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Introduction

Let Qcycl be the field obtained from Q by adjoining all roots of unity. By the Kronecker-

Weber theorem, Qcycl coincides with the compositum Qab of all finite abelian extensions

of Q. In particular, the set Im(Gal(Qcycl/Q)) of all finite quotients of Gal(Qcycl/Q) con-

sists of all finite abelian groups. By a conjecture of Shafarevich, the absolute Galois

group Gal(Qcycl) of Qcycl is isomorphic to the free profinite group F̂ω on ℵ0 generators.

Under this conjecture, Im(Gal(Qcycl)) is the set of all finite groups. Thus, if the Sha-

farevich conjecture holds, then both Im(Gal(Qcycl/Q)) and Im(Gal(Qcycl)) are explicit

sets of finite groups. In technical terms, both sets are primitive recursive subsets of the

set FiniteGroups of all finite groups, up to isomorphism.

Replacing Q by the rational function field Fp(t) for a prime number p, we find

that Fp(t)cycl = F̃p(t), where F̃p is the algebraic closure of Fp. In this case

Im(Gal(Fp(t)cycl/Fp(t))) = Im(Gal(Fp))

is the set of all finite cyclic groups. Moreover, the analog of the Shafarevich conjec-

ture holds, that is Gal(F̃p(t)) ∼= F̂ω. See [Hrb95, Cor. 4.2], [Pop96, Thm. 1], [HaV96,

Cor. 4.7], and also [Jar11, p. 186, Cor. 9.4.9]. In particular, we have Im(Gal(F̃p(t))) =

FiniteGroups.

Going back to Q, Example 9.4, due to Fried and Völklein, presents Galois exten-

sions N of Q with Gal(N/Q) ∼=
∏∞
n=2 Sn and Gal(N) ∼= F̂ω and with a simple procedure

to find the finite quotients of these groups.

All of these fields are contained in the distinguished Galois extension Qsymm of

Q. Here, Qsymm is the compositum of all symmetric extensions of Q, where a Galois

extension L/K of fields is symmetric if Gal(L/K) ∼= Sn for some positive integer n.

One goal of this work is to prove that Qsymm itself has those properties.

Theorem A: Both Im(Gal(Qsymm/Q)) and Im(Gal(Qsymm)) are primitive recursive

subsets of FiniteGroups.

On the other hand, the list of explicitly known Galois extensions of Q with a

decidable elementary theory is quite restrictive. It contains the fields Qtot,S , where S

is a finite set of primes and Qtot,S is the maximal Galois extension of Q in which each

p ∈ S totally splits [Feh17, Thm. 1.1]. Moreover, if S and S′ are finite sets of prime

numbers such that S ∩ S′ 6= ∅, then also Qtot,SQtot,S′ is decidable [Ers96, Theorem’

below Proposition 5].

In addition, every finite extension of the above mentioned fields is decidable [Dri79,

Sec. 3, Cor.].

Taking S = ∅, we observe that the above list contains the field Q̃ of all algebraic

numbers. If S consists of the infinite prime of Q, then Qtot,S is the field of all totally
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real algebraic numbers. In both cases, the elementary theory, Th(Qtot,S), of Qtot,S is

even primitive recursive (see [FrJ08, p. 168, Thm. 9.3.1(c)] and [FHV94, Thm. 10.1]).

In this work we prove that every Galois extension of Q in Qsymm is a compositum

of symmetric extensions of Q (Lemma 7.1). This gives an explicit procedure to examine

whether a polynomial f ∈ Q[X] has a root in Qsymm (Lemma 8.1). Using that Qsymm is

PAC with F̂ω as an absolute Galois group, we conclude the following result from [JaS17,

Lemma 3.3].

Theorem B: Th(Qsymm) is primitive recursive.

It turns out that the method we use to prove Theorems A and B actually gives a

much more general result (Theorem 8.5):

Theorem C: Let K be a finitely generated presented extension of Q in the sense of

[FrJ08, Chap. 19]. In particular, K is Hilbertian and the following statements hold:

(a) Both families Im(Gal(Ksymm)) and Im(Gal(Ksymm/K)) are primitive recursive in

FiniteGroups. Indeed, Im(Gal(Ksymm)) = FiniteGroups.

(b) Th(Ksymm) is primitive recursive.

We note that Part (a) of Theorem C also holds for each infinite finitely generated

extension of each of the fields Fp with p 6= 2. Moreover, Part (b) of Theorem C holds

for every infinite finitely generated extension of Fp, albeit with the maximal purely

inseparable extension Ksymm,ins of Ksymm replacing Ksymm.

More surprising is the fact that for both Gal(Ksymm/K) and Gal(Ksymm) there

exists a “formation” C of finite groups such that the respective group is the free pro-C-
group of rank ℵ0.

To be more explicit, we say that a finite group G is symmetrically presentable

if there are a finite set I and an embedding ι: G→
∏
i∈I Sni

such that pri(ι(G)) = Sni

for each i ∈ I. It turns out that the family SP of all symmetrically presentable groups

is a formation in the sense of [FrJ08, Section 17.3]. Hence, there exists a unique (up

to isomorphism) free pro-C-group F̂ω(SP) of rank ℵ0 [FrJ08, Prop. 17.4.2]. We also

mention that the free pro-FiniteGroups-group of rank ℵ0 is usually denoted by F̂ω.

Theorem D ([Theorem 7.5 and Theorem 8.5]): The following statements hold for each

countable Hilbertian field K of char(K) 6= 2:

(a) Gal(Ksymm/K) ∼= F̂ω(SP).

(b) Gal(Ksymm) ∼= F̂ω.

(c) Gal(Ksymm/K) ∼= Gal(Qsymm/Q).

Note that Part (b) of the theorem is a consequence of well known results of Field

Arithmetic (see proof of Theorem 8.5).
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Finally, we realize that Ksymm is the largest field in a descending sequence of

Galois extensions of K that satisfy the consequences of Theorem C. Indeed, for each

positive integer m, we let K
(m)
symm be the compositum of all Sn-extensions of K with

n ≥ m. Then, Theorem C and the remark that follows Theorem C hold for K
(m)
symm

replacing Ksymm. Moreover, K
(m+1)
symm ⊆ K

(m)
symm for each m (Example 9.1). In addition,

Example 9.1 and Remark 9.2 contain an analog of Theorem D.

The authors thank the anonymous referee for his thoughtful comments and advise.

1. Symmetric Groups SYMM
input, 15

As usual, for each positive integer n we denote the group of all permutations of the set

{1, . . . , n} by Sn. One refers to Sn also as the symmetric group of degree n. We call

a group G symmetric if G is isomorphic to Sn for some positive integer n. For m ≤ n,

we consider Sm as the subgroup of Sn that fixes each m+ 1 ≤ i ≤ n. In particular, S2

is the subgroup {(1), (1 2)} of Sn. As usual, we denote the multiplicative cyclic group

of order n by Cn.

We start by listing some well known facts about symmetric groups. To this end

we use the standard notation An for the alternating group of degree n and recall

that An consists of all even permutations of the set {1, . . . , n}. We also mention the

Klein four-group V4 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Fact 1.1: Let n be a positive integer. FACt
input, 38

(a) For n 6= 4 the only normal subgroups of Sn are 1, An, and Sn with respective

quotients Sn, S2, and S1.

(b) The only normal subgroups of S4 are 1, V4, A4, and S4 with respective quotients

S4, S3, S2, and S1. Moreover, V4 ≤ A4 and V4
∼= C2 × C2.

(c) S2
∼= C2 is abelian. Hence, the center Z(S2) of S2 is S2. If n ≥ 3, then Z(Sn) = 1.

(d) For n = 3 we have A3
∼= C3. If n ≥ 5, then An is non-abelian. In both cases An is

a simple group.

(e) The only normal subgroups of A4 are 1, V4, and A4 with respective quotients A4,

A3, and 1.

Fact 1.1(a),(b) imply the following observation:

Lemma 1.2: Every quotient group of a symmetric group is a symmetric group. PROa
input, 87

Recall that a non-trivial normal subgroup N of a group S is said to be minimal

if S has no normal subgroup N0 with 1 < N0 < N . In this case, if π: S → S′ is an

epimorphism and π(N) 6= 1, then π(N) is a minimal normal subgroup of S′.
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Notation 1.3: For every integer n ≥ 2 we introduce the group MINi
input, 99

A(n) =

{
S2 if n = 2
V4 if n = 4
An otherwise

and note, by Fact 1.1(a),(b), that A(n) is the unique minimal normal subgroup of Sn.

Moreover, A(n) is abelian if n ∈ {2, 3, 4}.
Also, if n ≥ 5, then A(n) = An is a non-abelian simple group (Fact 1.1(d)). In

particular, the center of A(n) is in this case trivial. Note that A(n)
∼= A(n′) with n, n′ ≥ 2

implies that n = n′.

Finally note for n ≥ 2 that

Sn/A(n)
∼=


1 if n = 2
S3 if n = 4
S2 otherwise.

Notation 1.4: A direct product of symmetric groups has the form DIRa
input, 131

S = Sn1 × · · · × Snr =
∏
i∈I

Sni

with an index set I = {1, 2, . . . , r} and a family (ni)i∈I of positive integers. For each

subset J of I we identify SJ =
∏
j∈J Snj

with the subgroup
∏
j∈J Snj

×
∏
i∈I r J 1 of S.

We set pri: S → Sni to be the projection of S on the ith coordinate. Thus, for

σ = (σ1, . . . , σr) we have pri(σ) = σi. The kernel of pri is S(i) =
∏
j 6=i Snj

.

We also consider the normal subgroup

A =
∏
i∈I

A(ni)

of S with the quotient

S̄ = S/A ∼=
∏

ni 6=2,4

S2 ×
∏
ni=4

S3.

Remark 1.5: Signs of permutations. Recall that sgn: Sn → {±1} is the homomorphism SIGa
input, 162

of Sn that maps the even permutations onto 1 and the odd permutations onto −1. In

particular, Ker(sgn) = An.

Since A3
∼= C3 (Fact 1.1(d)), Aut(A3) ∼= C2 consists of raising the elements of

A3 to the powers 1 or −1. Thus, for each a ∈ A3 and σ ∈ S3, we have aσ = asgn(σ).

Considering σ as an automorphism of S3 that acts by conjugation, we find that each
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automorphism of A3 can be lifted to an inner automorphism of S3. This yields a short

exact sequence 1 −→ A3 −→ S3
sgn−→ Aut(A3) −→ 1. Since sgn(1 2) = −1, we also have

that sgn maps S2 bijectively onto Aut(A3).

For n = 4 and for σ ∈ S4, we define Sgn(σ) to be the automorphism of V4 defined

by conjugation with σ. Since V4 is abelian, V4 ≤ Ker(Sgn). Embedding S3 into S4 as

the subgroup of all permutations of {1, 2, 3, 4} that fix 4, we find that Sgn is injective

on S3. Since V4
∼= F2

2, we have |Aut(V4)| = 6 = |S3|. Hence, Sgn maps S3 bijectively

onto Aut(V4). Finally, since (S4 : V4) = 6 (Fact 1.1(b)), we find that V4 = Ker(Sgn).

This leads to the following short exact sequence 1 −→ V4 −→ S4
Sgn−→ Aut(V4) −→ 1.

2. Semi-direct Products. AUTOM
input, 14

We fix our notation for two basic notions of group theory, “the automorphism group”

and “semi-direct product” of groups.

Notation 2.1: Automorphisms. For each a in a group A and α ∈ Aut(A) we write aα AUTa
input, 20

for the image of a under α. Thus, (ab)α = aαbα for a, b ∈ A and aαβ = (aα)β .

Remark 2.2: Semi-direct Products. AUTb
input, 28

(a) If a group G contains a normal subgroup N and a subgroup H such that

H ∩N = 1 and HN = G, then G is an (inner) semi-direct product of H and N and

we write G = H nN . In this case we say that H is a complement of N in G. In the

special case where also H is normal in G, we have that G = H×N is the direct product

of H and N .

(b) Let A,B,C be subgroups of a group G such that A normalizes B and C, and

B normalizes C. In addition assume that B ∩ C = 1 and A ∩ BC = 1. Then, in the

above identifications, ABC = A n (B n C). Moreover, A ∩ B = 1 and AB ∩ C = 1.

Hence, ABC = AB nC = (AnB) nC. Similarly, if A∩B = 1 and AB ∩C = 1, then

ABC = AB n C = (AnB) n C. In both cases,

An (B n C) = (AnB) n C.

A special case of this rule is An (B × C) = (AnB) n C, where B acts trivially on C.

(c) Let N ≤ G ≤ S and T ≤ S be groups such that N / S, T ∩ N = 1, and

TN = S, so that S = T n N . Then, H = T ∩ G satisfies H ∩ N = 1 and HN = G.

Hence, G = H nN .

Similarly, let H ≤ Q ≤ G and A ≤ G be groups with G = HnA. Then, A′ = A∩Q
satisfies Q = H nA′.
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(d) Let ϕ: G→ Ḡ be an epimorphism of groups and let N be a normal subgroup of

G on which ϕ is injective. Set N̄ = ϕ(N) and suppose that Ḡ = M̄ n N̄ is a semi-direct

decomposition of Ḡ. Then, G = M nN , with M = ϕ−1(M̄).

Indeed, each n ∈M ∩N satisfies ϕ(n) ∈ M̄ ∩ N̄ , hence ϕ(n) = 1, so n = 1. Thus,

M ∩N = 1.

Further, for each g ∈ G there exist m̄ ∈ M̄ and n ∈ N such that ϕ(g) = m̄ϕ(n).

Thus, ϕ(gn−1) = m̄ ∈ M̄ , so gn−1 ∈ M , by the definition of M . Therefore, g =

(gn−1)n ∈MN .

Combining the latter two paragraphs, we conclude that G = M nN , as claimed.

Remark 2.3: Examples of automorphism groups and semi-direct products. AUTc
input, 97

(a) As mentioned in Remark 1.5, the group A3 is isomorphic to the cyclic group

C3 of order 3, so Aut(A3) = C2 is generated by the automorphism σ 7→ σ−1.

(b) Also, Aut(V4) = S3, where S3 is acting on V4 by conjugation in S4. Moreover,

since S3 ∩ V4 = 1 and S3V4 = S4, we have S4 = S3 n V4.

(c) By Notation 1.3 we have,

S2 = 1× S2 = S1 ×A(2),

S3 = S2 nA3 = S2 nA(3),

S4 = S3 n V4 = S3 nA(4) and S4 = S2 nA4,

Sn = S2 nAn = S2 nA(n) if n ≥ 5.

It follows from Fact 1.1(a),(b) that for every n ≥ 2, every normal subgroup N of Sn has

a complement M in Sn and M ∼= Sn/N is again a symmetric group.

3. Symmetrically Presentable Groups BIRK
input, 14

Garrett Birkhoff refers to an algebra B as a “sub-direct product of algebras B1, . . . , Br”

if there is an embedding ι: B →
∏r
i=1Bi such that pri(ι(B)) = Bi for i = 1, . . . , r [Bir44,

p. 175]. We introduce a similar notion for finite groups and finitely many symmetric

groups.

Setup 3.1: Let I = {1, . . . , r} and set S =
∏
i∈I Sni

with positive integers ni for PREa
input, 23

i ∈ I. For each i ∈ I let pri: S → Sni be the projection on the ith component. Then,

S(i) = Ker(pri) =
∏
j 6=i Snj

and S = S(i)×Sni
. We let pr(i): S → S(i) be the projection

of S on the first factor.

We say that a group G is symmetrically presentable if there exists a direct

product S of finitely many symmetric groups as in the preceding paragraph and an
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embedding

(1) ι: G→ S

such that pri(ι(G)) = Sni
for each i ∈ I. In this case we say that ι is a symmetric

presentation of G. Thus, in the language of Birkhoff, G is a sub-direct product of

symmetric groups and ι is a presentation of G as a sub-direct product of symmetric

groups.

We identify G with its image in S under ι and assume that ι is the inclusion map.

In particular, we have pri(G) = Sni
for each i ∈ I. Then, we consider a subgroup N of

G which is normal in S and let

(2) G(i) = pr(i)(G)
G[i] = S(i) ∩G = Ker(pri|G) Gi = Sni

∩G = Ker(pr(i)|G)
N [i] = S(i) ∩N = Ker(pri|N ) Ni = Sni ∩N = Ker(pr(i)|N )
N(i) = pri(N) N (i) = pr(i)(N).

This leads to the following commutative diagrams whose rows are short exact sequences

and where the vertical edges are inclusions:

(3) 1 // S(i) // S
pri // Sni

// 1

1 // G[i] // G // Sni
// 1

1 // N [i] // N
πi // N(i)

// 1

1 // Sni
// S

pr(i) // S(i) // 1

1 // Gi // G // G(i) // 1

1 // Ni // N // N (i) // 1.

Here, πi = pri|N , so N(i) = πi(N) for each i ∈ I. One observes that for each i ∈ I, the

embedding of G(i) in S(i) is a symmetric presentation of G(i).

Lemma 3.2: In the notation of Setup 3.1, Ni / G, N(i) / Sni
, N [i] / G, and N (i) / G(i). PREb

input, 129
Moreover, if N is a minimal normal subgroup of G and N(i) 6= 1, then N [i] = 1 and

πi: N → N(i) is an isomorphism.

Proof: Since N /G and Gi = Ker(pr(i)|G) / G, we have Ni = Gi ∩N /G. In addition,

since N / G, pri(N) = N(i), and pri(G) = Sni , we have N(i) / Sni .

Now, G[i] = Ker(pri|G)/G. By assumption N /G, so N [i] = G[i]∩N /G. Finally,

since pr(i)(G) = G(i) and pr(i)(N) = N (i), we have N (i) / G(i).

It follows that if N is a minimal normal subgroup of G and N(i) 6= 1, then

1 ≤ N [i] < N , so N [i] = 1, hence πi: N → N(i) is an isomorphism.
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Definition 3.3: The symmetric presentation (1) of G is said to be minimal if the PREc
input, 162

lexicographically ordered pair (r, |S|) is minimal for all possible symmetric presentations

of G. In particular, if G = 1, then r = 0 and I = ∅.
If (1) is a minimal symmetric presentation of G and s ∈ S, then the conjugate

presentation ιs: G → S defined by ιs(g) = s−1ι(g)s is again a minimal symmetric

presentation of G.

Lemma 3.4: Let ι: G→ S be a minimal symmetric presentation of a finite non-trivial GEYa
input, 177

group G, as in (1). Then, |I| ≥ 1 and for each i ∈ I we have ni ≥ 2 and the group Gi

is non-trivial and normal in Sni .

Proof: Since G is non-trivial, S is non-trivial, hence |I| ≥ 1. If ni = 1 for some i ∈ I,

then we can delete i from I and obtain a smaller symmetric presentation for G than ι.

This contradicts the minimality of ι. Hence, ni ≥ 2 for each i ∈ I.

Since Gi is the kernel of the epimorphism pr(i)|G: G → G(i), we have Gi / G.

Since pri(G) = Sni
(by (3)) and pri maps Gi as a subgroup of Sni

onto itself, we have

Gi / Sni .

Finally, if Gi = 1, then pr(i)|G: G→ S(i) is a symmetric presentation of G which

is smaller than ι: G→ S, contradicting the minimality assumption on ι. It follows that

Gi 6= 1.

Lemma 3.5: Suppose that the symmetric presentation ι: G→ S in (1) is minimal and BIRa
input, 208

assume that ι is the inclusion map. Let A =
∏
i∈I A(ni) be the normal subgroup of S

introduced in Notation 1.4.

Then,
∏
j∈J A(j) / G for every subset J of I, in particular A / G.

Proof: We consider an i ∈ I. By Lemma 3.4, the non-trivial normal subgroup Gi of G

is also normal in Sni
. Hence, Gi contains the unique minimal normal subgroup A(ni)

of Sni (Notation 1.3), so we also have A(ni) / G. Therefore,
∏
j∈J A(nj) / G for every

subset J of I.

Remark 3.6: Here is an effective procedure to decide whether a given finite group G BIRb
input, 233

has a symmetric presentation.

We make a list N1, . . . , Nr of all normal subgroups of G such that G/Ni ∼= Sni

for some positive integer ni with ni! ≤ |G|, i = 1, . . . , r. Then, G has a symmetric

presentation if and only if
⋂r
i=1Ni = 1. If the latter condition holds, then the quotient

maps G → G/Ni yield a symmetric presentation G →
∏r
i=1G/Ni

∼=
∏r
i=1 Sni of G.
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4. Quotients of Symmetrically Presentable Groups PRES
input, 14

We prove that every quotient of a symmetrically presentable group is symmetrically

presentable. Throughout, we use Notation 1.3 and the notation introduced in Setup

3.1, in particular the notation of Diagrams (3) in the latter setup.

Lemma 4.1: Let G be a finite non-trivial group and ι: G → S a minimal symmetric PREe
input, 24

presentation, that we assume to be the inclusion map. Let N be a minimal normal

subgroup of G and let J = {i ∈ I | N(i) 6= 1}. Then the following statements hold:

(a) If |J | = 1, say J = {j}, then N = A(nj).

(b) If |J | > 1, there are an integer 2 ≤ m ≤ 4 and elements γj ∈ Aut(A(m)) for j ∈ J
such that nj = m for all j ∈ J and

N = {(aγj )j∈J ∈
∏
j∈J

Snj
| a ∈ A(m)}.

In particular, N ∼= A(m) is abelian.

Proof: If j ∈ J , then N(j) 6= 1, so N [j] < N . By Lemma 3.2, N [j] / G. It follows from

the minimality of N that N [j] = 1. Thus,

(1) πj : N → N(j) is an isomorphism for each j ∈ J .

Since prj(G) = Snj
and N(j) = prj(N) 6= 1, we have that N(j) is a minimal

normal subgroup of Snj for each j ∈ J . Hence,

(2) N(j) = A(nj) for each j ∈ J .

Since pri(N) = N(i) = 1 for each i ∈ I r J , we have N ≤ SJ =
∏
j∈J Snj

.

Therefore, (a) is a consequence of (1) and (2).

In order to prove (b) we assume that

(3) |J | > 1.

For each j ∈ J the map γj = π−1
1 ◦ πj (acting from the right) is an isomorphism from

A(n1) onto A(nj). Hence, setting m = n1, we find that nj = m, so γj ∈ Aut(A(m)).

For a ∈ N we set a = aπ1 and get prj(a) = aπj = (aπ1)γj = aγj for each j ∈ J .

Here, aπj denotes the image of a under πj . Thus, N = {(aγj )j∈J ∈
∏
j∈J Snj

| a ∈
A(m)}, hence

(4) |N | = |A(m)|.

Claim: m ≤ 4. Otherwise m ≥ 5, so by Fact 1.1(d), A(m) = Am is a non-abelian

simple group. By Lemma 3.5, A
|J|
m =

∏
j∈J A(nj) / G. Since N ≤ A

|J|
m and N / G, we

have that N /A
|J|
m . By (2) and [FrJ08, p. 374, Lemma 18.3.9], N ∼= A

|J|
m . Hence, by (4),

|J | = 1. This contradiction to (3) proves that indeed m ≤ 4, as claimed.

By Notation 1.3, A(m) is abelian. This concludes the proof of (b).
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Lemma 4.2: Let r ≥ 2 be an integer, consider m ∈ {2, 3, 4}, and let G be a subgroup NORa
input, 117

of S = Srm such that the inclusion map ι: G → S is a minimal symmetric presentation

of G. Suppose that

(5) N = {(a, . . . , a) ∈ S | a ∈ A(m)}

is a normal subgroup of G. Then, N has a complement M in G and M ∼= G/N is

symmetrically presentable.

Proof: If m = 2, then S = Sr2 is a vector space of dimension r over F2, G is a subspace

of S, and N is a subspace of G. Hence, N has a complement M in G. Moreover, M

is a subspace of S. As such M ∼=
∏r′

i=1 S2 for some r′ ≤ r. Hence M is symmetrically

presentable and we are reduced to the case where m = 3 or m = 4.

We set sg = sgn in the first case and sg = Sgn in the second case. In both cases

Remark 1.5 yields a short exact sequence

(6) 1 −→ A(m) −→ Sm
sg−→ Aut(A(m)) −→ 1

such that

(7) sg(Sm−1) = Aut(A(m)).

Claim A: The normalizer of N in S is

G̃ = {(σ1, . . . , σr) ∈ Srm | sg(σ1) = · · · = sg(σr)}.

Indeed, consider σ = (σ1, . . . , σr) ∈ Srm. For each j ∈ {1, . . . , r} we set τj = sg(σj)

and let τ = (τ1, . . . , τr). Then, for each a = (a, . . . , a) ∈ N we have aσ = aτ . Thus,

aσ ∈ N if and only if aτj = aτ1 for j = 1, . . . , r. Since τ1, . . . , τr are automorphisms

of A(m), this is true for all a ∈ N if and only if τj = τ1 for j = 1, . . . , r. Thus,

sg(σ1) = · · · = sg(σr), so σ ∈ G̃. Therefore, G̃ is the normalizer of N in S, as claimed.

Claim B: G̃ = G. Indeed, since N is normal in G, we have by Claim A that G ≤ G̃.

By Lemma 3.5, A = Ar(m) ≤ G. Moreover, (6) yields a short exact sequence

(8) 1 −→ A −→ G̃
sg1−→ Aut(A(m)) −→ 1,

where sg1(σ) = sg(σ1). Hence, (G̃ : A) = |Aut(A(m))| = (Sm : A(m)). On the other

hand, pr1(G) = Sm and pr1(A) = A(m), so (G : A) ≥ (Sm : A(m)) = (G̃ : A). It follows

from A ≤ G ≤ G̃ that G̃ = G, as claimed.
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Claim C: The group M = {(σ1, . . . , σr) ∈ G | σ1 ∈ Sm−1} is a complement of N in G.

Indeed, by Remark 2.3(c), Sm−1 is a complement of A(m) in Sm. If a = (a1, . . . , ar) ∈
M ∩ N , then a1 ∈ Sm−1 and aj = a1 ∈ A(m), so aj = 1 for j = 1, . . . , r. Thus,

M ∩N = 1.

On the other hand, consider σ = (σ1, . . . , σr) ∈ G. By Claim B, sg(σj) = sg(σ1)

for j = 1, . . . , r. By Remark 2.3(c), S2A(3) = S2A3 = S3 and S3A(4) = S3V4 = S4.

Hence, σ1 = τa with τ ∈ Sm−1 and a ∈ A(m). By (6), sg(a) = 1, so sg(σja
−1) =

sg(σ1) = sg(τ) for j = 1, . . . , r. Hence, by Claim B, τ = (τ, σ2a
−1, . . . , σra

−1) ∈ G̃ = G.

Moreover, by (5), a = (a, a, . . . , a) ∈ N and σ = τa ∈ MN . Thus, G = M nN , so M

is a complement of N in G.

Claim D: M is symmetrically presentable. By definition, M ≤ Sm−1 × Sr−1
m . If

σ1 ∈ Sm−1, then there exist σ2, . . . , σr ∈ Sm such that σ = (σ1, σ2, . . . , σr) ∈ G,

because by assumption, pr1(G) = Sm. Hence, σ ∈M , so pr1(M) = Sm−1.

If 2 ≤ i ≤ r and σi ∈ Sm, we may assume that i = 2. By (6) and (7), there

exists σ1 ∈ Sm−1 such that sg(σ1) = sg(σ2). Hence, with σj = σ1 for j = 3, . . . , r we

have by Claim B that σ = (σ1, σ2, . . . , σr) ∈ G and pr2(σ) = σ2. Therefore, σ ∈M , so

pr2(M) = Sm. It follows that M is symmetrically presentable, as claimed.

Lemma 4.3: Let N be a minimal normal subgroup of a symmetrically presentable group GEYe
input, 246

G. Then, N has a complement M in G and G/N ∼= M is symmetrically presentable.

Proof: We assume without loss that G 6= 1 and that ι: G→ S is a minimal symmetric

presentation of G. We also assume that ι is the inclusion map. Then, in the notation

of Setup 3.1, let J = {i ∈ I | N(i) 6= 1}.

Case A: J = I and |I| = 1. Then, G = S = Sni , where i is the unique element of

I and N = A(ni). Hence, by Remark 2.3(c), N has a complement M in G which is a

symmetric group. In particular, G/N is symmetrically presentable.

Case B: J = I and |I| > 1. By Lemma 4.1(b), there are an integer 2 ≤ m ≤ 4 and

elements γi ∈ Aut(A(m)) for i ∈ I such that ni = m for all i ∈ I and N = {(aγi)i∈I ∈
S | a ∈ A(m)}. Then, in the notation of the second paragraph of the proof of Lemma

4.2 and by (6), there exists for each i ∈ I an element δi ∈ Sm such that sg(δi) = γi.

Hence, δ = (δi)i∈I ∈ S, N ′ = Nδ−1

= {(a)i∈I | a ∈ A(m)} is a minimal normal

subgroup of G′ = Gδ−1

. By Lemma 4.2, N ′ has a complement M ′ in G′ and M ′ is

symmetrically presentable. It follows that M = (M ′)δ is a complement of N in G and

M is symmetrically presentable.

Case C: J is a proper subset of I. Let J ′ = I r J , SJ =
∏
j∈J Snj

and SJ′ =∏
j′∈J′ Snj′ . Then, S = SJ × SJ′ and we set prJ : S → SJ and prJ′ : S → SJ′ to be the

projection on the factors. Note that Ker(prJ) = SJ′ and Ker(prJ′) = SJ .

12



Now let GJ = prJ(G). By Setup 3.1, in particular by the left diagram of (3) in

that setup, prj′(N) = 1 for each j′ ∈ J ′, so N ≤ SJ . Since prJ is the identity map on

SJ , we have prJ(n) = n for each n ∈ N , so N = prJ(N) is a minimal normal subgroup

of GJ .

By induction on |I|, there is a symmetric presentation κ: GJ/N →
∏
k∈K Snk

,

where K is a finite set disjoint from I. Using κ, we define a map λ: G/N →
∏
k∈K Snk

×∏
j′∈J′ Snj′ by λ(gN) = (κ(prJ(g)N),prJ′(g)) for each g ∈ G. We prove that λ is a

symmetric presentation.

Indeed, if g1N = g2N for g1, g2 ∈ G, then prJ(g−1
2 g1) = g−1

2 g1 ∈ N , so prJ(g1)N =

prJ(g2)N , hence λ is well defined, therefore λ is a homomorphism.

If g ∈ G and λ(gN) = 1, then κ(prJ(g)N) = 1 and prJ′(g) = 1. The latter

equality implies that g ∈ SJ , so prJ(g) = g. Since κ is injective, gN = prJ(g)N = 1.

Therefore, λ is injective.

Since κ is a symmetric presentation, there exists for all k ∈ K and s ∈ Snk
an

element g ∈ G such that prk(λ(gN)) = prk(κ(prJ(g)N)) = s. Also, if j′ ∈ J ′ and s′ ∈
Snj′ , then there exists g ∈ G with prj′(g) = s′. Hence, prj′(λ(gN)) = prj′(prJ′(g)) = s′.

We conclude that λ is a symmetric presentation of G/N .

Finally, since |J | < |I|, an induction hypothesis implies that N has a complement

MJ in GJ . Hence, by Remark 2.2(d), M = pr−1
J (MJ) ∩G is a complement of N in G.

Proposition 4.4: Let N be a normal subgroup of a symmetrically presentable group GEYf
input, 352

G. Then, N has a complement M in G and G/N ∼= M is symmetrically presentable.

Proof: The case where N is a minimal normal subgroup of G is taken care of by Lemma

4.3. Hence, we assume without loss that N 6= 1 and N is not a minimal normal subgroup

of G. Then, N has a proper subgroup N0 which is a minimal normal subgroup of G.

By Lemma 4.3, G/N0 is symmetrically presentable. Since N/N0 is a normal subgroup

of G/N0, and the order of G/N0 is smaller than that of G, an induction hypothesis on

the order of the group implies that (G/N0)/(N/N0) is symmetrically presentable. Since

G/N ∼= (G/N0)/(N/N0), the group G/N is symmetrically presentable.

Again, by Lemma 4.3, N0 has a complement M1 in G. Then, N1 = M1 ∩N is a

normal subgroup of M1 that complements N0 in N , i.e. N = N1 nN0 (Remark 2.2(c)).

By the preceding paragraph, M1
∼= G/N0 is symmetrically presentable and M1 < G.

An induction on the order of the group yields a complement M of N1 in M1. Then,

by Remark 2.2(b), G = M1 n N0 = (M n N1) n N0 = M n (N1 n N0) = M n N , as

claimed.
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5. Embedding Problems over a Field EMBED
input, 9

We quote two special results about the solvability of finite embedding problems over

Hilbertian fields. Then, we introduce the notions of cartesian squares and fiber products

of finite groups, and prove that the family of symmetrically presentable groups is closed

under fiber products.

Definition 5.1: Regularly solvable embedding problems [FrJ08, p. 303, Def. 16.4.1]. QUOa

input, 19Consider a finite embedding problem α: G → Gal(L/K) over a field K, where

L/K is a Galois extension, G is a finite group, and α is an epimorphism. A proper

solution of the embedding problem is an isomorphism β: Gal(N/K)→ G that satisfies

α ◦ β = resN/L, where N is a Galois extension of K that contains L. We refer to N as

a proper solution field of the embedding problem.

Next we consider algebraically independent elements t1, . . . , tr over K and set

t = (t1, . . . , tr). Then, res: Gal(L(t)/K(t)) → Gal(L/K) is an isomorphism. Hence,

α: G → Gal(L/K) gives rise to an embedding problem αt: G → Gal(L(t)/K(t)) over

K(t) with α = resL(t)/L ◦αt. We refer to a proper solution of αt as a proper solution

of α over K(t). We refer to a proper solution field F of αt as a proper regular

solution of α if F/L is regular. We say that α is properly and regularly solvable if

there are t1, . . . , tr as above such that αt has a proper solution field F which is regular

over L. In this case we also say that L/K can be properly and regularly embedded

into a G-extension.

Definition 5.2: A finite embedding problem for a profinite group Γ is a pair EMPa
input, 54

(1) (ρ: Γ→ Ḡ, α: G→ Ḡ),

where G is a finite group and both ρ and α are epimorphisms. A proper solution of

(1) is an epimorphism γ: Γ→ G such that α ◦ γ = ρ.

Given a field K, we fix a separable algebraic closure Ksep of K and let Gal(K) =

Gal(Ksep/K) be the absolute Galois group of K. Then, we quote two lemmas from

[FrJ08, Section 16.4].

Lemma 5.3 ([FrJ08, p. 303, Lemma 16.4.2]): Let K be a Hilbertian field, α: G → QUOb

input, 73Gal(L/K) a finite embedding problem, and M a finite separable extension of L. If α is

properly and regularly solvable, then α has a proper solution field N which is linearly

disjoint from M over L.

Lemma 5.4 ([FrJ08, p. 304, Prop. 16.4.4]): Let G n A be a semi-direct product of QUOc

input, 82finite groups, where G = Gal(L/K) for a Galois extension L/K and A is abelian. Let

π: GnA→ G be the projection map. Then, π is properly and regularly solvable.

We also quote a result of David Brink.
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Proposition 5.5 ([Br04, Thm. 9]): Let n ≥ 3 be an integer and K a field of char- QUOd

input, 92acteristic different from 2. Then, any quadratic extension L/K can be properly and

regularly embedded into an Sn-extension.

Next, we recall that a commutative diagram

(2) D
δ //

β

��

C

γ

��
B

α // A

of profinite groups and homomorphisms is said to be cartesian if for each profinite

group G and all homomorphisms ϕ: G → B and ψ: G → C satisfying α ◦ ϕ = γ ◦ ψ
there exists a unique homomorphism π: G→ D such that β ◦ π = ϕ and δ ◦ π = ψ.

Note that the map ε of D onto the fiber product

(3) B ×A C = {(b, c) ∈ B × C | α(b) = γ(c)}

defined by ε(d) = (β(d), δ(d)) for each d ∈ D, is an isomorphism that satisfies prB◦ε = β

and prC ◦ ε = δ [FrJ08, p. 499, Prop. 22.2.1].

We say that the fiber product (3) has surjective homomorphisms if both α

and γ are surjective.

Lemma 5.6 ([FrJ08, p. 500, Lemma 22.2.4]): Let (2) be a commutative diagram of QUOf

input, 174epimorphisms of profinite groups. Then, (2) is cartesian if and only if Ker(α ◦ β) =

Ker(δ)×Ker(β).

Here is the field theoretic counterpart of Lemma 5.6:

Lemma 5.7 ([FrJ08, p. 501, Example 22.2.7(a)]): Let M and M ′ be Galois extensions QUOh

input, 185of a field K. Set L = M ∩M ′ and N = MM ′. Then, the square

Gal(N/K) //

��

Gal(M ′/K)

��
Gal(M/K) // Gal(L/K)

in which all of the arrows are restriction maps is cartesian.

Proposition 4.4 ensures that the family of symmetrically presentable groups is

preserved under taking quotients. Here is another preservation rule for that family.
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Lemma 5.8: The family of symmetrically presentable groups is closed under fiber prod- QUOj

input, 207ucts with surjective homomorphisms.

Proof: We consider a cartesian diagram (2) with surjective homomorphisms. Suppose

that I and J are disjoint finite sets, {ni | i ∈ I} and {nj | j ∈ J} are sets of positive

integers, B is a subgroup of
∏
i∈I Sni

with pri(B) = Sni
for each i ∈ I, and C is a

subgroup of
∏
j∈J Snj

with prj(C) = Snj
for each j ∈ J . Let λ: D →

∏
i∈I Sni

×∏
j∈J Snj be the map defined by λ(d) = (pri(β(d)),prj(δ(d)))(i,j)∈I×J for each d ∈ D.

We assume without loss that D = B ×A C, β is the projection of D on B, and δ

is the projection of D on C. If λ(d) = 1, then pri(β(d)) = 1 for each i ∈ I, so β(d) = 1.

Similarly, δ(d) = 1. Hence, (β(d), δ(d)) is the unit of D. Therefore, d = 1, so λ is

injective.

Also, if s ∈ Sni
with i ∈ I, then there exists b ∈ B with s = pri(b). Let c be

an element of C such that γ(c) = α(b). Then, (b, c) ∈ D and pri(λ(b, c)) = pri(b) = s.

Thus, pri(D) = Sni for each i ∈ I. Similarly, prj(D) = Snj for each j ∈ J . It follows

that λ is a symmetric presentation of D.

6. Embedding Problems for the Absolute Galois Group of a Hilbertian Field GALOIS
input, 15

We prove in this section that every finite embedding problem

(1) (ρ: Gal(K)→ Ḡ, α: G→ Ḡ)

over a Hilbertian field K of char(K) 6= 2 in which G is a symmetrically presentable

group has a proper solution.

Lemma 6.1: Let K be a Hilbertian field of char(K) 6= 2. Then, every finite embedding WULa
input, 25

problem (1) in which G is a symmetrically presentable group and N = Ker(α) is a

minimal normal subgroup of G has a proper solution.

Proof: As in Setup 3.1, let ι: G→ S be a minimal symmetric presentation for G with

S =
∏
i∈I Sni , where ι is the inclusion map. By Lemma 4.3, N has a complement in

G. Hence, if N is abelian, then by Lemma 5.4 and Lemma 5.3, Embedding problem (1)

has a proper solution.

We may therefore assume that N is non-abelian. Then, Case (a) of Lemma 4.1

holds. Thus, there exists a unique j ∈ I such that N = A(nj). We assume without loss

that j = 1 and set n = n1. Since N is non-abelian, Notation 1.3 implies that n ≥ 5 and

N = An. The rest of the proof consists of three parts.

16



Part A: Commutative square. The assumptions made so far yield direct decomposi-

tions of groups

(2) S = Sn × S′ with S′ =
∏
i 6=1

Sni and A = An ×A′ with A′ =
∏
i 6=1

A(ni)

such that the projection ϕ = pr1|G: G → Sn is surjective. Note that ϕ maps the

subgroup An = N of G identically onto the subgroup An of Sn. Hence, for each a ∈ An
we have sgn(ϕ(a)) = sgn(a) = 1. Therefore, there exists a homomorphism ψ: Ḡ→ {±1}
that makes Diagram (3) below commutative.

(3) G
α //

ϕ

��

Ḡ

ψ

��
Sn

sgn // {±1}

Claim B: The square (3) is cartesian. Since sgn, ϕ, and α are surjective, so is ψ. Let

β = ψ ◦ α = sgn ◦ ϕ. Since Ker(ϕ) ≤ Ker(pr1) = S′ and Ker(α) = N = An ≤ Sn,

we have Ker(ϕ) ∩Ker(α) = 1. Thus, by Lemma 5.6, it suffices to prove that Ker(β) =

Ker(ϕ)Ker(α).

Indeed, each g ∈ Ker(β) can be written as

(4) g = as, with a ∈ Sn and s ∈ S′.
Hence, ϕ(g) = pr1(g) = a, so sgn(a) = sgn(ϕ(g)) = β(g) = 1. Therefore, a ∈ An =

Ker(α) ≤ G, so by (4), s = a−1g ∈ G. Therefore, ϕ(s) = ϕ(a)−1ϕ(g) = a−1ϕ(g) = 1,

so s ∈ Ker(ϕ), which proves our claim.

Part C: Solving Embedding problem (1). Let L be a Galois extension of K with

Galois group Ḡ. Let L1 be the fixed field of Ker(ψ ◦ ρ). Then, Gal(L1/K) ∼= S2.

By Proposition 5.5 and Lemma 5.3, K has a Galois extension M1 with Galois group

Sn such that M1 contains L1 and is linearly disjoint from L over L1. In particular,

Gal(M1/L1) ∼= An. Moreover, since sgn: Sn → {±1} is the only epimorphism from Sn
to {±1}, the restriction map resM1/L1

coincides with sgn: Sn → {±1}. Finally, we set

M = M1L and have the following diagram of Galois extensions:

(5) M

{{{{{{{{

@@@@@@@@

M1

An

BBB

BBB

Sn

L

Ḡ[1]
~~~

~~~

ḠL1

K.
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Since M1 and L are linearly disjoint over L1, the corresponding commutative diagram

of groups

(6) Gal(M/K) //

��

Gal(L/K)

��
Gal(M1/K) // Gal(L1/K),

where all maps are restrictions, is cartesian (Lemma 5.7). Hence, Diagram (3) is the

Galois theoretic counterpart of Diagram (6), so M is a proper solution field of our

embedding problem.

Proposition 6.2: Let K be a Hilbertian field with char(K) 6= 2. Then, every finite GALb
input, 164

embedding problem

(7) (ρ: Gal(K)→ Ḡ, α: G→ Ḡ)

in which G is a symmetrically presentable group has a proper solution.

Proof: Let N = Ker(α). If N = 1, then α is an isomorphism, so α−1 ◦ ρ is a proper

solution of (7). If N is a minimal normal subgroup of G, then Lemma 6.1 yields a proper

solution of (7). Therefore, we may assume that N is neither 1 nor minimal normal.

Then, G has a non-trivial normal subgroup N0 which is properly contained in N .

Let π: G→ G/N0 be the quotient map. Then, the epimorphism ᾱ: G/N0 → Ḡ defined

by ᾱ(gN0) = α(g) satisfies ᾱ ◦ π = α. Also, N/N0 = Ker(ᾱ) has a smaller order than

N = Ker(α). By Proposition 4.4, G/N0 is also symmetrically presentable. Hence, by an

induction hypothesis on the order of the kernel of the embedding problem, there exists

an epimorphism ρ̄: Gal(K) → G/N0 such that ᾱ ◦ ρ̄ = ρ. Next note that the order of

N0 = Ker(π) is also smaller than the order of N . Hence, another use of the induction

hypothesis yields an epimorphism γ: Gal(K)→ G such that π ◦ γ = ρ̄.

Gal(K)

ρ

��

γ

zztttttttttt

ρ̄

������������������

1 // N //

��

G
α //

π

��

Ḡ // 1

1 // N/N0
// G/N0

ᾱ // Ḡ // 1

Then, α ◦ γ = ᾱ ◦ π ◦ γ = ᾱ ◦ ρ̄ = ρ, so γ is a proper solution of the embedding problem

(7).
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7. The Maximal Symmetric Extension of a Field COMPOS
input, 14

We say that a Galois extension L/K is symmetric if Gal(L/K) ∼= Sn for some positive

integer n. We denote the compositum of all symmetric extensions of a field K by

Ksymm and prove that if char(K) 6= 2, then Gal(Ksymm/K) is isomorphic to the free

pro-SP-group of rank ℵ0, where SP is the formation of all symmetrically presentable

groups.

Lemma 7.1: The following conditions on a finite Galois extension L/K are equivalent. FSEa
input, 24

(a) L is a composition of finitely many symmetric extensions of K.

(b) Gal(L/K) is symmetrically presentable.

(c) L is a finite Galois extension of K in Ksymm.

Proof of (a) =⇒ (b): Suppose that L is a compositum of symmetric extensions

L1, . . . , Lr of K. Then, the map σ 7→ (resL/L1
(σ), . . . , resL/Lr

(σ)) is an embedding of

Gal(L/K) into
∏r
i=1 Gal(Li/K). Moreover, the restriction map resL/Li

: Gal(L/K) →
Gal(Li/K) is surjective for i = 1, . . . , r. Hence, Gal(L/K) is symmetrically presentable.

Proof of (b)=⇒(a): Suppose that G = Gal(L/K) has a symmetric presentation

ι: G →
∏r
i=1 Sni . Without loss we assume that ι is the inclusion map. For each

1 ≤ i ≤ r let Li be the fixed field in L of the kernel of the epimorphism pri|G: G →
Sni

. Then, Gal(Li/K) ∼= Sni
and Gal(L/Li) ≤

∏
j 6=i Snj

. Hence,
⋂r
i=1 Gal(L/Li) ≤⋂r

i=1

∏
j 6=i Snj

= 1. Therefore, L = L1 · · ·Lr. We conclude that L is a compositum of

symmetric extensions.

Proof of (a)=⇒(c): If L is a compositum of symmetric extensions L1, . . . , Lr, then

L ⊆ Ksymm.

Proof of (c)=⇒(a): Suppose that L is a finite Galois extension of K in Ksymm. Then,

there exist symmetric extensions N1, . . . , Nr of K such that N = N1 · · ·Nr contains L.

By “(a)=⇒(b)”, Gal(N/L) is symmetrically presentable. Hence, Gal(L/K) is a quotient

of a symmetrically presentable group, so by Proposition 4.4, Gal(L/K) is symmetrically

presentable. By (b)=⇒(a), L is a compositum of finitely many symmetric extensions of

K, as claimed.

Corollary 7.2: Let K be a Hilbertian field with char(K) 6= 2 and let G be a symmet- MSFc
input, 80

rically presented group. Then, every finite embedding problem (ρ̄: Gal(Ksymm/K) →
Ḡ, α: G→ Ḡ) is properly solvable. In particular, G itself is a quotient of Gal(Ksymm/K).

Proof: Let ρ = ρ̄ ◦ resKsep/Ksymm
. By Proposition 6.2, there exists an epimorphism

γ: Gal(K) → G such that α ◦ γ = ρ. Let N be the fixed field of Ker(ρ). Then,

Gal(N/K) ∼= G, so by Lemma 7.1, N ⊆ Ksymm. Hence, there exists an epimorphism

γ̄: Gal(Ksymm/K)→ G that solves the given embedding problem.
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Finally, considering the embedding problem (Gal(Ksymm/K) → 1, G → 1), we

conclude from the preceding paragraph that G is a quotient of Gal(Ksymm/K).

Remark 7.3: The formation of all symmetrically presentable groups. We denote the MSFd
input, 109

family of all symmetrically presentable groups (up to isomorphisms) by SP. By Propo-

sition 4.4, SP is closed under taking quotients. By Lemma 5.8, SP is closed under

taking fiber products with surjective homomorphisms. Hence, in the terminology of

[FrJ08, p. 344], SP is a formation of finite groups. It is the smallest formation of

finite groups that contains all symmetric groups.

Each inverse limit of SP-groups in which the connecting homomorphisms are

epimorphisms is a pro-SP-group [FrJ08, p. 344]. In particular, for each set X there

exists a free pro-SP-group F̂X(SP) on X. Thus, there exists a map ι: X → F̂X(SP)

which converges to 1 such that ι(X) generates F̂X(SP) and for each map ϕ of X into

a pro-SP-group G which converges to 1 and satisfies G = 〈ϕ(X)〉 there exists a unique

epimorphism ϕ̂: F̂X(SP)→ G with ϕ̂ ◦ ι = ϕ.

Since Sn2 ∈ SP for each positive integer n, it follows from [FrJ08, p. 346, Prop. 17.4.2

and p. 348, Lemma 7.4.6(a)], that there exists a free pro-SP-group F̂ω(SP) of rank ℵ0

Remark 7.4: The embedding property. We denote the set of all finite quotients (up MSFe
input, 143

to isomorphisms) of a profinite group G by Im(G). We say that G has the embedding

property if every finite embedding problem (ϕ: G → A, α: B → A) with B ∈ Im(G)

has a proper solution [FrJ08, p. 564, Def. 24.1.2].

Theorem 7.5: Let K be a countable Hilbertian field with char(K) 6= 2. Then, MSFf
input, 155

Gal(Ksymm/K) ∼= F̂ω(SP).

Hence, Gal(Ksymm/K) ∼= Gal(Qsymm/Q) and Im(Gal(Ksymm/K)) = SP.

Proof: By Remark 7.3, SP is a formation of finite groups. By Lemma 7.1, each

finite quotient of Gal(Ksymm/K) belongs to SP. Conversely, by Corollary 7.2, each

G ∈ SP is a quotient of Gal(Ksymm/K). Hence, Im(Gal(Ksymm/K)) = SP. Therefore,

by Corollary 7.2, Gal(Ksymm/K) has the embedding property. Since K is countable,

rank(Gal(Ksymm/K)) ≤ ℵ0.

It follows from a generalization of a theorem of Iwasawa that Gal(Ksymm/K) ∼=
F̂ω(SP) [FrJ08, p. 581, Thm. 24.8.1]. In particular, since Q is countable and Hilbertian,

Gal(Qsymm/Q) ∼= F̂ω(SP). Therefore, Gal(Qsymm/Q) ∼= Gal(Ksymm/K).

Remark 7.6: For a Hilbertian field K, Theorem 3.2 of [BFW16] implies that every field MSFg

input, 193M between K and Ksymm is Hilbertian.
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8. Decidability DECD
input, 10

Let K be a presented field in the sense of [FrJ08, p. 404, Def. 19.1.1]. This is a field

which is “explicitly constructed” from the ring Z of integers, one has “effective recipes”

to add and multiply given elements and to “effectively compute” the inverse of each

given non-zero element. An element z of a field extension F of K is presented over

K if either z is algebraic over K and irr(z,K) is explicitly given or it is known that z

is transcendental over K.

We say that K has a splitting algorithm if K has an effective algorithm for

factoring each polynomial inK[X] of positive degree into a product of irreducible factors.

By [FrJ08, p. 409, Lemma 19.2.4], every presented finitely generated separable extension

of a field K with a splitting algorithm has a splitting algorithm. Given a separable

polynomial f(X) with coefficients in a presented field K, we can present the splitting

field L of f over K and compute the Galois group Gal(L/K) as a group of permutations

of the roots of f . Moreover, we can find all of the subgroups of Gal(L/K) and compute

their fixed fields in L [FrJ08, p. 412, Lemma 19.3.2].

If every finitely generated presented extension of K has a splitting algorithm,

we say that K has elimination theory. By [FrJ08, p. 411, Cor. 19.2.10], if K0 is a

presented perfect field with a splitting algorithm, then K0 has elimination theory. In

particular, since each of the fields Q and Fp (where p is a prime number) has a splitting

algorithm, every finitely generated presented field extension K of its prime field has

elimination theory.

We denote the maximal purely inseparable extension of a field F by Fins.

Lemma 8.1: Let K be a presented field with elimination theory and let f be a polyno- COMb
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mial of positive degree in K[X]. Then,

(a) we can effectively check whether f has a root in Ksymm and

(b) we can effectively check whether f has a root in Ksymm,ins.

Proof: Since K has elimination theory, we can effectively decompose f over K into a

product of irreducible polynomials, f =
∏r
i=1 fi. Then, f has a root in Ksymm if and

only if at least one of the polynomials fi has a root in Ksymm. Thus, we may assume

without loss that f is irreducible in K[X].

In this case, all roots of f are in Ksep if and only if f ′ 6= 0. By [FrJ08, p. 412,

Lemma 19.3.2], we may effectively construct the splitting field N of f over K. Moreover,

we can effectively find all symmetric extensions L1, . . . , Lr of K in N and check whether

N =
∏r
i=1 Li. By Lemma 7.1, f has a root in Ksymm if and only if N =

∏r
i=1 Li. This

proves (a).

Next assume that p = char(K) > 0 and find a power q of p and a separable

polynomial g ∈ K[X] such that f(X) = g(Xq). Then, f has a root in Ksymm,ins if and
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only if g has a root in Ksymm. The latter can be effectively checked by (a).

Remark 8.2: Given a presented field K we write L(ring,K) for the first order language NOTa
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of the theory of rings with a constant symbol for each element of K [FrJ08, p. 135,

Example 7.3.1]. If M is an extension of K we write Th(M) for the set of all first

order sentences in L(ring,K) that are true in M and Root(M/K) for the set of monic

polynomials in K[X] that have a root in M . Finally, we write K̃ for a fixed algebraic

closure of K containing Ksymm and Kins and note that it can also be effectively presented

[FrJ08, p. 413, Lemma 19.4.1]. Every other algebraic extension of K is considered to

be contained in K̃.

We write FiniteGroups for the set of all finite groups up to isomorphisms. We

also write F̂ω for the free profinite group with countably many generators and note

that by [FrJ08, p. 568, Lemma 24.3.3], F̂ω has the embedding property. Moreover,

Im(F̂ω) = FiniteGroups.

Recall that a field M is PAC if every absolutely integral algebraic variety over M

has an M -rational point.

Lemma 8.3 ([JaS17, Lemma 3.3]): Let K be a presented field with elimination theory. STRc
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Let M be an extension of K in K̃. Suppose that M is perfect and PAC, Gal(M) has the

embedding property, and Im(Gal(M)) is a primitive recursive subset of FiniteGroups.

Further, suppose that the set Root(M/K) is primitive recursive. Then, Th(M) is

primitive recursive.

By Remark 8.2, F̂ω has the embedding property. Since the set Im(F̂ω) consists of

all finite groups, it is primitive recursive. Thus, the following result is a special case of

Lemma 8.3.

Lemma 8.4: Let K be a presented field with elimination theory. Let M be an extension DECa
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of K in K̃. Suppose that M is perfect, PAC, and Gal(M) ∼= F̂ω. Further, suppose that

the set Root(M/K) is primitive recursive. Then, Th(M) is primitive recursive.

With this we reach our next main result.

Theorem 8.5: Let K be a Hilbertian presented field with elimination theory. Then: DECb
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(a) Gal(Ksymm) ∼= F̂ω, so Im(Gal(Ksymm)) = FiniteGroups.

(b) Th(Ksymm,ins) is primitive recursive.

(c) If char(K) 6= 2, then Im(Gal(Ksymm/K)) is primitive recursive.

Proof: By [FrJ08, p. 396, Thm. 18.10.4], Ksymm is PAC and Hilbertian. Since K is

presented, K is countable [FrJ08, p. 404], so Ksymm is countable. By [FrV92, Thm. A]

(in case char(K) = 0), or [Pop96, Thm. 1], [HaV96, Cor. 4.7], and [Jar11, p. 90,
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Thm. 5.10.3] (in general), Gal(Ksymm) ∼= F̂ω. Since Ksymm,ins/Ksymm is a purely in-

separable extension, we also have Gal(Ksymm,ins) ∼= F̂ω. It follows from [FrJ08, p. 195,

Thm. 11.2.3] that Ksymm,ins is also PAC. In addition, Ksymm,ins is a perfect field.

By Lemma 8.1, the set Root(Ksymm,ins/K) is primitive recursive. It follows from

Lemma 8.4 that Th(Ksymm,ins) is primitive recursive.

Finally, if char(K) 6= 2, then by Theorem 7.5, Im(Gal(Ksymm/K)) = SP. It

follows from Remark 3.6 that Im(Gal(Ksymm/K)) is primitive recursive.

Remark 8.6: In a subsequent paper, we prove that the theory of the ring of integers DECd
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of Qsymm and the theory of the ring of integers of Fp(t)symm,ins are primitive recursive.

9. More Examples SUMM
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It turns out that the same methods that led to Theorems 7.5 and 8.5 lead to a decreasing

sequence of field extensions of K with similar properties to those of Ksymm.

Example 9.1: Let K be a field and m a positive integer. We define K
(m)
symm as the SUMb

input, 19
compositum of all Galois extensions of K with Galois groups Sn for some n ≥ m. In

particular, Ksymm = K
(2)
symm. Also, K

(m+1)
symm ⊆ K(m)

symm for each m.

Suppose that K is Hilbertian. Then, by [FrJ08, p. 396, Thm. 18.10.4], Ksymm is

PAC and Hilbertian. A mild change of the proof of that theorem proves that for each

positive integer m also K
(m)
symm is PAC and Hilbertian. Indeed, if C is an absolutely

integral affine plane curve over K with function field F , then F/K has a separating

transcendence element t such that [F : K(t)] = n ≥ m and the Galois hull F̂ of F/K(t)

satisfies Gal(F̂ /K(t)) ∼= Sn [FrJ08, p. 391, Thm. 18.9.3]. By the hilbertianity of K,

there exists a ∈ K such that the specialization t → a extends to a K-place of F into

K
(m)
symm that leads to a K

(m)
symm-rational point of C [FrJ08, p. 231, Lemma 13.1.1]. This

implies that K
(m)
symm is PAC.

Applying Haran’s diamond theorem, one proves as in [FrJ08, p. 396, Thm. 18.10.4]

that K
(m)
symm is Hilbertian. Alternatively, one may apply Remark 7.6. If in addition, K

is countable, then so is K
(m)
symm. Hence, by [Jar11, p. 89, Thm. 5.10.2(c)], Gal(K

(m)
symm) ∼=

F̂ω. In particular, Im(Gal(K
(m)
symm)) is the set of all finite groups. As in Remark 3.6, one

observes that Im(Gal(K
(m)
symm/K)) is a primitive recursive set of finite groups.

If in addition, K is a presented field with elimination theory, then the proof of

Lemma 8.1 can be applied to primitive recursively decide whether a given separable

polynomial f ∈ K[X] has a root in K
(m)
symm,ins.

By Lemma 8.3, Th(K
(m)
symm,ins) is primitive recursively decidable.
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Remark 9.2: Let K be a countable Hilbertian field with char(K) 6= 2 and let m ≥ 5 be GEYb
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an integer. By Lemma 5.3 and Proposition 5.5, every S2-extension of K can be embed-

ded in an Sm-extension of K. Similarly to the notation SP introduced in Remark 7.3, let

SP(m) be the formation of all subdirect products of the groups S2, Sm, Sm+1, Sm+2, . . .

and let F̂ω(SP(m)) be the free pro-SP(m)-group of rank ℵ0. As in Theorem 7.5, we can

prove that Gal(K
(m)
symm/K) ∼= F̂ω(SP(m)).

We conclude our work with the following observation:

Proposition 9.3: Let K be a Hilbertian field of characteristic 6= 2. Let K(2) be the SUMc
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compositum of all quadratic extensions of K. Then,
⋂
m≥5K

(m)
symm = K(2).

Proof: Let N =
⋂
m≥5K

(m)
symm. By Lemma 5.3 and Proposition 5.5, for each m ≥ 3

every quadratic extension of K can be embedded in an Sm-extension of K. Hence,

K(2) ⊆ N .

On the other hand, let G be a finite quotient of Gal(N/K). For each m ≥ 5 we

set Qm = {S2, Am, Am+1, Am+2, . . .}. Then, there exist Galois extensions L1, . . . , Lr
of K such that Gal(Li/K) ∼= Sni

with ni ≥ m for i = 1, . . . , r and G is a quotient of

Gal(L/K), where L = L1 · · ·Lr. By Setup 1.1(a), the composition factors of each Sni

are Ani
and S2. Hence, the composition factors of Gal(L/K) belong to Qm, therefore

so are the composition factors of G. Since
⋂∞
m=5Qm = {S2}, every composition factor

of G is isomorphic to S2.

By Lemma 7.1, G is symmetrically presentable. Thus, G is contained in a direct

product
∏
j∈J Snj , where J is a finite set and nj ≥ 2 is an integer for each j ∈ J .

Moreover, each Snj
is a quotient of G. Since A3 is a composition factor of both S3

and S4, it follows from the preceding paragraph that nj = 2 for each j ∈ J . Therefore,

G ∼= Sp2 for some non-negative integer p. We conclude that N = K(2), as claimed.

Example 9.4: Galois extensions of Q with Galois group S =
∏∞
n=2 Sn. Remark 1 of SUMd

input, 187
[FrV92] yields a sequence of irreducible polynomials f2, f3, f4, . . . in Q[X] with linearly

disjoint splitting fields N2, N3, N4, . . . having Galois groups S2, S3, S4, . . . . Thus, with

N =
∏∞
n=2Nn, we have Gal(N/Q) ∼=

∏∞
n=2 Sn. Moreover, N is both PAC and Hilber-

tian. It follows from [FrV92, Thm. A] that Gal(N) ∼= F̂ω. Hence, Im(Gal(N)) =

FiniteGroups is primitive recursive.

Next note that if ϕ is an epimorphism of S onto a finite group G, then G is

generated by the subgroups Gn = ϕ(Sn), n = 2, 3, 4, . . . of G,

(1) every Gn is normal in G, and

(2) for all m < n, the elements of Gm commute with the elements of Gn.

Moreover, by Fact 1.1(a),(b),

(3a) G2 = 1 or G2 = S2,
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(3b) G3 = 1, or G3 = S2, or G3 = S3,

(3c) G4 = 1, or G4 = S2, or G4 = S3, or G4 = S4, and for all n ≥ 5,

(3d) Gn = 1, or Gn = S2, or Gn = Sn.

Conversely, if a finite group G is generated by subgroups G2, G3, G4, . . ., only

finitely of them are non-trivial, and they satisfy Conditions (1), (2), and (3), then G

is a quotient of S. It follows that also Im(Gal(N/Q)) is a primitive recursive subset of

FiniteGroups.

It is conceivable that one may construct N such that, in addition to the above

mentioned properties, it will be a primitive recursive extension of Q. One possible

way to do it is, for every effectively given finitely generated regular extension F of Q
of transcendence degree 1 and for every positive integer n0, to effectively construct a

transcendental element t for F/Q and effectively compute an integer n ≥ n0 such that

the Galois closure F̂ of F/Q(t) will be regular over Q and Gal(F̂ /Q(t)) ∼= Sn. To this

end, one may try to effectivize the non-effective proof of this statement given in [FrJ78]

combined with [FrV92, Remark 1]. In addition, one would have at some point to use

an effective version of Hilbert irreducibility theorem (e.g. [Wal05]).

Obviously, this task goes beyond the scope of the present work.
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