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Introduction

Some of the most important results in the theory of Hilbertian fields are of
the form: if K is a Hilbertian field and M/K is an extension satisfying certain
properties, then M is Hilbertian as well. This article proves integral analogues
of some of these theorems: if R is a Hilbertian domain with quotient field K
and M/K is an algebraic extension of fields satisfying some condition that is
known to preserve Hilbertianity (of fields), then the integral closure of R in M
is also Hilbertian.

Given irreducible polynomials f1, . . . , fm ∈ Q(T1, . . . , Tr)[X] and a non-
zero polynomial g ∈ Q[T1, . . . , Tr], Hilbert’s irreducibility theorem yields an
r-tuple a ∈ Qr such that fi(a, X) is defined and irreducible in Q[X] for i =
1, . . . ,m and g(a) 6= 0. The set HQ(f1, . . . , fm; g) of all a with that prop-
erty is said to be a Hilbert subset of Qr. It contains a ∈ Qr such that
Gal(fi(a, X),Q) ∼= Gal(fi(T, X),Q(T)) for i = 1, . . . ,m [FrJ08, p. 294, Prop. 16.1.5].
The importance of the latter property lies in the fact that it is the main (albeit
not the only) tool to realize finite groups over Q.

The above definition applies to an arbitrary fieldK. A separable Hilbert
set of K is then a Hilbert subset HK(f1, . . . , fm; g) of Kr for some positive in-
teger r with the additional property that each fi(T, X) is in K(T)[X] and is
separable in X. If each of these sets is non-empty, then K is Hilbertian. It
turns out that every global field is Hilbertian. Moreover, every finitely gener-
ated transcendental extension of an arbitrary field is Hilbertian [FrJ08, p. 242,
Thm. 13.4.2]. Furthermore, every finite extension of a Hilbertian field is Hilber-
tian [FrJ08, p. 227, Prop. 12.3.5].

Generalizing prior results of Willem Kuyk [Kuy70] and Reiner Weissauer
[Wei82], Dan Haran proved a “diamond theorem” in [Har99]: Given Galois
extensions N1 and N2 of a Hilbertian field K, every extension M of K in N1N2

that is neither contained in N1 nor in N2 is Hilbertian.
The first author conjectured in [Jar10] that if K is a Hilbertian field and

A is an abelian variety over K, then, every extension M of K in K(Ator) is
Hilbertian. He proved the conjecture for number fields. The proof uses Haran’s
diamond theorem and a theorem of Serre that in that time was known only for
number fields. Arno Fehm and Sebastian Petersen referred to the conjecture as
the Kuykian Conjecture and proved it when K is an infinite finitely generated
extension of its prime field [FeP12].

Haran’s proof of the Diamond Theorem relies on a technical result [Har99,
Thm. 3.2]. That result is exploited by Lior Bary-Soroker, Arno Fehm, and
Gabor Wiese in [BFW16] to prove far reaching generalization of the results
mentioned so far:

Proposition A ([BFW16, Thm. 1.1]): Let M be a separable algebraic exten-
sion of a Hilbertian field K. Suppose that there exist a tower of field extensions
K = K0 ⊆ K1 ⊆ · · · ⊆ Kn such that for each 1 ≤ i ≤ n the extension Ki/Ki−1

is Galois with Galois group that is either abelian or a direct product of finite
simple groups and M ⊆ Kn. (We call K0 ⊆ K1 ⊆ · · · ⊆ Kn a finite abelian-
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simple tower.) Then, M is Hilbertian.

Using a deep result of Michael Larsen and Richard Pink [LaP97], Bary-
Soroker, Fehm, and Wiese also prove that for every field K and every abelian
variety A over K, the extension K(Ator)/K admits a finite abelian-simple tower.
Thus, the Kuykian Conjecture (renamed in [BFW16] Jarden Conjecture)
turns out to be a special case of Proposition A.

The present work originates in an arithmetic proof of the Hilbert irre-
ducibility theorem which proves for a global field K that every Hilbert subset of
Kr contains points in OrK , where OK is the ring of integers of K [FrJ08, p. 241,
Thm. 13.3.5]. Thus, OK may be called a Hilbertian ring.

The first thing we do is to slightly modify the proof of [Har99, Thm. 3.2]
to Hilbertian rings (Proposition 1.4). Then, we use the modified criterion to
generalize Haran’s diamond theorem:

Theorem B (Theorem 2.2): Let R be a Hilbertian ring with quotient field K,
let N1 and N2 be Galois extensions of K and M an extension of K in N1N2

such that M 6⊆ N1 and M 6⊆ N2. Then, the integral closure RM of R in M is
Hilbertian.

Our second main result generalizes Proposition A:

Theorem C (Theorem 3.5): Let R be a Hilbertian ring with quotient field K
and let M be a separable algebraic extension of K of finite abelian-simple length
(Definition 3.1). Then, the integral closure RM of R in M is Hilbertian.

Theorem C has two interesting corollaries. For the first one, we denote
the compositum of all Galois extensions with symmetric Galois groups of a field
K by Ksymm.

Corollary D (Corollary 3.6): Let R be a Hilbertian ring with quotient field
K. Let M be an extension of K in Ksymm. Then, the ring RM is Hilbertian.

The second one refers to the torsion subgroup Ator of an abelian variety
A.

Corollary E (Theorem 4.5): Let R be a Hilbertian ring with quotient field
K. Let A be an abelian variety over K and let M be an extension of K in
K(Ator(Ksep)). Then, the ring RM is Hilbertian.

The authors thank the referee for useful comments.
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1 Hilbertian Rings
{HILDOM}

Let R be an integral domain with quotient field K. Let T = (T1, . . . , Tr) be
an r-tuple of indeterminates and let X be an additional indeterminate. Given
irreducible polynomials f1, . . . , fm ∈ K(T)[X] that are separable in X and a
nonzero polynomial g ∈ K[T], the set HK(f1, . . . , fm; g) of all a ∈ Kr such that
f1(a, X), . . . , fm(a, X) are defined and irreducible in K[X] and g(a) 6= 0 is a
separable Hilbert subset of Kr. In the special case, where g = 1, we write
HK(f1, . . . , fm) rather than HK(f1, . . . , fm; 1).

We say that R is a Hilbertian ring if H ∩ Rr 6= ∅ for every positive
integer r and every separable Hilbert subset H of Kr. In this case, K is a
Hilbertian field.

Recall that a profinite group G is small if for every positive integer n
the group G has only finitely many subgroups of index n. In particular, if G is
finitely generated, then G is small [FrJ08, page 328, Lemma 16.10.2].

Let M/K be a separable algebraic extension of fields and let N be the
Galois hull of M/K. In particular, Gal(N/K) is small if M/K is finite.

We need the following improvement of [FrJ08, p. 332, Prop. 16.1.1]:
{ABHf}

Lemma 1.1. Let N be a Galois extension of a field K with small Galois group
Gal(N/K). Let M be an extension of K in N . Then, every separable Hilbert
subset H of Mr contains a separable Hilbert subset of Kr.

In particular, if K is Hilbertian, then so is M . Moreover, if K is the
quotient field of a Hilbertian domain R, then the integral closure RM of R in
M is also Hilbertian.

Proof: By definition, H = HM (f1, . . . , fk; g), where fi ∈ M(T1, . . . , Tr)[X] is
irreducible and separable, i = 1, . . . , k, and g ∈ M [T1, . . . , Tr] with g 6= 0. Let
n = max(degX(f1), . . . ,degX(fk)). We choose a finite extension L of K in M
that contains all of the coefficients of f1, . . . , fk, g, and set d = [L : K]. Then,
we denote the compositum of all extensions of K in M of degree at most dn by
L′. Then, L ⊆ L′, and by our assumption on N , we have [L′ : K] <∞. Hence,
by [FrJ08, p. 224, Cor. 12.2.3], HL′(f1, . . . , fk; g) contains a separable Hilbert
subset HK of Kr.

Let a ∈ HK and consider an i between 1 and k. Then, g(a) 6= 0 and
fi(a, X) is irreducible over L′. Let b be a zero of fi(a, X) in Ksep. Then, L(b) is
linearly disjoint from L′ over L. In addition, [M ∩ L(b) : K] ≤ [L(b) : K] ≤ dn.
Hence, M ∩ L(b) ≤ L′ ∩ L(b) = L. It follows that fi(a, X) is irreducible over
M . Consequently, a ∈ H.

If K is the quotient field of a Hilbertian domain R, then HK contains a
point a that lies in Rn, so also in RrM . Therefore, RM is Hilbertian. �

The following result is a generalization of [FrJ08, p. 236, Prop. 13.2.2].
{HILa}

Lemma 1.2. Let R be an integral domain with quotient field K. Suppose
that each separable Hilbert subset of K of the form HK(f) with irreducible
f ∈ K[T,X], separable, monic, and of degree at least 2 in X, has an element in
R. Then, R is Hilbertian.
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Proof: By [FrJ08, p. 222, Lemma 12.1.6], it suffices to consider a separable
irreducible polynomial f ∈ K[T1, . . . , Tr, X] in X and to prove that HK(f) ∩
Rr 6= ∅. The case r = 1 is covered by the assumption of the lemma. Suppose
r ≥ 2 and the statement holds for r − 1. The assumption of the lemma implies
that R is infinite. Let K0 = K(T1, . . . , Tr−2), t = Tr−1, and regard f as a
polynomial in K0(t)[Tr, X]. By [FrJ08, p. 236, Prop. 13.2.1], there exists a
non-empty Zariski-open subset U of A2

K0
such that {a + bt | (a, b) ∈ U(K0)} ⊆

HK0(t)(f). Since R is infinite, we can choose a, b such that (a, b) ∈ U(R). Hence,
f(T1, . . . , Tr−1, a+bTr−1, X) is irreducible and separable in K(T1, . . . , Tr−1)[X].
The induction hypothesis gives a1, . . . , ar−1 ∈ R such that f(a1, . . . , ar−1, a +
bar−1, X) is irreducible and separable in K[X]. Let ar = a + bar−1. Then,
ar ∈ R and f(a1, . . . , ar, X) is irreducible in K[X]. �

Proposition 1.4 below is the basic result used in the proof of our two
main theorems 2.2 and 3.5. We start the proof of that proposition with a
generalization of [Har99, Thm. 3.2]. The proof of that generalization uses the
notion of “twisted wreath product” that we now recall from [FrJ08, p. 253,
Def. 13.7.2].

Let G be a group and G′ a subgroup. Suppose that G′ acts on a group A
from the right. We consider the group

IndGG′(A) = {f : G→ A | f(σσ′) = f(σ)σ
′

for all σ ∈ G and σ′ ∈ G′}

and let G acts on IndGG′(A) by the rule fσ(τ) = f(στ). The twisted wreath
product of A and G with respect to G′ is defined as the semi-direct product

AwrG′G = Gn IndGG′(A).

We say that a tower of fields K ⊆ E′ ⊆ E ⊆ F ⊆ F̂ realizes a twisted wreath
product AwrG′G if F̂ /K is a Galois extension with Galois group isomorphic to
AwrG′G and the tower yields a commutative diagram of groups,

Gal(F̂ /F ) // Gal(F̂ /E) // Gal(F̂ /E′) // Gal(F̂ /K)

J // IndGG′(A) // G′ n IndGG′(A) // AwrG′G,

where {jnor}
(1) J = {f ∈ IndGG′(A) | f(1) = 1} is a normal subgroup of IndGG′(A)

and each of the maps in the first and the second rows is the inclusion map. See
[FrJ08, p. 255, Remark 13.7.6], where a more elaborate diagram is referred to.

The following result is a special case of [FrJ08, p. 235, Lemma 13.1.4].
{HILb}

Lemma 1.3. Let K be an infinite field and let f ∈ K[T,X] be an irreducible
polynomial which is monic and separable in X. Then, there are a finite Galois
extension L of K and an absolutely irreducible polynomial g ∈ K[T,X] which
as a polynomial in X is monic, separable, and Galois over L(T ) such that K ∩
HL(g) ⊆ HK(f).
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We denote the maximal separable algebraic extension of a field K by Ksep.
{HILc}

Proposition 1.4. Let R be a Hilbertian ring with quotient field K and let M be
a separable algebraic extension of K. Suppose that for every α ∈ M and every
β ∈ Ksep there exist:

(a) a finite Galois extension L of K that contains α and β; let G = Gal(L/K);

(b) a field K ′ that contains α such that K ⊆ K ′ ⊆M∩L; let G′ = Gal(L/K ′);
and

(c) a Galois extension N of K that contains both M and L,

such that for every finite non-trivial group A0 and every action of G′ on A0

there is no realization K, K ′, L, F0, F̂0 of A0wrG′G with F̂0 ⊆ N .
Then, the integral closure RM of R in M is Hilbertian.

Proof: We break the proof into four parts.

Part A: Preliminaries We apply the criterion for Hilbertianity of Lemma 1.2
combined with Lemma 1.3. So let f ∈M [T,X] be an absolutely irreducible poly-
nomial, monic and separable in X, and let M ′/M be a finite Galois extension
such that f(T,X) is Galois over M ′(T ). We have to prove that there exists a ∈
RM such that f(a,X) ∈M [X] is irreducible over M ′. Let A = Gal(f,M ′(T )) =
Gal(f,Ksep(T )). Without loss we may assume that degX(f) ≥ 2.

There is α ∈M such that f ∈ K(α)[T,X] and there is β ∈ Ksep such that
M ′ ⊆M(β) and f(T,X) is Galois over K(β)(T ) with Gal(f(T,X),K(β)(T )) =
A. For these α, β let K ′, L, and N be as in (a), (b), and (c). Then, f ∈ K ′[T,X]
and f(T,X) is Galois over L(T ) with Gal(f(T,X), L(T )) = A.

Let R′ be the integral closure of R in K ′. Then, R′ ⊆ RM and M ′ ⊆ N ,
so it suffices to find a ∈ R′ such that f(a,X) is irreducible over N .

Part B: Specialization of the wreath product. We choose c1, . . . , cn ∈ R′ that
form a basis of K ′ over K.

Let t = (t1, . . . , tn) be an n-tuple of algebraically independent elements
over K ′. By [FrJ08, p. 258, Lemma 13.8.1], G′ = Gal(L/K ′) acts on A and
there are fields P and P̂ such that {hil2a}

(2a) K(t),K ′(t), L(t), P, P̂ realize AwrG′G and P̂ is regular over L. {hil2b}
(2b) P = L(t, x), where irr(x, L(t)) = f(

∑n
i=1 citi, X).

Since R is Hilbertian, [FrJ08, p. 231, Lemma 13.1.1] gives an n-tuple
b = (b1, . . . , bn) ∈ Rn such that the specialization t 7→ b yields an L-place of P̂
onto a Galois extension F̂ of K with Galois group isomorphic to Gal(P̂ /K(t)).
That is, there are fields F and F̂ such that {hil2}
(3a) K,K ′, L, F, F̂ realize AwrG′G. {hil3b}
(3b) F = L(y), where irr(y, L) = f(

∑n
i=1 cibi, X).

We set a =
∑n
i=1 cibi and observe that a ∈ R′, so f(a,X) ∈ K ′[X].
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Part C: L = N ∩ F Indeed, by (1), F/L is a Galois extension, so F0 = N ∩ F
is a Galois extension of L. Let A0 = Gal(F0/L). By [FrJ08, p. 257, Remark
13.7.6(c)], there is a Galois extension F̂0 of K such that G′ acts on A0 and {hil4}
(4) K,K ′, L, F0, F̂0 realize A0wrG′G.

Moreover, F̂0 is the Galois closure of F0 over K. Since F0 ⊆ N and N/K is
Galois, we have F̂0 ⊆ N . By assumption, this is possible only if A0 = 1, that
is, if L = N ∩ F .

Part D: Conclusion By Part B, f(a, y) = 0 and F = L(y). By Part C,

[N(y) : N ] = [NF : N ] = [F : L] = [L(y) : L].

Thus, f(a,X) = irr(y,N). In particular, f(a,X) is irreducible over N . �
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2 Haran’s diamond theorem

Our first application of Proposition 1.4 generalizes Haran’s diamond theorem
[Har99, Thm. 4.1] from fields to integral domains.

The following result is [Har99, Lemma 1.4(a)].
{HAR1.4}

Lemma 2.1. Let π: AwrG′G→ G be a twisted wreath product with A 6= 1. Let
H1 / AwrG′G and h2 ∈ AwrG′G and let G1 = π(H1). Suppose that π(h2) /∈ G′
and (G1G

′ : G′) > 2. Then, there exists h1 ∈ Ker(π)∩H1 such that [h1, h2] 6= 1.
{HARb}

Theorem 2.2 (Haran’s Diamond theorem for rings). Let R be a Hilbertian ring
with quotient field K. Let M1 and M2 be Galois extensions of K and let M be
an extension of K in M1M2. Suppose that M 6⊆ M1 and M 6⊆ M2. Then, the
integral closure RM of R in M is Hilbertian.

Proof: By Lemma 1.1, we may assume that [M : K] = ∞. Part A of the
proof strengthens this assumption.

Part A: We may assume that [M : (M1 ∩M)] =∞ Otherwise,

[M : (M1 ∩M)] <∞.

Then, K has a finite Galois extension M ′2 with M ⊆ (M1 ∩ M)M ′2. Hence,
M ⊆ M1M

′
2 and [M : M ∩M ′2] = ∞. Replace M1 by M ′2 and M2 by M1 to

restore our assumption.

Part B: Construction of N and L Following Proposition 1.4, we consider
α ∈ M and β ∈ Ksep. Let L be a finite Galois extension of K that con-
tains K(α, β) and let N = LM1M2. Then, N/K is Galois and both Gal(N/M1)
and Gal(N/M2) are normal in Gal(N/K).

Let G = Gal(L/K) and let ϕ: Gal(N/K) → G be the restriction map.
Let G1 = ϕ(Gal(N/M1)) and G2 = ϕ(Gal(N/M2)). Then,

G1, G2 / G. (1) {har1}

Now we set K ′ = M ∩ L and G′ = ϕ(Gal(N/M)). Then, α ∈ K ′ and G′ =
Gal(L/K ′).

Since M 6⊆Mi, we may choose L sufficiently large such that K ′ 6⊆Mi for
i = 1, 2, hence

G1, G2 6≤ G′. (2) {har2}

Similarly, since [M : K] =∞, we may choose L sufficiently large such that

(G : G′) > 2. (3) {har3}

Finally, by Part A, we may choose L sufficiently large such that

(G1G
′ : G′) > 2. (4) {har4}
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Part C: Realization We consider a non-trivial group A on which G′ acts and
set H = AwrG′G. By Proposition 1.4, it suffices to prove that a realization
K,K ′, L, F, F̂ of H with F̂ ⊆ N does not exist.

Assume toward contradiction that such a realization exists. We identify H
with Gal(F̂ /K) such that the restriction map resF̂ /L: Gal(F̂ /K) → Gal(L/K)
coincides with the projection π: H → G. Then, π ◦ resN/F̂ = resN/L.

For i = 1, 2 let Hi = resN/F̂ (Gal(N/Mi)). Then, Hi / H and π(Hi) =

resN/L(Gal(N/Mi)) = Gi.

Claim: There are h1 ∈ H1∩Ker(π) and h2 ∈ H2 such that [h1, h2] 6= 1 Indeed,
by (2), there exists g2 ∈ G2 r G′. Choose h2 ∈ H2 such that π(h2) = g2, so
π(h2) /∈ G′. Hence, our claim follows from (4) and Lemma 2.1.

For i = 1, 2 we choose γi ∈ Gal(N/Mi) with resN/F̂ (γi) = hi. Then, by
the claim,

resN/L(γ1) = π(h1) = 1 and [γ1, γ2] 6= 1. (5) {comm1}

However, since Gal(M1M2/M1∩M2) ∼= Gal(M1M2/M1)×Gal(M1M2/M2),
the subgroups Gal(M1M2/M1) and Gal(M1M2/M2) commute. Hence,

resN/M1M2
[γ1, γ2] = [resN/M1M2

(γ1), resN/M1M2
(γ2)] = 1. (6) {one1}

Furthermore, by (5),

resN/L[γ1, γ2] = [resN/L(γ1), resN/L(γ2)] = [1, resN/L(γ2)] = 1. (7) {one2}

Since N = (M1M2)L, it follows from (6) and (7) that [γ1, γ2] = 1, a contradic-
tion to (5). �

An immediate corollary of Theorem 2.2 generalizes a well known result of
Reiner Weissauer (see [Wei82, Satz 9.7] or [FrJ08, p. 262, Thm. 13.9.1]).

{WEIs}
Corollary 2.3. Let R be a Hilbertian ring with quotient field K and let M ′ be
a separable algebraic extension of K. Suppose that M ′ is a finite extension of
a field M and there exists a Galois extension N of K that contains M but does
not contain M ′. Then, the ring of integers RM ′ of R in M ′ is Hilbertian.

Proof: The case where M ′ is a finite extension of K is covered by Lemma 1.1,
so assume that [M ′ : K] = ∞. Hence, K has a finite Galois extension L such
that M ′ ⊆ NL. In particular, M ′ 6⊆ L. By assumption, M ′ 6⊆ N . Hence, by
Theorem 2.2, RM ′ is Hilbertian, as claimed. �
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3 Abelian-Simple Towers

We strengthen a theorem of Lior Bary-Sorker, Arno Fehm, and Gabor Wiese
saying that a Galois extension N of a Hilbertian field K obtained by finitely
many subextensions, each of which is either abelian or a compositum of simple
non-abelian extensions is Hilbertian.

{HILd}
Definition 3.1. Let G be a profinite group. Following [BFW16], we define
the generalized derived subgroup D(G) of G as the intersection of all open
normal subgroups N of G with G/N either abelian or simple. The generalized
derived series of G,

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ,

is defined inductively by G(0) = G and G(i+1) = D(G(i)) for i ≥ 0.
We define the abelian-simple length of a profinite group G, denoted by

l(G), to be the smallest integer l for which G(l) = 1. If G(i) 6= 1 for all i, we set
l(G) = ∞. We say that G is of finite abelian-simple length if l(G) < ∞.
�

The following result is a special case of [BFW16, Prop. 2.8].
{SUPa}

Lemma 3.2. Let (Ki/K)i∈I be a family of Galois extensions, let N =
∏
i∈I Ki,

and let m be a positive integer. If for each i ∈ I the abelian-simple length of
Gal(Ki/K) is less than or equal to m, then so is the abelian-simple length of
Gal(N/K).

We quote two results from [BFW16].

Lemma 3.3. [BFW16, Lemma 2.7(i)] If α: G → H is an epimorphism of {HILe}
profinite groups, then α(G(i)), i = 0, 1, 2, . . . , is the generalized derived series of
H. In particular, l(H) ≤ l(G).

Lemma 3.4. [BFW16, Prop. 2.11] Let m be a positive integer, let A be a non- {HILf}
trivial finite group, and let G′ ≤ G be finite groups together with an action of
G′ on A. Assume that (G(m)G′ : G′) > 2m . Then,

(AwrG′G)(m+1) ∩ IndGG′(A) 6= 1 .

We say that a separable algebraic extension M/K is of finite abelian-
simple length if l(Gal(M̂/K)) < ∞, where M̂ denotes the Galois closure of
M/K. The following result strengthens [BFW16, Thm. 3.2].

{HILg}
Theorem 3.5. Let R be a Hilbertian ring with quotient field K and let M be
a separable algebraic extension of K of finite abelian-simple length. Then, the
integral closure RM of R in M is Hilbertian.

Proof: Our proof closely follows the proof of [BFW16, Thm. 3.2] which proves
that M is Hilbertian.
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Let L be the Galois closure of M/K. Let Γ = Gal(L/K) and let Γ(i),
i = 0, 1, 2, . . . , be the generalized derived series of Γ. By assumption, there
exists a minimal m ≥ 0 such that

Γ(m+1) = 1. (1) {gam}

Let Γ′ = Gal(L/M) and for each i denote by L(i) the fixed field of Γ(i) in L.
Let P = M ∩ L(m). If (Γ′Γ(m) : Γ′) < ∞, then, by the Galois corre-

spondence, M is a finite extension of P . Note that if P̂ is the Galois closure
of P/K, then P̂ ⊆ L(m) and thus Gal(P̂ /K) is a quotient of Γ/Γ(m). Thus,
Gal(P̂ /K)(m) is a quotient of

(Γ/Γ(m))(m) = Γ(m)/Γ(m) = 1

and therefore trivial (Lemma 3.3). Hence, induction on m implies that the
integral closure RP of R in P is Hilbertian. Since M is a finite extension of P ,
it follows from Lemma 1.1 that RM is Hilbertian.

Therefore, we may assume that (Γ′Γ(m) : Γ′) = ∞, that is [M : P ] = ∞.
To prove that RM is Hilbertian, we apply Proposition 1.4.

Let α ∈ M and β ∈ Ksep. Since M/P is infinite, there exists a finite
Galois extension E/K such that α, β ∈ E and

[E′ : E ∩ P ] > 2m, (2) {e0p}

where E′ = E ∩M .
Let G = Gal(E/K), G′ = Gal(E/E′), and let G(i), i = 0, 1, 2, . . . , be the

generalized derived series of G (Definition 3.1). Note that α ∈ E′. In addition,
we set N = EL and consider a non-trivial group A on which G′ acts. By
Proposition 1.4, it suffices to prove that there are no fields F, F̂ such that {hil5}
(3) F̂ ⊆ N and K ⊆ E′ ⊆ E ⊆ F ⊆ F̂ is a realization of AwrG′G.

Assume toward contradiction that there exist fields F and F̂ that satisfy
(3) and identify Gal(F̂ /K) with AwrG′G and Gal(F̂ /E) with IndGG′(A).

Let Ē = L ∩ E, Ḡ = Gal(Ē/K), and consider the following diagram:

L(m)
Γ(m)

L(m)M L N

L(m) ∩M M

Γ′

F̂

IndG
G′ (A)

K

Γ

Ḡ

G

L(m) ∩ E′ 2m<
E′ Ē E
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Let ϕ: Γ→ Ḡ and ψ: G→ Ḡ be the restriction maps. By Lemma 3.3,

Ḡ(m) = ϕ(Γ(m)) = Gal(Ē/L(m) ∩ Ē) ,

Ḡ(m) = ψ(G(m)) = Gal(Ē/E(m) ∩ Ē) ,

where E(m) is the fixed field of G(m) in E.

Γ(m)

ϕ

++
G(m) ψ // Ḡ(m)

Gal(L/L(m)) Gal(E/L(m) ∩ E)
res // Gal(Ē/L(m) ∩ Ē)

Thus,
E(m) ∩ Ē = L(m) ∩ Ē. (4) {hil6}

Since E ∩M = E ∩ L ∩M = Ē ∩M , we have

E ∩M ∩ E(m) = Ē ∩M ∩ E(m) = M ∩ E(m) ∩ Ē
(4)
= M ∩ L(m) ∩ Ē = Ē ∩M ∩ L(m) = E ∩M ∩ L(m) .

Hence,

(G(m)G′ : G′) = [E′ : E′ ∩ E(m)] = [E′ : E ∩ P ]
(2)
> 2m .

Lemma 3.4 yields
(AwrG′G)(m+1) ∩ IndGG′(A) 6= 1 ,

so there exists a non-trivial element

τ ∈ (AwrG′G)(m+1) ∩ IndGG′(A).

Since Gal(F̂ /K) = AwrG′G, the map resN/F̂ : Gal(N/K) → Gal(F̂ /K) maps

Gal(N/K)(m+1) onto (AwrG′G)(m+1) (Lemma 3.3). Hence, we may lift τ to an
element τ̃ ∈ Gal(N/K)(m+1). Again, by Lemma 3.3, τ̃ |L ∈ Gal(L/K)(m+1) =

Γ(m+1)
(1)
= 1. Since τ ∈ IndGG′(A) = Gal(F̂ /E), it follows that τ̃ |E = 1. Then,

since LE = N , we have τ̃ = 1, so τ = 1. We conclude from this contradiction
that RM is Hilbertian. �

Let R be an integral domain with quotient field K and let N be an ex-
tension of K. Recall that [FeP12] calls N an H-extension of K if every field
M between K and N is Hilbertian. We say that N is an HR-extension of R
if for every field M between K and N the integral closure RM of R in M is
Hilbertian. {APPa}
Corollary 3.6. Let R be a Hilbertian ring with quotient field K. Then, Ksymm/R
is an HR-extension.

Proof: One observes that the abelian-simple length of each Sn is at most
3. Hence, by Lemma 3.2, the abelian-simple length of Ksymm/K is at most 3.
Therefore, by Theorem 3.5, Ksymm/R is an HR-extension. �
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4 Abelian Varieties

Let R be a Hilbertian ring with quotient field K and let A be an abelian variety
over K. Let Ator(Ksep) be the group of all points in A(Ksep) of finite order.
We use both main results of this work to prove that K(Ator(Ksep))/R is an
HR-extension.

We start by a ring version of [FeP12, Lemma 2.2].
{FePb}

Lemma 4.1. Let R be a Hilbertian ring with quotient field K and let K1, . . . ,Kn

be HR-extensions of R that are Galois over K. Then,
∏n
i=1Ki is an HR-

extension of R.

Proof: Induction on n reduces the lemma to the case n = 2. Let M be an
extension of K in K1K2. If M is contained either in K1 or in K2, then RM
is Hilbertian, by assumption. Otherwise, RM is Hilbertian, by Theorem 2.2.
�

The following result is a special case of [BFW16, Cor. 4.6].
{ABSi}

Lemma 4.2. For every positive integer n there exists m with the following
property: For every l, every closed subgroup Λ of GLn(Zl) has a closed pro-l
normal subgroup N such that the abelian-simple length of Λ/N is at most m.

We also need Lemma 2.3 of [FeP12].
{DIVi}

Lemma 4.3. Let (Li)i∈I be a linearly disjoint family of extensions of a field L.
Then,

⋂
J⊆I
finite

∏
i∈IrJ Li = L.

{FEPa}
Lemma 4.4. Let R be a Hilbertian ring with quotient field K. Let (Ki)i∈I
be a family of Galois HR-extensions of R. Suppose that there exists an HR-
extension L of R such that (KiL)i∈I is a linearly disjoint family of field exten-
sions of L. Then, the field

∏
i∈I Ki is an HR-extension of R.

Proof: If M ⊆
∏
i∈IrJ Ki for every finite subset J of I, then M ⊆ L, by

Lemma 4.3. Hence, RM is a Hilbertian ring in this case.
Otherwise, I has a finite subset J such that M 6⊆

∏
i∈IrJ Ki. If M ⊆∏

i∈J Ki, then RM is Hilbertian, by Lemma 4.1. Otherwise, M 6⊆
∏
i∈J Ki.

Hence, RM is Hilbertian, by Theorem 2.2. �

The following result is the ring version of a special case of [BFW16,
Cor. 4.3].

{HILi}
Corollary 4.5. Let R be a Hilbertian ring with quotient field K. Let A be an
abelian variety over K. Then, K(Ator(Ksep)) is an HR-extension of R.

Proof: We set g = dim(A) and let l range over the set of prime numbers.
For each l, let Al∞(Ksep) be the group of all points of A(Ksep) whose order is
a power of l. It is well known that Gal(K(Al∞(Ksep))/K) is a closed subgroup
of GL2g(Zl). Therefore, by Lemma 4.2, Gal(K(Al∞(Ksep))/K) has a closed
normal pro-l subgroup Λl such that the abelian-simple length of

Gal(K(Al∞(Ksep))/K)/Λl
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is bounded by a positive integer m that depends on g but not on l. Let El
be the fixed field of Λl in K(Al∞(Ksep)). Then, El is a Galois extension of
K and Gal(K(Al∞(Ksep))/El) ∼= Λl is a pro-l-group and the abelian-simple
length of Gal(El/K) is bounded by a positive integer m that depends on g but
is independent of l.

Let E =
∏
l∈LEl. By the preceding paragraph and Lemma 3.2, the

abelian-simple length of Gal(E/K) is less than or equal to m.
Moreover, for each l, the group Gal(E(Al∞(Ksep))) is isomorphic to a nor-

mal closed subgroup of Gal(K(Al∞(Ksep))/El), hence is itself pro-l. Therefore,
the fields E(Al∞(Ksep)), with l ranging over all prime numbers, are linearly
disjoint over E.

Since K(Ator(Ksep)) =
∏
lK(Al∞(Ksep)), it follows from the last two

paragraphs and from Lemma 4.4 that K(Ator(Ksep)) is an HR-extension of R.
�
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