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Introduction

Let R be an integral domain with quotient field K. Let T = (Ty,...,T,) be
an r-tuple of indeterminates and let X be an additional indeterminate. Given
irreducible polynomials fi, ..., f,, € K(T)[X] that are separable in X, the set
Hi(f1,..., fm;g) of all a € K" such that fi(a,X),..., fm(a,X) are defined
and irreducible in K[X] is a separable Hilbert subset of K”. We say that
R is a Hilbertian ring if H N R" # () for every positive integer r and every
separable Hilbert subset H of K.

Let K be a field with a separable algebraic closure Kp, let e be a positive
integer, and write Gal(K) = Gal(Kep/K) for the absolute Galois group of K.
For a Galois extension L/K and for an e-tuple o = (01,...,0.) € Gal(K)® we
let

[olk = (o) | v=1,...,eand 7 € Gal(K))

be the closed normal subgroup of Gal(K) that is generated by o1,...,0.. We
also consider the maximal Galois subextension

Lok ={a€eL| a” =a, V7 € [o]k}

of L/K that is fixed by each o,, ¥ = 1,...,e. Note that the group [o]x and
the field L{o]x depend on the base field K.

Since Gal(K)¢ is profinite, hence compact, it is equipped with a probability
Haar measure [FrJ08, §18.5]. In [Jar97], the first author proves that if K is a
countable Hilbertian field, then Kgep[o]x is Hilbertian for almost all o €
Gal(K)e, that is for all o in Gal(K)® but a set of measure zero. Bary-Soroker
and Fehm generalize this result by replacing Kgp, with an arbitrary Galois
extension L of K. They prove that L[o]x is Hilbertian for almost all o €
Gal(K)° [BaF13| Thm. 1.1]. The purpose of this work is to generalize their
result to the level of rings:

Theorem: Let R be a countable Hilbertian ring with quotient field K and let
Rscp be the integral closure of R in Ky, Let L be a Galois extension of K in
Keep and let e be a positive integer. Then, Rsep, N L{o] i is Hilbertian for almost
all o € Gal(K)°.

1 Preliminaries

We recall several concepts and results about linear disjointness of fields, measure
theory, and twisted wreath products of groups.

Linear Disjointness. Let K C K; C L be a tower of fields. We say that
L/K; satisfies the K-linearly disjoint condition if there exists an infinite
linearly disjoint sequence of finite proper extensions of K within L of the same
degree that are Galois over K.

This condition is related to the “Lx-condition” introduced at the begin-
ning of Section 2 of [BaF13]. The following four lemmas are the counterparts
of the lemmas that appear in that section.
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Lemma 1.1. Let (M;);>1 be a linearly disjoint sequence of extensions of a field
K and let E/K be a finite Galois extension. Then, M; is linearly disjoint from
FE over K for all but finitely many .

Proof. Assume toward contradiction that there there is an increasing sequence
i1 < iy < i3 < --- of positive integers such that E is not linearly disjoint from
M;,; over K for each j > 1. Since E/K is Galois, this means that E N M;,
is a proper extension of K for each j > 1. Since K has only finitely many
extensions in F, there are positive integers j < k such that ENM;, = ENM,;,.
In particular, M;, N M;, is a proper extension of K, contradicting the linear
disjointness of M;, and M;, over K. O

Lemma 1.2. Let K C Ky C L be fields such that L/K is Galois, K1/K is a
finite extension, and L/ K satisfies the K -linearly disjoint condition. Let My be
a finite Galois extension of Ky and let d be a positive integer. Then, there exist
a finite group G with |G| > d and an infinite sequence (M;);>1 of extensions of
Ky within L that are Galois over K such that Gal(M; /K1) = G for everyi > 1
and the sequence (M;);>o is linearly disjoint over K.

Proof. By assumption, K has a linearly disjoint sequence M7, M4, M}, ... of
proper extensions within L of the same degree that are Galois over K. For each

positive integer j we set M} = M(’jfl)dJrl -+ M7 ;. By the linear disjointness

(M} K] = [M{;_yyqyy s Ka] -+ [M]y s Ki] = [M] : K] > 20 > d.

As a compositum of Galois extensions over K, each of the fields M j’-’ is

Galois over K. In addition, the sequence M, My MY ... is linearly disjoint
over K. Since there are, up to isomorphism, only finitely many groups of order
[M] : K]% we may replace the sequence Mj', My MY, ... by a subsequence

to assume the existence of a finite group G of order greater than d such that
Gal(M]' /K1) = G for each j > 1.

Finally, we may apply induction and Lemma to extract an infinite
subsequence My, Mo, M5, ... of My, MY MY, ... such that My, My, Ms, ... is
linearly disjoint over K7, as desired. O

Lemma 1.3. Let K C K7 C Ko C L be fields such that L/ K is Galois, Ko/ K
is finite Galois, and L/ K, satisfies the K -linearly disjoint condition. Then, also
L/K; satisfies the K -linearly disjoint condition.

Proof. By assumption, K; has a linearly disjoint sequence K7, K5, K}, ... of
proper extensions within L that are Galois over K of the same degree. We apply
Lemma [I.1] to inductively construct an increasing sequence i; < is < i3 < --- of

positive integers such that KoK , KoK , Ko K|, ... are linearly disjoint proper
extensions of K5. Since all of these fields are contained in L and are Galois over
K with the same degree, L/K, satisfies the K-linearly disjoint condition, as

claimed. O

Recall that a Galois extension L/K is small if for each positive integer n,
K has only finitely many extensions of degree n within L, equivalently, if for
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each positive integer n, K has only finitely many Galois extensions of degree n
within L.

Lemma 1.4. Let L/K be a non-small Galois extension. Then, K has a finite
Galois extension Ky within L such that L/K; satisfies the K-linearly disjoint
condition.

Proof. By definition, K is contained in infinitely many finite Galois extensions
My, My, M3, ... of K within L of the same degree. Let K; be a maximal Galois
extension of K which is contained in infinitely many of the M;’s. Replacing the
above sequence by a subsequence, we may assume that K7 C M; for all 7.

We assume by induction that i1 < i3 < - < 4, are positive integers such
that M;,, M,,,..., M, are linearly disjoint over Ky. Let M = M;, M,, --- M;, .
Since K; has only fintely many extensions within M, K; has an extension Ko
and there exist infinitely many ¢ > 4,, with M; N M = K5. In particular, K5 is
Galois over K. The maximality property of K; implies that Ko = K7. Let i5,41
be the first integer greater than 4, such that M, 1 N M = Ky = K;. Then,
M, -+, M;,, M;, ., are linearly disjoint over Kj.

It follows by induction that M;, , M;,, M;,, ... is an infinite linearly disjoint
sequence of extensions of K of the same degree within L that are Galois over
K. Thus, L/K; satisfies the K-linearly disjoint condition. U

19"

Recall that a profinite group G is small if for each positive integer n, G
has only finitely many open subgroups of the same degree [ErJ0O8, p. 329, Section
16.10]. Thus, a Galois extension L/K is small if and only if Gal(L/K) is small.

Lemma 1.5 ([ErJ08|, p. 332, Prop. 16.11.1). Let L be a Galois extension of a
Hilbertian field K. Suppose Gal(L/K) is small. Then, for every positive integer
r, each separable Hilbert subset H of L" contains a separable Hilbert subset of
K". In particular, L is Hilbertian.

Measures. We cite two basic results about measure spaces.
For a profinite group G we denote the probability Haar measure on G by

HG-

Lemma 1.6 ([BaF13|, Lemma 3.1). Let G be a profinite group, H < G an
open subgroup, S C G a set of representatives of G/H, and ¥1,...,5, C H
measurable pp-independent sets. Let X} = Ugesgzi. Then, ¥7,...,%5 are
G -independent.

Lemma 1.7 ([BaF13|, Lemma 3.2). Let (2, 1) be a measure space. For each
i>1, let A; C B; be measurable subsets of Q. If u(A;) = pu(B;) for everyi > 1,

then pn(U;2 Ai) = n(Ui2, Bi)-

Twisted Wreath Products. Let A and G; < G be finite groups together
with a right action of G; on A. The set of Gi-invariant functions from G to A,

Indg (A) = {f: G — A| f(or) = f(0)" for all ¢ € G and 7 € G4},
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forms a group under pointwise multiplication. The group G acts on Indg (4)
from the right by f7(7) = f(o7), for all 0,7 € G. The twisted wreath
product is defined to be the semidirect product

Awrg, G =Indg (A) x G
[FrJO8| p. 253, Def. 13.7.2]. Let 7: Indgl(A) — A be the projection given by
m(f) = f(1).

Lemma 1.8 ([BaF13|, Lemma 4.1). Let G = G1 x G2 be a direct product of
finite groups, let A be a finite G1-group, and let I = Indg1 (A). Assume that
|Ga| > |A|. Then, there exists ¢ € I such that for every ¢1 € G1, the normal
subgroup N of Awrg,G generated by T = (¢, (g1,1)) satisfies (N N1T) = A.

Following [Har99] we say that a tower of fields
KCE CECNCN

realizes a twisted wreath product Awrg, G if N/K is a Galois extension with
Galois group isomorphic to Awrg, G and the tower of fields corresponds to the
subgroup series

Awrg, G > Indg1 (A) x Gy > Indg1 (A) > Ker(m) > 1.

In particular, we have the following commutative diagram:

Gal(N/E) —>Indg, (A)

Gal(N/E) A

2 Hilbertian Rings

We present results about Hilbertian rings needed in the proof of our main the-
orem. The first one is an adjusted version of [BaF13, Lemma 5.1].

Lemma 2.1. Let Ky be a Hilbertian field, let x = (x1,...,2q) be a d-tuple of
variables, let 0 # g(x) € K1[x], and consider field extensions M, E, E1, N of K;
as in the following diagram:

M — ME, — ME;(x) — MN

K1 —F E1 El(X) N

Assume that E, E1, M are finite Galois extensions of K1, E=MNE;, N is a
finite Galois extension of K1(x) that is reqular over Ey, and let y € N.
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Then, there exists a separable Hilbert subset H of K{ such that for each
b € H we have g(b) # 0 and the specialization x — b extends to an E;-place ¢
of N such that ¢(y) is finite, the residue fields of K1(x), E1(x,y), and N are
K1, Ei(p(y)), and N, respectively, where N is a Galois extension of K, which
is linearly disjoint from M over E, and Gal(N/K;) = Gal(N/K;(x)).

Proof. Since M N FEy = E, M and E; are linearly disjoint over E. Since N
is regular over E1, N is linearly disjoint from M E; over E;. Hence, M and N
are linearly disjoint over E. Therefore, M (x) is linearly disjoint from N over
E(x), so M(x) NN = E(x).

For every b € K¢ there exists a Ki-place ¢ of Ki(x) with residue field
K; and ¢p(x) = b. It extends uniquely to M F;(x), and the residue fields of
M (x) and E;(x) are M and E4, respectively.

By [FrJ08, p. 231, Lemma 13.1.1], applied to the separable extensions
Ei(x,y), N, and M N of K;(x), there exists a separable Hilbert subset H of K¢
such that for each b € H we have g(b) # 0 and any extension ¢ of ¢y to M N
satisfies the following: ©(y) is finite, the residue field of E1(x,y) is E1(p(y)), the
residue fields M N and N of MN and N, respectively, are Galois over K, and
¢ induces isomorphisms Gal(N/K;(x)) 2 Gal(N/K;) and Gal(MN/K;(x)) =
Gal(MN/K;) such that the following diagram commutes:

M(X)iM El( )
i
Kl E(X E1 7E1(X y)iN
/ / o v
K; — 7N7MN

By Galois correspondence, the latter isomorphism induces an isomorphism of the
lattices of intermediate fields of M N/K;(x) and MN/K;. Hence, M(x)NN =
E(x) implies that M NN = E, which means that M and N are linearly disjoint
over F. O

Lemma 2.2 ([JaR18], Lemma 2.1). Let R be a Hilbertian ring with quotient
field K and let L be a finite separable extension of K. Then, the integral closure
Ry of R in L is also Hilbertian.

Lemma 2.3 ([JaR18], Lemma 1.2). Let R be an integral domain with quotient
field K. Suppose that each separable Hilbert subset of K of the form H (g) with
irreducible g € K[X,Y], separable, monic, and of degree at least 2 in'Y', has an
element in R. Then, R is Hilbertian.

The following result is a special case of [FrJ08, p. 235, Lemma 13.1.4].

Lemma 2.4. Let K be an infinite field and let g € K[X,Y] be an irreducible
polynomial which is monic and separable in Y. Then, there are a finite Galois
extension L of K and an absolutely irreducible polynomial f € K[X,Y] which as
a polynomial in'Y is monic and Galois over L(X) such that KNHp(f) C Hk(g).
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3 Main Result

The following lemma is the decisive step toward our main result. It generalizes
[BaF13, Lemma 6.1] to rings. Here we abuse our notation and for every field
K and every positive integer e we use px for the normalized Haar measure of
Gal(K)©.

Lemma 3.1. Let R be a Hilbertian ring with quotient field K and let Rsep, be the
integral closure of R in Kyep. Let K C K1 C L C Kyp be a tower of fields such
that L/K is Galois, K1/K is finite Galois, and L/K; satisfies the K -linearly
disjoint condition (Section . Let e be a positive integer, let f € K1[X,Y] be an
absolutely irreducible polynomial that is monic in'Y and Galois over Kqep(X).
Finally, let K| be a finite separable extension of K.

Then, for almost all o € Gal(K7)¢ there exists a € Rgep N L[0T )¢ such that
f(a,Y) is irreducible over K1 - Lo k.

Proof. We break up the proof into several parts.

Part A: Diagram of fields. Let E be a finite Galois extension of K such that
K{ C F and f is Galois over E(X), and set G; = Gal(E/K7). It suffices to
prove that for almost all & € Gal(K7)¢ there exists a € Ryep N L[o] i such that
f(a,Y) is irreducible over E - L|o] k.

To this end we construct the following diagram of fields:

L — Ky, (1)

E;
G2

o E—— E(z) —~ F = E(z,y)

E! G1 G1 G1

BN

2

Ky — Ki(z) — F' = Ki(z,y)

|
K

Let « be a transcendental element over K and let y be a root of f(z,Y) in
a separable algebraic closure of Ki(z) that contains Kep. Let F/ = Ki(z,y)
and F = E(x,y). Since f(X,Y) is absolutely irreducible, F'/K; is regular,
hence F” is linearly disjoint from E over K;. Therefore, F’ is linearly disjoint
from E(z) over Ki(x), so Gal(F/F') = Gal(E(z)/Ki(x)) = Gal(E/K;y) = G;.
Since f(x,Y) is Galois over E(x), the extension F/E(zx) is Galois. We set
A = Gal(F/E(x)). Then,

Al = [F: E(x)] = deg(f (2, Y)) = degy f(X,Y). (2)

Also, Ki(x) is the fixed field of the subgroup (A, G1) of Aut(F). Therefore,
F/K;(x) is a Galois extension with Gal(F/K;(z)) = (A, G1) and G1 acts on A
by conjugation.
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Since L/K; satisfies the K-linearly disjoint condition, we get by Lemma
applied to My = E, that there exists a finite group Gy with d := |G2| > |A]
and a sequence (E7);>1 of linearly disjoint extensions of Ky within L which are
Galois over K with Gal(E!/K) 2 G2, such that the sequence E, E{, E}, EY, ...
is linearly disjoint over K. Let

E;, = EE.. (3)

Then, E;/K is Galois and Gal(E;/ K1) = G := G x G, for every i.
Part B: Twisted wreath product. Let x = (x1,...,24) be a d-tuple of in-

determinates, and for each ¢ choose a basis wji,...,w;q of E!/K; such that
Wi, . .., Ww;q are integral over R. By [Har99, Lemma 3.1], for each ¢ we have a
tower

Ki(x) C El(x) C Ei(x) C N; = Ei(x,y;) C N; (4)

that realizes the twisted wreath product Awrg, G, such that N; is regular over
E;, where irr(y;, E;(x)) = f(Zizl w;yx,,Y). In particular, Gal(N;/ K (x)) =
Awrg, G, Gal(N;/E;(x)) = IndZ (A), and Gal(N;/E;(x)) = A.

Part C: Specialization of @ We inductively construct an ascending sequence

(zj)j 1 of positive integers and for each j > 1 an F; -place p; of NZ such that

for each positive integer k the following conditions hold

(ba) For j = 1,...,k and v = 1,...,d we have ¢;(x,) € Rsep N K1, hence
a; = 25:1 Wi, 05(Ty) € Reep N EZ(], and ¢;(yi;) € Ksep-

(5b) For j =1,...,k and for i = i;, the residue field tower of under ¢;,

K\ C E;, C E;; C M, QMij7

realizes the twisted wreath product Awrg, G. Moreover, f(a;,Y) is ir-
reducible over E;, and M;; is generated over E;, by the root ¢;(y;,) of

fa;,Y). Thus, [M;, : E; ] = deg(f(a;,Y)) = degy (f(X,Y)) =8 |A].
(5¢) The sequence M;, , ..., M,

i 1s linearly disjoint over E.

Indeed, suppose that i1,...,ix—1 and ¢1,...,9r_1 with the appropriate
properties have been constructed and let M = Mil -~-]\Zfik71. By Lemma
there is i > ix_1 such that E’ is linearly disjoint from M over K;. Hence,
E;, = EE; _is linearly disjoint from M over E.

Let R1 be the integral closure of R in K;. Since R is Hilbertian and K; /K
is finite and separable, R; is Hilbertian (Lemma . Applying Lemma [2.1] - to
M, E, E;, Ny, vi,, we get a separable Hilbert subset H of K¢ such that for
each b € H, the specialization x — b extends to an F;, -place ¢j, of le such
that [(5b)] and [(5¢)| hold for iy, - - ,ix_1,ix. Since R; is Hilbertian, there exists

b € HN R{, so also[(5a)|is satisfied for i1, ..., i,_1, 7.

Part D: A special element of Indg1 (4). We set I = Indg1 (4), fix j, and
make the following identifications: Gal(]\Zfij /K1) = Awrg,G = I x (G x Ga),
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Gal(Mij/Ei].) = I, and Gal(M;, /E;;) = A. The restriction map Gal(Mij/Eij) —
Gal(M;, /E;,) is thus identified with 7: I — A and Gal(M;, /M;,) = Ker(n).
Let ¢ € I be as in Lemma [1.§] let

% = (o € Gal(K1)* | 3gun € Gr: (6)
v=1

Uul]\}[ij = (Cv (gulvl)) € I (Gl X GQ)}a

and note that the intersected sets on the right hand side of (6) are yux,-ind-
ependent. Then, by that lemma, for each o € ¥}, the normal subgroup N

generated by o1y, ..., 0]y, in Gal(Mij /K1) satisfies
m(NNI)=A. (7)

Moreover, with Q = Ksep[o|k,, we have N = Gal(Mij /]\Zl'l7 naQ).

Part E: We prove that for a fixed positive integer j and for each o € ¥ the
polynomial f(a;,Y') is irreducible over E- L{o]x. Indeed, consider o € ¥7 and
let P = L[o]k. Then,

P = LN Kuploli € Kuplol € Kueplol, = Q. (®)

By Part A, E{j is Galois over K. By (6], for v = 1,...,e we have o,|y =
i

(¢, (gu1,1)) with ¢ € I and g,1 € G1. Hence, by the begining of Part D and by
Diagram , o, fixes EZ’J Therefore, K C EZ’J C Llo]lx = P. Tt follows from

that aj € P. Moreover,

@ Sep )

(3)

E;,Q = EE,Q = EQ
Since by M, is generated by a root of f(a;,Y) over E;,, @[) implies that
M;,Q is generated by a root of f(a;,Y) over EQ.

Keplolx, =Q ——— E;,Q = EQ M;,Q MijQ (10)
o Ker(7)
E Ej, = M;,

Using Diagram , the equalities N = Gal(Mij/]\Zfij N Q) and Ker(n) =
Gal(Mij /M;,) that appear in Part D imply that

Gal(M;,Q/M;,Q) = Gal(M;, /(M;, N Q)M;,) = N N Ker(r)
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and
Gal(M;,Q/E;,Q) = Gal(M;,/(M;, NQ)E;,) = NN 1.

Hence,
Gal(MZ—jQ/EijQ) 2 (NNnI)/(NNnKer(nm)) 2 a(NNI) @A.

Therefore, [M;,Q : E;,Q] = 1A =B degy f(X,Y) = deg f(a;,Y). Since, by
M;,Q is generated over E;,Q by a root of f(a;,Y), we get that f(a;,Y)
is irreducible over E; Q. It follows from @[) that f(a;,Y) is irreducible over
EP =FE - L|o]k, as claimed.

Part F: We prove that almost all o € Gal(K1)¢ lie in infinitely many 3. To
this end we set

e
Ej = ﬂ{a S Gal(E)e| O-”‘M,y. = (<7(1,1)) elx (Gl X GQ)

v=1 ! (11)
[(5b)] -
!Gal(Mij /Kl)}
This is a coset of Gal(]\;flvj )¢ in Gal(E)°. Since, by , the sequence (Mlj )52 is
linearly disjoint over E, the sets Gal(]\}[ij)e are pp-independent [ErJO8, p. 378,
Lemma 18.5.1]. Thus, by [ErJO8, p. 373, Lemma 18.3.7], also the sets X; are
pg-independent. In addition, since Gal(Mij /K1) 2 Ix(G1xGyq), we can choose
for every positive integer j and for every g € G =0 Gal(E/K;) an element
gj € Gal(K,) such that g;|;, = (1,(g,1)). Then,

i

S =1g;:=(914,--+19e;) € Gal(K1)°| g1,...,9¢c € G1}

is a set of representatives for the right cosets of Gal(E)®¢ in Gal(K7)¢. Moreover,
since (¢, (1,1))(1,(g,1)) = (¢, (g,1)) for each g € Gy, @ and imply that
¥ = Ugje g 2;8; for every j. Therefore, Lemma implies that the sets 7

are L, -independent. Moreover, by @,

Gl
2y =S
MKI( ]) ‘AWI‘GIG|6
does not depend on j, so 3377 | ux, (X7) = oo. It follows from the Borel-Cantelli
lemma [FrJO8| p. 372, Lemma 18.3.5] that almost all o € Gal(K7)° lie in in-
finitely many X%, as claimed.

End of proof: By Part E, for each positive integer j and for every o € X7
the polynomial f(a;,Y) is irreducible over E - Lio|x. By Part F, almost all
o € Gal(K1)° lie in infinitely many 7. By @ a; belong to Reep N E;J_,
hence also to Rsep N Lo k. Therefore, for almost all o € Gal(K7)® there exists
a € Rgep N Lio]k such that f(a,Y) is irreducible over E - L[o|k, as claimed.
O

The following proposition is a generalization of [BaF13l Prop. 6.2] to rings.
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Proposition 3.2. Let R be a countable Hilbertian ring with quotient field K
and let Rsp be the integral closure of R in Kgp. Let K C Ky C L C Kgop
be a tower of fields such that L/K is Galois, K1/K is finite Galois, and L/K;
satisfies the K-linearly disjoint condition. Let e be a positive integer. Then,
Reep N Lio| i is Hilbertian for almost all o € Gal(K1)°.

Proof. Let F be the set of all triples (K», K}, f), where K5 is a finite extension
of K7 within L which is Galois over K, K/}/K>5 is a finite separable extension,
and f(X,Y) € K»[X,Y] is an absolutely irreducible polynomial that is monic
in Y and Galois over Kgep(X). Since K is countable, the set F is countable.
If (K2, K}, f) € F, then the integral closure Ry of R in K5 is Hilbertian
(Lemma 2.2) and L/K> satisfies the K-linearly disjoint condition (Lemma[L.3)).

Hence, Lemma applied to K5 rather than to K7, yields a subset EE Ko, KL, f)
of Gal(K3)® with uKl(EszKéJ)) = pk, (Gal(K3)¢) such that for every o €
Xlre, Ky,p) there exists a € Ryep N Llo]k such that f(a,Y) is irreducible over
K) - Lio]k. Let

2(K27K§7f) = E/(K27Ké,f) U (Gal(Kl)e N Gal(Kg)e) .

Then, pr, (X(x,,kx5.5)) = K, (Gal(K1)¢). Since F is countable, it follows that
the pg,-measure of ¥ = ﬂ(Kz,Ké,f)G}- (K x5, p) 18 1.

We consider o € ¥ and let P = L{o]x and Rp = Reep N P. In order to
prove that Rp is Hilbertian, it suffices, by Lemma[2:3] to consider an irreducible
polynomial g € P[X,Y], separable, monic, and of degree at least 2 in Y and to
prove that Hp(g) has an element in Rp.

By Lemma there exist a finite Galois extension P’ of P and an abso-
lutely irreducible polynomial f € P[X,Y] which as a polynomial in Y is monic
and Galois over P/(X) such that

P Hp(f) C Hp(g). (12)

In particular, f is Galois over Kgep(X). Choose a finite extension K»/K; which
is Galois over K such that Ko C P C L and f € K3[X,Y]. Let K} be a finite
extension of Ky such that PK5 = P’. Then o € Gal(K3)®. Since, in addition,
0 € XK, K, 1), We get that o € E/(KQ,Kg,f)' Thus, there exists a € Rp such that

f(a,Y) is irreducible over PK}, = P',so a € Rp N Hp:(f) c@ Rpn Hp(g), as
desired. g

Theorem 3.3. Let R be a countable Hilbertian ring with quotient field K and
let Ryep be the integral closure of R in Ksp. Let L be a Galois extension of K

in Kep and let e be a positive integer. Then, Rsep N Lio|k is Hilbertian for
almost all o € Gal(K)°.

Proof. Let F be the set of all finite Galois extensions K7 of K within L for
which L/K; satisfies the K-linearly disjoint condition. Since K is countable, so
is F. Let

Y = {0 € Gal(K)¢| Rsep N L|o]x is Hilbertian } .
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For K; € F, let ¥k, = Gal(K71)® N X. Note that

Gal(K1)* ={o € Gal(K)°| K1 C Lio|x}. (13)
By Proposition [3.2]

pir (Zk,) = pr(Gal(K1)¢) for each K7 € F. (14)

Let

A = Gal(K)°~ U Gal(K7)° {0' € Gal(K)¢| Ky € Llo]k for all Ky € F}.
KieF

If o € A, then by Lemma Llo]k /K is small. By Lemma for every
positive integer r, each separable Hilbert subset H of L{o]}, contains a separable
Hilbert subset Hx of K. Since R is Hilbertian, R"NHy # (). Therefore, RgepN
Llo]k is Hilbertian. Thus, A C ¥. Since Gal(K)® = AU g, c» Gal(K1)*,
Lemma implies that

px(B) = px((Enayu | ZKl)uK(AU U Gal(ky))
KieF KieF

— jxc(Gal(K)*) = 1,

which concludes the proof of the theorem. O
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