every 1 < j <n'/. We choose u; € K[t]; ™ Q (e.g. one of the elements to,...,t,.) and write

@, s(fm)) !
14 I — .
(14) uk Zj ( %o >

Uy

(ko>

By Example 1.6(b), ordQ( —) > 0. Hence, by (14),

; sifo)
(15a) ordg (é) =ordg(z;)+€ - ordQ( o ) > 0.
(O 1L10
Given an i between 1 and d(Z), we choose ug € K[t]; ™~ KI; (e.g. one of the elements t,...,&.).

By Lemma 9.5(c), s, (ko) ¢ I, hence by Example 1.6(c), ordgr, (

s(ko)
;'go) > 1. Therefore, by (14) (with us

replacing uq) and (1),

' (ko)
(15b) orth(%) = ordgy, (z;) + € - ordky, (5 ™ ) > ordgr, (z;) +€ > 0.
1L2 1;2

Finally, we choose ug in K[t]; ~ KB. Since 5! i Fo) ¢ € (KB)? (Lemma 9.5(f)), we have by Example 1.6(e)
s(ko
that ()r(i;(lg (

) > q. Hence, by (14) (with us replacing u1) and (1),

7 (ko)
(156) ordgp (lg’) = Ol“dKB(JZj) +¢ -ordgp (S %o ) > ordKB(xJ) +é q>0.
1L3 1L3

By (13), deggp(z}) = k'. 1t follows from (15) and Example 1.6(d) that 2 € Ox, (kK')q for each
Q € Xg. Hence, by Example 1.6(a), x; € K[t]r (note that, by the last paragraph of Proposition 7.6,
each positive multiple of ky satisfies Diagrams (2) and (3) of Subsection 7.2). Now we choose 0 < 7/ <r
such that t;; ¢ P. We use (10) (11), (12), and (13) to set r = bodegnr (ar) =g degry (br) =k apbpr); €

]/
K[t]yNKIN(KB)! ands-t , apbhs’ € K[t]y N KIN(KB)I P. By Lemma
95(f)
(

16) 2/, s € 1% ksl
By (7), ¢(P) € Yp. Since Y = Proj(K [s(() ). sl(fk))]), we have by the definition of ¢ that p(P) =

PN K[s(()k),.. Sz(fk))] Since s € K[s(()k),.. sl(f]z)} N P, we conclude that s ¢ ¢(P). Hence, by (16),

—deg s (ap)—qdeg s (bp)—

Tj = ?J = J € Oyp(P) = O, 0(P)-
It follows from (8) that each z; with 1 < j < n’ lies in Oy, p, for each Py € Yy, so z; € K[Y(]
[Lan58, p. 31, Thm. 6]. Thus, K[ Xk ™ Zp k| = Klz1,...,2y] C K[Yp]. We conclude from (9) that

]KT[)ﬁ)] = l%j[)(}( N 2?13’](].
PART D: End of proof. By (8) and by the conclusion of Part C, ¢ maps the affine curve Xx ~ Zp g
isomorphically onto Yy. Since X is smooth (Statement (14) in Subsection 5.11),
(17) Yy is smooth
and the morphism ¢: Xj — Y is birational. We know that X(K) is the disjoint union of (X Zp)(K),
{b1},...,{b.}, and Z(K). By (5), ¢(b;) = y; for j = 1,...,e and, by (3), ¢(Z(K)) = {yo}. We
conclude that
(18) ¢ (yo) = Zx and ¢~ !(y;) =bj, j=1,... ¢

This settles all of the statements of the lemma. ]
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LEMMA 10.4: Suppose q > 2. Then, for each 1 < j < e, the point y; on(f() is a cusp of multiplicity q.

Proof: 'We consider 1 < j < e. By Lemma 10.3(c), the simple point Bj of X is the unique point of X
that ¢ maps onto y;. Thus, OX;(.Bj is the unique valuation ring of KF/K that contains the local ring
Oy y,- Let m be the maximal ideal of Oy y,. Since ¢ > 2, it suffices to prove that ¢ = min,,em ordBj (m)
(Subsection 8.4).

(k)

. k)
PART A: Lower bound. By Lemma 9.5(b), sék) ¢ B;. Hence, K[%, el S’<<,f))] is the coordinate ring
SO SO
of an open affine neighborhood of y; in Y. Therefore, by Lemma 9.5(d),(e),
O] . ) sk stR)
(19) m is generated by the elements “ —w(’, ..., 245 —we’, 5(—:“)17 A gl((,f)) .
S0 S0 S0 S0

(k) ,
Moreover, by Lemma 9.5(d),(e), ordg, (35 — w;’
So

)

) > qgfori=1,...,e and ordéj(sf—k)) > q for i =
So

e+1,...,l(k). Hence, ordéj(m) > ¢ for all m € m.

PART B: Vector spaces. The proof of the lemma will be complete, once we produce an element of
Oyy.y; Whose ordp -value is ¢. To this end we consider the K-vector-spaces

r - t’L o
V; ={(a1,...,a,) € K" | ordéj(;ai(% —b77)) > 1}
@ _ , ~ b o
V7 ={(a1,...,a;) € K"| ordBj(;ai(i — b)) > 2},
We also consider for each j’ # j the K-vector-space
r " tl O'j/
Vir ={(a1,...,a,) € K"| ordéj(;ai(%—bi )) =1}

CrLamm Bl: V; € Vj(z). Indeed, since Bj is a simple point of the curve Xf( (Lemma 6.5), Mg B is the
maximal ideal of the discrete valuation ring O 5 . By Notation 6.3, B; =Y K[t](t; —b{’to). Since

to ¢ B; (Corollary 6.6), we have My B, = Sy OXR»BJ' (f—o —b;7). Hence, there exists 1 < < r such

that ord]_;-;,j (:—é —b’) = 1. By definition, (0,...,0,1,0,...,0) € V; ~ Vj(z)7 where 1 stands in the ith place,
as desired.

CrAM B2: V; Vs for each j' # j. Assume toward contradiction that V; C Vj, for some j’ # j. Then,
for each (aq,...,a,) € K" we have

a ti o . . : tz ot
(20) ordéj(;ai(% —b77)) > 1 implies ordéj(;ai(% —b"")) > 1.
For each 1 < i < r we have t; — b]’ty € B;, so by Example 1.6(c), ordéj(:—; —b;’) > 1. By (20),
Ordf}j(% —b;7") > 1. Since Bj = S°I_, K[t](t; — b;”"to), we get Bj; C B; in contrast to Lemma 6.5.

It follows from Claims B1 and B2 that Vj(z) and V; NV, for j° # j are proper subspaces of V.
Since K is an infinite field, there exists (ai1,...,a,) € V; \(Vj@) UUjr; Vi) In other words,

T T
t- . Z t T . .
(21) ordg, ( ;:1 ai(i —b7)) =1and ordg. ( i=1 ai(i —b,"")) =0 for j' # j.
We multiply aq,...,a, by a non-zero element of R to assume that aq,...,a, are in R.
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PART C: An element of R[t]y NI N BY. We consider the element
(22) §=[[(aa(ts = 077" t0) + - + ar(tr — b7 to))

of K[t].. By Lemma 9.4, 5 € R[t], hence 5 € R[t].. By the first statement of (21) and by Example 1.6(c),
S ai(t; — bi’ty) € Bj. Hence, by (22), § € R[t] N B; = B (Lemma 6.5).

Assuming that k > k; +eq, we set s = tfj*kheqsﬁq, where sy is the homogeneous element of I ~ B

chosen in Setup 9.3(4d) and k; = deggy (sr). Then,

(23) s € R[t],NIN B

PART D: The ordj -value of 5. By (21) and (22), the ord 5 -value of the j-factor of the product on
J EN 7

the right hand side of

€

S S1 tl 7] t7- o1 q

" ST () k(1))

(24) " téf H al(to ' >+ +a (to )
7'=1

is ¢ and the ord g -value of the j'th factor is 0 for each j' # j. Since s,y ¢ Bj (because sy € R[t] \ B),

we have ord . (:,S—II) = 0 (Example 1.6(b)). Therefore, by (24), ordg, (%) = ¢. Finally, since ty, s(()k) ¢ Bj,

L (s —
we have ordBj (sgk>) =q.

END OF PROOF: By Lemma 9.5(f), 58-?17 e s(kk)) generate R[t]; N 1N B2 over R. Hence, by (23), there

I
exist a! a) .,y € R such that s = Zl(k) ais®). Tt follows from (19) that =% = Zl(k) al 5
e+l Q) = 2. i NN

i=e+1 1 i=e-+1 is(k)
0 0

€m,
as desired. |

PROPOSITION 10.5: Let g be a large positive integer. Then, for each large positive multiple k of the
integer kg introduced in Proposition 7.6, there exists a birational morphism ¢ of Xk onto an absolutely

integral projective curve Y in Plf((k) such that Yj; is a g-curve (Definition 8.5).

Proof: In the notation of Subsection 5.9, let Zx(K) = {z1,...,2z;}. Since each point of X and in
particular each point of Zf is normal (Subsection 5.11), each zs with 1 < § < d is simple or a cusp of
X [Neu98, p. 234, Lemma 2.14]. In each case zs lies under a unique prime divisor Z; of KF/K.

In the other direction, zs lies over the point Z;(5) x of Zx for a unique i(d) between 1 and d(Z2)
(Subsection 5.9). Since K1I;(5) is a normal point of Xx, we may identify Z;) x with the restriction of

Z(; to F. Let zs be a generator of ML Zisy Then, ordzé (zs) is the ramification index €25/ 215y 5 of Z(;

over Z;s), - We consider an integer

d d
(25) ¢ = > 5,4 €Zs/Zsorx D=1 ord (26)-
Next we choose a large positive multiple k of kg that satisfies the conditions of the preceding lemmas

of this section. In particular, ¥ = Proj(K[sék), .. ,sl(fk))]) is the integral projective curve in Pll({k) and

¢: Xi¢ — Y is the morphism with ¢(t) = s(*) introduced in Setup 10.1.

By Lemma 10.3(a), ¢ is a birational morphism. Since X is absolutely integral, so is Y. By Lemma
9.5(h), Y is a characteristic-0-like curve.

By Lemma 10.3, each of the points of Y(K’) except possibly yo,¥1,...,¥e is simple, hence of
multiplicity 1 in Y (Subsection 8.4). By Lemma 10.4, each of the points y1,...,y. is a cusp of Y of
multiplicity g. Therefore, it suffices to prove that mult(Yy,yo) < ¢ (Definition 8.5).

By Lemma 10.3(b), ¢~ '(yo) = Zk. Hence, by Subsection 8.4, mult(Y,yo) = 25:1 mult (Y}, Zs),

so if for each 1 < § < d we produce
(26) ys € my,y, with ord (ys) = ordy, (z5),
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then, by (25),

S

M&x

d
mult(Y%, yo) Z mult( YK,25 Z Zs (ys) > Z5 <ugq,
§=1

6=1 5=1

and we will be done.

In order to produce ys as in (26), we recall that Zp x and Zg are disjoint (Subsection 6.10), in
particular K B9 ¢ Kl;4). Thus, we may choose a positive integer k' and an element v € (K[t]x N
KBq) N Kfi(g).

By Subsection 5.9, the point Z;5) x of Zx corresponds to the homogeneous prime ideal K I;s) of
K[t] that contains K1. Since z5 € mg, 7 -, we may write

(27) 25 = /\N, where p'; A € K[t]» for some positive integer k" such that u” € KI5 and X ¢ Kl

(Example 1.6(c)).
Next we choose a homogeneous element p" € ((; ;s K1;) > K15 (Subsection 5.9) and an 0 <

i’ <r with t;r ¢ KIZ((;) _

Observe that k', k”, and p’ depend on Xx but not on Y, so we may assume that k& > k' +
k" + deggy(p'). This assumption allows us to set p = tf,_k K~ degxy (o )p’. Then, p € K[t]g—p—g~ N
(N zis) K1) > Klis), so p"p € ﬂj(:Zl) KI; = KI (Subsection 5.9) and deg g (1"p) =k — k'
It follows that p = p’vp € Klt]p N KI N KBY. By Lemma 9.5(f), p is a linear combination of

gj_)l, .. sl((k)) with coefficients in K. Since p belongs to K1, it vanishes on Zg, hence also at yg. By

Lemma 9.5(a), s, (¥} does not vanish on Z (K), hence s( ) does not vanish at yo (which is the image of
Z(K) under @, by Lemma 10.3(b)). Therefore, ys = 45 € my,y, (Example 1.6(c)).
So

In order to compute ord (ys), we choose 0 < j <7 with ¢;(z5) # 0. Since v, p € K[t] K1), we

A\ Eik”
also have v(zs) # 0, p(zs) # 0, and sék)(z(;) # 0. Hence, each of the elements i, tk,,ﬁ,k,/, and 2%)
J J 0
of Ox . 4, is invertible. Therefore, the ord -value of these elements is 0. Writing
v P )\t?_k”
Yo =~ =R T _(k
At s

we get from (27) that

' y p /\tk k"
ordy_ (ys) = ordy_ Y + ordz, e +ord, = +ord, W
J i 0

J
= OI‘dZ(S (2’5),

as desired. |

Having established in Proposition 10.5 that the absolutely integral projective curve Y = Proj(K[s(() ), .. sl(éck))])l
is a g-curve with function field F' for a large positive multiple k of ky and a large positive integer g, we

choose ¢ as a large prime number and apply Proposition 8.6 with Y replacing A to deduce the following
mile stone of the work:

PROPOSITION 10.6: Under Setup 10.1 and in the notation of Subsection 8.1, the following statement
holds for every large positive multiple k of ky:

There exists a non-empty Zariski-open subset U; of P4, i =2,3,...,l(k), such that with U = Uy x
Uzx---xUyyy, for each A € ("N ~Y(U(K)) and with () = 1 ®)(A), the element t = Zi(:kg aisl(.k)/ Zig bisz(.k)l
[F : K(t)]-symmetrically stabilizes F'/K.
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Remark 10.7: The case where K is a number field is much simpler. In this case K is a separable
extension of K. Hence, the normal absolutely integral curve X remains normal under the base change
from K to K. Thus, in this case X & is a smooth projective curve. This allows us to forget about the
special separable point B of X constructed in Section 6. The birational morphism ¢: X — Y now maps
X isomorphically onto Yy. However, we have to take extra care of the point yg = ¢(Zk). Over K,
Yo is a higher ordinary point of Y. In other words, the tangents to X & at points that lie over yq are
distinct. Then, we may use a much simple version of Proposition 8.6 that makes a big part of the paper
[GJR17] redundant. |

11. A Normalized Stabilizing Element

Proposition 11.2 below allows us to choose the stabilizing element more carefully. We prove that ¢ can
be chosen in Proposition 10.6 such that ag = 1, by = 1, by = ay + 1, and (a1, ..., a;)) and (b2, ..., b))
respectively belong to given 7T-open subsets of R'®) and R'*)~1  where the T-topologies on powers of R
are the product T-topologies.

LEMMA 11.1: Let m be a positive integer and C a non-empty T -open subset of R™. Then, C is Zariski-
dense in A';}.

Proof: Tt suffices to prove that if f € K[Xy,...,X,,] is non-zero, then there exists x € C such that
f(x) # 0. In order to do it we first choose a point ¢ = (¢y,...,¢y) € C and a positive real number € such
that if x € R™ satisfies [x —c|, < ¢ for all p € T, then x € C. Using induction, we may assume that
m = 1. Then, we use the strong approximation theorem of algebraic number theorey [CaF67, p. 67] to
choose a € R such that |a|, < ¢ for all p € 7. Then x = ¢1 + ay € C for each y € R. Hence, f(z) # 0 for
all but finitely many = € C. ]

ProposITION 11.2: Under Setup 10.1, let k be a large positive multiple of ky such that Proposition 10.6
holds. Let A and B be non-empty T-open subsets of R‘*) and R'¥)=1  respectively. Set s; = sgk) for
i =0,...,l(k). Then, there exist (a1,...,a;)) € A and (ba,..., b)) € B such that with by = a; + 1

sotaisi+-+aik)Si(k)
sot+bisi+-+bi(k)Si(k)

the quotient t = symmetrically stabilizes F/K.
Proof:  We write I = I(k) and simplify the notation introduced in Subsection 8.1 by setting M = M©®),
p=p, P=P"Y and ¢ =*). Then, (1) of that subsection simplifies to the row

P © *
(1) P—rM—>M;, ;.

For each 2 < i <[ let U; be the non-empty Zariski-open subset of IF’% that Proposition 10.6 supplies.
Shrink U;, if necessary, to assume that
(2) each (aj:---:a;:a;41) € U;(K) satisfies a;11 # 0.
Let U = U; x - -- x U;. By Proposition 10.6,
(3) for each A € ¢y~ }(U(K)) and with p(A) = (ao aoceoa

— aoSot--tars;
by by - bl> , the element t = P p———
symmetrically stabilizes F/K.

We are going to extend row (1) to a commutative diagram:

(4) ]P’:IP’2><-~-><IP’Z<LM=M§X"'XMZFL)M;JH
wl

A=A2X---XAI<7M/:M’2><...XM2 B 201
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THE SUBSET M/ oF M: Let M) be the Zariski-closed subset of M such that M5 (U) consists of all
matrices of the form

(5) A2:(1 o ‘“2>.

1 a1 +1 ao

For each 3 < i <1 let M be the Zariski-closed subset of M} such that M/(U) consists of all matrices of
the form

1 all ... . al’L

0 1 S ag;
(6) Ai=1. . :

0 0 R | (0771

Then, for each 2 < ¢ <, M} is naturally isomorphic to the affine space AHD/2 - We define a closed
immersion 6': A*~1 — M3, by

, (1 a as -+ a
(7) 0(@17...,al7b2,...,bl)—<1 aj+1 by - bl)

Now we set M/ = M) x - x M and observe by induction on [ that u(M’) C ¢’(A%~1). Hence, there
exists a unique morphism p’: M’ — A2~ such that 0’ o ' = pfpr.
THE MORPHISM p: For each 2 < i <[ we define an embedding p;: A* — P by
pi(ai,...,a;) = (a1:---:a;:1).
Let A = A% x --- x Al and consider the morphism p = py x --- X p; from A to P.

THE MORPHISM }: M, — A%: In the notation of (5) and by Subsection 8.1, 12(As) = (yo:y1:y2) is the
unique element of P? that satisfies

Yo
1 a1l Yo a2 1 ail ai2
8 = —0.
(®) (1 a11+1> (y1>+<a22>y2 (1 ann +1 a22> zl
2

1 ai1
1 ail + 1
may assume that yo = 1 and conclude that ¥5(A2) = (yo:y1:1) = p2(yo, y1)-

Similarly, for ¢ = 3,...,1 we consider a matrix A; as in (6). Then ¢;(A4;) = (yo: - - - :y;) is the unique
element of P! that satisfies

Let A} = < ) Since y; # 0 for at least one i and det(A}) = 1, we have y2 # 0. Hence, we

3) ail g Yo ai;
“ee a2’i71 .

©) : N el FE )
(j o - 1 Yi—1 Qi

Again, the determinant of the 7 x ¢ matrix A} on the left hand side of (9) is 1, hence y; # 0, so we may
assume that y; = 1. As in the previous case, we conclude that

(10) Pi(Ai) = (Yo -+ yi—1:1) = pi(yo, -+ -, Yi—1)-

Let y; and &a; be the first and the second columns of height i that appear in (8) if i = 2 and in (9)
if 3 <i <. Then, Aly; +a; = 0 and we define the morphism 1/: M, — A’ by the formula

(11) Vi(A) =y = —(A) &

and consider 17 (A;) in the sequel as a row. It follows from (10) and (11) that p; o ¥} = t;[py,. Writing
W' =Py x -+~ x 1], this establishes the left part of Diagram (4).
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CLAIM A: For each 2 < i <[ we have |(M}) = A®. Indeed, let yo,y1,...,¥i—1 € U. For i = 2 we set
a11 =0, a12 = —yo, and age = —yo — y1 in As. Then, (8) holds for y» =1, so by (11), ¥4(A42) = (Yo, y1)-
When [ > 2, we set for each 3 <1 <1,

10 - 0 —y
0 1 0 —y

A= . . ) € M.
00 -+ 1 -y

Substituting the corresponding values for the parameters appearing in (9) and setting y; = 1, we get that
Pi(A;) = (Yo, .-, Yi—1), as desired.
Cramm B: p/(M/(R)) = A2=1(R). First observe that if A € M/(R), then u(A) € 0'(A%~1(R)), hence
by (4) and (7), /(&) = ()~} (u(A)) € A2~ L(R).

To prove the inclusion in the other direction, we consider (ay, ..., a;,ba, ..., b)) € A2~ (R). If | = 2,

. 1 ai a2 /
1etA2—<1 a +1 b2>€M2(R). Ifl > 2 let
1 0 0 0
0 1 0 0
1 1 0 :
0 0 1 0
fort=3,...,1—1, and
1 a; as as ar—1 aj
0 1 by—az b3—az -+ b_1—a1 b—a
A=(0 0 1 0 0 0 € MJ(R).
0 O 0 0 1 0
Then,
1 0 0 0
A2A3---Al_1:(1 1o 0>6M2,1(R)
Thus, in both cases,
— A .. A (1 e ax e ar
/J“(A)_AQ Al—l Al_<1 CL1+1 b2 bl>_e(ala"'aalaan"'7b1)'

Hence, by the commutativity of (4), (a1,...,a;,ba,...,b) = (@)1 (uw(A)) = u'(A) € p/(M'(R)), as
desired.

CONCLUSION OF THE PROOF: The product A x B is a non-empty T-open subset of A%~1(R). By Claim
B, i/ (M/'(R)) = A?~1(R). Hence, the T-open subset (1) "' (A x B) of M/(R) is non-empty. By definition,
M’ is isomorphic to an affine space. Hence, by Lemma 11.1, (/)1 (A x B) is Zariski-dense in M.

Since a;41 # 0 for each 2 < i < [ and every (aj:---:a;:a;,41) € U; (by (2)), we have U; C p;(A?),
hence U C p(A). Therefore, U’ = p~1(U) is a non-empty Zariski-open subset of A.

By Claim A, ¢'(M’) = A, hence (¢')~}(U’) is a non-empty Zariski-open subset of M’. Therefore,

there exists A € (/)" (AxB)N (W)L (U"). Let (ay,...,a;,ba,...,b) = p'(A). Then, a = (a1,...,a;) €
A, b = (by,....b) € B, u(A) = 0'()/(A)) = G le - ;3) with by = a; 4+ 1, and $(A) =

p(¢¥'(A)) € U(K). By (3), the element ¢t = % symmetrically stabilizes F'/K, as desired.
|
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12. M-points on Varieties Defined over K

Using the notation of Subsection 4.8, we fix a global field K, a proper subset V of the set Pg of all
primes of K, and a finite subset S of V. We also consider a finite subset 7 of V that contains S such
that VT C P . The following definition puts together those properties of the fields Kot s[o] that
are used in the proof of Theorem C. Then, Proposition 12.3 restates Theorem C for curves for algebraic
extensions of K having those properties.

Definition 12.1: [GJR00, Def. 1.10]. Let M be an extension of K in Kio,s and let O be a subset of
M. We say that M is weakly (resp. weakly symmetrically) K-stably PSC over O if for every
absolutely irreducible polynomial h € K[T,Y] monic in Y with d = degy (h) and every polynomial
g € K|[T] satistying
(1a) h(0,Y) has d distinct roots in Kiot,s, ¢(0) # 0, and
(1b) Gal(h(T,Y), K(T)) = Gal(h(T,Y), K(T)) (resp. and is isomorphic to the symmetric group Sg).
there exists (a,b) € O x M such that h(a,b) = 0 and g(a) # 0.

Note that in that case, if M C M’ C Kyot,s, then M’ is also weakly K-stably PSC over O. Also
note that if M is weakly K-stably PSC over O, then M is also weakly symmetrically K-stably PSC over
0. ]

Setup 12.2: Proposition 7.6 introduces a positive integer kg, for each positive multiple & of kg an iso-

morphism a(¥): O — Oz (k) of sheaves and an element sék) € I'(X, Ox(k)) such that the isomorphism

a(2): T(Z,07) = T(Z,07(k)) of T(Z, 0z)-modules induced by a® satisfies p¢’, (s§”) = a®(2)(1),
where 1 is the unit element of the ring I'(Z,Oz). We choose k sufficiently large such that Proposition
10.6 holds. Then, we consider the elements sgk), ey 8552) of Ker(p(;)z

and set s = (Sék), Sgk)a Sy 31(?/2))

) that appear in Proposition 10.6

As in Subsection 7.9, for each algebraic extension K’ of K and every p € T let ng& o be the set

of all s € F(XRPK/, OX;%pK/ (k)) of the form s = s(()k) + Zi(:kl) aisz(,k) with a1, ..., a;u) € K,K' such that
div(s) € QLC@,, where dy, = deg(Ox, (k)). In particular, div(s) totally splits in FL,K' into dj distinct
components each of which is a point that belongs to Q,(L,K’) (Subsection 7.4). |

ProprosSITION 12.3: Let K,S,7T,V be as in the first paragraph of this section. Let C' be an absolutely
integral affine curve over K and let (Ly, Q) )peT be approximation data for K, S,T,V,C (as in Subsection
4.7). Let M be a subfield of Ko, s that contains K. Suppose M is weakly symmetrically K-stably PSC
over Oy (resp. Ony). Then, there exists z € C(Opyy 1) such that z7 € (), Qp (resp. z”" €
Npes o N Nper~ s L (LpKiot,s)) for each 7 € Gal(K).

Proof: We let X and X be as in Subsection 5.5 and Lemma 5.6, respectively, and write F for the

common function field of X and X. Following Lemma 4.10, we change C and T, if necessary, to meet all
(k)

of the assumptions of Sections 5 and 6. We also simplify our notation by setting ! = I(k) and s; = s;
for i =0,...,l. Weset s=(sg,81,--.,81).

The rest of the proof naturally breaks up into six parts.

PART A: The subset A of R'. Lemma 7.10 supplies a T-open neighborhood A of (0,...,0) in R’ such
that if L is an algebraic extension of K, if Ry, is the integral closure of R in L, and if (aq, ..., a;) belongs
to the Tz-open neighborhood A(Ry) of (0,...,0) in R} induced by A, then, in the notation of Setup
12.2, (so + Zézl a;S;)p € Fgﬂp)_’L for each p € T, where for s € F(XRL,OXRL (k)), sp is the section in
F(Xf(,,u (’)gka(k‘)) obtained from s by base change from Ry, to K,L. We set B = R'"1.

Proposition 11.2 gives a = (a1,...,a;) € A and (bg,...,b) € B such that, with by = a; + 1,
s =50+ 22:1 a;s; and s* = sg + Ei:l bisi, the element ¢ = = symmetrically stabilizes F'/K.

PART B: Kio s-rational points of X. By Subsection 7.9, s and s* are elements of Fék), hence they

belong to I'(X, 05 (k),a®)) (Setup 12.2). Moreover, by Part A, s, € Fgf&K for each p € 7. Following
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Subsection 2.6, we consider div(s) as an effective Weil divisor on X. By Lemma 4.10, we may assume

that 7 is non-empty. By Setup 12.2, for each p € T, div(s,) belongs to Ql[f’}g, where dj, = deg(Ox, (k)),

hence div(s,) totally splits in F'L,. The components of div(s,) are points in X (L,) and there are exactly
dy, of them (Subsection 7.4). When p € S, we have ﬁp = Kp, so the components of div(s,) are in this case

(K’ N Kp)—rational points of X. By Subsection 4.4, they are K,-rational points. Since div(s) is invariant
under the action of Gal(K), each of those components is K -rational for all 7 € Gal(K) and p € S.
Therefore, with N = Ko s and Ry the integral closure of R in IV, we have
(2) div(s)ry = div(s) Xgpec(r) Spec(Ry) is a formal sum of dj, Kot s-rational points of X, each with
multiplicity 1.
Note that if S is empty, then Kior.s = Kgep, S0 (2) also holds in this case.

PART C: Choosing y. The homogeneous element s* € K [to, . ., ] gives rise to the Zariski-open affine
subscheme Cy = D (s*) of X [Liu06, p. 51, Lemma 3.36(a)]. Thus, Cy = Spec(A), where A is an
integrally closed domain (because X is normal) with quotient field F. Therefore,

A= ﬂ O%p

pEX K
s*¢p

In particular, t = = € A and A is integral over K[t].

By (4) in Subsection 2.7, div(t) = div(s) — div(s*). Hence, since div(s) and div(s*) are effective
Weil divisors (Subsection 2.4), divg(t) < div(s), so each zero of ¢ is also a zero of s. It follows from (2)
that t has at most dj zeros, each with multiplicity 1.

We choose y € A such that F = K(t,y) and let hy € K[T,Y] be the absolutely irreducible
polynomial, monic in Y, such that ho(¢,y) = 0. Let d = [F : K(t)], let y1,...,ya be the roots of hy(t,Y)
in K(t)sep with y1 =y, and let A(t) =[[,,;(y: —y;) € K[t]. Since ho is separable in Y, A(t) # 0. We
write ho(T,Y) = Y9+ fa_1(T)Y4 L + - + fo(T) with fo,..., fa_1 € K[T]. Since the roots of ho(0,Y)
bijectively correspond to the zeros of ¢, it follows from the preceding paragraph, that ho(0,Y) has d
distinct roots, ¥1, ..., g in Kgep and d < di, so A(0) = H#]—(Qi —y;) #0.

PART D: Another stabilizing element. For each 1 # ag € K we have

l
Zl.fl(ai — aobi)si ao
1= — . - — b,)——)s;
1—ag 2 (az+( z)l_ao)su
hence
. L _tmag st i (@i + (i — bi) 12505
o .

=T _ = 1
1—ag S0+ 2 iy bisi

Note that K(tg) = K(t), so also to symmetrically stabilizes F/K. Since A is T-open, there exists a
positive real number 7, such that
(4) if c € R, satisfies |c — a|, < 7a for each p € Ty, then ¢ € A(Ry).

We use the strong approximation theorem for K [CaF67, p. 67] to choose a non-zero m € R =
Ok v~ T such that

(5) (a; = bi)mlp < 7a
for all 1 <4 <l and p e T. In particular, for i = 1, we get |m|, < v, for allp € 7.
Let t' = m(fft) and note that ¢ = % We let j' be a positive integer such that
1+mt, mt’
hi(t,Y) = T hy(———Y) e K[t',Y
f(#Y) = () 0(1+mt’) Y]
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and write hy(t,Y) = fi(t)Y + fi ()Y 4o g fr(¢) with fg,...,f5 € K[T'] and f3(T") =

(HT’”T’)J'/. In particular, f3(0) =m=7" #0. We set Y’ = f3(t')Y and h(T",Y") = f5(T")4" - hy(T",Y).
Then, h € K[T',Y’] is monic of degree d in Y’ and yi = fi(t)y1,...,y5 = fi(t')ya are the roots of
h(t',Y"). Let A*(t') = [[,»;(yi —y;) € K[t']. Then,

mt’
)

ANE) = fa @) ] [ = ) = SV A

i#]

In particular, by Part C, A*(0) = £5(0)“?=DA(0) # 0, so h(0,Y”) has d distinct roots.
Since K (t') = K(t) C F, we may consider a prime divisor Q of FK /K such that #'(Q) = 0. Then,

Q) = 1122’7% = 0. Let q be the point of X (K) that lies under Q. Then, q is a zero of ¢, hence of s,

S0 by (2)7 qc X(Ktot,5)~

Since f5(t') # 0, we have K(t',y7) = K(t', f;(t")y) = K(t',y) = K(t,y) = F . Also, since h(T",Y")
is absolutely irreducible, the d distinct roots of h(0,Y”) are the images of yi at the distinct prime divisors
of FK/K which are zeros of ¢/ [Lan58, p. 10, Thm. 2]. By the preceding paragraph each of these roots
lies in Kyot,s. Thus, h(T",Y’) satisfies Condition (1la) (with (7,Y”) replacing (7,Y)). Since ¢t is a
symmetrically stabilizing element for F/K, so is t’. Hence, h(T",Y") also satisfies Condition (1b), with
Gal(h(T",Y"), K(T")) =2 &4.

PART E: A prime divisor of FM /M of degree 1. By the assumption on M, there exists (¢,7) € Ok yx M
(resp. (t,9) € Op,px M) such that h(t,y) = 0, h(t,Y) is separable, mt+1 # 0, and x1, . . . , @, (introduced
in Subsection 5.1) belong to the local ring of M[t',yi] at (¢,7). Since C' is a smooth curve (Statement (1)
of Section 5), there exists a prime divisor P of FM /M of degree 1 such that ¢'(P) = ¢ is in Ok, (resp. in

Omy), 1+mt'(P)#0,and z =x(P) € C(M). Hence, t = ll’it, is defined at P, ag =¢(P)#1, Pis

a zero of ¥=%¢ and

(6) 722 = n%t’(P) is in mOg y (resp. in mOxry).

agp -
Let a' = a+ (a — b))%~ and set s’ = so + 22:1 a;s;. Since P is a zero of the left hand side of

’

(3), P is also a zero of the right hand side of (3). The latter is 2. Again, since div(s’) and div(s*) are
effective divisors, P is a zero of s’.

By the properties of t'(P) mentioned in the preceding paragraph, by (6), and by (5), |a} — a;|, =
|(a1- — b;) 2 = [(a; — bi)mt'(P)|y < 7a for all 1 < ¢ <l and p € T (resp. p € Tu). By (4),

l1—ap |p
a’ € A(Ry) N K! (resp. a' € A(Ry) N M'), hence a’ € A (resp. a' € A(Ryr)). Therefore, by Part

A, for each p € T the section s; lies in Fgfg’K (resp. in Fgfg’M). In particular, div(s},) has no multiple

components (Setup 12.2), so div(s’) g, has no multiple components.

PART F: The irreducible components of div(s')r, . Let p be an irreducible component of div(s') g, . By
Lemma 7.8(b) (for s’ replacing s), the restriction of the morphism fry: X Xgpec(r)Spec(Ry) — Spec(Ry)
(induced from the morphism f which is introduced in Subsection 5.5) to p is finite and surjective over
Spec(Ry). Since p is not a multiple component of div(s')g,, we may consider p as a prime ideal of
Ry[x]. If po = pN Ry # 0, then the image of p considered as an irreducible component of div(s') g, in
Spec(Ry) contains exactly one element, namely pg, in contrast to the surjectivity of fg, on p. Thus,
p N Ry = 0, so the coordinates z{,...,2], of 2’ = (z1 + p,...,x, + p) are algebraic over K. Since p is
finite over Spec(Ry), the ring Ry[z],...,2,] is a finitely generated Ry-module. Hence, zi,...,z!, are
integral over Ry (hence, over R). In addition, by Setup 12.2, 2’ € Q, (resp. 2’ € Q,(L,M)) for each
p € T. Since 2z’ is algebraic over K, we have z’ € Q,, (resp. z’ € Q,(L,M)) for each p € T.

If p is the irreducible component of div(s’)r, that corresponds to P, then by Part E, z = x(P) €

C(M). Since 21, ..., z, are integral over R, we have z € C(Oprp 7).
Next observe that for each 7 € Gal(K) (resp. 7 € Gal(M)) we have div(s')™ = div(s’), because
al,...,a; € K (resp. because a},...,a; € M). Hence, p7 is also an irreducible component of div(s’) g,

Therefore, by the paragraph preceding the latter one, z7 € Q, (resp. z" € Q,(L,M)) for each p € T.
In the alternative case (i.e. when M is weakly symmetrically K-stably PSC over Oy y), we note
that if p € S, then M C Ko s C K, = L,. Hence, Q,(L,M) = Q,, so by the preceding paragraph,
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z7 € Q. If p € TS, then by the preceding paragraph, z7 € Q,(L,M) C Q,(LyKiot,s), as desired.
|

PRrROPOSITION 12.4: Let K,S,V be as in Subsection 4.8. Let M be a subfield of Ko s that contains K
and is weakly symmetrically K-stably PSC over Ok y. Then, (M, K,S,V) = SAT (Subsection 4.7).

Proof: By Proposition 12.3, (M, K,S,V,C) = SAT for every absolutely integral affine curve C' over K.
Hence, by Lemma 4.12, (M, K,S,V) = SAT, as claimed. |

13. Varieties over M

We use the strong approximation theorem for varieties defined over K to prove the strong approximation
theorem for varieties defined over M. The first step is to remove the adverb “symmetrically K-stably”
from the condition “M is weakly symmetrically K-stably PSC over Oy " that appears in Proposition
12.4 and allow instead the polynomial h that appears in Definition 12.1 to have coefficients in M (and
not only in K'). This is done via Weil’s descent.

Definition 13.1: [GJRO00, Def. 1.10]. Let M be an extension of K in Ko s and let O be a subset of M.
We say that M is weakly PSC over O if for every absolutely irreducible polynomial h € M|[T, Y] monic
in Y such that h(0,Y) decomposes into distinct monic linear factors over Kio s and every polynomial
g € M[T] with g(0) # 0 there exists (a,b) € O x M such that h(a,b) = 0 and g(a) # 0. |

LEMMA 13.2: Let M be an extension of K in K. s which is weakly symmetrically K-stably PSC over
Ok ,v. Then, M is weakly PSC over O,y .

Proof: Let h € M[T,Y] and g € MI[T] be as in Definition 13.1 We prove that there exists (a,b) €
Ow,y x M such that h(a,b) =0 and g(a) # 0.

PART A: Weil’s descent. Let L be a finite extension of K in M with h € L[T,Y] and g € L[T]. Let V
be the absolutely integral affine curve in A? defined by h(T,Y) =0 and g(T)Z — 1 = 0.

Let d = [L : K] and let 01, ...,04 with 01 = 1 be elements of Gal(K) whose restrictions to L are
all of the K-embeddings of L into K. Let wi,...,wq € Or be a basis for L/K, where Oy, is the ring of
integers of the global field L (Subsection 4.6).

Consider the linear morphism \: A3? — A3 defined by

a b, C § Wi Qg § w;bi, § chz s

where a = (a1,...,aq4), b = (b1,...,b4), and ¢ = (¢1,...,¢q). By Weil’s descent [FrJ08, p. 183, Prop.
10.6.2], there exists an absolutely integral affine variety W in A3¢ such that the restriction of )\;(1 X e X )\‘Tf(d
to Wy is an isomorphism A: Wz — Vf(‘r1 X oo X Vlgd which is defined by

d d d
(1) A(a,b,c) g wita;, g witb;, E witci, ..., g wia;, g wi b, g wfdci)
i=1 i=1 i=1

PART B: Approximation data. Let ty € Kgep be a oot of h(0,Y). By assumption x¢ = (0,29, g(0)71) €
V;imp(Kwt s). Let L’ be a finite Galois extension of K in K s that contains L(tg). Then, xg € Veimp(L'),
so xg' € Vi (L), i=1,...,d. Hence, since A is defined over L',

(2) zo = A" (x7Y, ..., x0?) € Waimp(L').

Let T be a finite subset of V such that S C T, VT C Pk gn, and zg € W(Op vy 7).
For each p € T let L, = K, L’ and

3) Q= {(a,b,¢) € Wanp(Ly) | Jaly < 1if p € P g, and
laly, < 6y if p € Prine},
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where J, = (d - MaxXi<j,j<d |o.1fj|p)71 if pePrint. If p €S, then L, = K, because L' C Kior,s C K.
Let ag, by, co be the points of (L')? such that zy = (ag, by, co). By (1) and (2),

(07t817(9(0)_1)017 cee 707t8da (g(o)_l)od) = (Xgl7 s 7X8d) = A(ZO) = A(aO,bOa CO)
d d d d d d
= (D witaoi, Y wibos Y witcos sy witagi, y_ wiiboi, y wiico;).
i=1 i=1 =1 =1 i=1 =1
Let Q = (w;”)

i )1<ij<d € GL4(L') [Lan93, p. 286, consequence of Cor. 5.4]. Then, Qag = 0 (where ag is

now considered as a column), so ag = 0. Hence, by (3), zg € 2, for each p € T. Therefore, 2, is a non-
empty p-open subset of Wimp(Ly), invariant under Gal(L, /K, ), for each p € T. Since zg € W(Op/ vy« 1),
we have zg € W(Of{,p) for each p € V7. It follows that (L,,Q,)per is approximation data for
K,8,T,V,W.

PaArT C: Conclusion of the proof. By Proposition 12.4,
(Mv Ka 87 Va Wa Ta (Lp, QP)PGT) ': SAT.

Hence, there exists z = (a,b,c) € W(Oysy« 7) such that z7 € , for each p € T and each 7 € Gal(K).
Let (a,b,¢) = A(z) = (Z?:l wiai,Z?:l wibq;,z;izl w;¢;). Since wy,...,wg € L € M, we have (a,b,c) €
V(M). Hence, a,b,c € M, h(a,b) = 0, and g(a)c = 1, so g(a) # 0. Moreover, a = Zle wia; €
Opy~7 (because wi,...,wqg € Or) and, by (3), [a"|, < 1 for each p € T and each 7 € Gal(K).
(Note that if p € T N P inf, then |a7], < Zle |l |plal]y < d-maxi<; j<alw;’|p -6 = 1.) Hence,

a € Opyy~7NOMT =0My, as desired. [

Lemma 13.2 makes it possible to generalize the strong approximation theorem from varieties V'
defined over K to varieties V' defined over finite extensions of K in Kot s.
To this end we choose for each finite extension K’ of K in Ky s and for each p € Pg/ a completion

K {J of K" at p and an embedding of K into the algebraic closure of K {,, as we do in Subsection 4.1. Then
the notions defined with respect to K are also well defined for K’. In particular, Sk, Tk, and Vg are
the sets of all p € Pk~ that lie over S, T, and V, respectively. Note that Sk and Tk are finite sets, Vi
is a proper subset of Pg/, Sgr C T C Vi, and Vg ™ T C Py an. Moreover, K;, = K{, N K, for all
p € Tk Finally, observe that K{, s , = Ktot,s-

PROPOSITION 13.3: Let K,S,7T,V be as in Subsection 4.8, let K’ be a finite extension of K in Kyot,s. Let
M be an extension of K’ in Ko s which is weakly symmetrically K-stably PSC over Ok y. Consider an
absolutely integral affine variety V in A', for some positive integer n. Let (Ly,$p)peT,, be approximation
data for K',Sk+, Ti', Vi, V. Then there exists z € V(Opry~ ) such that 27 € Q,(LyKiors) for all
p € Tk and 7 € Gal(K').

Proof: First we assume that V' is a curve. By Lemma 13.2, M is weakly PSC over Oys,y. By definition,
Omyr ~Ter = Onmy~ 1. Moreover, M is also weakly symmetrically K'-stably PSk/C over Oy y,, .
Hence, we may apply Proposition 12.3 to K’ rather than to K and find z € V(O < 7) such that
27 € Qy(LyKior,s) for all p € Tgr and 7 € Gal(K').

Finally, the reduction lemmas 4.10 and 4.12 work if we replace K by K’ and the condition “z™ € €,
for all 7 € Gal(K) and p € T” by the condition “z” € Q,(LyKior,s) for all 7 € Gal(K’) and p € Tx/".
Hence, the case where V is a curve implies the general case. |

An interesting special case of Proposition 13.3 is the local-global principle stated in Proposition
13.4 below. It is a consequence of Lemma 13.2 and [JaR08, Thm. 2.5]. However, since the latter theorem
is one of the main results of [JaR08] and its proof extends over all of that paper, we prefer to give a proof
that relies on the results of the present work.

Given a field K € M C Kiot,s and a prime q € Vs we set

DM,q = {l‘ S M| ‘.Z’|q <1 1fq|K € PK,ﬁn and ‘I|q <1if q|K S PK7inf}.
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We also let Dysy = )
K{,QLQK,weset

1€V Dyr,q. Given p € Vg for some extension K’ of K in Kios and a field

D(L) = Dy(L) ={z € L| |z[, < 1if p|x € Pk in and |z], < 1if p|x € Pxins}.

PROPOSITION 13.4 (Local-global principle): Let K be a global field, V a proper subset of Pk, and S a
finite subset of V. Let M be an extension of K in Kiq,s. Suppose M is weakly symmetrically K-stably
PSC over Ok y. Let V be an absolutely integral affine variety in A, for some positive integer n such
that Viimp(D(My)) # 0 for each q € Sy and V(D(My)) # 0 for all ¢ € Vay ~Syr. Then, V(Dayy) # 0.

Proof: 'We choose a finite extension K’ of K in M over which V is defined [Lan58, Sec. IIL.5, p. 74]. For
each p € Sk the p-closure K| of K’ that we have chosen contains Kot s, hence also M. Thus, K}, = My,
where ¢ is the prime of M induced by Kj,. By assumption, Q, = Viimp(D(K})) is non-empty. We set
L, =K.

Ngxt we choose a finite subset 7 of V that contains S U (V N Pk ). For each p € Tr/ ™\ Sk
the p-adic topology on MK, (which is actually Kgep, by [GJRO0, p. 220, Prop. 1.15]) induces a prime
q € Tar > Sur, so MK, contains M. Since V/(D(M,)) # 0, there exists z, € V(D(MKy)). We choose a
finite Galois extension L, of K| such that z, € V(Ly) and set Q, = V(D(Ly)). Then, z, € .

The collection (Ly, Qp)peT,,, obtained in this way is approximation data for K', Sk, Tk, Vi, V.
By Proposition 13.3, there exists z € V(Opsy~ 1) such that 27 € Q,(LyKior,s) for all p € Tx and all
7 € Gal(K'’). The latter condition implies that z € Dy 4 for every coordinate z of z and every q € Tay.
Combining this conclusion with the former condition, we conclude that z € V (D)), as desired. |

Definition 13.5: We say that a field My is PAC over a subset O if for every absolutely irreducible
polynomial f € My[X,Y] which is separable in Y there exist infinitely many points (a,b) € O x My such
that f(a,b) =0. |

The next two results contain notation introduced in the second paragraph of the introduction.

LEMMA 13.6 ([GJROO, p. 218, Lemma 1.12]): Let My be an algebraic extension of K, M = MyN Kiot,s,

and e a positive integer. Suppose that My is PAC over Ok y. Then:

(a) M is weakly PSC over Ok y. In particular, Ko s is weakly PSC over Ok v and Kot s(0) is weakly
PSC over Ok, for almost all o € Gal(K)°.

(b) Let M’ be the maximal Galois extension of K inside M. Then M’ is weakly K-stably PSC over
Ox,v. In particular, Ko, s|o] is weakly K-stably PSC over O y for almost all o € Gal(K)°.

We conclude our work with the main result.

THEOREM 13.7: Let K be a global field, e a non-negative integer, ¥V a proper subset of the set of all
primes of K, and S a finite subset of V. Then, for almost all o € Gal(K)¢ and for every subfield M of
Kiot,s that contains Ky s]o], we have:

(a) M is weakly PSC over Oy y.

(b) (M, K,S,V) = SAT.

(¢) M satisfies the local-global principle 13.4.

Proof: For almost all o € Gal(K)®, Lemma 13.6 assures that Ko s[o] is weakly K-stably PSC over
Ok,v. Hence, by Definition 12.1, M is also weakly symmetrically K-stably PSC over Ok y. It follows
from Proposition 12.4 that (M, K,S,V) = SAT. Moreover, M satisfies the local-global principle 13.4.
Finally, by Lemma 13.2, M is weakly PSC over Oy . |

Remark 13.8:

(a) Statements (a) and (c) of Theorem 13.7 settle a question posed in [Jar06, p. 376, Remark 6] when
K=Qand S =0.

(b) Let M be an extension of K in Ko s. It is possible to prove Proposition 13.3 under the assumption
that M is weakly PSC over Oyy,y (rather that M is weakly symmetrically K-stably PSC over Ok ).
Conversely, one may use the arguments of the proof of Lemma 13.2 to prove that if M satisfies the
conclusion of Proposition 13.3, then M is weakly PSC over Oy y.
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(¢) The local global principle mentioned in the abstract is a quick consequence of Theorem 13.7(c). |

[AtM69)]

[BaJ08]

[BLRYO]
[Bousy)
[CaF67]
[Che51]

[DeuT3]

[Drig8)

[Eis95]

[FrJo8]

[GeJ75]
[GeJ8Y]

[GeJ02]

[GJROO]

[GJR17]

[Goo69]

[GoW10]
[GPRYS]

[Gro6111]

[Gro6111I]

References

M.F. Atiya and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading,
1969.

L. Bary-Soroker and M. Jarden, PAC fields over finitely generated fields, Mathematische Zeitschrift
260 (2008), 329-334.

S. Bosch, W. Litkebohmert, M. Raynaud, Néron Models, Springer-Verlag Berlin 1990.
N. Bourbaki, Commutative Algebra, Chapters 1-7, Springer, Berlin, 1989.
J. W. S. Cassels and A. Frohlich, Algebraic Number Theory, Academic Press, London, 1967.

C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Mathematical
Surveys VI, AMS, Providence, 1951.

M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in
Mathematics 314, Springer, Berlin, 1973.

L. v. d. Dries, Elimination theory for the ring of algebraic integers, Journal fiir die reine und ange-

wandte Mathematik 388 (1988), 189-205.

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in
Mathematics 150, Springer-Verlag, New York, 1995.

M. Fried and M. Jarden, Field Arithmetic (3rd Edition), Ergebnisse der Mathematik (3), 11,
Springer, Heidelberg, 2008.

W.-D. Geyer and M. Jarden, Fields with the density property, Journal of Algebra 35 (1975), 178-189.

W.-D. Geyer and M. Jarden, On stable fields in positive characteristic, Geometriae Dedicata 29
(1989), 335-375.

W.-D. Geyer and M. Jarden, PSC Galois extensions of Hilbertian fields, Mathematische Nachrichten
236 (2002), 119-160.

M. Jarden and A. Razon (with an appendix by W.-D. Geyer), Skolem density problems over large
Galois extensions of global fields, Contemporary Mathematics 270 (2000), 213-235.

W.-D. Geyer, M. Jarden, and A. Razon, On stabilizers of algebraic function fields of one variable,
Advances in Geometry (2017), 131-174.

Jacob Eli Goodman, Affine open subsets of algebraic varieties and ample divisors, Annals of Math-

ematics 89 (1969), 160-183.
U. Gortz and T. Wedhorn, Algebraic Geometry I, Vieweg + Teubner Verlag, Wiesbaden 2010.

B. Green, F. Pop, and P. Roquette, On Rumely’s local-global principle, Jahresbericht der Deutschen
Mathematiker-Vereinigung 97 (1995), 43-74.

A. Grothendieck, Eléments de Géométrie Algébrique II, Publications Mathématiques, IHES 8 (1961).
A. Grothendieck, Eléments de Géométrie Algébrique III, Publications Mathématiques, THES 11

(1961).

50



[Gro67]

[Har77]

[IsRO5]

[Jar9l]

[Jar94]

[Jar06]

[JaP16]

[JaR94]

[JaR95]

[JaR98]

[JaRO08]

[Lan58]
[Lan93]

[Liu06]

[Mat80]

[MoB89)

[Mum88]

[Neu98]

[Pre84]

[Pre86]

A. Grothendieck, Eléments de Géométrie Algébrique 1V, quateriéme partie, Publications Mathéma-

tiques, IHES 32 (1967), 5-255.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977.

F. Ischebeck and R. A. Rao, Ideals and Reality: Projective Modules and Number of Generators of
Ideals, Springer 2005.

M. Jarden, Intersection of local algebraic extensions of a Hilbertian field, in “Generators and Rela-
tions in Groups and Geometries” (A. Barlotti et al., eds), NATO ASI Series C 333, 343-405, Kluwer,
Dordrecht, 1991.

M. Jarden, The inverse Galois problem over formal power series fields, Israel Journal of Mathematics

85 (1994), 263-275.

M. Jarden, PAC fields over number fields, Journal de Théorie des Nombres de Bordeaux 18 (2006),
371-377.

M. Jarden and B. Poonen, Galois Points on Varieties, Journal of the Ramanujan Mathematical

Society 31 (2016), 289-295.

M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, Israel Journal of Mathematics

86 (1994), 25-59.

M. Jarden and A. Razon, Skolem density problems over algebraic PSC fields over rings, Nieuw

Archief Wisskunde 13 (1995), 381-399.

M. Jarden and A. Razon, Rumely local global principle for algebraic PSC fields over rings, Trans-
actions of AMS 350, (1) (January 1998), 55-85.

M. Jarden and A. Razon, Rumely’s local global principle for weakly PSC fields over holomorphy
domains, Functiones et Approximatio XXXIX. 2008, 1-30.

S. Lang, Introduction to Algebraic Geometry, Interscience Publishers, New York, 1958.
S. Lang, Algebra, Third Edition, Eddison-Wesley, Reading, 1993.

Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics 6,
Oxford University Press, 2006.

H. Matsumura, Commutative Algebra, Second Edition, Benjamin, Reading, 1980.

L. Moret-Bailly, Groupes de Picard et problémes de Skolem II, Annales Scientifiques de 1’Ecole
Normale Superieure (4) 22 (1989), 181-194.

D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics 1358, Springer,
Berlin, 1988.

K. Neumann, Every finitely generated regular field extension has a stable transcendence base, Israel

Journal of Mathematics 104 (1998), 221-260.

A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics 1093, Springer, Berlin,
1984.

A. Prestel, Einfiirung in die Mathematische Logik und Modelltheorie, Vieweg, Braunschweig, 1986.

o1



[Ray70]

[Ros02]

[Rum86]

[Wae91]

[Wei62]

[ZaST7511)

M. Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Mathematics 169, Springer, Berlin,

1970.

M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer, New
York, 2002.

R. Rumely, Arithmetic over the ring of all algebraic integers, Journal fiir die reine und angewandte

Mathematik 368 (1986), 127-133.
B.L. v.d. Waerden, Algebra, Vol II, Springer-Verlag, New York, 1991.
A. Weil, Foundation of Algebraic Geometry, American Mathematical Society, Providence, 1962.

O. Zariski and P. Samuel, Commutative Algebra II, Springer, New York, 1975.

52



