Strong Approximation Theorem
for Absolutely Irreducible Varieties
over the Compositum of all Symmetric Extensions of a Global Field
by
Moshe Jarden and Aharon Razon

Abstract: Let K be a global field, \mathcal{V} a proper subset of the set of all primes of K, \mathcal{S} a finite subset of \mathcal{V}, and \bar{K} (resp. K_{sep}) a fixed algebraic (resp. separable algebraic) closure of K with $K_{\text{sep}} \subseteq \bar{K}$. Let $\text{Gal}(K) = \text{Gal}(K_{\text{sep}}/K)$ be the absolute Galois group of K. For each $p \in \mathcal{V}$ we choose a Henselian (respectively, a real or algebraic) closure K_p of K at p in \bar{K} if p is non-archimedean (respectively, archimedean). Then, $K_{\text{tot},\mathcal{S}} = \bigcap_{p \in \mathcal{S}} \bigcap_{\tau \in \text{Gal}(K)} K_p^\tau$ is the maximal Galois extension of K in K_{sep} in which each $p \in \mathcal{S}$ totally splits. For each $p \in \mathcal{V}$ we choose a p-adic absolute value $| |_p$ of K_p and extend it in the unique possible way to \bar{K}. Finally, we denote the compositum of all symmetric extensions of K by K_{symm}.

We consider an affine absolutely integral variety V in \mathbb{A}^n_K. Suppose that for each $p \in \mathcal{S}$ there exists a simple K_p-rational point z_p of V and for each $p \in \mathcal{V} \setminus \mathcal{S}$ there exists $z_p \in V(\bar{K})$ such that in both cases $|z_p|_p \leq 1$ if p is non-archimedean and $|z_p|_p < 1$ if p is archimedean. Then, there exists $z \in V(K_{\text{tot},\mathcal{S}} \cap K_{\text{symm}})$ such that for all $p \in \mathcal{V}$ and for all $\tau \in \text{Gal}(K)$ we have: $|z^\tau|_p \leq 1$ if p is archimedean and $|z^\tau|_p < 1$ if p is non-archimedean. For $\mathcal{S} = \emptyset$, we get as a corollary that the ring of integers of K_{symm} is Hilbertian and Bezout.
Introduction

The strong approximation theorem for a global field K gives an $x \in K$ that lies in given p-adically open discs for finitely many given primes p of K such that the absolute p-adic value of x is at most 1 for all other primes p except possibly one [?, p. 67]. A possible generalization of that theorem to an arbitrary absolutely integral affine variety V over K fails, because in general, $V(K)$ is a small set. For example, if V is a curve of genus at least 2, then $V(K)$ is finite (by Faltings). This obstruction disappears as soon as we switch to appropriate “large Galois extensions” of K.

Extensions of K of this type occur in our work [?]. In that work we fix an algebraic closure \hat{K} of K, set K_{sep} to be the separable closure of K in \hat{K}, and consider a non-negative integer e. We equip $\text{Gal}(K)^e$ with the normalized Haar measure [?, Section 18.5] and use the expression “for almost all $\sigma \in \text{Gal}(K)^e$” to mean “for all σ in $\text{Gal}(K)^e$ outside a set of measure 0”. For each $\sigma = (\sigma_1, \ldots, \sigma_e) \in \text{Gal}(K)^e$ let $K_{\text{sep}}(\sigma) = \{x \in K_{\text{sep}} \mid x^{\sigma_1} = x \text{ for } i = 1, \ldots, e\}$ and let $K_{\text{sep}}[\sigma]$ be the maximal Galois extension of K in $K_{\text{sep}}(\sigma)$.

Further, let \mathbb{P}_K be the set of all primes of K, let $\mathbb{P}_{K, \text{fin}}$ be the set of all non-archimedean primes, and let $\mathbb{P}_{K, \text{inf}}$ be the set of all archimedean primes. We fix a proper subset \mathcal{V} of \mathbb{P}_K, a finite subset \mathcal{T} of \mathcal{V}, and a subset \mathcal{S} of \mathcal{T} such that $\mathcal{V} \setminus \mathcal{T} \subseteq \mathbb{P}_{K, \text{fin}}$. For each p we fix a completion \hat{K}_p of K at p and embed \hat{K} in an algebraic closure $\tilde{\hat{K}}_p$ of \hat{K}_p. Then, we extend a normalized absolute value $|\cdot|_p$ of \hat{K}_p to $\tilde{\hat{K}}_p$ in the unique possible way. In particular, this defines $|x|_p$ for each $x \in \hat{K}$.

Next, we set $K_p = \hat{K} \cap \hat{K}_p$, and note that K_p is a Henselian closure of K at p if $p \in \mathbb{P}_{K, \text{fin}}$ and a real or the algebraic closure of K at p if $p \in \mathbb{P}_{K, \text{inf}}$. Thus,

$$K_{\text{tot}, \mathcal{S}} = \bigcap_{p \in \mathcal{S}} \bigcap_{\sigma \in \text{Gal}(K)} K_p^{\sigma}$$

is the maximal Galois extension of K in which each $p \in \mathcal{S}$ totally splits. For each $\sigma \in \text{Gal}(K)^e$ we set $K_{\text{tot}, \mathcal{S}}[\sigma] = K_{\text{sep}}[\sigma] \cap K_{\text{tot}, \mathcal{S}}$.

For each extension M of K in \hat{K} and every $p \in \mathbb{P}_{\text{fin}} \cap \mathcal{V}$ we consider the valuation ring $\mathcal{O}_{M, p} = \{x \in M \mid |x|_p \leq 1\}$ of M at p. For each subset \mathcal{U} of \mathcal{V} we let

$$\mathcal{O}_{M, \mathcal{U}} = \{x \in M \mid |x^\tau|_p \leq 1 \text{ for all } p \in \mathcal{U} \text{ and } \tau \in \text{Gal}(K)\}.$$

Then, the main result of [?] is the following theorem:

Theorem A: Let $K, \mathcal{S}, \mathcal{T}, \mathcal{V}, e$ be as above. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{tot}, \mathcal{S}}[\sigma]$ satisfies the strong approximation theorem:

Let V be an absolutely integral affine variety over K in \mathbb{A}_K^n for some positive integer n. For each $p \in \mathcal{S}$ let Ω_p be a non-empty p-open subset of $V_{\text{simp}}(K_p)$. For each $p \in \mathcal{T} \setminus \mathcal{S}$ let Ω_p be a non-empty p-open subset of $V(\hat{K})$, for each
invariant under the action of $\text{Gal}(K_p)$. Finally, for each $p \in \mathcal{V} \setminus \mathcal{T}$ we assume that $V(O_{K, p}) \neq \emptyset$. Then, $V(O_{M, \mathcal{V} \setminus \mathcal{T}}) \cap \bigcap_{p \in \mathcal{T}} \cap \tau \in \text{Gal}(K) \Omega^{\tau}_{p} \neq \emptyset$.

The main result of the present work establishes the strong approximation theorem for much smaller fields. To this end we call a Galois extension L of K symmetric if $\text{Gal}(L/K)$ is isomorphic to the symmetric group S_n for some positive integer n. We denote the compositum of all symmetric extensions of K by K_{symm}.

Theorem B: Let K, S, T, \mathcal{V}, e be as above. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{symm}} \cap K_{\text{tot}, S}[\sigma]$ satisfies the strong approximation theorem (as in Theorem A). In particular, $K_{\text{symm}} \cap K_{\text{tot}, S}$ satisfies the strong approximation theorem.

Additional interesting information about the fields mentioned in Theorem B and their rings of integers is contained in the following result.

Theorem C: Let K be a global field and e a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{symm}} \cap K_{\text{sep}}[\sigma]$ is PAC (Definition ??) and Hilbertian, hence $\text{Gal}(M) \cong \hat{F}_\omega$. Moreover, the ring of integers of M is Hilbertian and Bezout (Definition ??).

Note that the statement about the Hilbertianity of M in Theorem C is due to [?]. See also the proof of Proposition ???. The authors are indebted to the anonymous referee for pointing out that proposition and its proof.
1 Weakly Symmetrically K-Stably PSC Fields over Holomorphy Domains

Let K be a global field, that is K is either a number field or an algebraic function field of one variable over a finite field. Throughout this work, we use the notation \mathbb{P}_K, \hat{K}, K_{sep}, $\text{Gal}(K)$, K_p and $|\cdot|_p$ for $p \in \mathbb{P}_K$, introduced in the introduction. For each $p \in \mathbb{P}_K$ and every subfield M of \hat{K} we consider the closed disc

$$O_{M,p} = \{x \in M \mid |x|_p \leq 1\}$$

of M at p. If p is non-archimedean, then $O_{M,p}$ is a valuation ring of rank 1 of M.

Next we consider a subset \mathcal{U} of \mathbb{P}_K and a field $K \subseteq M \subseteq \hat{K}$. A prime of M is an equivalence class of absolute values of M, where two absolute values on M are equivalent if they define the same topology on M. Let \mathcal{U}_M be the set of all primes of M that lie over \mathcal{U}. If $q \in \mathcal{U}_M$ lies over $p \in \mathcal{U}$, then we denote the unique absolute value of M that extends $|\cdot|_p$ to M and represents q by $|\cdot|_q$.

In this case there exists $\tau \in \text{Gal}(K)$ such that $|x|_q = |x^\tau|_p$ for each $x \in M$. Conversely, the latter condition defines q. We set

$$O_{M,\mathcal{U}} = \bigcap_{q \in \mathcal{U}_M} \{x \in M \mid |x|_q \leq 1\}$$

for the \mathcal{U}-holomorphy domain of M. If \mathcal{U} consists of non-archimedean primes, then $O_{M,\mathcal{U}}$ is the integral closure of $O_{K,\mathcal{U}}$ in M. If \mathcal{U} is arbitrary but M is Galois over K, then

$$O_{M,\mathcal{U}} = \bigcap_{p \in \mathcal{U}} \bigcap_{\tau \in \text{Gal}(K)} O_{M,p}^\tau.$$

In the number field case (i.e. $\text{char}(K) = 0$), we denote the (cofinite) set of all non-archimedean primes of K by $\mathbb{P}_{K,\text{fin}}$. In the function field case, where $p = \text{char}(K) > 0$, we fix a separating transcendence element t_K for K/\mathbb{F}_p and let $\mathbb{F}_{K,\text{fin}} = \{p \in \mathbb{P}_K \mid |t_K|_p \leq 1\}$. In both cases we set

$$O_K = O_{K,\mathbb{P}_{K,\text{fin}}} = \{x \in K \mid |x|_p \leq 1 \text{ for all } p \in \mathbb{P}_{K,\text{fin}}\}.$$

If K is a number field, then O_K is the integral closure of \mathbb{Z} in K. In the function field case O_K is the integral closure of $\mathbb{F}_p[t_K]$ in K. In both cases O_K is a Dedekind domain. Following the convention in algebraic number theory, we call O_K the ring of integers of K.

Next we consider a finite (possibly empty) subset \mathcal{S} of \mathbb{P}_K. We set

$$K_{\text{tot},\mathcal{S}} = \bigcap_{p \in \mathcal{S}} \bigcap_{\tau \in \text{Gal}(K)} K_p^\tau$$

as in the introduction. If $\mathcal{S} = \emptyset$, then $K_{\text{tot},\mathcal{S}} = K_{\text{sep}}$.

We also choose a non-empty proper subset \mathcal{V} of \mathbb{P}_K that contains \mathcal{S}.

1 WEAKLY SYMMETRIC
Definition 1.1. [?, Def. 12.1] Let M be an extension of K in $K_{tot,S}$ and let \mathcal{O} be a subset of M. We say that M is **weakly symmetrically K-stably PSC over \mathcal{O}** if for every polynomial $g \in K[T]$ with $g(0) \neq 0$ and for every absolutely irreducible polynomial $h \in K[T, Y]$ monic in Y with $d = \deg_Y(h)$ satisfying

1. $h(0, Y)$ has d distinct roots in $K_{tot,S}$, and
2. $\Gal(h(T, Y), K(T)) \cong \Gal(h(T, Y), K(T))$ and is isomorphic to the symmetric group S_d,

there exists $(a, b) \in \mathcal{O} \times M$ such that $h(a, b) = 0$ and $g(a) \neq 0$.

Note that in that case, if $M \subseteq M' \subseteq K_{tot,S}$, then M' is also weakly symmetrically K-stably PSC over \mathcal{O}.

If $\mathcal{S} = \emptyset$, we say that M is **weakly symmetrically K-stably PAC over \mathcal{O}**.

Definition 1.2. [?, Def. 13.1] Let M be an extension of K in $K_{tot,S}$ and let \mathcal{O} be a subset of M. We say that M is **weakly PAC over \mathcal{O}** if for every absolutely irreducible polynomial $h \in M[T, Y]$ monic in Y such that $h(0, Y)$ decomposes into distinct monic linear factors over $K_{tot,S}$ and every polynomial $g \in M[T]$ with $g(0) \neq 0$ there exists $(a, b) \in \mathcal{O} \times M$ such that $h(a, b) = 0$ and $g(a) \neq 0$. In particular, \mathcal{O} is infinite.

If $\mathcal{S} = \emptyset$, then M is **PAC over \mathcal{O}** [?, Def. 13.5], i.e. for every absolutely irreducible polynomial $f \in M[T, X]$ which is separable in X there exist infinitely many points $(a, b) \in \mathcal{O} \times M$ such that $f(a, b) = 0$.

Indeed, let $f \in M[T, X]$ be an absolutely irreducible polynomial which is separable in X. Let $\Delta \in M[T]$ be the discriminant of f, let $g \in M[T]$ be the leading coefficient of f, and let $d = \deg_X(f)$. Since \mathcal{O} is infinite, we can choose $c \in \mathcal{O}$ with $\Delta(c)g(c) \neq 0$. Let $Y = g(T)X$, let $h'(T, Y) = g(T)^{d-1}f(T, g(T)^{-1}Y)$, and let $h(T, Y) = h'(T + c, Y)$. Then, $h \in M[T, Y]$ is an absolutely irreducible polynomial, monic in Y, such that $h(0, Y)$ decomposes into distinct monic linear factors over K_{sep}. By assumption, there exist infinitely many $(a, b) \in \mathcal{O} \times M$ such that $h(a, b) = 0$ and $g(a) \neq 0$, hence $f(a + c, g(a)^{-1}b) = 0$.

Note that in that case, M is a **PAC field**, i.e. every absolutely integral variety over M has an M-rational point [?, Lemma 1.3].

Lemma 1.3. Let M_0 be an extension of K in K_{sep}, let $M = M_0 \cap K_{tot,S}$, and let \mathcal{O} be a subset of $\mathcal{O}_{M,S}$ such that $\mathcal{O}_{K,Y} \cdot \mathcal{O} \subseteq \mathcal{O}$. Suppose that M_0 is weakly symmetrically K-stably PAC over \mathcal{O}. Then, M is weakly symmetrically K-stably PSC over \mathcal{O}.

Proof: Let g be a polynomial in $K[T]$ with $g(0) \neq 0$ and let h be an absolutely irreducible polynomial in $K[T, Y]$, monic in Y, with $d = \deg_Y(h)$ satisfying (1). By [?, Lemma 1.9], there exists $c \in \mathcal{O}_{K,Y}$ which is sufficiently S-close to 0 such that for each $a \in \mathcal{O}_{K_{tot},S}$ all the roots of $h(ac, Y)$ are simple and belong to $K_{tot,S}$. Consider the polynomial $h(cT, Y) \in K[T, Y]$. Then, since M_0 is weakly symmetrically K-stably PAC over \mathcal{O}, there exists $a \in \mathcal{O}$ and $b \in M_0$ such that
h(ac, b) = 0 and g(a) ≠ 0. Then, ac ∈ O and b ∈ M₀ ∩ K_{tot,S} = M, as desired.

Lemma 1.4. [?, Lemma 13.2] Let M be an extension of K in K_{tot,S} which is weakly symmetrically K-stably PSC over O_{K,V}. Then, M is weakly PSC over O_{M,V}.

\{WEAd\}
2 Composita of Symmetric Extensions of a Global Field

A symmetric extension of K is a finite Galois extension of K with Galois group isomorphic to S_m for some positive integer m. Let K_{symm} be the compositum of all symmetric extensions of K.

Using the notation introduced in the introduction, we prove that for almost all $\sigma \in \text{Gal}(K)^e$, the field $K_{\text{symm}}[\sigma]$ is PAC and Hilbertian, so $\text{Gal}(K_{\text{symm}}[\sigma]) \cong \tilde{F}_e$. Moreover, if \mathcal{V} contains only non-archimedean primes, then the ring $O_{K_{\text{symm}}[\sigma],\mathcal{V}}$ is Hilbertian and Bezout. Finally, the field $M = K_{\text{tot,}\mathcal{S}} \cap K_{\text{symm}}[\sigma]$ is weakly PSC over $O_{M,\mathcal{V}}$. This leads in Section ?? to a strong approximation theorem for M.

Definition 2.1. Let O be an integral domain with quotient field F. We consider variables T_1,\ldots,T_r,X over F and abbreviate (T_1,\ldots,T_r) to T. Let f_1,\ldots,f_m be irreducible and separable polynomials in $F[T][X]$ and let g be a non-zero polynomial in $F[T]$. Following [FrJ08, Sec. 12.1], we write $H_F(f_1,\ldots,f_n;g)$ for the set of all $a \in F^r$ such that $f_1(a,X),\ldots,f_m(a,X)$ are defined, irreducible, and separable in $F[X]$ with $g(a) \neq 0$. Then, we call $H_F(f_1,\ldots,f_m;g)$ a separable Hilbert subset of F^r. We say that the ring O is Hilbertian if for every positive integer r every separable Hilbert subset of F^r has a point with coordinates in O. Finally, we say that O is Bezout if every finitely generated ideal of O is principal.

Example 2.2. Taking $q_0 \in \mathbb{P}_K \setminus \mathcal{V}$ in [?, p. 241, Thm. 13.3.5(b)], we find that $H \cap O_{K,\mathcal{V}} \neq \emptyset$ for each $r \geq 1$ and every separable Hilbert subset H of K^r. In particular, if \mathcal{V} contains only non-archimedean primes, then $O_{K,\mathcal{V}}$ is a Hilbertian domain.

Let d be a positive integer. Denote the set of all absolutely irreducible polynomials $h \in K[T,Y]$, monic in Y with $d = \deg_Y(h)$, that satisfy (1) of Section 1 with $\mathcal{S} = \emptyset$, i.e.

1. $h(0,Y)$ has d distinct roots in K_{sep}, and
2. $\text{Gal}(h(T,Y),K(T)) \cong \text{Gal}(h(T,Y),\tilde{K}(T)) \cong S_d$

by H_d. Let $\mathcal{H} = \bigcup_{d=1}^\infty H_d$.

Lemma 2.3. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ every separable algebraic extension M of $K_{\text{symm}}[\sigma]$ is weakly symmetrically K-stably PAC over $O_{K,\mathcal{V}}$.

In particular, the field K_{symm} is weakly symmetrically K-stably PAC over $O_{K,\mathcal{V}}$.

Proof: By Definition ??, it suffices to consider the case $e \geq 1$ and to prove that for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{symm}}[\sigma]$ is weakly symmetrically K-stably PAC over $O_{K,\mathcal{V}}$. Moreover, since the set \mathcal{H} is countable, it suffices to
consider a positive integer d, a polynomial $h \in \mathcal{H}_d$, and a non-zero polynomial $g \in K[T]$, and to prove that for almost all $\sigma \in \text{Gal}(K)^e$ there exists $(a, b) \in \mathcal{O}_{K, V} \times K_{\text{symm}}[\sigma]$ such that $h(a, b) = 0$ and $g(a) \neq 0$.

By Borel-Cantelli [7, p. 378, Lemma 18.5.3(b)], it suffices to construct a sequence of pairs $(a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots$ that satisfies for each $n \geq 1$ the following conditions:

1. $a_n \in \mathcal{O}_{K, V}$ and $h(a_n, X)$ is separable,
2. the splitting field K_n of $h(a_n, X)$ over K has Galois group S_d,
3. $h(a_n, b_n) = 0$, in particular $b_n \in K_n$, and $g(a_n) \neq 0$,
4. K_1, K_2, \ldots, K_n are linearly disjoint over K.

Indeed, inductively suppose that n is a positive integer and $(a_1, b_1), \ldots, (a_{n-1}, b_{n-1})$ satisfy Condition (2) (for $n - 1$ rather than for n). Let $L = K_1K_2 \cdots K_{n-1}$. By [7, p. 294, Prop. 16.1.5] and [7, p. 224, Cor. 12.2.3], K has a separable Hilbert subset H such that for each $a \in H$ the polynomial $h(a, X)$ is separable, $\text{Gal}(h(a, X), K) \cong \text{Gal}(h(a, X), L) \cong S_d$, and $g(a) \neq 0$. Using Example ??, we choose an element $a_n \in H \cap \mathcal{O}_{K, V}$ and a root $b_n \in K_{\text{sep}}$ of $h(a_n, X)$. Then, b_n lies in the splitting field K_n of $h(a_n, X)$, so all of the statements (2a) – (2d) are satisfied.

By Lemmas ?? and ??, we get the following corollary:

Corollary 2.4. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ each extension M of $K_{\text{tot}, \mathcal{S}} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot}, \mathcal{S}}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, V}$. Hence, M is weakly PSC over $\mathcal{O}_{M, V}$.

In particular, the field $M = K_{\text{tot}, \mathcal{S}} \cap K_{\text{symm}}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K, V}$, so it is also weakly PSC over $\mathcal{O}_{M, V}$.

When $\mathcal{S} = \emptyset$, we get by Definition ??:

Corollary 2.5. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ each separable algebraic extension M of the field $K_{\text{symm}}[\sigma]$ is PAC over $\mathcal{O}_{M, V}$.

In particular, the field $M = K_{\text{symm}}$ is PAC over $\mathcal{O}_{M, V}$.

Proposition 2.6. Let L be a Hilbertian field and M an extension of L in L_{symm}. Then, M is Hilbertian.

Proof: Following [7, Sec. 2.1], we say that a profinite group G has abelian-simple length n if there is a finite series $1 = G^{(n)} \triangleleft \cdots \triangleleft G^{(1)} \triangleleft G^{(0)} = G$ of closed subgroups, where for $i = 0, \ldots, n - 1$, the group $G^{(i+1)}$ is the intersection of all open normal subgroups N of $G^{(i)}$ such that $G^{(i)}/N$ is abelian or simple.

As mentioned in the proof of [7, Thm. 5.5], the abelian-simple length of each symmetric group S_n is at most 3. Hence, by [7, Prop. 2.8], the abelian-simple length of $\text{Gal}(L_{\text{symm}}/L)$ is at most 3. Therefore, by [7, Thm. 3.2], every field M between L and L_{symm} is Hilbertian.
Corollary 2.7. Let e be a positive integer. Suppose that V contains only non-Archimedean primes. Then, for almost all $\sigma \in \Gal(K)^e$ the rings $\mathcal{O}_{K_{\text{symm}}}[\sigma], V$ and $\mathcal{O}_{K_{\text{symm}}}[\sigma], V$ are Hilbertian. In addition, the ring $\mathcal{O}_{K_{\text{symm}}}, V$ is Hilbertian.

Proof: By Proposition ??, for all $\sigma \in \Gal(K)^e$ the field $K_{\text{symm}}[\sigma]$ is Hilbertian. By ??, Thm. 27.4.8, for almost all $\sigma \in \Gal(K)^e$ the field $K_{\text{sep}}[\sigma]$ is Hilbertian. It follows from Corollary ?? that for almost all $\sigma \in \Gal(K)^e$ the rings $\mathcal{O}_{K_{\text{symm}}}[\sigma], V$ and $\mathcal{O}_{K_{\text{symm}}}[\sigma], V$ are Hilbertian.

Finally, by Proposition ??, the field K_{symm} is also Hilbertian. By Corollary ??, K_{symm} is PAC over $\mathcal{O}_{K_{\text{symm}}}, V$. Hence, by the preceding paragraph, the ring $\mathcal{O}_{K_{\text{symm}}}, V$ is Hilbertian. □

Corollary 2.8. Let e be a non-negative integer. Then, for almost all $\sigma \in \Gal(K)^e$ the field $K_{\text{symm}}[\sigma]$ is PAC, Hilbertian, and $\Gal(K_{\text{symm}}[\sigma]) \cong \hat{F}_\omega$.

Proof: By Corollary ??, Definition ??, and Corollary ??, for almost all $\sigma \in \Gal(K)^e$ the field $M = K_{\text{symm}}[\sigma]$ is PAC and Hilbertian. Hence, by [?, p. 90, Thm. 5.10.3], $\Gal(M) \cong \hat{F}_\omega$, as claimed. □

Remark 2.9. (a) It is not true that $K_{\text{symm}}[\sigma]$ is PAC for every $\sigma \in \Gal(K)^e$.

For example, [FrJ08, p. 381, Remark 18.6.2] gives $\sigma \in \Gal(Q)$ such that $\hat{Q}(\sigma)$ is not a PAC field. Hence, by [FrJ08, p. 196, Cor. 11.2.5] also the subfield $Q_{\text{symm}}[\sigma]$ of $\hat{Q}(\sigma)$ is not PAC.

(b) In a forthcoming note, we make some mild changes in the proof of Theorem 1.1 of [?] and in some lemmas on which it depends in order to prove in the setup of Proposition ?? that if L is the quotient field of a Hilbertian domain R and S is the integral closure of R in M, then S is also a Hilbertian domain.

In particular, in view of the proof of Proposition ??, the latter result applies to every extension M of L in L_{symm}. It will follow, in the notation of Corollary ??, that each of the rings $\mathcal{O}_{K_{\text{symm}}}[\sigma], V$ is Hilbertian. □

By [?, Lemma 4.6], if M is an algebraic extension of K which is PAC over its ring of integers $\mathcal{O}_M = \mathcal{O}_M, \mathfrak{P}_{K, \text{fin}}$, then \mathcal{O}_M is a Bezout domain. Thus, Corollary ??, applied to $V = \mathfrak{P}_{K, \text{fin}}$, yields the following result:

Corollary 2.10. Let e be a non-negative integer. Then, for almost all $\sigma \in \Gal(K)^e$ the ring of integers of each separable extension of $K_{\text{symm}}[\sigma]$ is Bezout.

In particular, the ring $\mathcal{O}_{K_{\text{symm}}}$ is Bezout.
3 Strong Approximation Theorem

In the notation of Section 1, we prove that for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{tot}, S} \cap K_{\text{symm}}[\sigma]$ satisfies the strong approximation theorem for absolutely integral affine varieties.

Given a variety V we write V_{simp} for the Zariski-open subset of V that consists of all simple (= non-singular) points of V. We cite two results from [?]. The first one is Proposition 12.4 of [?]:

Proposition 3.1 (Strong approximation theorem). Let M be a subfield of $K_{\text{tot}, S}$ that contains K and is weakly symmetrically K-stably PSC over $O_{K, V}$. Then, (M, K, S, V) satisfies the following condition, abbreviated as $(M, K, S, V) \models \text{SAT}$:

Let \mathcal{T} be a finite subset of V that contains S such that $V \setminus \mathcal{T} \subseteq \mathbb{P}_{K, \text{fin}}$. Let V be an absolutely integral affine variety over K in \mathbb{A}_K^n for some positive integer n. For each $p \in \mathcal{T}$ let L_p be a finite Galois extension of K_p such that $L_p = K_p$ if $p \in S$ and let Ω_p be a non-empty p-open subset of $V_{\text{simp}}(L_p)$, invariant under the action of $\text{Gal}(L_p/K_p)$. Assume that $V(O_{K_p}) \neq \emptyset$, for each $p \in V \setminus \mathcal{T}$. Then, there exists $z \in V(O_{M,V \setminus \mathcal{T}})$ such that $z^p \in \Omega_p$ for all $p \in \mathcal{T}$ and all $\tau \in \text{Gal}(K)$.

The second result is Proposition 13.4 of [?], applied (for simplicity) to the case where S consists only of finite primes of K and $V = \mathbb{P}_{K, \text{fin}}$:

Proposition 3.2 (Local-global principle). Let M be a subfield of $K_{\text{tot}, S}$ that contains K and is weakly symmetrically K-stably PSC over $O_{K, V}$. Then, (M, S) satisfies the following condition, abbreviated as $(M, S) \models \text{LGP}$:

Let V be an absolutely integral affine variety over M in \mathbb{A}_M^n for some positive integer n such that $V_{\text{simp}}(O_{M,q}) \neq \emptyset$ for each $q \in S_M$ and $V(O_{M,q}) \neq \emptyset$ for each $q \in \mathbb{P}_{M, \text{fin}} \setminus S_M$. Then, $V(O_M) \neq \emptyset$.

Recall that an extension M of K in $K_{\text{tot}, S}$ is said to be PSC (= pseudo-S-closed) if every absolutely integral variety V over M with a simple K^*_τ-rational point for each $p \in S$ and every $\tau \in \text{Gal}(K)$ has an M-rational point [?, Def. 1.3]. Also, a field M is **ample** if the existence of an M-rational simple point on V implies that $V(M)$ is Zariski-dense in V [?, p. 67, Lemma 5.3.1]. In particular, every PSC field is ample.

The next lemma is observed in [?, Cor. 2.7].

Lemma 3.3. Let M be an extension of K in $K_{\text{tot}, S}$. Suppose that $(M, K, S, S) \models \text{SAT}$. Then, M is a PSC field, hence ample.

Proof: Consider an absolutely integral variety V over M with a simple K^*_τ-rational point for each $p \in S$ and every $\tau \in \text{Gal}(K)$. Replacing K by a finite extension K' in $K_{\text{tot}, S}$ and S by $S_{K'}$, we may assume that V is defined over K.

\footnote{The work [?] uses the adjective “large” rather than “ample.”}
3 STRONG APPROXIMATION THEOREM

and has a simple K_p-rational point for each $p \in \mathcal{S}$. Moreover, we may assume that V is affine. Thus, we may apply Proposition ?? to the case $V = \mathcal{T} = \mathcal{S}$ and $\Omega_p = V_{\text{simp}}(K_p)$ for each $p \in \mathcal{S}$. Observe that in this case $\mathcal{O}_{M,V,\mathcal{T}} = M$.

Corollary ??, Lemma ??, Proposition ??, and Proposition ?? yield the following result:

{\textbf{Theorem 3.4.}} Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$, every extension M of $K_{\text{tot},\mathcal{S}} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},\mathcal{S}}$ has the following properties.

(a) $(M, K, \mathcal{S}, V) \models \text{SAT}$.

(b) M is PSC, hence ample.

(c) If \mathcal{S} consists only of finite primes of K, then $(M, \mathcal{S}) \models \text{LGP}$.

In particular, $M = K_{\text{tot},\mathcal{S}} \cap K_{\text{symm}}$ satisfies (a), (b), and (c).

{\textbf{Proof:}} By Corollary ??, for almost all $\sigma \in \text{Gal}(K)^e$ every extension M of the field $K_{\text{tot},\mathcal{S}} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},\mathcal{S}}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Hence, by Proposition ??, $(M, K, \mathcal{S}, V) \models \text{SAT}$, so (a) holds. It follows from Lemma ?? that M is PSC, as (b) states. Finally, if in addition, \mathcal{S} consists only of finite primes, then by Proposition ??, $(M, \mathcal{S}) \models \text{LGP}$, which establishes (c).
References

