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Abstract

We strengthen a result of Michiel Kosters by proving the following theorems:

(*) Let ϕ: W → V be a finite surjective morphism of algebraic varieties over an ample

field K. Suppose V has a simple K-rational point a such that a /∈ ϕ(W (Kins)). Then,

card(V (K)rϕ(W (K)) = card(K).

(**) Let K be an infinite field of positive characteristic and let f ∈ K[X] be a non-

constant monic polynomial. Suppose all zeros of f in K̃ belong to Kins rK. Then,

card(K r f(K)) = card(K).
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Introduction

Recall that a field K is ample if it has the following property:

(1) If an absolutely integral variety V over K has a simple K-rational point, then V (K)

is Zariski-dense in V .

Here, a variety over K is a separated K-scheme V of finite type over Spec(K). We say

that V is absolutely integral if its extension VK̃ , with K̃ being the algebraic closure

of K, is integral.

It turns out that in addition to PAC fields and Henselian fields more families of

fields are ample. Among those we find the real closed fields [Jar11, p. 74, Example

5.6.3], fields that satisfy a local-global principle with respect to a family of ample fields

[Jar11, p. 75, Example 5.6.4], fields of power series K0((X1, . . . , Xn)) over an arbitrary

field K0 [Pop10, Thm. 1.1], and fields with a pro-p absolute Galois group (a result of

Jean-Louis Colliot-Thélène [CoT00, p. 360, second paragraph], generalized in [Jar11,

p. 83, Thm. 5.8.3]).

If K is ample and an absolutely integral variety V over K of positive dimension

has a simple K-rational point, then, by a result of Pop, card(V (K)) = card(K) [Jar11,

p. 70, Prop. 5.4.3]. As a result, Arno Fehm proved that if in addition ϕ is a non-constant

rational function of V , then card(ϕ(V (K))) = card(K) [Jar11, p. 71, Cor. 5.4.4].

On the other hand, Philipp Lampe asks the following question in [Lam09]:

Question A: Does there exist an infinite field K and a polynomial f ∈ K[X] such

that K r f(K) is a finite non-empty set?

Pete Clark mentions in [Lam09] that Question A has a negative answer if K is

Hilbertian. Indeed, if in this case there exists a ∈ K r f(K), then d = deg(f) ≥ 2 and

f(X)−T is irreducible in K[T,X]. Hence, there exist infinitely many a′ ∈ K such that

f(X) − a′ is irreducible in K[X] of degree ≥ 2. In particular, there exists no x ∈ K

with f(x) = a′.

On the other hand, Jochen Koenigsmann observed that if K is an ample field, then

an application of Krasner’s lemma to K((t)) implies that if f ∈ K[X] is an irreducible

polynomial of degree > 1, then K r f(K) is an infinite set [BSF13, last paragraph of
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page 6].

Michiel Kosters [Kos16, Thm. 1.2] strengthens Koenigsmann’s negative result to

Question A:

Theorem B: Let K be a perfect ample field, let C,D be normal projective curves

over K, and let ϕ: C → D be a finite morphism. Suppose that the induced map

ϕ: C(K)→ D(K) is not surjective. Then, card(D(K)rϕ(C(K))) = card(K).

Theorem B assumes K to be perfect and C,D to be normal curves. It follows that

both C,D are smooth curves. Also, the assumption on the map ϕ: C(K) → D(K) to

be non-surjective, implies that D(K) is non-empty. Thus, D has a K-rational simple

point a which is not the image of a K-rational point of C under ϕ.

We strengthen Theorem B in two ways: First, we deal with arbitrary K-varieties

rather than K-curves. Second, instead of assuming that K is perfect, we assume only

that none of the points of the inverse image of the missing point is purely inseparable

over K. To this end we denote the maximal purely inseparable extension of K by Kins.

Theorem C (cf. Thm. 2.6): Let ϕ: W → V be a finite surjective morphism of integral

algebraic varieties over an ample field K. Suppose V has a simple K-rational point a

such that a /∈ ϕ(V (Kins)). Then, card(V (K)rϕ(W (K))) = card(K).

While Kosters’ proof tacitely applies the “field crossing argument” [FrJ08, p. 562,

proof of Lemma 24.1.1], we follow Koenigsman’s idea, apply a generalized form of Kras-

ner’s lemma and the existential closedness of K in K((t)).

In addition, we give a negative answer to Question A in a special case in which

the assumptions are in a sense the inverse to those of Theorem C.

Theorem D (cf. Thm. 3.3): Let K be an infinite field of positive characteristic and

let f ∈ K[X] be a non-constant monic polynomial. Suppose that all zeros of f in K̃

belong to Kins rK. Then, card(K r f(K)) = card(K).

Acknowledgements: We are indebted to the anonymous referee for useful com-

ments to an earlier version of this work.
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1. Fibers of Morphisms of Integral Algebraic Varieties over Henselian Fields ROOTS
input, 14

Krasner’s lemma and the theorem about the continuity of roots are well known use-

ful tools to deal with roots of polynomials over Henselian fields. Roughly speaking,

Krasner’s lemma says that if an element y′ of the algebraic closure K̃ of a Henselian

field K is sufficiently close to an element y of the separable closure Ksep of K, then

K(y) ⊆ K(y′). The theorem about the continuity of roots asserts that if a polynomial

g ∈ K̃[X] is sufficiently close to a given polynomial f ∈ K̃[X], then the roots of g are

“respectively” sufficiently close to the roots of f in K̃.

The classical proof of Krasner’s lemma [EnP10, p. 91, Thm. 4.1.7] immediately

generalizes to tuples of elements rather than elements of K̃. A classical proof of the

theorem about the continuity of roots of a separable polynomials appear in [EnP10,

p. 53, Thm. 2.4.7]. We follow the model theoretic exposition of the theorem about the

continuity of roots of an arbitrary polynomial [Jar91, Prop. 12.2] in order to apply it to

inverse images of morphisms of varieties. To this end we need a few concepts from the

theory of valuations.

Let (K, v) be a valued field. Whenever it makes sense, we abbreviate n-tuples

(a1, . . . , an) ∈ Kn by the boldface letter a. Then, we may extend v to a function v from

Kn to the value group of K completed by the symbol ∞ in the following way:

v(a) = min(v(a1), . . . , v(an)).

The extended function satisfies the following rules:

(1a) v(a) 6=∞ if a 6= 000.

(1b) v(a + b) ≥ min(v(a), v(b))

(1b’) v(a + b) = min(v(a), v(b)) if v(a) 6= v(b).

(1c) v(ca) = v(c) + v(a) for each c ∈ K.

Lemma 1.1 (Generalized Krasner’s Lemma): Let (K, v) be a Henselian valued field. ROOa
input, 64

Consider a complete system y1, . . . ,ym of K-conjugates of a point y ∈ Kr
sep with

y1 = y. If a point y′ ∈ K̃r satisfies

(2) v(y′ − y) > max
i≥2

v(yi − y),
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then K(y) ⊆ K(y′).

Proof: Assume toward contradiction that K(y) 6⊆ K(y′). Then, there exists σ ∈

Aut(K̃/K) such that (y′)σ = y′ and yσ 6= y. In particular, there exists i ≥ 2 such

that yσ = yi. Using the identity y′ − yi = (y′ − y) + (y − yi), (2) and (1b’), we get

that v(y′ − yi) = v(y − yi). Since (K, v) is Henselian, v(y′ − y) = v((y′)σ − yσ). By

assumption (2), this leads to the the following contradiction:

v(yi − y) = v(y′ − yi) = v((y′)σ − yσ) = v(y′ − y) > v(yi − y).

It follows that K(y) ⊆ K(y′).

Given a valued field (K, v) we write Ov = {x ∈ K | v(x) ≥ 0} for the valuation

ring of v. If w is another valuation of K and Ov ⊆ Ow, we say that w is coarser than

v. If K admits no valuation w of rank 1 which is coarser than v, then we say that v is

unbounded.

Following [Liu06, p. 55, Def. 2.3.47], we define an affine variety over a field K

as Spec(R), where R is a finitely generated algebra over K. In particular, Spec(R) is

separated [Liu06, p. 100, Prop. 3.3.4]. As usual, we say that V = Spec(R) is integral

if R is an integral domain. In this case we choose x1, . . . , xm ∈ R such that R = K[x]

and consider V as embedded in the affine space AmK . If L is a field extension of K,

then an L-rational point of V is an m-tuple a = (a1, . . . , am) ∈ Lm that satisfies

f(a) = 0 for each f ∈ K[X1, . . . , Xm] such that f(x) = 0. In other words, there is a

K-homomorphism K[x] → L that maps x onto a. In particular, x is a K(x)-rational

point of V . Following the classical language of algebraic geometry, we say that x is a

generic point of V . (Note that the kernel of the K-homomorphism R → K[x] is the

zero ideal of R.) We write V (L) for the set of all L-rational points of V .

An algebraic variety over K is a separated scheme V over K that can be covered

by a finite number of Zariski-open affine varieties over K.

Let V and W be affine varieties over K embedded in AmK and AnK , respectively.

For every morphism ϕ: W → V and for every field extension L of K there exists a

map from W (L) into V (L) that we also denote by ϕ. Indeed, there exist polynomials

4



h1, . . . , hm ∈ K[Y1, . . . , Yn] independent of L such that ϕ(b) = (h1(b), . . . , hm(b)) ∈

V (L) for each b ∈W (L) (essentially [Liu06, p. 48, Prop. 2.3.25]).

This classical description of morphisms, together with a description of V (L) and

W (L) as the zero sets of finitely many polynomials with coefficients in K allows us to

speak about them in the first order language L(ring,K) of rings with a constant symbol

for each element of K. For this concept as well as for other notions of logic and model

theory used in the sequel, the reader may consult [FrJ08, Chap. 7].

Lemma 1.2 (Generalized continuity of roots): Let (K, v) be a valued field and extend ROOb
input, 162

v to K̃. Consider a finite morphism ϕ: W → V of integral affine algebraic varieties

over K. Let a be a point in V (K̃) and let ϕ−1(a)(K̃) = {b1, . . . ,bm}. Then, for each

β ∈ v(K̃×) there exists α ∈ v(K×) such that if a′ ∈ V (K̃) satisfies v(a′ − a) > α, then

for each b′ ∈ ϕ−1(a′)(K̃) there exists 1 ≤ i ≤ m such that v(b′ − bi) > β.

Proof: Since v(K×) is cofinal in v(K̃×) [Jar91, Cor. 7.2], we may assume that K is

algebraically closed. Since the statement of the lemma is elementary in the language

Lv(ring,K) of valued fields with a constant symbol for each element of K, we may use

[Jar91, Lemma 10.3] in order to replace (K, v) by an appropriate non-principal ultra-

power of itself and assume that the valuation v is unbounded. We may also assume that

b1, . . . ,bm are distinct and

(3) β > max
i 6=j

(v(bi − bj)).

The assumption ϕ−1(a) = {b1, . . . ,bm} is equivalent to a sentence in the language

L(ring,K). Therefore, the theorem about the elimination of quantifiers for the theory

of algebraically closed fields [FrJ08, p. 167, Cor. 9.2.2] gives c ∈ K× such that if a

valuation w of K satisfies w(c) = 0 and we denote reduction modulo w by a bar, we

have

(4) ϕ̄: V̄ → W̄ is a finite morphism and ϕ̄−1(ā) = {b̄1, . . . , b̄m} (in particular each of

the objects appearing in this statement are well defined).

Lemma 10.1 of [Jar91] supplies a valuation w of K which is coarser than v such

that
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(5) w(a), w(c), w(c−1), w(b1), . . . , w(bm) ≥ 0

and for each z ∈ K,

(6) w(z) > 0 implies v(z) > β.

In the other direction, [Jar91, Lemma 3.2] gives α ∈ v(K×) such that

(7) v(z) > α implies w(z) > 0 for each z ∈ K.

We assume without loss that α > 0 and consider a′ ∈ V (K) such that v(a′−a) >

α. By (7), w(a′ − a) > 0. Hence, by (5), w(a′) ≥ 0. Therefore, a′ = ā in the residue

field K̄w of K at w.

Now we consider a point b′ ∈ W (K) that satisfies ϕ(b′) = a′. By (4) and (5),

there exists 1 ≤ i ≤ m with b′ = bi. Hence, w(b′ − bi) > 0. It follows from (6) that

v(b′ − bi) > β, as desired.

Lemma 1.3: Let (K, v) be a Henselian valued field and ϕ: W → V a finite morphism of ROOc
input, 238

integral algebraic varieties over K. For each point a ∈ V (K) and for each c ∈ ϕ−1(a)(K̃)

let bc be an element of Ksep ∩K(c). Then, a has a v-open neighborhood U in V (K)

such that for every a′ ∈ U and for each c′ ∈ ϕ−1(a′)(K̃) there exists c ∈ ϕ−1(a)(K̃)

such that K[bc] ⊆ K[c′].

Proof: Since ϕ is finite and the problem is Zariski-local, we may assume that both V

and W are affine and W is embedded in AnK . Let ϕ−1(a)(K̃) = {c1, . . . , cr}. For each

1 ≤ i ≤ r we choose bi ∈ Ksep with K[bi] = Ksep ∩K(ci). By assumption, there exists

fi ∈ K[X1, . . . , Xn] such that bi = fi(ci). Let bi1, . . . , bis be the distinct conjugates of

bi over K.

We set β = max1≤i≤r maxj 6=j′ v(bij − bij′). If b′ ∈ K̃ satisfies v(b′ − bi) > β, then

by Krasner’s Lemma (e.g. Lemma 1.1), K[bi] ⊆ K[b′]. Since the polynomials fi are

v-continuous, there exists γ ∈ v(K×) such that for all 1 ≤ i ≤ r and c′ ∈ K̃n, the

inequality v(c′ − ci) > γ implies v(fi(c
′)− bi) = v(fi(c

′)− fi(ci)) > β.

By Lemma 1.2, there exists α ∈ v(K×) such that if a′ ∈ V (K) satisfies v(a′−a) >

α, then for each c′ ∈ ϕ−1(a′)(K̃) there exists i between 1 and r such that v(c′−ci) > γ.

It follows from the preceding paragraph that v(fi(c
′) − bi) > β and then K[bi] ⊆

K[fi(c
′)] ⊆ K[c′], as desired.
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2. Ample Fields AMPLE
input, 13

Starting from an ample field K of cardinality κ we consider the field K((t)) of for-

mal power series in t over K. Under the assumptions of Theorem C, we first find a

generic point x of V in V (K((t)))rϕ(W (K((t)))). Then, we specialize x to κ points

in V (K)rϕ(W (K)).

Lemma 2.1: Let Ω/K be a regular extension of fields of infinite transcendental degree AMPa
input, 22

and let v be a non-trivial Henselian valuation on Ω. Let V be an absolutely integral

algebraic variety over K with a simple Ω-rational point a and let U be a v-open neigh-

borhood of a in V (Ω). Then, V has a generic Ω-rational point that lies in U .

Proof: Let r = dim(V ). By [GPR95, p. 71, Thm. 9.2], there exist an affine neighbor-

hood V0 of a in V and a morphism ϕ: V0 → ArK that induces a homeomorphism of a

v-open neighborhood U of a in V0(Ω) onto a v-open neighborhood U0 of the origin o of

Ωr. Let y be an element of Ω× such that {b ∈ Ωr | v(b) > v(y)} ⊆ U0.

By assumption, Ω contains elements z′0, z
′
1, . . . , z

′
r that are algebraically indepen-

dent over K. Let y′ be an element of Ω× such that v(z′i) + v(y′) > v(y) for i = 0, . . . , r

and set zi = z′iy
′ for i = 0, . . . , r. Then, trans.deg(K(y′, z′0, . . . , z

′
r)/K) ≥ r + 1. Since

K(y′, z0, . . . , zr) = K(y′, z′0, . . . , z
′
r), we have that trans.deg(K(y′, z0, . . . , zr)/K) ≥

r+ 1. Hence, trans.deg(K(z0, . . . , zr)/K) ≥ r. It follows that at least r elements of the

set {z0, . . . , zr} are algebraically independent over K. We assume without loss of gener-

ality that z1, . . . , zr are algebraically independent over K. By construction, v(zi) > v(y)

for i = 1, . . . , r. Hence, by the preceding paragraph, the point z = (z1, . . . , zr) lies in

U0.

By the first paragraph of the proof, there exists a point x of U , hence of V0(Ω)

such that ϕ(x) = z. Since K(z) ⊆ K(x), we have

r = trans.deg(K(z)/K) ≤ trans.deg(K(x)/K) ≤ r.

Therefore, trans.deg(K(x)/K) = r, so x is a generic point of V , as desired.

Lemma 2.2: Let π: V ′ → V be a non-constant rational map of algebraic varieties over FEHM
input, 76

an ample field K. Suppose that V is integral and affine. Suppose in addition that V ′
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is absolutely integral of positive dimension and has a K-rational simple point. Then,

card(π(V ′(K))) = card(K).

Proof: We may assume that V is embedded in AnK . Let πi be the projection of V on the

ith coordinate. Then, one of the rational functions ϕi = πi◦π: V ′ → A1
K is non-constant.

It follows from a result of Fehm [Jar11, p. 71, Cor. 5.4.4] that card(ϕi(V
′(K))) =

card(K). Hence, card(K) ≤ card(π(V ′(K))). Since card(π(V ′(K)) ≤ card(V (K)) ≤

card(K), we have card(π(V ′(K))) = card(K), as claimed.

Lemma 2.3: Let K be a field, R ⊆ S finitely generated integral domains over K, and ELIM
input, 100

w a non-zero element of S. We set E = Quot(R), F = Quot(S), and assume that F/E

is a finite extension. Then, there exists a non-zero element v ∈ E such that ψ(w) 6= 0

for every K-homomorphism ψ: S[v]→ K̃.

Proof: We choose an irreducible polynomial f(X) = adX
d+ad−1X

d−1 + · · ·+a1X+a0

with coefficients in R such that f(w) = 0. Since w 6= 0, we have a0 6= 0. So, v = a−1
0

satisfies the conclusion of the lemma.

Given an algebraic variety V over a field K we write Vsimp for the Zariski-open

subset of V that consists of all simple points of V . In addition we note that for elements

a1, . . . , ar of K̃ the ring K[a1, . . . , ar] coincides with its quotient field K(a1, . . . , ar) and

use either of these notations as it better fits in the context.

Remark 2.4: The assumption on the existence of a K-rational simple point a on the AMPd
input, 128

integral algebraic variety V over K implies that VK̃ is integral, i.e. V is absolutely

integral. Indeed, we may assume that V is affine, let x be a generic point of V and

set F = K(x). By [JaR80, p. 457, Cor. 3], F has a K-rational place. By [FrJ08, p. 42,

Lemma 2.6.9], F/K is a regular extension. Hence, by [FrJ08, p. 175, Cor. 10.2.2], V is

absolutely integral. See also [Neu99, Lemmas 4 and 5].

Alternatively, the simplicity and the rationality of a imply that the local ring

A = OV,a of a is of dimension n is of dimension n and “formellement lisse” over K.

By [Gro61, p. 102, Thm. 19.6.4], the mV,x-adic completion Â of A is K-isomorphic to

the ring K[[T1, . . . , Tn]] of formal power series in n-variables. Hence for every finite
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extension L of K, the ring Â⊗K L = Â ⊗K L = L[[T1, . . . , Tn]] is a domain. This

implies again that V is geometrically integral.

Lemma 2.5: Let ϕ: W → V be a finite surjective morphism of integral algebraic vari- AMPb
input, 154

eties over an ample field K of cardinality κ with dim(V ) ≥ 1. Let a ∈ Vsimp(K) and for

each c ∈ ϕ−1(a)(K̃) let bc be an element of Ksep ∩K(c). Then, V (K) has κ points a′

such that for each c′ ∈ ϕ−1(a′)(K̃) there exists c ∈ ϕ−1(a)(K̃) with K(bc) ⊆ K(c′).

Proof: Since the statement of the lemma has a Zariski-local nature and ϕ is finite, we

may assume that both V and W are affine and break up the rest of the proof into six

parts.

Part A: System of representatives. For each c ∈ ϕ−1(a)(K̃), we have K(bc) ⊆ Ksep∩

K(c). Replacing bc with a primitive element of Ksep∩Kc, we may assume that K(bc) =

Ksep ∩K(c).

Now let c1, . . . , ck be representatives for the K-conjugacy classes of the points

in ϕ−1(a)(K̃). Let d ∈ ϕ−1(a)(K̃). By the choice of the ci’s there exists an element

σ ∈ Aut(K̃/K) and a unique i ∈ {1, . . . , k} such that σd = ci. If τ is another element

of Aut(K̃/K) with τd = ci, then τ−1σd = d, so σbd = τbd. Hence, we may replace bd

by σ−1bci
, if necessary, in order to assume that

(1) if c,d ∈ ϕ−1(a)(K̃) and σ ∈ Aut(K̃/K) satisfy σd = c, then σbd = bc.

Part B: Base change. Consider the field Ω = K((t)) of power series in t over K.

Let ϕΩ: WΩ → VΩ be the morphism obtained from ϕ by base change from K to Ω.

By [GoW10, p. 325, Prop. 12.11(2) and p. 108, Prop. 4.32(2)], ϕΩ is a finite surjective

morphism. Moreover, a ∈ Vsimp(Ω) = VΩ,simp(Ω) and for each c ∈ ϕ−1(a)(Ω̃) we have

Ω[bc] ⊆ Ω[c].

The t-adic valuation on Ω is discrete and complete, hence Henselian [EnP, p. 20,

Thm. 1.3.1]. By Lemma 1.3, a has a t-adically open neighborhood U in V (Ω) such

that for each a′ ∈ U and for each c′ ∈ ϕ−1
Ω (a′)(Ω̃) there exists c ∈ ϕ−1(a)(Ω̃) with

Ω[bc] ⊆ Ω[c′].

By [Jar11, p. 159, Prop. 8.5.2], trans.deg(Ω/K) = ∞. By Remark 2.4, V is

absolutely integral. Hence, by Lemma 2.1, V has an Ω-rational generic point x that lies
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in U . By the previous paragraph, for each y′ ∈ ϕ−1
Ω (x)(Ω̃) there exists c ∈ ϕ−1(a)(Ω̃)

with Ω[bc] ⊆ Ω[y′].

Part C: A finitely generated extension of K. Since ϕ−1(a)(Ω̃) and ϕ−1
Ω (x)(Ω̃) are

finite sets, there exist u1, . . . , ul ∈ Ω such that for each y′ ∈ ϕ−1
Ω (x)(Ω̃) there exists

c ∈ ϕ−1(a)(K̃) with K(x,u)[bc] ⊆ K(x,u)[y′]. In particular, there exists nonzero

zc ∈ K[x,u] with bc ∈ z−1
c K[x,u,y′]. Replacing u by (u, z−1

c )c∈ϕ−1(a)(K̃), if necessary,

we may assume that

(2) for each y′ ∈ ϕ−1
Ω (x)(Ω̃) there exists c ∈ ϕ−1(a)(K̃) such that K[x,u, bc] ⊆

K[x,u,y′].

Part D: An elementary statement. Let y1, . . . ,ym be the finitely many points of

ϕ−1
Ω (x)(Ω̃) = ϕ−1

Ω (x)(K̃(x)) and set S = K[y1, . . . ,ym]. Then, K[x] ⊆ S (because

ϕ(yi) = x for i = 1, . . . ,m) and the following statement holds in K̃(x):

(3) (∀Y ∈W (K̃(x)))[ϕ(Y) = x↔
m∨
i=1

Y = yi]

In this statement Y is a tuple of variables for the elements of W (K̃(x)). Observe that

(3) is equivalent to an elementary statement on K̃(x) in the language of rings L(ring, S).

By [FrJ08, p. 167, Cor. 9.2.2], there exists a non-zero w ∈ S such that if ψ: S → K̃ is a

K-homomorphism with ψ(w) 6= 0, then the following statement on K̃ holds:

(4) (∀Y ∈W (K̃))[ϕ(Y) = ψ(x)↔
m∨
i=1

Y = ψ(yi)].

Note that the quotient field K(y1, . . . ,ym) of S is a finite extension of E = K(x).

By Lemma 2.3, there exists v ∈ K(x) such that ψ(w) 6= 0 for every K-homomorphism

ψ: S[v]→ K̃.

We add v to u1, . . . , ul, if necessary, to assume that v ∈ {u1, . . . , ul}. Then, every

K-homomorphism ψ: S[u]→ K̃ satisfies ψ(w) 6= 0, hence (4) is true.

Since ϕ: W → V is finite, each of the ring extensions K[yi]/K[x] is integral, hence

(5) the ring S′ = S[u] is an integral extension of K[x,u].
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Part E: The variety V ′. By [FrJ08, p. 61, Example 3.5.1], Ω is a regular extension of

K, hence so is K(x,u). Therefore, by [FrJ08, p. 175, Cor. 10.2.2], V ′ = Spec(K[x,u])

is an absolutely integral variety over K and (x,u) is an Ω-rational generic point of V ′.

In particular, (x,u) is an Ω-rational simple point of V ′. Since K is existentially closed

in Ω [Jar11, p. 68, Def. 5.3.2], V ′simp(K) 6= ∅.

Let π: V ′ → V be the rational map defined by π(x,u) = x. Then, π is dominating,

hence it follows from dim(V ) ≥ 1 that π is non-constant. Therefore, by Lemma 2.2,

card(π(V ′(K))) = card(K) = κ.

Part F: Conclusion of the proof. For each of the κ points a′ of π(V ′(K)) there is a

u′ ∈ Kl such that (a′,u′) ∈ V ′(K). Let ψ be the K-homomorphism from K[x,u] to K

defined by ψ(x,u) = (a′,u′). Let c′ be an element ofW (K̃) such that ϕ(c′) = a′ = ψ(x).

We use that S′ is an integral extension of K[x,u] (by (5)) in order to extend ψ to a

K-homomorphism ψ: S′ → K̃. By (4), there exists 1 ≤ i ≤ m such that ψ(yi) = c′. By

(2), there exists c′′ ∈ ϕ−1(a)(K̃) such that

(6) K[x,u, bc′′ ] ⊆ K[x,u,yi].

Since c′′ is algebraic over K, the ring S′[c′′] is integral over S′, so we may extend ψ

to a homomorphism ψ: S′[c′′]→ K̃. In particular, since bc′′ ∈ K(c′′), the element ψ(bc′′)

is well defined. Since ψ maps K identically onto itself, ψ maps K[bc′′ ] isomorphically

onto K[ψ(bc′′)]. Since ϕ is defined over K and a is K-rational, c = ψ(c′′) ∈ ϕ−1(a)(K̃).

By (1), bc = bψ(c′′) = ψ(bc′′). Applying ψ on both sides of (6), we get K[bc] ⊆ K[c′], as

desired.

Lemma 2.5 implies a stronger version of Theorem B.

Theorem 2.6: Let ϕ: W → V be a finite surjective morphism of integral algebraic AMPc
input, 361

varieties over an ample field K of cardinality κ. Suppose dim(V ) ≥ 1 and there exists

a ∈ Vsimp(K)rϕ(W (Kins)). Then, card(V (K)rϕ(W (Kins))) = κ.

Proof: Let c ∈ ϕ−1(a)(K̃). By assumption K(c) is not a purely inseparable extension

of K. Hence, K(c) contains an element bc which lies in Ksep rK. By Lemma 2.5, V (K)

has κ points a′ such that for each c′ ∈ ϕ−1(a′)(K̃) there exists c ∈ ϕ−1(a)(K̃) with
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K(bc) ⊆ K(c′). In particular, c′ /∈W (Kins). In other words, a′ ∈ V (K)rϕ(W (Kins)),

as desired.

Example 2.7: It is impossible to weaken the assumption a /∈ ϕ(W (Kins)) in Theorem GEYa
input, 384

2.6 to a /∈ ϕ(W (K)).

Indeed, let p be a prime number and t a transcendental element over Fp. Then,

the field K = Fp((t)) of formal power series over Fp is ample [Jar11, p. 73, Example

5.6.2]. Let V = A1
K . By Eisenstein’s criterion, the polynomial Y p−tXp−t is irreducible

over K(X). Hence, the K-curve W defined in A2
K by the equation Y p − tXp − t = 0

is integral (but not absolutely integral). Since the latter polynomial is monic in Y , the

morphism ϕ: W → V defined by projection (X,Y ) 7→ X is finite. Finally note that

there is no y ∈ K such that yp = t. Hence, ϕ maps no point of W (K) onto the point 0

of V (K). However, every K-rational point of V (K) has a (single) preimage in W (Kins),

so ϕ(W (Kins)) = V (K).

Question 2.8: Is it possible to replace Kins by K in the assumption and the conclusion GEYb
input, 408

of Theorem 2.6?

Remark 2.9: The assumption that ϕ is finite in Theorem 2.6 is essential. GEYc
input, 413

Indeed, the field R is ample [Jar11, p. 73, Example 5.6.3]. Let V = Spec([R[X3]) ∼=

A1
R and W = Spec(R[X, (X− 1)−1]) ∼= A1

R
r{1}. The extension R[X, (X− 1)−1]/R[X3]

is not finite, so the morphism ϕ: W → V associated to the inclusion of rings R[X3] ⊆

R[X, (X − 1)3] is not finite. The identity 1 = ω3 with ω being a primitive root of order

3 shows that ϕ is nevertheless surjective. In addition, ϕ has finite fibers.

However, ϕ(W (R)) = V (R)r{1} (because ω /∈ R, so card(V (R)rϕ(V (R))) = 1.

Question 2.10: Let K be an ample field and ϕ: C → D a morphism of integral curves POLe
input, 433

over K. Suppose that κ = card(D(K)rϕ(C(K))) is infinite. Is κ = card(K)?

We note without proof that the question has an affirmative answer if ϕ is separable

or ϕ is purely inseparable.
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3. Polynomial Maps POLY
input, 11

In this section we give a negative answer to Question A of the introduction in two special

cases. The first one is a consequence of Theorem 2.6.

Corollary 3.1: Let K be an ample field and let f be a polynomial with coefficients CONa
input, 16

in K that has no roots in Kins. Then, card(K r f(Kins)) = card(K).

Proof: We consider f as a morphism f : A1
K → A1

K . By assumption f 6= 0, so f is

a finite morphism. Again, by assumption, 0 ∈ K r f(Kins). Hence, by Theorem 2.6,

card(K r f(Kins)) = card(K), as claimed.

The other extreme case occurs when all of the roots of the polynomial belong to

the purely inseparable extension of K.

Lemma 3.2: LetK be a field of positive characteristic p. Then, the following statements POLa
input, 37

hold:

(a) card(Kp) = card(K).

(b) If K 6= Kins, then card(K rKp) = card(K).

(c) If K is separably closed and there exists a monic polynomial f ∈ K[X] of positive

degree such that f(K) 6= K, then card(K rKp) = card(K).

Proof of (a): The map x 7→ xp is an isomorphism of K onto Kp, so card(K) =

card(Kp).

Proof of (b): By assumption there exists x ∈ K which is not a p-power in K. Hence,

x−ap is also not a p-power in K for all a ∈ K. It follows from (a) that card(K rKp) =

card(K).

Proof of (c): Since K is separably closed, Kins = K̃. The existence of f implies that

K 6= K̃. Hence, K 6= Kins. It follows from (b) that card(K rKp) = card(K).

Theorem 3.3: Let K be a field of positive characteristic p and let f ∈ K[X] be a POLd
input, 70

non-constant monic polynomial. Suppose that all zeros of f in K̃ belong to Kins rK.

Then, card(K r f(K)) = card(K).
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Proof: Let g be a monic irreducible factor of f in K[X]. By assumption, g has a

unique root x in Kins rK. It follows that there exists a positive integer i such that

xp
i ∈ K. Let k be the smallest positive integer with this property and let b = xp

k

.

Then, g(X) = Xpk − b. Therefore, f(X) =
∏
i∈I

∏
j∈Ji(X

pi − bij), where I is a non-

empty finite set of positive integers, Ji is a finite set, and bij ∈ K rKp for all i ∈ I and

j ∈ Ji. It follows that

(1) f ∈ K[Xp]rK.

If f ∈ Kp[Xp], then f(K) ⊆ Kp. Hence, K rKp ⊆ K r f(K). It follows from Lemma

3.2(b) that card(K r f(K)) = card(K).

It remains to consider the case where f ∈ K[Xp]rKp[Xp]. In other words

(2) f(X) =
∑n
i=0 aiX

pi, where a0, . . . , an ∈ K, an = 1, and there exists j between 0

and n− 1 such that aj /∈ Kp.

We consider the hyperplane defined in An+1
K by the equation

∑n
i=0 aiXi = 0.

Thus, W0 = {(x0, . . . , xn) ∈ (Kp)n+1 |
∑n
i=0 aixi = 0} is a vector space over Kp. (Note

that the superscript p in Kp means raising to the pth power whereas the superscript

n+ 1 over Kp means taking all (n+ 1)-tuples with coordinates in Kp.)

Now we consider the vector subspace

(3) W = {(x0, . . . , xn) ∈ (Kp)n+1 |
n∑
i=0

aixi ∈ Kp}

of (Kp)n+1. We note that W contains W0 and dimKp(W0) ≤ dimKp(W ). Then, there

exists a linear subvariety W ∗ in An+1
Kp such that W ∗(Kp) = W . Indeed, W is a sub

vector space of (Kp)n+1 over Kp. As such, W is defined by a system of linear equations∑n
i=0 bikXi = 0 with bik ∈ Kp for i = 0, . . . , n and k = 1, . . . , n. The same system also

defines W ∗.

Let D be the closed subscheme of An+1
Kp defined by the equations X0 = 1 and

XiXi+2 = X2
i with i = 0, . . . , n−2. Let C be the irreducible component of D such that

C(Kp) = {(1, t, . . . , tn) | t ∈ Kp}.
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Claim: C(Kp) 6⊆ W ∗(Kp). Assume toward contradiction that C(Kp) ⊆ W ∗(Kp).

We use that K is infinite in order to choose n+1 distinct elements t0, . . . , tn of Kp. For

each 0 ≤ k ≤ n we have (1, tk, . . . , t
n
k ) ∈ C(Kp), so (1, tk, . . . , t

n
k ) ∈ W . By (3), there

exists ck ∈ Kp such that

(4)
n∑
i=0

ait
i
k = ck, k = 0, . . . , n.

We consider (4) as a system of n + 1 inhomogeneous linear equations in the variables

a0, . . . , an. The coefficients matrix on the left hand side of (4) is the Van der Monde

matrix of t0, . . . , tn. Since the latter elements are distinct, the determinant of that

matrix is non-zero. Hence, by Cramer’s rule, each of the elements a0, . . . , an is a quotient

of two elements of Kp with a non-zero denominator, so each of the ai’s is in Kp. In

particular, aj ∈ Kp, in contrast to (2).

Since C is a curve, the Claim implies that C ∩W ∗ is a finite set. Hence, C(Kp)∩

W ∗(Kp) is a finite set, so,

(5) C(Kp) ∩W is a finite set.

Now, an element x ∈ K satisfies f(x) ∈ Kp if and only if
∑n
i=0 aix

pi ∈ Kp, that is

if and only if (1, xp, . . . , xpn) ∈ C(Kp) ∩W . It follows from (5) that there exist only

finitely many x ∈ K with f(x) ∈ Kp. Let x1, . . . , xm be all of these elements. Then,

(6) Kpr{f(x1), . . . , f(xm)} ⊆ K r f(K).

Since K is infinite, the cardinality of the left hand side of (6) is card(K) (Lemma 3.2(a)).

We conclude that card(K r f(K)) = card(K), as claimed.
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