18 May 2018

Strong Approximation Theorem for Absolutely Irreducible Varieties over the Compositum of all Symmetric Extensions of a Global Field

by

Moshe Jarden and Aharon Razon

Abstract: Let K be a global field, \mathcal{V} a proper subset of the set of all primes of K, \mathcal{S} a finite subset of \mathcal{V} , and \tilde{K} (resp. K_{sep}) a fixed algebraic (resp. separable algebraic) closure of K with $K_{\text{sep}} \subseteq \tilde{K}$. Let $\operatorname{Gal}(K) = \operatorname{Gal}(K_{\text{sep}}/K)$ be the absolute Galois group of K. For each $\mathfrak{p} \in \mathcal{V}$ we choose a Henselian (respectively, a real or algebraic) closure $K_{\mathfrak{p}}$ of K at \mathfrak{p} in \tilde{K} if \mathfrak{p} is non-archimedean (respectively, archimedean). Then, $K_{\text{tot},\mathcal{S}} = \bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\tau \in \operatorname{Gal}(K)} K_{\mathfrak{p}}^{\tau}$ is the maximal Galois extension of K in K_{sep} in which each $\mathfrak{p} \in \mathcal{S}$ totally splits. For each $\mathfrak{p} \in \mathcal{V}$ we choose a \mathfrak{p} -adic absolute value $| \mid_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$ and extend it in the unique possible way to \tilde{K} . Finally, we denote the compositum of all symmetric extensions of K by K_{symm} .

We consider an affine absolutely integral variety V in \mathbb{A}_{K}^{n} . Suppose that for each $\mathfrak{p} \in \mathcal{S}$ there exists a simple $K_{\mathfrak{p}}$ -rational point $\mathbf{z}_{\mathfrak{p}}$ of V and for each $\mathfrak{p} \in \mathcal{V} \setminus \mathcal{S}$ there exists $\mathbf{z}_{\mathfrak{p}} \in V(\tilde{K})$ such that in both cases $|\mathbf{z}_{\mathfrak{p}}|_{\mathfrak{p}} \leq 1$ if \mathfrak{p} is non-archimedean and $|\mathbf{z}_{\mathfrak{p}}|_{\mathfrak{p}} < 1$ if \mathfrak{p} is archimedean. Then, there exists $\mathbf{z} \in V(K_{\text{tot},\mathcal{S}} \cap K_{\text{symm}})$ such that for all $\mathfrak{p} \in \mathcal{V}$ and for all $\tau \in \text{Gal}(K)$ we have: $|\mathbf{z}^{\tau}|_{\mathfrak{p}} \leq 1$ if \mathfrak{p} is archimedean and $|\mathbf{z}^{\tau}|_{\mathfrak{p}} < 1$ if \mathfrak{p} is non-archimedean. For $\mathcal{S} = \emptyset$, we get as a corollary that the ring of integers of K_{symm} is Hilbertian and Bezout.

Introduction

The strong approximation theorem for a global field K gives an $x \in K$ that lies in given \mathfrak{p} -adically open discs for finitely many given primes \mathfrak{p} of K such that the absolute \mathfrak{p} -adic value of x is at most 1 for all other primes \mathfrak{p} except possibly one [?, p. 67]. A possible generalization of that theorem to an arbitrary absolutely integral affine variety V over K fails, because in general, V(K) is a small set. For example, if V is a curve of genus at least 2, then V(K) is finite (by Faltings). This obstruction disappears as soon as we switch to appropriate "large Galois extensions" of K.

Extensions of K of this type occur in our work [?]. In that work we fix an algebraic closure \tilde{K} of K, set K_{sep} to be the separable closure of K in \tilde{K} , and consider a non-negative integer e. We equip $\operatorname{Gal}(K)^e$ with the normalized Haar measure [?, Section 18.5] and use the expression "for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^{e}$ " to mean "for all $\boldsymbol{\sigma}$ in $\operatorname{Gal}(K)^e$ outside a set of measure 0". For each $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e) \in \operatorname{Gal}(K)^e$ let $K_{\text{sep}}(\boldsymbol{\sigma}) = \{x \in K_{\text{sep}} \mid x^{\sigma_i} = x \text{ for } i = 1, \ldots, e\}$ and let $K_{\text{sep}}[\boldsymbol{\sigma}]$ be the maximal Galois extension of K in $K_{\text{sep}}(\boldsymbol{\sigma})$.

Further, let \mathbb{P}_K be the set of all primes of K, let $\mathbb{P}_{K,\text{fin}}$ be the set of all non-archimedean primes, and let $\mathbb{P}_{K,\text{inf}}$ be the set of all archimedean primes. We fix a proper subset \mathcal{V} of \mathbb{P}_K , a finite subset \mathcal{T} of \mathcal{V} , and a subset \mathcal{S} of \mathcal{T} such that $\mathcal{V} \setminus \mathcal{T} \subseteq \mathbb{P}_{K,\text{fin}}$. For each \mathfrak{p} we fix a completion $\hat{K}_{\mathfrak{p}}$ of K at \mathfrak{p} and embed \tilde{K} in an algebraic closure $\widetilde{K}_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$. Then, we extend a normalized absolute value $| \mid_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$ to $\widetilde{K}_{\mathfrak{p}}$ in the unique possible way. In particular, this defines $|x|_{\mathfrak{p}}$ for each $x \in \tilde{K}$.

Next, we set $K_{\mathfrak{p}} = \tilde{K} \cap \hat{K}_{\mathfrak{p}}$, and note that $K_{\mathfrak{p}}$ is a Henselian closure of K at \mathfrak{p} if $\mathfrak{p} \in \mathbb{P}_{K, \text{fin}}$ and a real or the algebraic closure of K at \mathfrak{p} if $\mathfrak{p} \in \mathbb{P}_{K, \text{inf}}$. Thus,

$$K_{\text{tot},\mathcal{S}} = \bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\tau \in \text{Gal}(K)} K_{\mathfrak{p}}^{\tau}$$

is the maximal Galois extension of K in which each $\mathfrak{p} \in \mathcal{S}$ totally splits. For each $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ we set $K_{\operatorname{tot},\mathcal{S}}[\boldsymbol{\sigma}] = K_{\operatorname{sep}}[\boldsymbol{\sigma}] \cap K_{\operatorname{tot},\mathcal{S}}$.

For each extension M of K in \tilde{K} and every $\mathfrak{p} \in \mathbb{P}_{\text{fin}} \cap \mathcal{V}$ we consider the valuation ring $\mathcal{O}_{M,\mathfrak{p}} = \{x \in M \mid |x|_{\mathfrak{p}} \leq 1\}$ of M at \mathfrak{p} . For each subset \mathcal{U} of \mathcal{V} we let

$$\mathcal{O}_{M,\mathcal{U}} = \{ x \in M \mid |x^{\tau}|_{\mathfrak{p}} \leq 1 \text{ for all } \mathfrak{p} \in \mathcal{U} \text{ and } \tau \in \mathrm{Gal}(K) \}.$$

Then, the main result of [?] is the following theorem:

Theorem A: Let K, S, T, V, e be as above. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{tot},S}[\sigma]$ satisfies the strong approximation theorem:

Let V be an absolutely integral affine variety over K in \mathbb{A}_{K}^{n} for some positive integer n. For each $\mathfrak{p} \in \mathcal{S}$ let $\Omega_{\mathfrak{p}}$ be a non-empty \mathfrak{p} -open subset of $V_{\text{simp}}(K_{\mathfrak{p}})$. For each $\mathfrak{p} \in \mathcal{T} \setminus \mathcal{S}$ let $\Omega_{\mathfrak{p}}$ be a non-empty \mathfrak{p} -open subset of $V(\tilde{K})$, invariant under the action of $\operatorname{Gal}(K_{\mathfrak{p}})$. Finally, for each $\mathfrak{p} \in \mathcal{V} \setminus \mathcal{T}$ we assume that $V(\mathcal{O}_{\tilde{K},\mathfrak{p}}) \neq \emptyset$. Then, $V(\mathcal{O}_{M,\mathcal{V}\setminus\mathcal{T}}) \cap \bigcap_{\mathfrak{p}\in\mathcal{T}} \bigcap_{\tau\in\operatorname{Gal}(K)} \Omega_{\mathfrak{p}}^{\tau} \neq \emptyset$.

The main result of the present work establishes the strong approximation theorem for much smaller fields. To this end we call a Galois extension L of K symmetric if Gal(L/K) is isomorphic to the symmetric group S_n for some positive integer n. We denote the compositum of all symmetric extensions of K by K_{symm} .

Theorem B: Let K, S, T, V, e be as above. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{symm}} \cap K_{\text{tot},S}[\sigma]$ satisfies the strong approximation theorem (as in Theorem A). In particular, $K_{\text{symm}} \cap K_{\text{tot},S}$ satisfies the strong approximation theorem.

Additional interesting information about the fields mentioned in Theorem B and their rings of integers is contained in the following result.

Theorem C: Let K be a global field and e a non-negative integer. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the field $M = K_{\text{symm}} \cap K_{\text{sep}}[\boldsymbol{\sigma}]$ is PAC (Definition ??) and Hilbertian, hence $\operatorname{Gal}(M) \cong \hat{F}_{\omega}$. Moreover, the ring of integers of M is Hilbertian and Bezout (Definition ??).

Note that the statement about the Hilbertianity of M in Theorem C is due to [?]. See also the proof of Proposition ??. The authors are indebted to the anonymous referee for pointing out that proposition and its proof.

1 Weakly Symmetrically *K*-Stably PSC Fields over Holomorphy Domains

{WEAKLY}

Let K be a global field, that is K is either a number field or an algebraic function field of one variable over a finite field. Throughout this work, we use the notation \mathbb{P}_K , \tilde{K} , K_{sep} , Gal(K), $K_{\mathfrak{p}}$ and $||_{\mathfrak{p}}$ for $\mathfrak{p} \in \mathbb{P}_K$, introduced in the introduction. For each $\mathfrak{p} \in \mathbb{P}_K$ and every subfield M of \tilde{K} we consider the closed disc

$$\mathcal{O}_{M,\mathfrak{p}} = \{ x \in M \mid |x|_{\mathfrak{p}} \le 1 \}$$

of M at \mathfrak{p} . If \mathfrak{p} is non-archimedean, then $\mathcal{O}_{M,\mathfrak{p}}$ is a valuation ring of rank 1 of M.

Next we consider a subset \mathcal{U} of \mathbb{P}_K and a field $K \subseteq M \subseteq K$. A **prime** of M is an equivalence class of absolute values of M, where two absolute values on M are **equivalent** if they define the same topology on M. Let \mathcal{U}_M be the set of all primes of M that lie over \mathcal{U} . If $\mathfrak{q} \in \mathcal{U}_M$ lies over $\mathfrak{p} \in \mathcal{U}$, then we denote the unique absolute value of M that extends $||_{\mathfrak{p}}$ to M and represents \mathfrak{q} by $||_{\mathfrak{q}}$. In this case there exists $\tau \in \text{Gal}(K)$ such that $|x|_{\mathfrak{q}} = |x^{\tau}|_{\mathfrak{p}}$ for each $x \in M$. Conversely, the latter condition defines \mathfrak{q} . We set

$$\mathcal{O}_{M,\mathcal{U}} = \bigcap_{\mathfrak{q} \in \mathcal{U}_M} \{ x \in M \mid |x|_{\mathfrak{q}} \le 1 \}$$

for the \mathcal{U} -holomorphy domain of M. If \mathcal{U} consists of non-archimedean primes, then $\mathcal{O}_{M,\mathcal{U}}$ is the integral closure of $\mathcal{O}_{K,\mathcal{U}}$ in M. If \mathcal{U} is arbitrary but M is Galois over K, then

$$\mathcal{O}_{M,\mathcal{U}} = \bigcap_{\mathfrak{p} \in \mathcal{U}} \bigcap_{\tau \in \operatorname{Gal}(K)} \mathcal{O}_{M,\mathfrak{p}}^{\tau}.$$

In the number field case (i.e. $\operatorname{char}(K) = 0$), we denote the (cofinite) set of all non-archimedean primes of K by $\mathbb{P}_{K,\operatorname{fin}}$. In the function field case, where $p = \operatorname{char}(K) > 0$, we fix a separating transcedence element t_K for K/\mathbb{F}_p and let $\mathbb{P}_{K,\operatorname{fin}} = \{ \mathfrak{p} \in \mathbb{P}_K \mid |t_K|_{\mathfrak{p}} \leq 1 \}$. In both cases we set

$$\mathcal{O}_K = \mathcal{O}_{K,\mathbb{P}_{K,\mathrm{fin}}} = \{ x \in K \mid |x|_{\mathfrak{p}} \le 1 \text{ for all } \mathfrak{p} \in \mathbb{P}_{K,\mathrm{fin}} \}.$$

If K is a number field, then \mathcal{O}_K is the integral closure of \mathbb{Z} in K. In the function field case \mathcal{O}_K is the integral closure of $\mathbb{F}_p[t_K]$ in K. In both cases \mathcal{O}_K is a Dedekind domain. Following the convention in algebraic number theory, we call \mathcal{O}_K the **ring of integers** of K.

Next we consider a finite (possibly empty) subset S of \mathbb{P}_K . We set

$$K_{\text{tot},\mathcal{S}} = \bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\tau \in \text{Gal}(K)} K_{\mathfrak{p}}^{\tau}$$

as in the introduction. If $S = \emptyset$, then $K_{\text{tot},S} = K_{\text{sep}}$.

We also choose a non-empty proper subset \mathcal{V} of \mathbb{P}_K that contains \mathcal{S} .

Definition 1.1. [?, Def. 12.1] Let M be an extension of K in $K_{\text{tot},S}$ and let \mathcal{O} be a subset of M. We say that M is weakly symmetrically K-stably PSC over \mathcal{O} if for every polynomial $g \in K[T]$ with $g(0) \neq 0$ and for every absolutely irreducible polynomial $h \in K[T, Y]$ monic in Y with $d = \deg_Y(h)$ satisfying

(1a) h(0, Y) has d distinct roots in $K_{tot,S}$, and

 $\{CON1a\}$ $\{CON1b\}$

{WEAa}

(1b) $\operatorname{Gal}(h(T,Y), K(T)) \cong \operatorname{Gal}(h(T,Y), \tilde{K}(T))$ and is isomorphic to the symmetric group S_d ,

there exists $(a, b) \in \mathcal{O} \times M$ such that h(a, b) = 0 and $g(a) \neq 0$.

Note that in that case, if $M \subseteq M' \subseteq K_{\text{tot},S}$, then M' is also weakly symmetrically K-stably PSC over \mathcal{O} .

If $S = \emptyset$, we say that M is weakly symmetrically K-stably PAC over \mathcal{O} .

 $\{\texttt{WEAb}\}$

Definition 1.2. [?, Def. 13.1] Let M be an extension of K in $K_{\text{tot},S}$ and let \mathcal{O} be a subset of M. We say that M is **weakly** PSC **over** \mathcal{O} if for every absolutely irreducible polynomial $h \in M[T,Y]$ monic in Y such that h(0,Y) decomposes into distinct monic linear factors over $K_{\text{tot},S}$ and every polynomial $g \in M[T]$ with $g(0) \neq 0$ there exists $(a,b) \in \mathcal{O} \times M$ such that h(a,b) = 0 and $g(a) \neq 0$. In particular, \mathcal{O} is infinite.

If $S = \emptyset$, then M is **PAC over** \mathcal{O} [?, Def. 13.5], i.e. for every absolutely irreducible polynomial $f \in M[T, X]$ which is separable in X there exist infinitely many points $(a, b) \in \mathcal{O} \times M$ such that f(a, b) = 0.

Indeed, let $f \in M[T, X]$ be an absolutely irreducible polynomial which is separable in X. Let $\Delta \in M[T]$ be the discriminant of f, let $g \in M[T]$ be the leading coefficient of f, and let $d = \deg_X(f)$. Since \mathcal{O} is infinite, we can choose $c \in \mathcal{O}$ with $\Delta(c)g(c) \neq 0$. Let Y = g(T)X, let h'(T,Y) = $g(T)^{d-1}f(T,g(T)^{-1}Y)$, and let h(T,Y) = h'(T+c,Y). Then, $h \in M[T,Y]$ is an absolutely irreducible polynomial, monic in Y, such that h(0,Y) decomposes into distinct monic linear factors over K_{sep} . By assumption, there exist infinitely many $(a,b) \in \mathcal{O} \times M$ such that h(a,b) = 0 and $g(a) \neq 0$, hence $f(a+c,g(a)^{-1}b) = 0$.

Note that in that case, M is a **PAC** field, i.e. every absolutely integral variety over M has an M-rational point [?, Lemma 1.3].

{WEAc}

Lemma 1.3. Let M_0 be an extension of K in K_{sep} , let $M = M_0 \cap K_{tot,S}$, and let \mathcal{O} be a subset of $\mathcal{O}_{M,S}$ such that $\mathcal{O}_{K,V} \cdot \mathcal{O} \subseteq \mathcal{O}$. Suppose that M_0 is weakly symmetrically K-stably PAC over \mathcal{O} . Then, M is weakly symmetrically K-stably PSC over \mathcal{O} .

Proof: Let g be a polynomial in K[T] with $g(0) \neq 0$ and let h be an absolutely irreducible polynomial in K[T, Y], monic in Y, with $d = \deg_Y(h)$ satisfying (1). By [?, Lemma 1.9], there exists $c \in \mathcal{O}_{K,\mathcal{V}}$ which is sufficiently S-close to 0 such that for each $a \in \mathcal{O}_{K_{\text{tot},S},S}$ all the roots of h(ac, Y) are simple and belong to $K_{\text{tot},S}$. Consider the polynomial $h(cT, Y) \in K[T, Y]$. Then, since M_0 is weakly symmetrically K-stably PAC over \mathcal{O} , there exists $a \in \mathcal{O}$ and $b \in M_0$ such that

1 WEAKLY SYMMETRIC

h(ac, b) = 0 and $g(a) \neq 0$. Then, $ac \in \mathcal{O}$ and $b \in M_0 \cap K_{tot, \mathcal{S}} = M$, as desired.

Lemma 1.4. [?, Lemma 13.2] Let M be an extension of K in $K_{tot,S}$ which is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Then, M is weakly PSC over $\mathcal{O}_{M,V}$.

2 Composita of Symmetric Extensions of a Global Field

A symmetric extension of K is a finite Galois extension of K with Galois group isomorphic to S_m for some positive integer m. Let K_{symm} be the compositum of all symmetric extensions of K.

Using the notation introduced in the introduction, we prove that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, the field $K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ is PAC and Hilbertian, so $\operatorname{Gal}(K_{\operatorname{symm}}[\boldsymbol{\sigma}]) \cong \hat{F}_{\omega}$. Moreover, if \mathcal{V} contains only non-archimedean primes, then the ring $\mathcal{O}_{K_{\operatorname{symm}}[\boldsymbol{\sigma}],\mathcal{V}}$ is Hilbertian and Bezout. Finally, the field $M = K_{\operatorname{tot},\mathcal{S}} \cap K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ is weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$. This leads in Section ?? to a strong approximation theorem for M.

Definition 2.1. Let \mathcal{O} be an integral domain with quotient field F. We consider variables T_1, \ldots, T_r, X over F and abbreviate (T_1, \ldots, T_r) to \mathbf{T} . Let f_1, \ldots, f_m be irreducible and separable polynomials in $F(\mathbf{T})[X]$ and let g be a non-zero polynomial in $F[\mathbf{T}]$. Following [FrJ08, Sec. 12.1], we write $H_F(f_1, \ldots, f_n; g)$ for the set of all $\mathbf{a} \in F^r$ such that $f_1(\mathbf{a}, X), \ldots, f_m(\mathbf{a}, X)$ are defined, irreducible, and separable in F[X] with $g(\mathbf{a}) \neq 0$. Then, we call $H_F(f_1, \ldots, f_m; g)$ a **separable Hilbert subset** of F^r . We say that the ring \mathcal{O} is **Hilbertian** if for every positive integer r every separable Hilbert subset of F^r has a point with coordinates in \mathcal{O} . Finally, we say that \mathcal{O} is **Bezout** if every finitely generated ideal of \mathcal{O} is principal.

Example 2.2. Taking $\mathbf{q}_0 \in \mathbb{P}_K \smallsetminus \mathcal{V}$ in [?, p. 241, Thm. 13.3.5(b)], we find that $H \cap \mathcal{O}_{K,\mathcal{V}}^r \neq \emptyset$ for each $r \geq 1$ and every separable Hilbert subset H of K^r . In particular, if \mathcal{V} contains only non-archimedean primes, then $\mathcal{O}_{K,\mathcal{V}}$ is a Hilbertian domain.

Let d be a positive integer. Denote the set of all absolutely irreducible polynomials $h \in K[T, Y]$, monic in Y with $d = \deg_Y(h)$, that satisfy (1) of Section 1 with $S = \emptyset$, i.e. {CONb1a} (1a) h(0, Y) has d distinct roots in K_{sep} , and {CONb1b}

(1b) $\operatorname{Gal}(h(T,Y), K(T)) \cong \operatorname{Gal}(h(T,Y), \tilde{K}(T)) \cong S_d$ by \mathcal{H}_d . Let $\mathcal{H} = \bigcup_{d=1}^{\infty} \mathcal{H}_d$.

Lemma 2.3. Let e be a non-negative integer. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ every separable algebraic extension M of $K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ is weakly symmetrically Kstably PAC over $\mathcal{O}_{K,\mathcal{V}}$.

In particular, the field K_{symm} is weakly symmetrically K-stably PAC over $\mathcal{O}_{K,\mathcal{V}}$.

Proof: By Definition ??, it suffices to consider the case $e \ge 1$ and to prove that for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ the field $K_{\text{symm}}[\boldsymbol{\sigma}]$ is weakly symmetrically *K*-stably PAC over $\mathcal{O}_{K,\mathcal{V}}$. Moreover, since the set \mathcal{H} is countable, it suffices to {COMc}

 $\{COMa\}$

{COMb}

{COMP}

2 COMPOSITA OF SYMMETRIC EXTENSION

consider a positive integer d, a polynomial $h \in \mathcal{H}_d$, and a non-zero polynomial $g \in K[T]$, and to prove that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ there exists $(a, b) \in \mathcal{O}_{K,\mathcal{V}} \times K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ such that h(a, b) = 0 and $g(a) \neq 0$.

By Borel-Cantelli [?, p. 378, Lemma 18.5.3(b)], it suffices to construct a sequence of pairs $(a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots$ that satisfies for each $n \ge 1$ the following conditions:

(2a)	$a_n \in \mathcal{O}_{K,\mathcal{V}}$ and $h(a_n, X)$ is	s separable,	(CONc2b
------	--	--------------	---------

(2b) the splitting field K_n of $h(a_n, X)$ over K has Galois group S_d , {CONc2c}

(2c) $h(a_n, b_n) = 0$, in particular $b_n \in K_n$, and $g(a_n) \neq 0$, {CONc2d}

(2d) K_1, K_2, \ldots, K_n are linearly disjoint over K.

Indeed, inductively suppose that n is a positive integer and $(a_1, b_1), \ldots, (a_{n-1}, b_{n-1})$ satisfy Condition (2) (for n-1 rather than for n). Let $L = K_1K_2\cdots K_{n-1}$. By [?, p. 294, Prop. 16.1.5] and [?, p. 224, Cor, 12.2.3], K has a separable Hilbert subset H such that for each $a \in H$ the polynomial h(a, X) is separable, $\operatorname{Gal}(h(a, X), K) \cong \operatorname{Gal}(h(a, X), L) \cong S_d$, and $g(a) \neq 0$. Using Example ??, we choose an element $a_n \in H \cap \mathcal{O}_{K,\mathcal{V}}$ and a root $b_n \in K_{\operatorname{sep}}$ of $h(a_n, X)$. Then, b_n lies in the splitting field K_n of $h(a_n, X)$, so all of the statements (2a) – (2d) are satisfied.

By Lemmas ?? and ??, we get the following corollary:

Corollary 2.4. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ each extension M of $K_{\text{tot},S} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},S}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,\mathcal{V}}$. Hence, M is weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$.

In particular, the field $M = K_{tot,S} \cap K_{symm}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,\mathcal{V}}$, so it is also weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$.

When $S = \emptyset$, we get by Definition ??:

{COMe}

{COMd}

Corollary 2.5. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ each separable algebraic extension M of the field $K_{\text{symm}}[\sigma]$ is PAC over $\mathcal{O}_{M,\mathcal{V}}$.

In particular, the field $M = K_{\text{symm}}$ is PAC over $\mathcal{O}_{M,\mathcal{V}}$.

{COMj}

Proposition 2.6. Let L be a Hilbertian field and M an extension of L in L_{symm} . Then, M is Hilbertian.

Proof: Following [?, Sec. 2.1], we say that a profinite group G has **abelian-simple length** n if there is a finite series $\mathbf{1} = G^{(n)} \triangleleft \cdots \triangleleft G^{(1)} \triangleleft G^{(0)} = G$ of closed subgroups, where for $i = 0, \ldots, n-1$, the group $G^{(i+1)}$ is the intersection of all open normal subgroups N of $G^{(i)}$ such that $G^{(i)}/N$ is abelian or simple.

As mentioned in the proof of [?, Thm. 5.5], the abelian-simple length of each symmetric group S_n is at most 3. Hence, by [?, Prop. 2.8], the abelian-simple length of $\operatorname{Gal}(L_{\operatorname{symm}}/L)$ is at most 3. Therefore, by [?, Thm. 3.2], every field M between L and L_{symm} is Hilbertian.

{CONc2a}

2 COMPOSITA OF SYMMETRIC EXTENSION

Corollary 2.7. Let e be a positive integer. Suppose that \mathcal{V} contains only nonarchimedean primes. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the rings $\mathcal{O}_{K_{\operatorname{sep}}[\boldsymbol{\sigma}],\mathcal{V}}$ and $\mathcal{O}_{K_{\operatorname{symm}}[\boldsymbol{\sigma}],\mathcal{V}}$ are Hilbertian. In addition, the ring $\mathcal{O}_{K_{\operatorname{symm}},\mathcal{V}}$ is Hilbertian.

Proof: By Proposition ??, for all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the field $K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ is Hilbertian. By [?, p. 669, Thm. 27.4.8], for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the field $K_{\operatorname{sep}}[\boldsymbol{\sigma}]$ is Hilbertian. By [?, Prop. 2.5 and Cor. 2.6], if a field M is PAC over a subring \mathcal{O} and M is Hilbertian, then the ring \mathcal{O} is Hilbertian. It follows from Corollary ?? that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the rings $\mathcal{O}_{K_{\operatorname{sep}}[\boldsymbol{\sigma}],\mathcal{V}}$ and $\mathcal{O}_{K_{\operatorname{symm}}[\boldsymbol{\sigma}],\mathcal{V}}$ are Hilbertian.

Finally, by Proposition ??, the field K_{symm} is also Hilbertian. By Corollary ??, K_{symm} is PAC over $\mathcal{O}_{K_{\text{symm}},\mathcal{V}}$. Hence, by the preceding paragraph, the ring $\mathcal{O}_{K_{\text{symm}},\mathcal{V}}$ is Hilbertian.

Corollary 2.8. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{symm}}[\sigma]$ is PAC, Hilbertian, and $\text{Gal}(K_{\text{symm}}[\sigma]) \cong \hat{F}_{\omega}$.

Proof: By Corollary ??, Definition ??, and Corollary ??, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the field $M = K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ is PAC and Hilbertian. Hence, by [?, p. 90, Thm. 5.10.3], $\operatorname{Gal}(M) \cong \hat{F}_{\omega}$, as claimed.

Remark 2.9. (a) It is not true that $K_{\text{symm}}[\boldsymbol{\sigma}]$ is PAC for every $\boldsymbol{\sigma} \in \text{Gal}(K)^e$. For example, [FrJ08, p. 381, Remark 18.6.2] gives $\boldsymbol{\sigma} \in \text{Gal}(\mathbb{Q})$ such that $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ is not a PAC field. Hence, by [FrJ08, p. 196, Cor. 11.2.5] also the subfield $\mathbb{Q}_{\text{symm}}[\boldsymbol{\sigma}]$ of $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ is not PAC.

(b) In a forthcoming note, we make some mild changes in the proof of Theorem 1.1 of [?] and in some lemmas on which it depends in order to prove in the setup of Proposition ?? that if L is the quotient field of a Hilbertian domain R and S is the integral closure of R in M, then S is also a Hilbertian domain. In particular, in view of the proof of Proposition ??, the latter result applies to every extension M of L in L_{symm} . It will follow, in the notation of Corollary ??, that each of the rings $\mathcal{O}_{K_{\text{symm}}[\sigma], \mathcal{V}}$ is Hilbertian.

By [?, Lemma 4.6], if M is an algebraic extension of K which is PAC over its ring of integers $\mathcal{O}_M = \mathcal{O}_{M,\mathbb{P}_{K,\mathrm{fin}}}$, then \mathcal{O}_M is a Bezout domain. Thus, Corollary ??, applied to $\mathcal{V} = \mathbb{P}_{K,\mathrm{fin}}$ yields the following result:

{COMh}

Corollary 2.10. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the ring of integers of each separable extension of $K_{\text{symm}}[\sigma]$ is Bezout. In particular, the ring $\mathcal{O}_{K_{\text{symm}}}$ is Bezout.

{COMf}

9

{COMg}

{REMa}

3 Strong Approximation Theorem

In the notation of Section 1, we prove that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the field $K_{\operatorname{tot},\mathcal{S}} \cap K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ satisfies the strong approximation theorem for absolutely integral affine varieties.

Given a variety V we write V_{simp} for the Zariski-open subset of V that consists of all **simple** (= non-singular) points of V. We cite two results from [?]. The first one is Proposition 12.4 of [?]:

Proposition 3.1 (Strong approximation theorem). Let M be a subfield of $K_{\text{tot},S}$ that contains K and is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,\mathcal{V}}$. Then, (M, K, S, \mathcal{V}) satisfies the following condition, abbreviated as $(M, K, S, \mathcal{V}) \models$ SAT:

Let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \setminus \mathcal{T} \subseteq \mathbb{P}_{K, \text{fin}}$. Let V be an absolutely integral affine variety over K in \mathbb{A}_{K}^{n} for some positive integer n. For each $\mathfrak{p} \in \mathcal{T}$ let $L_{\mathfrak{p}}$ be a finite Galois extension of $K_{\mathfrak{p}}$ such that $L_{\mathfrak{p}} = K_{\mathfrak{p}}$ if $\mathfrak{p} \in \mathcal{S}$ and let $\Omega_{\mathfrak{p}}$ be a non-empty \mathfrak{p} -open subset of $V_{\text{simp}}(L_{\mathfrak{p}})$, invariant under the action of $\text{Gal}(L_{\mathfrak{p}}/K_{\mathfrak{p}})$. Assume that $V(\mathcal{O}_{\tilde{K},\mathfrak{p}}) \neq \emptyset$, for each $\mathfrak{p} \in \mathcal{V} \setminus \mathcal{T}$. Then, there exists $\mathbf{z} \in V(\mathcal{O}_{M,\mathcal{V}\setminus\mathcal{T}})$ such that $\mathbf{z}^{\mathcal{T}} \in \Omega_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{T}$ and all $\tau \in \text{Gal}(K)$.

The second result is Proposition 13.4 of [?], applied (for simplicity) to the case where S consists only of finite primes of K and $\mathcal{V} = \mathbb{P}_{K, \text{fin}}$:

{STRb}

Proposition 3.2 (Local-global principle). Let M be a subfield of $K_{tot,S}$ that contains K and is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,\mathcal{V}}$. Then, (M,S) satisfies the following condition, abbreviated as $(M,S) \models LGP$:

Let V be an absolutely integral affine variety over M in \mathbb{A}_M^n for some positive integer n such that $V_{simp}(\mathcal{O}_{M_{\mathfrak{q}},\mathfrak{q}}) \neq \emptyset$ for each $\mathfrak{q} \in \mathcal{S}_M$ and $V(\mathcal{O}_{M_{\mathfrak{q}},\mathfrak{q}}) \neq \emptyset$ \emptyset for each $\mathfrak{q} \in \mathbb{P}_{M, fin} \setminus \mathcal{S}_M$. Then, $V(\mathcal{O}_M) \neq \emptyset$.

Recall that an extension M of K in $K_{tot,S}$ is said to be PSC (=**pseudo-**S**closed**) if every absolutely integral variety V over M with a simple $K_{\mathfrak{p}}^{\tau}$ -rational point for each $\mathfrak{p} \in S$ and every $\tau \in \text{Gal}(K)$ has an M-rational point [?, Def. 1.3]. Also, a field M is **ample** if the existence of an M-rational simple point on Vimplies that V(M) is Zariski-dense in V [?, p. 67, Lemma 5.3.1]. In particular, every PSC field is ample.¹.

The next lemma is observed in [?, Cor. 2.7].

 $\{\texttt{STRc}\}$

Lemma 3.3. Let M be an extension of K in $K_{tot,S}$. Suppose that $(M, K, S, S) \models SAT$. Then, M is a PSC field, hence ample.

Proof: Consider an absolutely integral variety V over M with a simple $K_{\mathfrak{p}}^{\tau}$ rational point for each $\mathfrak{p} \in S$ and every $\tau \in \operatorname{Gal}(K)$. Replacing K by a finite
extension K' in $K_{\operatorname{tot},S}$ and S by $S_{K'}$, we may assume that V is defined over K

{STRONG}

{STRa}

¹The work [?] uses the adjective "large" rather than "ample".

3 STRONG APPROXIMATION THEOREM

and has a simple $K_{\mathfrak{p}}$ -rational point for each $\mathfrak{p} \in S$. Moreover, we may assume that V is affine. Thus, we may apply Proposition ?? to the case $\mathcal{V} = \mathcal{T} = S$ and $\Omega_{\mathfrak{p}} = V_{\text{simp}}(K_{\mathfrak{p}})$ for each $\mathfrak{p} \in S$. Observe that in this case $\mathcal{O}_{M, \mathcal{V} \setminus \mathcal{T}} = M$.

Corollary ??, Lemma ??, Proposition ??, and Proposition ?? yield the following result:

 $\{STRd\}$

Theorem 3.4. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$, every extension M of $K_{\text{tot},S} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},S}$ has the following properties.

(a) $(M, K, \mathcal{S}, \mathcal{V}) \models \text{SAT}.$

(b) M is PSC, hence ample.

(c) If S consists only of finite primes of K, then $(M, S) \models LGP$.

In particular, $M = K_{tot,S} \cap K_{symm}$ satisfies (a), (b), and (c).

Proof: By Corollary ??, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ every extension M of the field $K_{\operatorname{tot},\mathcal{S}} \cap K_{\operatorname{symm}}[\boldsymbol{\sigma}]$ in $K_{\operatorname{tot},\mathcal{S}}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,\mathcal{V}}$. Hence, by Proposition ??, $(M, K, \mathcal{S}, \mathcal{V}) \models \operatorname{SAT}$, so (a) holds. It follows from Lemma ?? that M is PSC, as (b) states. Finally, if in addition, \mathcal{S} consists only of finite primes, then by Proposition ??, $(M, \mathcal{S}) \models \operatorname{LGP}$, which establishes (c).

References

- [BFW16] L. Bary-Soroker, A. Fehm, and G. Wiese, Hilbertian fields and Galois representations, Journal f
 ür die reine und angewandte Mathematik 712 (2016), 123–139.
- [CaF67] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- [FrJ08] M. Fried and M. Jarden, Field Arithmetic (3rd Edition), Ergebnisse der Mathematik (3), 11, Springer, Heidelberg, 2008.
- [GeJ02] W.-D. Geyer and M. Jarden, PSC Galois extensions of Hilbertian fields, Mathematische Nachrichten 236 (2002), 119–160.
- [GJR00] M. Jarden and A. Razon, appendix by W.-D. Geyer, Skolem density problems over large Galois extensions of global fields, Contemporary Mathematics 270 (2000), 213–235.
- [GJR17] W.-D. Geyer, M. Jarden, and A. Razon, Strong approximation theorem for absolutely integral varieties over PSC Galois extensions of global fields, New York Journal of Mathematics 23 (2017), 1447–1529.
- [JaR94] M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, Israel Journal of Mathematics 86 (1994), 25–59.
- [JaR08] M. Jarden and A. Razon, Rumely's local global principle for weakly PSC fields over holomorphy domains, Functiones et Approximatio XXXIX (2008), 19–47.
- [Jar11] M. Jarden, Algebraic Patching, Springer Monographs in Mathematics, Springer 2011.
- [Pop96] F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996), 1–34.
- [Raz97] A. Razon, Abundance of Hilbertian domains, Manuscripta Mathematica 94 (1997), 531–542.
- [Raz00] A. Razon, The elementary theory of e-free PAC domains, Annals of Pure and Applied Logic 103 (2000), 55–95.