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Abstract: Let K/K0 be a finite Galois extension of global fields of positive characteristic

p. We prove that every finite embedding problem with solvable kernel H over K/K0 is

properly solvable if it is weakly locally solvable and the number of the roots of unity in

K is relatively prime to |H|.
Moreover, the solution can be chosen to coincide with finitely many (given in

advance) weak local solutions. Finally, and this is the main point of this work, the

number of primes of K0 that ramify in the solution field is bounded by the number of

primes of K0 that ramify in K plus the number of prime divisors of |H|, counted with

multiplicity.

This result completes the main theorem of [JaR18] that demands that p does not

divide |H|.
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Introduction

Solving finite embedding problems with solvable kernels over a global field K0 was

initiated by Arnold Scholz [Sch37] and Hans Reichardt [Rei37], followed by I. R. Sha-

farevich [Sha54] and Jürgen Neukirch [Neu79]. The works [GeJ98] and [MaU11] consider

the related problem of realizing an l-group over K0 for a prime l 6= char(K0) with the

additional constraint of bounding the ramification. A stronger result appears in [JaR18]:

Theorem A: LetK/K0 be a finite Galois extension of global fields, set Γ = Gal(K/K0),

and consider a finite embedding problem

(1) Gal(K0)

ρ

��
1 // H // G

α // Γ // 1,

with solvable kernel H. Suppose that

(a1) char(K0) - |H|, gcd(|H|, |µ(K)|) = 1, and

(a2) for each p ∈ P(K0) there exists a homomorphism ψp: Gal(K̂0,p) → G such that

α ◦ ψp = ρ|Gal(K̂0,p) (we call ψp a weak local solution).

Let T be a finite subset of P(K0) that contains Ram(K/K0) and for each p ∈ T let ϕp

be a weak local solution.

Then, there exists an epimorphism ψ: Gal(K0) → G such that α ◦ ψ = ρ (we

call ψ a proper solution of embedding problem (1)), and there exists a set R ⊆
P(K0)rT with |R| = Ω(|H|) that satisfies the following conditions:

(b1) For each p ∈ T there exists a ∈ H such that ψ(σ) = a−1ϕp(σ)a for all σ ∈
Gal(K̂0,p) (we say that ψp := ψ|Gal(K̂0,p)

and ϕp are H-equivalent).

(b2) The fixed field N in K0,sep of Ker(ψ) satisfies Ram(N/K0) ⊆ T ∪ R, hence

|Ram(N/K0)| ≤ |T |+ Ω(|H|).

In this theorem we fix a separable algebraic closure K0,sep of K0 and let Gal(K0) =

Gal(K0,sep/K0) be the absolute Galois group of K0. We denote the set of primes of

K0 by P(K0) and for each p ∈ P(K0) we choose a completion K̂0,p of K0 at p. Then,

Ram(K/K0) denotes the set of all p ∈ P(K0) that ramify in K. Finally, Ω(|H|) is the

number of prime divisors of |H|, counted with multiplicity.

The goal of the present work is to improve Theorem A by removing the assumption

char(K0) - |H| from condition (a1) above. Moreover, in case char(K0) divides |H|, we

replace the function Ω(|H|) in (b2) by a more economic function Ωp(H,G) that however

depends on the structure of H as a subgroup of G (Definition 5.2).

Theorem B (Theorem 5.4): Let K/K0 be a finite Galois extension of global fields of

positive characteristic p and consider the finite embedding problem (1) with solvable
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kernel H, where Γ = Gal(K/K0) and ρ = resK0,sep/K . Let T be a finite set of primes

of K0 that contains Ram(K/K0) and S0(K) ⊆ TK , where S0(K) is a “basic set of K”

introduced before Lemma 3.2 and TK is the set of all primes of K that lie over T . Let

|H| = nps with p - n and gcd(n, |µ(K)|) = 1. Suppose that (1) is weakly locally solvable

at p for each p ∈ P(K0). For each p ∈ T let ϕp be a weak local solution of (1) at p.

Then, (1) has a proper solution ψ and there exists a set R ⊆ P(K0)rT with

|R| = Ωp(H,G) such that

(a) For each p ∈ T there exists a ∈ H such that ψ(σ) = a−1ϕp(σ)a for all σ ∈ Gal(K̂0,p).

(b) The fixed field N in K0,sep of Ker(ψ) satisfies Ram(N/K0) ⊆ T ·∪ R, hence

|Ram(N/K0)| ≤ |T |+ Ωp(H,G) (we call N the solution field of (1)).

We note that Theorem 9.5.5 on page 563 of [NSW15] implies the proper solvability

part of Theorem B, nevertheless, without any information about the ramification of the

solution field.

An induction on the structure of G with respect to H, carried out in the proof of

Theorem 5.4 using Lemma 5.1, reduces Theorem B to the following result:

Proposition C (Proposition 4.5): Let K/K0 be a finite Galois extension of global

fields of positive characteristic p and consider an embedding problem

(2) (ρ: Gal(K0)→ Γ, ᾱ: Ḡ→ Γ),

where Γ = Gal(K/K0), Ḡ is a finite group, ᾱ is an epimorphism, and ρ = resK0,sep/K .

Suppose that A = Ker(ᾱ) is isomorphic to Crl for some positive integer r and a prime

number l with ζl /∈ K and the action of Gal(K0) on A via ρ and via conjugation of Ḡ

on A makes A a simple Gal(K0)-module.

In addition, let λ: G → Ḡ be an epimorphism of finite groups. Write |Ker(λ)| =

eps and let n be a positive integer such that p - en. Moreover, we assume that el|n if

l 6= p. Let T be a finite set of primes of K0 that contains Ram(K/K0) and S0(K) ⊆ TK .

Suppose that gcd(n, |µ(K)|) = 1 and each of the local embedding problems attached to

(2) is weakly solvable. In addition, for each p ∈ T let ϕp be a weak local solution of (2).

Then, there exists a set R ⊆ P(K0)rT with |R| = r if l 6= p and |R| = 1 if l = p

such that (2) has a proper solution ψ̄ with the following properties:

(a) ψ̄p = ψ̄|Gal(K̂0,p) is A-equivalent to ϕp for each p ∈ T ,

(b) ψ̄ is unramified at each p ∈ P(K0)r(T ∪R), so if N̄ is the solution field of ψ̄, then

Ram(N̄/K0) ⊆ T ∪R,

(c) the local embedding problem (ψ̄p: Gal(K̂0,p) → Ḡ, λ: G → Ḡ) is weakly solvable

for each p ∈ P(K0)rT , and

(d) gcd(n, |µ(N̄)|) = 1.

Conditions (c) and (d) in Proposition C are needed in the next stage of the in-

duction.
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Proposition 12.3 of [JaR18] considers the case where l 6= p and proves the existence

of ψ̄ as in Proposition C such that, away from Ram(K/K0) ∪ T , ψ is ramified in at

most r primes of K0.

The proof of [JaR18, Prop. 12.3] depends on [JaR18, Lemma 2.3]. The latter

lemma establishes the existence of a homomorphism h from the idele class group CK of

K into Cl with given local behavior and with bounded ramification. Then, the proof

applies the reciprocity law and duality theorems of class field theory.

These methods fail if l = p. So, we take another route for the proof of Proposition

C in this case that turns out to be much simpler than the proof of Proposition C in the

case l 6= p.

This route goes back to the article [Wit36] of Ernst Witt. In that article Witt uses

Artin-Schreier extensions and pre-cohomological methods in order to prove for arbitrary

field F of positive characteristic p with (F× : (F×)p) =∞ that every finite embedding

problem G→ Gal(F ′/F ) for Gal(F ), with Gal(F ′/F ) a finite p-group and with a kernel

which is a finite p-group, is properly solvable. In terms of cohomology, Witt’s result

implies that cdp(Gal(F (p)/F )) = 1, where F (p) is the maximal pro-p extension of F

[Ser79, p. 21, Prop. 16].

In the notation of Proposition C, we know by [NSW15, p. 540, Cor. 9.2.6] that

embedding problem (2) has a weak solution ψ0 that is ramified at most at T . If we

wish that ψ0 coincides with ϕp for each p ∈ T , we have to allow ψ0 ramify at additional

prime.

In its full strength, the proof of Proposition C uses [NSW15, p. 539, Thm. 9.2.5]

and Lemma 4.3 that guarantees the surjectivity of weak solutions of our embedding

problems and on a local-global principle for weak solutions of our embedding problems

(Lemma 4.4).

In addition, the proof relies on the following result:

Lemma D (Lemma 2.6): Let K0 be a global field of positive characteristic p, K a

finite Galois extension of K0, and L a finite Galois extension of K0 that contains K

such that L/K is an abelian p-extension. Let r be a positive integer and A = Crp a

simple Gal(K/K0)-module. Let n be a positive integer such that p - n. Let T be a finite

subset of P(K0) that contains Ram(K/K0). For each p ∈ T , let yp ∈ H1(Gal(K̂0,p), A).

Then, there exist a prime q ∈ P(K0)rT and an element x ∈ H1(Gal(K0), A) such

that

(a) for each p ∈ T we have resp(x) = yp,

(b) for each p ∈ P(K0)r(T ∪{q}) the element resp(x) of H1(Gal(K̂0,p), A) is unramified

(Definition 2.4), and

(c) q totally splits in L(ζn) and resq(x): Gal(K̂0,q) → A is a homomorphism whose

image is contained in a subgroup of A which is isomorphic to Cp.
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(d) Moreover, let G and Ḡ be finite groups such that A ≤ Ḡ and let λ: G → Ḡ be an

epimorphism. Then, there exists a homomorphism x′q: Gal(K̂0,q) → G such that

λ ◦ x′q = resq(x).

Here, resp: H1(Gal(K0), A) → H1(Gal(K̂0,p), A) is the usual restriction map of

cohomology groups.

Part (b) in Lemma D follows from [NSW15, p. 539, Thm. 9.2.5] whose proof

is much simpler than the corresponding result for A = Crl with l 6= p that uses the

Poitou-Tate duality theorem.

Finally, Lemma D depends on Lemma 2.5 and on the following analog of [JaR18,

Lemma 2.3]:

Proposition E (Proposition 1.2): Let K be a global field of positive characteristic p,

let r be a positive integer, let A = Crp , and let S be a finite set of primes of K. For each

P ∈ S let hP: Gal(K̂P) → A be a homomorphism, where K̂P is a completion of K at

P and Gal(K̂P) is embedded in Gal(K). Finally, consider P0 ∈ P(K)rS.

Then, there exists a homomorphism h: Gal(K)→ A such that:

(a) h|Gal(K̂P) = hP for each P ∈ {P0} ∪ S.

(b) For each prime P of K away from {P0} ∪ S the restriction of h to the inertia

subgroup of Gal(K̂P) is trivial.

The proof of the latter result uses the fact that each Galois extension L of K of

degree p is generated by a root x of an irreducible Artin-Schreier polynomial Xp−X−a
with a ∈ K. The latter is a specialization of the polynomial Xp − X − t, with t

transcendental, and with Galois group Cp over K(t) as well as over Ksep(t). Thus,

instead of class field theory, we use Hilbert’s irreducibility theorem for our function

field K0 intensified by the strong approximation theorem [FrJ08, p. 241, Thm. 13.3.5].

In contrast to the case A = Crl with l 6= p, only one prime q ∈ P(K0)rRam(K/K0)

may need to ramify in the solution field of (1).

Acknowledgements: The authors are indebted to Aharon Razon for critical reading

of the work. Likewise, the authors thank the anonymous referee for useful comments.

1. Artin-Schreier Extensions CHA
input, 15

Let K be a global field of positive characteristic p. We use Artin-Schreier extensions

to prove a restricted version of [JaR18, Lemma 2.3] that constructs a homomorphism

h: Gal(K)→ Crp with a given local behavior.

In this result we consider for each prime P of K, a completion K̂P of K at P.

Let K̂P,ur be the maximal unramified extension of K̂P and let ÎP = Gal(K̂P,ur) be the

5



inertia subgroup of Gal(K̂P). We fix an embedding λP: Ksep → K̂P,sep that maps K

onto itself, set KP = K̂
λ−1
P

P and observe that Gal(KP)λP = Gal(K̂P).

Lemma 1.1: Let K be a global field of positive characteristic p, let L be a finite Galois CHAa
input, 33

extension of K, let s be a positive integer, and let P0,P1, . . . ,Ps be primes of K such

that P0 /∈ {P1, . . . ,Ps} but P1, . . . ,Ps are not necessarily distinct. For i = 0, 1, . . . , s

let N̂i be either K̂Pi or an Artin-Schreier extension of K̂Pi . Then, there exist Galois

extensions N0, N1, . . . , Ns of K such that

(a) Ni = K if N̂i = K̂Pi
and Ni is an Artin-Schreier extension of K if N̂i is an Artin-

Schreier extension of K̂Pi
for i = 0, 1, . . . , s,

(b) λPi
(Ni)K̂Pi

= N̂i and λPi
(Ni) ∩ K̂Pi

= K for i = 0, 1, . . . , s,

(c) Ram(N0/K) ⊆ {P0,P1}, Ram(Ni/K) ⊆ {P0,Pi} for i = 1, . . . , s, and

(d) the fields N0, N1, . . . , Ns, L are linearly disjoint over K.

Proof: In order to simplify our notation, we assume that λPi
: Ksep → K̂Pi,sep is the

inclusion map, i = 0, 1, . . . , s. We assume by induction that N0, N1, . . . , Ns−1 are fields

that satisfy (b), (c), and (d) for s− 1 rather than for s.

If N̂s = K̂ps , we set Ns = K and observe that (a), (b), (c), and (d) hold for

i = s. Thus, we may assume that N̂Ps
/K̂Ps

is an Artin-Schreier extension. Hence,

N̂s = K̂Ps
(x̂s), where x̂s is a root of an irreducible polynomial Xp−X− âs in K̂Ps

[X].

Krasner’s lemma (e.g. [Jar91, Prop. 12.3]) gives a positive integer m such that if a ∈ K
satisfies ordPs

(a− âs) > m, if the polynomial Xp −X − a is irreducible over K, if the

element xs is a root of Xp −X − a in Ksep, and we set Ns = K(xs), then

(1) NsK̂Ps
= N̂s.

It follows that

(2) Ns is an Artin-Schreier extension of K and Ns ∩ K̂Ps
= K.

Corollary 12.2.3 on page 224 of [FrJ08] gives a separable Hilbert subset H of K

such that if a ∈ H, then Xp −X − a is irreducible over N0N1 · · ·Ns−1L.

For s = 0 we use [FrJ08, p. 241, Thm. 13.3.5] to choose a0 in H with

(3) ordP0
(a0 − â0) > m and ordP(a0) ≥ 0 for all P ∈ P(K)r{P0,P1}.

If s ≥ 1, we apply [FrJ08, p. 241, Thm. 13.3.5] to choose as in H such that

(4) ordPs(as − âs) > m and ordP(as) ≥ 0 for all P ∈ P(K)r{P0,Ps}.
In each case let xs be a root of Xp−X − as and set Ns = K(xs). By (1) and (2),

NsK̂Ps = N̂s and Ns ∩ K̂Ps = K. Since as ∈ H, the field Ns is linearly disjoint from

N0N1 · · ·Ns−1L over K. Since, by our induction hypotheses, N0, N1, . . . , Ns−1, L are

linearly disjoint over K, we conclude that N0, N1, . . . , Ns, L are linearly disjoint over K.

Finally, [FrJ08, p. 29, Example 2.3.9] and (3) imply that each P ∈ P(K)r{P0,P1}
is unramified in N0, so Ram(N0/K) ⊆ {P0,P1}. For s ≥ 1, [FrJ08, p. 29, Ex-

ample 2.3.9] and (4) imply that each P ∈ P(K)r{P0,Ps} is unramified in Ns, so
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Ram(Ns/K) ⊆ {P0,Ps}. This concludes the induction.

Proposition 1.2: Let K be a global field of positive characteristic p, let r be a positive CHAb
input, 141

integer, and let A = Cp,1 × · · · ×Cp,r, where Cp,1, . . . , Cp,r are isomorphic copies of Cp.

Let S be a non-empty finite set of primes of K and let P0 be a prime in P(K)rS. For

each P ∈ {P0} ∪ S let hP: Gal(K̂P)→ A be a homomorphism.

Then, there exists a homomorphism h: Gal(K)→ A such that

(a) resP(h) = hP for each P ∈ {P0} ∪ S and

(b) resP(h)(ÎP) = 1A for each P ∈ P(K)r({P0} ∪ S).

Here, resP(h): Gal(K̂P) → A is the homomorphism defined by resP(h)(σ) =

h(σλ
−1
P ) for each σ ∈ Gal(K̂P).

Proof: As in the proof of Lemma 1.1, we assume that the maps λP: Ksep → K̂P,sep

are inclusions.

Suppose that S consists of s distinct primes P1, . . . ,Ps of K. Since S is non-

empty, s ≥ 1. For each 0 ≤ j ≤ s let Aj = hPj (Gal(K̂Pj )). As a subgroup of

the p-elementary abelian group A, the group Aj is p-elementary abelian. Thus, Aj =

Aj,1 × · · · × Aj,rj , where 0 ≤ rj ≤ r and Ajk∼= Cp for k = 1, . . . , rj . If rj = 0, then

Aj is the trivial group. Let πjk: Aj → Ajk be the projection on the kth factor of Aj .

Then, hPj
= (πj,1 ◦ hPj

, . . . , πj,rj ◦ hPj
). In particular, if rj = 0, then Aj = 1 and

hPj
: Gal(K̂Pj

)→ A is the trivial homomorphism. In addition, let N̂jk be the fixed field

of Ker(πjk ◦ hPj ) in K̂Pj ,sep. Then, for each j and k,

(5) N̂jk = K̂Pj or N̂jk is an Artin-Schreier extension of K̂Pj .

It follows that N̂j = K̂Pj
N̂j,1 · · · N̂j,rj is the fixed field of Ker(hPj

) in K̂Pj ,sep. In

particular, Gal(N̂j/K̂Pj
) ∼= Aj . Note that N̂j = K̂Pj

if rj = 0.

By Lemma 1.1, applied to the primes P0,1 and P1,1, . . . ,P1,r1 , . . . ,Ps,1, . . . ,Ps,rs

with Pj,k = Pj for each j and k, K has a Galois extension Njk such that

(6a) NjkK̂Pj
= N̂jk, Njk ∩ K̂Pj

= K,

(6b) Ram(N0,1/K) ⊆ {P0,P1}, Ram(Njk/K) ⊆ {P0,Pj}, and

(6c) the fields N0,1, N1,1, . . . , Ns,rs are linearly disjoint over K.

For each 0 ≤ j ≤ s let Nj = Nj,1 · · ·Nj,rj . By (6c), Gal(Nj/K) = Gal(Nj,1/K)×
· · · × Gal(Nj,rj/K). By (6a), the map res: Gal(N̂jk/K̂Pj

) → Gal(Njk/K) is an iso-

morphism, so, by (5), Gal(Njk/K) ∼= Ajk for all k between 1 and rj . This gives an

isomorphism hj : Gal(Nj/K)→ Aj such that hj ◦ resN̂j/Nj
◦ resK̂Pj ,sep

/N̂j
= hPj .

By (6c), the fields N0, N1, . . . , Ns are linearly disjoint over K. We set N =

N0N1 · · ·Ns. Then, Gal(N/K) = Gal(N0/K) × Gal(N1/K) × · · · × Gal(Ns/K), so

h0, h1, . . . , hs combine to a homomorphism h̄: Gal(N/K)→ A. In other words, h̄(σ) =∏s
j=0 hj(resN/Nj

(σ)) for each σ ∈ Gal(N/K). It follows that h = h̄◦resKsep/N is a homo-

morphism from Gal(K) into A that coincides with hPj
on Gal(K̂Pj

) for j = 0, 1, . . . , s.
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By (6b), Ram(N/K) ⊆ {P0,P1, . . . ,Ps}. Since Gal(N) ≤ Ker(h), this implies that

h(ÎP) = 1A for each P ∈ P(K)r{P0,P1, . . . ,Ps}, as (b) claims.

Remark 1.3: Lemma 15.3 of [JaR18] is trivial if l = p. Indeed, in this case the group CHAd
input, 264

µp of roots of unity of order p is trivial, so A′ = Hom(A,µp) = 1. However, the proof

of [JaR18, Lemma 15.5] breaks down, because H1(Gal(K̂0,p), A′) = 1, so that group

cannot be dual to H1(Gal(K̂0,p), A) as needed in Part C of that proof.

2. A Choice of an Element in the First Cohomology Group CRS
input, 14

Let K be a finite Galois extension of our basic global field K0 of positive characteristic

p. We prove an improved version of Proposition 9.3 of [JaR18]. To this end we need to

introduce notation and results from [JaR18] for our context.

Setup 2.1: Completions. We denote the set of all primes of K0 (resp. K) by P(K0) CRSa
input, 22

(resp. P(K)). For each p ∈ P(K0) we fix a completion K̂0,p of K0 at p and fix a separable

algebraic closure K̂0,p,sep of K̂0,p that contains K0,sep. Then, K0,p = K0,sep ∩ K̂0,p is a

Henselian closure of K0 at p. By Krasner’s Lemma, K0,sepK̂0,p = K̂0,p,sep. Hence, we

may identify Gal(K̂0,p) with Gal(K0,p) via restriction.

Next let x be a primitive element of K/K0 and set f = irr(x,K0). Then, there is

a decomposition f(X) =
∏

P|p fP(X) of f(X) into irreducible polynomials over K̂0,p,

where P ranges over all prime divisors of K that lie over p. For each such P we choose

a root xP of fP in K and set K̂P = K̂0,p(xP). Then, the map x 7→ xP extends to a

K-automorphism λP that extends, with the same name, to an embedding λP: K0,sep →
K̂0,p,sep that leaves K0 invariant. We denote the fixed field of λ−1

P (Gal(K̂P)) in K0,sep

by KP. It is a Henselian closure of K at P (that does not necessarily contain K0,p).

Setup 2.2: Commutative diagram. Let A be a (multiplicative) Gal(K0)-module with CRSb
input, 56

right action. Following Setup 2.1, we consider the following diagram:

(1) H1(Gal(K), A)
Res //

cor

��

∏
P|pH

1(Gal(K̂P), A)

Cor

��
H1(Gal(K0), A)

resp // H1(Gal(K̂0,p), A).

In this diagram

(2a) the identification of Gal(K̂0,p) with the subgroup Gal(K0,p) of Gal(K0) also makes

A a Gal(K̂0,p)-module,

(2b) for each prime P of K over p, we let Gal(K̂P) act on A by the rule aτ = aλ
−1
P (τ)

for a ∈ A and τ ∈ Gal(K̂P), in particular, if Gal(K) acts trivially on A, then so

does Gal(KP) and therefore also Gal(K̂P),
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(2c) the map cor: H1(Gal(K), A) → H1(Gal(K0), A) is the corestriction map for the

open subgroup Gal(K) of Gal(K0),

(2d) the map resp: H1(Gal(K0), A) → H1(Gal(K̂0,p), A) is the restriction map for the

closed subgroup Gal(K̂0,p) of Gal(K0),

(2e) the map Res is an abbreviation for the system of maps (resP)P|p, where for each

P|p the map resP: H1(Gal(K), A)→ H1(Gal(K̂P), A) is defined for each homoge-

neous cochain η: Gal(K)2 → A by resP(η) = ηP, where ηP(σ0, σ1) = η(σ
λ−1
P

0 , σ
λ−1
P

1 )

for σ1, σ1 ∈ Gal(K̂P),

(2f) the map Cor is defined for each tuple (hP)P|p ∈
∏

P|pH
1(Gal(K̂P), A) by

Cor((hP)P|p) =
∏
P|p

corP(hP),

where for each P|p the map corP: H1(Gal(K̂P), A) → H1(Gal(K̂0,p), A) is the

corestriction map for the open subgroup Gal(K̂P) of Gal(K̂0,p).

By [JaR18, Lemma 5.3], (1) is a commutative diagram.

Remark 2.3: For a subset V of P(K0) we denote the maximal Galois extension of CHAe
input, 124

K0 which is unramified away from V by K0,V . In other words, K0,V is the maximal

Galois extension of K in which only primes p ∈ V are ramified. Thus, if K is a

finite Galois extension of K0 and Ram(K/K0) ⊆ V , then K ⊆ K0,V . It follows that

if A is a multiplicative Gal(K/K0)-module, then the action of Gal(K/K0) on A can

be naturally lifted to an action of Gal(K0,V /K0) on A through the restriction map

res: Gal(K0,V /K0)→ Gal(K/K0).

Let A be a (multiplicative) Gal(K0,V /K0)-module. For each p ∈ P(K0) we embed

K0,sep into K̂0,p,sep. Then, res: Gal(K0,V K̂0,p/K̂0,p) → Gal(K0,V /K0,V ∩ K̂0,p) is an

isomorphism that we use to identify the two groups. We write σ̄ for the restriction of

an element σ ∈ Gal(K̂0,p) to K0,V K̂0,p. Then, for each a ∈ A, we define aσ = aσ̄. This

defines A also as a Gal(K̂0,p)-module.

Next we consider an element x ∈ H1(Gal(K0,V /K0), A) and choose a crossed

homomorphism χ: Gal(K0,V /K0) → A that represents x. Then, we denote the com-

positum of the maps

Gal(K̂0,p)→ Gal(K0,V K̂0,p/K̂0,p)→ Gal(K0,V /K0,V ∩ K̂0,p)→ Gal(K0,V /K0)
χ−→ A,

where the first two maps are the corresponding restriction maps and the third is the

inclusion map, by χp.

The map χ→ χp is compatible with the actions of Gal(K0,V /K0) and Gal(K̂0,p)

on A, so χp is a crossed homomorphism. We denote the cohomology class of χp by

resp(x). Then, resp: H1(Gal(K0,V /K0), A)→ H1(Gal(K̂0,p), A) is a natural homomor-

phism.
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Definition 2.4: Let p be a prime of K0 and let h: Gal(K̂0,p)→ A be a homomorphism RAMi
input, 178

of groups. We say that h is unramified if h(Îp) = 1. We say that a homomorphism

h: Gal(K0)→ A is unramified at p if h|Gal(K̂0,p) is unramified. This is the case if and

only if p is unramified in the fixed field of Ker(h) in K0,sep.

Now let A be a finite Gal(K̂0,p)-module and let x ∈ H1(Gal(K̂0,p), A). We say that

x is unramified if χ(Îp) = 1 for each (alternatively, for one) crossed homomorphism

χ: Gal(K̂0,p)→ A that represents x.

Lemma 2.5: Let K0 be a global field of positive characteristic p, K a finite Galois CHAf
input, 196

extension of K0, r a positive integer, Cp,1, . . . , Cp,r isomorphic copies of Cp, and A =

Cp,1 × · · · × Cp,r a simple Gal(K/K0)-module. Let T be a finite set of primes of K0

that contains Ram(K/K0). For each p ∈ T consider yp ∈ H1(Gal(K̂0,p), A). Let q be a

prime in P(K0)rT . Then, there exists z ∈ H1(Gal(K0), A) such that

(a) resp(z) = yp for each p ∈ T and

(b) resp(z) is unramified for each p ∈ P(K0)r(T ∪ {q}).

Proof: We set T ′ = T ∪ {q} and let K0,T ′ be the maximal Galois extension of K0

which is unramified away from T ′. Since Ram(K/K0) ⊆ T ⊂ T ′, Remark 2.3 im-

plies that K ⊆ K0,T ′ . Hence, again by Remark 2.3, A can be considered also as an

Gal(K0,T ′/K0)-module. By [NSW15, Thm. 9.2.5] applied to T and T ′ rather than

to T and S, there exists y ∈ H1(Gal(K0,T ′/K0), A) such that resp(y) = yp for each

p ∈ T . Let inf : H1(Gal(K0,T ′/K0), A)→ H1(Gal(K0), A) be the inflation map and set

z = inf(y) ∈ H1(Gal(K0), A). Then, by Remark 2.3, resp(z) = resp(y) = yp for each

p ∈ T .

If p ∈ P(K0)rT ′, then p is unramified in K0,T ′ , so the inertia subgroup Ip of

Gal(Kp) is contained in Gal(K0,T ′). Let χ: Gal(K0,T ′/K0)→ A be a crossed homomor-

phism that represents y. Then, ψ = χ ◦ resK0,sep/K0,T ′
is a crossed homomorphism that

represents z. Hence, for each σ ∈ Ip and with σ̄ being the restriction of σ to K0,T ′ we

have ψ(σ) = χ(σ̄) = χ(1) = 1. Hence, z is unramified at p, as desired.

Lemma 2.6: Let K0 be a global field of positive characteristic p, K a finite Galois CHAg

input, 251extension of K0, and L a finite Galois extension of K0 that contains K such that L/K

is an abelian p-extension. Let r be a positive integer and A = Crp a simple Gal(K/K0)-

module. Let n be a positive integer such that p - n. Let T be a finite subset of P(K0)

that contains Ram(K/K0). For each p ∈ T , let yp ∈ H1(Gal(K̂0,p), A).

Then, there exist a prime q ∈ P(K0)rT and an element x ∈ H1(Gal(K0), A) such

that

(a) for each p ∈ T we have resp(x) = yp,

(b) for each p ∈ P(K0)r(T∪{q}) the element resp(x) ofH1(Gal(K̂0,p), A) is unramified,

and
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(c) q totally splits in L(ζn) and resq(x): Gal(K̂0,q) → A is a homomorphism whose

image is contained in a subgroup of A which is isomorphic to Cp.

(d) Moreover, let G and Ḡ be finite groups such that A ≤ Ḡ and let λ: G → Ḡ be an

epimorphism. Then, there exists a homomorphism x′q: Gal(K̂0,q) → G such that

λ ◦ x′q = resq(x).

Proof: We lift the action of Gal(K/K0) on A to an action of Gal(K0) on A with trivial

action of Gal(K). Then, we use the Chebotarev density theorem to choose a prime

p0 ∈ P(K0)rT that totally splits in L(ζn) and use Lemma 2.5 to choose an element

z ∈ H1(Gal(K0), A) such that

(3a) resp(z) = yp for each p ∈ T and

(3b) resp(z) is unramified for each p ∈ P(K0)r(T ∪ {p0}).
The rest of the proof breaks up into four parts.

Part A: Definition of ηp. For each p ∈ T ∪{p0} let ηp ∈ H1(Gal(K̂0,p), A) be defined

as follows:

(4) ηp = 1 for p ∈ T and ηp0 = resp0(z)−1.

Claim: For each p ∈ T ∪ {p0}, the element ηp lies in the image of the map

(5) Cor:
∏
P|p

H1(Gal(K̂P), A)→ H1(Gal(K̂0,p), A).

Indeed, the claim holds for p ∈ T , because by (4), ηp = 1 for p ∈ T and Cor =∏
P|p corP is a homomorphism of groups. Since p0 totally splits in L(ζn), it totally

splits in K. Hence, by [JaR18, Lemma 6.2], Cor is surjective. In particular, ηp lies in

the image of Cor, as claimed.

Part B: Shifting the ηp’s. We use Part A to choose for each p ∈ T ∪ {p0} and for

every P ∈ P(K) over p an element η̃P ∈ H1(Gal(K̂P), A) such that

(6) ηp =
∏
P|p

corP(η̃P).

Since Gal(K) acts trivially on A, the group Gal(K̂P) acts trivially on A (by (2b)), hence

η̃P: Gal(K̂P)→ A is a homomorphism for each P|p [JaR18, Subsection 6.1]. Likewise,

(7) z′ = z|Gal(K): Gal(K)→ A is a homomorphism.

Let L′ be the fixed field of Ker(z′) in Ksep. Then, L′ is a finite abelian p-extension

of K, hence so is LL′. Hence, by [JaR18, Remark 4.1], the Galois closure L′′ of LL′ over

K0 is also a finite abelian p-extension of K. We use the Chebotarev density theorem

to choose q ∈ P(K0)r(T ∪ {p0}) that totally splits in L′′(ζn). Let Q be the prime

of K that lies over q such that λQ is the inclusion map [JaR18, Subsection 1.4] and
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let hQ: Gal(K̂Q) → A be a homomorphism with hQ(Gal(K̂Q)) = Cp × 1 × · · · × 1

(e.g. hQ(σ) = (ι(σ), 1, . . . , 1), where ι: Gal(K̂Q) → Gal(N/K̂Q) is the restriction map

with N being the unique unramified extension of K̂Q of degree p). For each Q′ ∈ P(K)

over q such that Q′ 6= Q let hQ′ : Gal(K̂Q′)→ A be the trivial homomorphism.

Let T ′K be the non-empty set of primes of K that lie over T ∪{p0}. By Proposition

1.2, there exists a homomorphism h: Gal(K)→ A such that

(8a) resP(h) = η̃P for every P ∈ T ′K ,

(8b) for each Q′ ∈ P(K) over q we have resQ′(h) = hQ′ , in particular

resQ′(h)(Gal(K̂Q′)) ≤ Cp × 1× · · · × 1, and

(8c) resP(h)(ÎP) = 1A for each P ∈ P(K)r(T ′K ∪ {Q}).
Let u = cor(h) ∈ H1(Gal(K0), A), where cor is the corestriction map that appears

in diagram (1). By the commutativity of that diagram [JaR18, Lemma 5.3], we have

for each p ∈ P(K0) that

(9) resp(u) = resp(cor(h)) = Cor(Res(h)) = Cor
(
(resP(h))P|p

)
=
∏
P|p

corP(resP(h)).

In particular, for p ∈ T ∪ {p0} we have that

(9′) resp(u) =
∏
P|p

corP(resP(h))
(8a)
=
∏
P|p

corP(η̃P)
(6)
= ηp.

Part C: We prove that the image of resq(u): Gal(K̂0,q)→ A is contained in a subgroup

of A which is isomorphic to Cp. Indeed, let Q′ be a prime of K over q. Since q totally

splits in K (by its choice), Gal(K̂0,q) = Gal(K̂Q′) [JaR18, Subsection 1.5]. For each

σ̂ ∈ Gal(K̂0,q) we observe that σ = σ̂λ
−1

Q′ ∈ Gal(KQ′) ≤ Gal(K) [JaR18, Subsection 1.4].

Since Gal(K) acts trivially on A, we have, by [JaR18, Convention (2b) of Section 5], that

aσ̂ = aσ = a for each a ∈ A. Hence, by [JaR18, Subsection 6.1], resq(u): Gal(K̂0,q)→ A

is a homomorphism.

Again, since q totally splits in K, we have corQ′(resQ′(h)) = resQ′(h) for each Q′|q
[JaR18, Statement (8) of Section 5]. By (8b), resQ′(h)(Gal(K̂Q′)) ≤ Cp × 1 × · · · × 1.

Hence, by (9) with q replacing p, we have resq(u)(Gal(K̂0,q)) ≤ Cp × 1 × · · · × 1, as

claimed.

Part D: We prove that the element x = uz of H1(Gal(K0), A) satisfies the conditions

(a)–(d) of the lemma.

Proof of (a): For each p ∈ T we have that

resp(x) = resp(u)resp(z)
(9′),(3a)

= ηpyp
(4)
= yp,

as Condition (a) claims.
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Proof of (b): Let p ∈ P(K0)r(T ∪ {q}). If p = p0, then by (9) and (4),

resp(x) = resp(u)resp(z)
(9′)
= ηp · resp(z)

(4)
= resp(z)−1 · resp(z) = 1.

Hence, resp(x) is unramified [JaR18, Subsection 9.1]. If p 6= p0, then by (3b), resp(z) is

unramified, so resp(z)|Îp = 1. Since Ram(K/K0) ⊆ T , we have that p is unramified in

K. By (8c), resP(h)(ÎP) = 1A for each P|p and by (9) resp(u) =
∏

P|p corP(resP(h)).

Hence, by [JaR18, Lemma 6.3], resp(u)|Îp = 1, so resp(x)|Îp = resp(u)|Îpresp(z)|Îp = 1.

Therefore, resp(x) is unramified, as asserted by (b).

Proof of (c): Since q totally splits in L′′(ζn) (Part B), it also totally splits in L(ζn).

By Part C, resq(u) is a Cp-homomorphism.

Since q totally splits in K, we have Gal(K̂0,q) = Gal(K̂Q′) for each prime Q′ of K

over q. In particular, this is the case for Q. Since Gal(K) acts trivially on A, the group

Gal(K̂0,q) acts trivially on A. Hence, resq(z) ∈ H1(Gal(K̂0,q), A) is a homomorphism

[JaR18, Subsection 9.1]. Moreover, with z′ = z|Gal(K) being the homomorphism intro-

duced in (7), we have, by the choice of Q, that resq(z) = resQ(z′). Again, by the choice

of q, the prime Q totally splits in L′. Hence, L′ ⊆ K̂Q. Since Gal(L′) = Ker(z′) (Part

B), the homomorphism resq(z): Gal(K̂0,q)→ A is trivial. Therefore, resq(x) = resq(u),

so by the preceding paragraph, resq(x) is a Cp-homomorphism, as (c) claims.

Proof of (d): If resq(x) is the trivial homomorphism, then the trivial homomorphism

x′q: Gal(K̂0,q) → G satisfies λ ◦ x′q = resq(x). Otherwise, by (c), Im(resq(x)) = 〈ḡ〉,
where ḡ is an element of Ḡ of order p. Since λ: G → Ḡ is surjective, there exists

g ∈ G with λ(g) = ḡ. Now recall that G is finite and let ord(g) = pkm, where k ≥ 1

and p - m. In particular, 〈ḡm〉 = 〈ḡ〉. Replacing g by gm and ḡ by ḡm, we may

assume that ord(g) = pk. Let K̂
(p)
0,q be the maximal pro-p extension of K̂0,q. Then,

there exists an epimorphism x̄q: Gal(K̂
(p)
0,q/K̂0,q) → 〈ḡ〉 such that x̄q ◦ res = resq(x),

where res: Gal(K̂0,q) → Gal(K̂
(p)
0,q/K̂0,q) is the restriction map. By [Rib70, p. 257,

Cor. 3.4], Gal(K̂
(p)
0,q/K̂0,q) is a free pro-p group. Hence, there exists an epimorphism
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x′q: Gal(K̂
(p)
0,q/K̂0,q)→ 〈g〉 such that λ|〈g〉 ◦ x′q = x̄q.

Gal(K̂0,q)

x′q

��

res

��
resq(x)

yy

Gal(K̂
(p)
0,q/K̂0,q)

x̄q

��

x′q

yyrrrrrrrrrrr

〈g〉
λ|〈g〉 //

��

〈ḡ〉

��
G

λ // Ḡ

Hence, the epimorphism x′q = x′q ◦ res satisfies λ|〈g〉 ◦ x′q = resq(x).

3. The Case l 6= p TAME
input, 13

Let l be a prime number, r a positive integer, and h: G→ A a homomorphism of groups.

We say that h is an l-homomorphism if Im(h) is contained in a subgroup of A which

is isomorphic to Cl.

The following lemma replaces [JaR18, Lemma 8.3] for homomorphisms λ with

kernel whose order is a multiple of p.

Lemma 3.1: Let K0 be a global field of positive characteristic p. Let λ: G→ Ḡ be an TAMe
input, 23

epimorphism of finite groups. Let l 6= p be a prime number. Set |Ker(λ)| = eps and

let n be a multiple of el with p - n. Consider p ∈ P(K0) such that ζn ∈ K̂0,p. Let

ψ̄p: Gal(K̂0,p) → Ḡ be a ramified Cl-homomorphism (thus, ψ̄p(Îp) 6= 1). Then, there

exists a homomorphism ψp: Gal(K̂0,p)→ G such that λ ◦ ψp = ψ̄p.

Proof: Let Np be the fixed field of Ker(ψ̄p) in K̂0,p,sep. Since Im(ψ̄p) ≤ Cl and

ψ̄p(Îp) 6= 1, we have Im(ψ̄p) = Cl. Hence, Np/K̂0,p is a ramified Cl-extension and we

identify Gal(Np/K̂0,p) with Im(ψ̄p). Since l 6= p, the ramification of Np/K̂0,p is tame.

Since ζn ∈ K̂0,p and l|n, we have ζl ∈ K̂0,p. By [CaF67, p. 32, Prop. 1(i)], there exists

a prime element π of K̂0,p with Np = K̂0,p( l
√
π). Let σ̄ be a generator of Gal(Np/K̂0,p)

and choose σ ∈ G with λ(σ) = σ̄.

Replacing σ by σm for an appropriate positive integerm with l - m, we may assume

that d = ord(σ) = li for some positive integer i. Let λ′ = λ|〈σ〉. Then, li−1 = |Ker(λ′)|
divides |Ker(λ)| = eps. Since l 6= p, we have that li−1|e, so li divides el which divides

n. Since ζn ∈ K̂0,p, we have ζli ∈ K̂0,p. Thus, N ′p = K̂0,p( li
√
π) is a (tamely and totally

ramified) cyclic extension of K̂0,p of degree li that contains Np. Since Np is the fixed
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field of Ker(ψ̄p), there exists an epimorphism ϕ̄p: Gal(N ′p/K̂0,p) → Gal(Np/K̂0,p) such

that ψ̄p = ϕ̄p ◦ resK̂0,p,sep/N ′p
.

Finally, we choose a generator τ of Gal(N ′p/K̂0,p) such that ϕ̄p(τ) = σ̄ and define

a homomorphism h: Gal(N ′p/K̂0,p)→ G by setting h(τ) = σ. Then, the homomorphism

ψp = h ◦ resK̂0,p,sep/N ′p
satisfies λ ◦ ψp = ψ̄p,

Gal(K̂0,p)

res

��

res

wwnnnnnnnnnnnn

ψ̄p

xx

Gal(N ′p/K̂0,p)
ϕ̄p //

h

��

Gal(Np/K̂0,p)

��
G

λ // Ḡ

as desired.

Following [JaR18, Subsection 1.6], we fix a finite subset S0(K) of P(K) such that

IK = IK,SK
× and CK = IK,S/KS for each finite subset S of P(K) that contains S0(K).

Here, IK is the idele group of K, CK is the idele class group of K, IK,S is the group

of S-ideles of K, and KS is the group of S-units in K. We call S0(K) the basic set of

K. Its existence follows from [Neu99, Prop. VI.1.4].

Lemma 3.2: Let K0 be a global field of positive characteristic p, K a finite Galois TAMb
input, 120

extension of K0, and L a finite Galois extension of K0 that contains K such that L/K

is an abelian l-extension with l 6= p and ζl /∈ K. Let r be a positive integer and A = Crl
a simple Gal(K/K0)-module. Let n be a positive integer such that l|n and p - n. Let

T be a finite subset of P(K0) that contains Ram(K/K0) and S0(K) ⊆ TK . For each

p ∈ T , let yp ∈ H1(Gal(K̂0,p), A).

Then, there exist distinct primes q1, . . . , qr ∈ P(K0)rT and an element x ∈
H1(Gal(K0), A) such that

(a) for each p ∈ T we have resp(x) = yp,

(b) for each p ∈ P(K0)r(T ∪ {q1, . . . , qr}) the element resp(x) of H1(Gal(K̂0,p), A) is

unramified, and

(c) for i = 1, . . . , r the prime qi totally splits in L(ζn) and resqi
(x): Gal(K̂0,qi

)→ A is

a Cl-homomorphism.

(d) Moreover, let G and Ḡ be finite groups such that A ≤ Ḡ and let λ: G → Ḡ

be an epimorphism. Suppose that |Ker(λ)| = eps such that el|n but p - en .

Then, for i = 1, . . . , r there exists a homomorphism x′qi
: Gal(K̂0,qi)→ G such that

λ ◦ x′qi
= resqi(x).
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Proof: Proposition 9.3 of [JaR18] provides the lemma short of Conclusion (d). That

conclusion holds by Lemma 3.1 if resqi(x) is ramified and by [JaR18, Lemma 8.1] if

resqi
(x) is unramified.

4. A Proper Solution of an Embedding Problem with Bounded Ramification ELEMp

input, 12

Proposition 4.5 below certifies the existence of a proper solution to each finite embedding

problem over K0 with local data whose kernel is a simple Gal(K0)-module A = Crl ,

where l is a prime number. Moreover, the number of the new primes of K0 that ramify

in the solution field is r if l 6= p and 1 if l = p.

Setup 4.1: Let K0 be a global field of positive characteristic p and let l be a prime CHAi
input, 21

number. We consider a finite Galois extension K of K0 and an embedding problem

(1) (ρ: Gal(K0)→ Γ, ᾱ: Ḡ→ Γ),

where Γ = Gal(K/K0), Ḡ is a finite group, ᾱ is an epimorphism, and ρ = resK0,sep/K .

Let r be a positive integer, A = Ker(ᾱ).

We assume that ζl /∈ K and note that this assumption is automatically satisfied if

l = p. We also assume that A = Crl and the action of Γ on A defined by aᾱ(ḡ) = ḡ−1aḡ

makes A a simple (multiplicative) Γ-module. We lift the action of Γ on A via ρ to an

action of Gal(K0) on A. Then, A is a simple Gal(K0)-module on which Gal(K) trivially

acts.

Finally, we denote the finite group of roots of unity in K by µ(K).

Remark 4.2: Equivalent classes of homomorphisms. We say that two homomorphisms EQUi

input, 54ψ,ψ′: Gal(K0)→ Ḡ that satisfy ᾱ◦ψ = ρ = ᾱ◦ψ′ are A-equivalent if there exists a ∈ A
such that ψ′(σ) = a−1ψ(σ)a for each σ ∈ Gal(K0). We denote the equivalence class of

ψ by [ψ]. Then, we denote the set of all equivalence classes by HomΓ,ρ,ᾱ(Gal(K0), Ḡ).

Observe that if [ψ′] = [ψ] and ψ is surjective (resp. unramified, totally split, triv-

ial), then so is ψ′ [JaR18, Subsection 7.4]. We therefore say that an equivalence class

of HomΓ,ρ,ᾱ(Gal(K0), Ḡ) totally splits, is unramified at p, surjective, or trivial

if one (alternatively, every) representative of that class has the corresponding prop-

erty. We denote the subset of all [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ) with [ψ] surjective

by HomΓ,ρ,ᾱ(Gal(K0), Ḡ)sur. Finally, there is a natural action of H1(Gal(K0), A) on

HomΓ,ρ,ᾱ(Gal(K0), Ḡ). If x ∈ H1(Gal(K0), A), χ: Gal(K0)→ A is a crossed homomor-

phism that represents x, and [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ), then [ψ]x = [ψ · χ] [JaR18,

Subsection 10.3]. Moreover, by [JaR18, Lemma 10.4], HomΓ,ρ,ᾱ(Gal(K0), Ḡ) becomes

a principal homogeneous space over H1(Gal(K0), A) under this action.
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Similarly, HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) is the set of all equivalence classes [ψp] of

homomorphisms ψp: Gal(K̂0,p) → Ḡ that satisfy ᾱ ◦ ψp = ρp, where ρp = ρ|Gal(K̂0,p).

The proof of the following lemma is a verbatim repetition of the proof of [JaR18,

Lemma 11.2]. In particular note that the assumption l 6= char(K0) that appears in

[JaR18, Setup 11.1] is not used in the proof of [JaR18, Lemma 11.2].

Lemma 4.3: Under Setup 4.1, let n be a positive integer with gcd(n, |µ(K)|) = 1 and CHAj

input, 108p - n, let m be the minimal number of generators of Gal(K(ζn)/K), and let T be a

finite set of primes of K0.

Then, there exist distinct primes p1, . . . , pm, q0 ∈ P(K0)rT that totally split in K

such that for each p ∈ {p1, . . . , pm, q0} there exist [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) with

the following property: if an element [ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ) satisfies [ψ̄p] = [ϕp]

in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) for each p ∈ {p1, . . . , pm, q0}, then

(a) [ψ̄] is unramified at p1, . . . , pm, q0,

(b) if N̄ is the fixed field of Ker(ψ̄) in K0,sep, then gcd(n, |µ(N̄)|) = 1, and

(c) [ψ̄] is surjective.

The following local-global principle is [NSW15, p. 565, Lemma 9.5.6].

Lemma 4.4: Under Setup 4.1 and the assumption l - |µ(K)|, NFSa
input, 144

HomΓ,ρ,ᾱ(Gal(K0), Ḡ) 6= ∅ ⇐⇒
∏
p

HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) 6= ∅.

Proposition 4.5: In addition to the data introduced in Setup 4.1 let λ: G→ Ḡ be an CHAl
input, 155

epimorphism of finite groups. Write |Ker(λ)| = eps and let n be a positive integer such

that p - en. Moreover, we assume that el|n if l 6= p. Let T be a finite set of primes of

K0 that contains Ram(K/K0) and S0(K) ⊆ TK . Suppose that gcd(n, |µ(K)|) = 1 and∏
pHomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) 6= ∅. For each p ∈ T let [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Then, there exist a finite set R ⊆ P(K0)rT and [ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ)sur

such that

(a) [ψ̄p] = [ϕp] in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) for each p ∈ T ,

(b) |R| = r if l 6= p and |R| = 1 if l = p and [ψ̄] is unramified at p ∈ P(K0)r(T∪R), so if

N̄ is the solution field of ψ̄ (i.e. the fixed field of Ker(ψ̄)), then Ram(N̄/K0) ⊆ T∪R,

(c) for each p ∈ P(K0)rT we have HomḠ,ψ̄p,λ(Gal(K̂0,p), G) 6= ∅, and

(d) gcd(n, |µ(N̄)|) = 1.

Proof: We break up the proof into several parts.
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Part A: The surjectivity and the number of roots of unity. Let m be the minimal

number of generators of Gal(K(ζn)/K). We choose distinct primes p1, . . . , pm, q0 ∈
P(K0)rT and elements [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) for p ∈ {p1, . . . , pm, q0} that

satisfy the conclusion of Lemma 4.3. Thus, if [ψ̄] ∈ HomΓ,ᾱ,ρ(Gal(K0), Ḡ) satisfies

[ψ̄p] = [ϕp] for each p ∈ {p1, . . . , pm, q0}, then

(2a) [ψ̄] is unramified at p1, . . . , pm, q0,

(2b) the fixed field N̄ of Ker(ψ̄) in K0,sep satisfies gcd(n, |µ(N̄)|) = 1, and

(2c) [ψ̄] is surjective.

Part B: Strategy of the proof. Since
∏

pHomΓ,ρp,ᾱ(Gal(K̂0,p, Ḡ) 6= ∅, Lemma 4.4

yields an element [ψ0] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ). We are going to find an x ∈ H1(Gal(K0), A)

such that [ψ̄] = [ψ0]x satisfies the conclusions (a), (b), (c), and (d) of the proposition.

To this end let N0 be the fixed field of Ker(ψ0) in K0,sep. Then, ρ(Gal(N0)) =

ᾱ(ψ0(Gal(N0))) = 1, so Gal(N0) ≤ Ker(ρ) = Gal(K), hence K ⊆ N0. Moreover,

ψ0|Gal(K) induces an embedding ψ′0: Gal(N0/K)→ Ḡ such that ᾱ(ψ′0(Gal(N0/K))) = 1,

so Gal(N0/K) is isomorphic to a subgroup of A. Hence, N0/K is an elementary abelian

l-extension.

Part C: The sets T ∗ and T ∗∗. We set T ∗ = T ·∪ {p1, . . . , pm, q0} and let r1, . . . , rs

be the primes that belong to P(K0)rT ∗ at which ψ0 ramifies. Then, we set T ∗∗ =

T ∗ ·∪ {r1, . . . , rs} and have that

(3) ψ0 is unramified at each p ∈ P(K0)rT ∗∗.

Next we observe that since Ram(K/K0) ⊆ T , each p ∈ {r1, . . . , rs} is unramified

in K, so ρp: Gal(K̂0,p) → Γ is unramified [JaR18, Subsection 7.4]. Hence, by [JaR18,

Lemma 8.1],

(4) there exists an unramified element [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Now we consider the system ([ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ))p∈T∗∗ . For each

p ∈ T ∗∗, [JaR18, Lemma 10.4] supplies a unique element yp ∈ H1(Gal(K̂0,p), A) that

satisfies

(5) [ψ0,p]yp = [ϕp].

By Setup 4.1, A ∼= Crl is a simple Gal(K0)-module on which Gal(K) acts trivially. Let

r′ = r if l 6= p and r′ = 1 if l = p. If l 6= p, then by Lemma 3.2, applied to T ∗∗ rather than

to T , there exist an element x ∈ H1(Gal(K0), A) and primes q1, . . . , qr′ ∈ P(K0)rT ∗∗

such that

(6a) resp(x) = yp for each p ∈ T ∗∗,
(6b) resp(x) is unramified at each p ∈ P(K0)r(T ∗∗ ·∪ {q1, . . . , qr′}),
(6c) for i = 1, . . . , r′ the prime qi totally splits in N0(ζn) and resqi

(x): Gal(K̂0,qi
)→ A

is a Cl-homomorphism, and
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(6d) there exists a homomorphism x′qi
: Gal(K̂0,qi

)→ G such that λ ◦ x′qi
= resqi

(x).

If l = p, then r′ = 1 and Lemma 2.6 gives x and q1 that satisfy Condition (6).

Part D: The solution ψ̄. We consider the element [ψ̄] = [ψ0]x ofHomΓ,ρ,ᾱ(Gal(K0), Ḡ).

For each p ∈ T ∗∗ we have that

(7) [ψ̄p] = [ψ0,p]resp(x) (6a)
= [ψ0,p]yp

(5)
=[ϕp]

in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ). In particular, (7) holds for each p ∈ T , so Conclusion (a)

of the proposition holds.

In addition, by Part A, [ψ̄] satisfies Conditions (2a), (2b), and (2c). In particular,

by (2b), gcd(n, |µ(N̄)|) = 1, so Conclusion (d) holds. By (2c), ψ̄ is an epimorphism.

We prove that ψ̄ also satisfies Conclusions (b) and (c) of the proposition.

Proof of (b): We set R = {q1, . . . , qr′}, so, by Part C, |R| = r if l 6= p and |R| = 1

if l = p. Let p ∈ P(K0)r(T ·∪ R). If p ∈ {p1, . . . , pm, q0}, then [ϕp]
(7)
=[ψ̄p]. Hence, by

(2a), [ϕp] is unramified. If p ∈ {r1, . . . , rs}, then by (4), [ϕp] is unramified. Hence, by

(7), ψ̄ is unramified at p in both cases [JaR18, Subsection 7.4].

Finally, if p ∈ P(K0)r(T ∗∗ ·∪R), then by (3) and (6b), both [ψ0,p] and resp(x) are

unramified. Hence, by [JaR18, Lemma 10.5], [ψ̄p] = [ψ0,p]resp(x) is unramified. Thus,

Condition (b) holds.

Proof of (c): Consider p ∈ P(K0)rT . If p /∈ R, then by (b), [ψ̄p] is unrami-

fied. Hence, by [JaR18, Lemma 8.1], ψ̄p can be lifted to an unramified element of

HomḠ,ψ̄p,λ(Gal(K̂0,p), Ḡ). If p ∈ R, then by (6c), p totally splits in N0(ζn), hence also

in N0. Therefore, ψ0,p: Gal(K̂0,p)→ Ḡ is the trivial homomorphism [JaR18, Subsection

7.4, second paragraph]. Also, by (6c), resp(x): Gal(K̂0,p) → A is a Cl-homomorphism,

hence resp(x) represents its own cohomology class. Therefore, [ψ̄p] = [ψ0,p]resp(x) =

[ψ0,p · resp(x)] = [resp(x)].

By (6d), resp(x) can be lifted to a G-homomorphism x′p. Hence, also ψ̄p has the

same property. This implies that HomḠ,ψ̄p,λ(Gal(K̂0,p), G) 6= ∅, as (c) states.

5. Finite Embedding Problems with Solvable Kernel ALLG
input, 12

Using induction, we combine the results obtained so far and prove the main result of

this work: Every finite embedding problem over a global field with solvable kernel that

satisfies a certain restriction on the roots of unity has a proper solution with bounded

ramification that satisfies local conditions.

Lemma 5.1: Suppose that a groupG acts (from the right) on a finite non-trivial solvable SIMp

input, 21group H such that H and 1 are the only G-invariant normal subgroups of H. Then,
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there exists a prime number l and a positive integer r such that H = Crl is a simple

G-module.

Proof: Since H is non-trivial and solvable, H has a proper normal subgroup M such

that H/M is abelian. Then, Mσ is normal in H for each σ ∈ G. Hence, N =
⋂
σ∈GM

σ

is a proper normal G-invariant subgroup of H. By assumption, N = 1. Hence, the map

h 7→ (hMσ)σ∈G is an embedding of H into the abelian group
∏
σ∈GH/M

σ. It follows

that H is abelian.

Since H is non-trivial, there exist a prime number l and an element a ∈ H of

order l. Then, I = 〈aσ | σ ∈ G〉 is a non-trivial normal G-invariant subgroup of H, so

I = H. Hence, the order of each element of H is l. This implies that H ∼= Crl for some

positive integer r, as claimed.

Definition 5.2: Suppose that a group G acts on a finite solvable group H. Let CHAm
input, 54

(1) 1 = Hm < · · · < H2 < H1 < H0 = H

be a maximal G-series of H. In other words, for each 1 ≤ i ≤ m, Hi is a proper

normal subgroup of Hi−1 which is maximal among all proper normal subgroups of

Hi−1 that are G-invariant. Since Hi−1 is solvable, it follows from Lemma 5.1 that

Hi−1/Hi
∼= Crili is a simple G-module, where li is a prime number and ri is a positive

integer. If 1 = H ′m′ < · · · < H ′2 < H ′1 < H ′0 = H is another maximal G-series of H, then

by the Jordan-Hölder theorem, m = m′ and there is a permutation κ of {0, 1, . . . ,m}
such that κ(0) = 0, κ(m) = m, and Hi−1/Hi

∼= H ′κ(i−1)/H
′
κ(i) for i = 1, . . . ,m [Rob82,

p. 66, Thm. 3.1.4].

It follows that if we write Λp(H,G) for the number of i’s between 1 and m such

that li = p, then Λp(H,G) is an invariant of the pair (H,G), that is Λp(H,G) does not

depend on the maximal G-series of H we use to define it.

With this in mind, we write |H| = n · ps, where p - n and s ≥ 0, and let

Ωp(H,G) = Ω(n)Λp(H,G), where Ω(n) is the number of prime divisors of n counted

with multiplicity. In particular,

(2) Ωp(H,G) ≤ Ω(|H|) and Ωp(H,G) = Ω(|H|) if p - |H|.

Observe that if H ′ is a G-invariant normal subgroup of H, then G acts on H/H ′ and

(3) Ωp(H,G) = Ωp(H/H
′, G/H ′) + Ωp(H

′, G).

Setup 5.3: Let K0 be a global field of positive characteristic p. We consider a finite CHAn
input, 106

Galois extension K of K0 and an embedding problem

(4) (ρ: Gal(K0)→ Γ, α: G→ Γ),
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where Γ = Gal(K/K0), G is a finite group, α is an epimorphism, and ρ = resK0,sep/K .

Suppose that H = Ker(α) is a solvable group. In particular, H is a normal subgroup of

G, so G acts on H by conjugation. Thus, each G-invariant subgroup of H is normal in

H.

Let H1 be a maximal G-invariant subgroup of H and let l1 be a prime number and

let r1 be a positive integer such that H/H1
∼= Cr1l1 (Lemma 5.1). In particular, H/H1

is a simple G-module, hence also a simple Γ-module, so also a simple Gal(K0)-module

on which Gal(K) acts trivially. Moreover, lr11 |H1| = |H| and we have a commutative

diagram

(5) H1

��

H1

��

Gal(K0)

ρ

��
1 // H //

λ

��

G

λ

��

α // Γ // 1

1 // H/H1
// G/H1

ᾱ // Γ // 1

with exact horizontal sequences such that both maps λ are the quotient maps.

Theorem 5.4: Let K/K0 be a finite Galois extension of global fields of positive charac- CHAo
input, 153

teristic p and consider the finite embedding problem (4) with solvable kernel H, where

Γ = Gal(K/K0) and ρ = resK0,sep/K . Let T be a finite set of primes of K0 that contains

Ram(K/K0) and S0(K) ⊆ TK . Let |H| = nps with p - n and gcd(n, |µ(K)|) = 1.

Suppose that
∏

pHomΓ,ρp,α(Gal(K̂0,p), G) 6= ∅ (Remark 4.2). For each p ∈ T let

[ϕp] ∈ HomΓ,ρp,α(Gal(K̂0,p), G).

Then, there exists an element [ψ] ∈ HomΓ,ρ,α(Gal(K0), G)sur and there exists a

set R ⊆ P(K0)rT with |R| = Ωp(H,G) such that

(a) [ψp] = [ϕp] in HomΓ,ρp,α(Gal(K̂0,p), G) for each p ∈ T and

(b) [ψ] is unramified at each p ∈ P(K0)r(T ·∪R), that is the fixed field N of Ker(ψ) in

K0,sep satisfies Ram(N/K0) ⊆ T ·∪R.

Proof: Let H1 be a maximal G-invariant subgroup of H. We break up the rest of the

proof into three parts.

Part A: An embedding problem whose kernel is a simple Gal(K0)-module. We con-

sider Diagram (5). If p ∈ P(K0) and [ηp] ∈ HomΓ,ρp,α(Gal(K̂0,p), G), then [λ ◦ ηp] ∈
HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1). Hence, by assumption,

∏
pHomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1) 6=

∅. In particular, for each p ∈ T we have that [ϕ̄p] = [λ◦ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1).

By Setup 5.3, H/H1
∼= Cr1l1 is a simple Γ-module, where l1 is a prime number and

r1 is a positive integer. Also, Ker(λ) = H1 and lr11 divides |H| = nps. If l1 6= p, then
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l1 divides |H/H1|. Writing |Ker(λ)| = |H1| = eps with l1 - e, we have eps · |H/H1| =

|Ker(λ)| · |H/H1| = |H| = nps, so el1|n. In any case Proposition 4.5 yields a finite set

T1 ⊆ P(K0)rT and an element

(6) [ψ1] ∈ HomΓ,ρ,ᾱ(Gal(K0), G/H1)sur

such that

(7) |T1| = Ωp(H/H1, G/H1) and

(8a) [ψ1,p] = [ϕ̄p] in HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1) for each p ∈ T ,

(8b) [ψ1] is unramified at each p ∈ P(K0)r(T ·∪T1), so if N1 is the fixed field of Ker(ψ1),

then Ram(N1/K0) ⊆ T ·∪ T1,

(8c) for each p ∈ P(K0)rT we have HomG/H1,ψ1,p,λ(Gal(K̂0,p), G) 6= ∅, and

(8d) gcd(n, |µ(N1)|) = 1.

Part B: The induction step. Part A gives rise to an embedding problem

(9) (ψ1: Gal(K0)→ G/H1, λ: G→ G/H1)

with finite solvable kernel H1. Let n1 = nl−r11 , s1 = s if l1 6= p and n1 = n, s1 = s− r1

if l1 = p. Then, |H1| = |H|/|H/H1| = n1p
s1 and p - n1.

For each p ∈ T there exists, by (8a), an element ap ∈ H such that

ψ1,p(σ) = λ(ap)−1ϕ̄p(σ)λ(ap) = λ(a−1
p )λ(ϕp(σ))λ(ap) = λ(a−1

p ϕp(σ)ap) = (λ ◦ ϕapp )(σ)

for each σ ∈ Gal(K̂0,p). Hence,

(10) [ϕ
ap
p ] ∈ HomG/H1,ψ1,p,λ(Gal(K̂0,p), G) for every p ∈ T .

It follows from (8c) and (10) that
∏

pHomG/H1,ψ1,p,λ(Gal(K̂0,p), G) 6= ∅. More-

over, (8d) implies that gcd(n1, |µ(N1)|) = 1.

For each p ∈ T we set ϕ1,p = ϕ
ap
p . Then, for each p ∈ T1 we use (8c) to choose

[ϕ1,p] ∈ HomG/H1,ψ1,p,λ(Gal(K̂0,p), G).

Since H1 is solvable and |H1| < |H|, an induction hypothesis on the order of

the kernel of the embedding problem gives a set R1 ⊆ P(K0)r(T ·∪ T1) with |R1| =

Ωp(H1, G) and an element

(11) [ψ] ∈ HG/H1,ψ1,λ(Gal(K0), G)sur

such that

(12a) [ψp] = [ϕ1,p] in HomG/H1,ψ1,p,λ(Gal(K̂0,p), G), for each p ∈ T ·∪ T1, and

(12b) [ψ] is unramified at each p ∈ P(K0)r(T ·∪ T1
·∪ R1), that is if N is the solution

field of embedding problem (9), then Ram(N/K0) ⊆ T ·∪ T1
·∪R1.

We set R = T1
·∪R1. Then,

|R| = |T1|+ |R1|
(7)
= Ωp(H/H1, G/H1) + Ωp(H1, G)

(3)
= Ωp(H,G).
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Part C: Conclusion of the proof. We prove that [ψ] satisfies the conclusion of the

theorem. Indeed, by (5), (11), and (6) we have α ◦ ψ
(5)
= ᾱ ◦ λ ◦ ψ

(11)
= ᾱ ◦ ψ1

(6)
= ρ, so

[ψ] ∈ HomΓ,ρ,α(Gal(K0), G)sur.

1

��
H1

��

Gal(K0)
ψ

yyssssssssss

ρ

��

ψ1

������������������

1 // H //

��

G

λ

��

α

%%KKKKKKKKKKKK

1 // H/H1
// G/H1

ᾱ //

��

Γ // 1

1

Moreover, by (12a), for each p ∈ T there exists bp ∈ H1 such that for each σ ∈ Gal(K̂0,p)

we have ψp(σ) = b−1
p ϕ1,p(σ)bp = b−1

p a−1
p ϕp(σ)apbp = (apbp)−1ϕp(σ)(apbp). Since ap ∈

H and bp ∈ H1, we have apbp ∈ H. Therefore, [ψp] = [ϕp] in HomΓ,ρp,α(Gal(K̂0,p), G)

for each p ∈ T , as desired.

Remark 5.5: Theorem 5.4 obtains an especially pleasant form in the case where the CHAp

input, 391kernel H of embedding problem (4) is a p-group. In this case Ωp(H,G) = Λp(H,G)

is the length of the maximal G-series of H, so |R| is much smaller than in the general

case.
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