
1

Random Galois extensions of Hilbertian rings

by

Moshe Jarden, Tel Aviv University, jarden@post.tau.ac.il

and

Aharon Razon, Elta, razona@elta.co.il

Abstract: Let R be a countable Hilbertian ring with quotient field K and let
L be a Galois extension of K. We generalize a result of Lior Bary-Soroker and
Arno Fehm from fields to rings and prove that for an abundance of large Galois
extensions N of K within L, the integral closure of R in N is Hilbertian.

8 November 2018



1 PRELIMINARIES 2

Introduction

Let R be an integral domain with quotient field K. Let T = (T1, . . . , Tr) be
an r-tuple of indeterminates and let X be an additional indeterminate. Given
irreducible polynomials f1, . . . , fm ∈ K(T)[X] that are separable in X, the set
HK(f1, . . . , fm; g) of all a ∈ Kr such that f1(a, X), . . . , fm(a, X) are defined
and irreducible in K[X] is a separable Hilbert subset of Kr. We say that
R is a Hilbertian ring if H ∩ Rr 6= ∅ for every positive integer r and every
separable Hilbert subset H of Kr.

Let K be a field with a separable algebraic closure Ksep, let e be a positive
integer, and write Gal(K) = Gal(Ksep/K) for the absolute Galois group of K.
For a Galois extension L/K and for an e-tuple σ = (σ1, . . . , σe) ∈ Gal(K)e we
let

[σ]K = 〈στν | ν = 1, . . . , e and τ ∈ Gal(K)〉
be the closed normal subgroup of Gal(K) that is generated by σ1, . . . , σe. We
also consider the maximal Galois subextension

L[σ]K = {a ∈ L | aτ = a , ∀τ ∈ [σ]K}

of L/K that is fixed by each σν , ν = 1, . . . , e. Note that the group [σ]K and
the field L[σ]K depend on the base field K.

Since Gal(K)e is profinite, hence compact, it is equipped with a probability
Haar measure [FrJ08, §18.5]. In [Jar97], the first author proves that if K is a
countable Hilbertian field, then Ksep[σ]K is Hilbertian for almost all σ ∈
Gal(K)e, that is for all σ in Gal(K)e but a set of measure zero. Bary-Soroker
and Fehm generalize this result by replacing Ksep with an arbitrary Galois
extension L of K. They prove that L[σ]K is Hilbertian for almost all σ ∈
Gal(K)e [BaF13, Thm. 1.1]. The purpose of this work is to generalize their
result to the level of rings:

Theorem: Let R be a countable Hilbertian ring with quotient field K and let
Rsep be the integral closure of R in Ksep. Let L be a Galois extension of K in
Ksep and let e be a positive integer. Then, Rsep∩L[σ]K is Hilbertian for almost
all σ ∈ Gal(K)e.

1 Preliminaries

We recall several concepts and results about linear disjointness of fields, measure
theory, and twisted wreath products of groups.

Linear Disjointness. Let K ⊆ K1 ⊆ L be a tower of fields. We say that
L/K1 satisfies the K-linearly disjoint condition if there exists an infinite
linearly disjoint sequence of finite proper extensions of K1 within L of the same
degree that are Galois over K.

This condition is related to the “LK-condition” introduced at the begin-
ning of Section 2 of [BaF13]. The following four lemmas are the counterparts
of the lemmas that appear in that section.
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Lemma 1.1. Let (Mi)i≥1 be a linearly disjoint sequence of extensions of a field
K and let E/K be a finite Galois extension. Then, Mi is linearly disjoint from
E over K for all but finitely many i.

Proof. Assume toward contradiction that there there is an increasing sequence
i1 < i2 < i3 < · · · of positive integers such that E is not linearly disjoint from
Mij over K for each j ≥ 1. Since E/K is Galois, this means that E ∩Mij

is a proper extension of K for each j ≥ 1. Since K has only finitely many
extensions in E, there are positive integers j < k such that E ∩Mij = E ∩Mik .
In particular, Mij ∩Mik is a proper extension of K, contradicting the linear
disjointness of Mij and Mik over K. �

Lemma 1.2. Let K ⊆ K1 ⊆ L be fields such that L/K is Galois, K1/K is a
finite extension, and L/K1 satisfies the K-linearly disjoint condition. Let M0 be
a finite Galois extension of K1 and let d be a positive integer. Then, there exist
a finite group G with |G| > d and an infinite sequence (Mi)i≥1 of extensions of
K1 within L that are Galois over K such that Gal(Mi/K1) ∼= G for every i ≥ 1
and the sequence (Mi)i≥0 is linearly disjoint over K1.

Proof. By assumption, K1 has a linearly disjoint sequence M ′1,M
′
2,M

′
3, . . . of

proper extensions within L of the same degree that are Galois over K. For each
positive integer j we set M ′′j = M ′(j−1)d+1 · · ·M

′
jd. By the linear disjointness

[M ′′j : K1] = [M ′(j−1)d+1 : K1] · · · [M ′jd : K1] = [M ′1 : K1]d ≥ 2d > d.

As a compositum of Galois extensions over K, each of the fields M ′′j is
Galois over K. In addition, the sequence M ′′1 ,M

′′
2 ,M

′′
3 , . . . is linearly disjoint

over K1. Since there are, up to isomorphism, only finitely many groups of order
[M ′1 : K1]d, we may replace the sequence M ′′1 ,M

′′
2 ,M

′′
3 , . . . by a subsequence

to assume the existence of a finite group G of order greater than d such that
Gal(M ′′j /K1) ∼= G for each j ≥ 1.

Finally, we may apply induction and Lemma 1.1 to extract an infinite
subsequence M1,M2,M3, . . . of M ′′1 ,M

′′
2 ,M

′′
3 , . . . such that M0,M1,M2, . . . is

linearly disjoint over K1, as desired. �

Lemma 1.3. Let K ⊆ K1 ⊆ K2 ⊆ L be fields such that L/K is Galois, K2/K
is finite Galois, and L/K1 satisfies the K-linearly disjoint condition. Then, also
L/K2 satisfies the K-linearly disjoint condition.

Proof. By assumption, K1 has a linearly disjoint sequence K ′1,K
′
2,K

′
3, . . . of

proper extensions within L that are Galois over K of the same degree. We apply
Lemma 1.1 to inductively construct an increasing sequence i1 < i2 < i3 < · · · of
positive integers such that K2K

′
i1
,K2K

′
i2
,K2K

′
i3
, . . . are linearly disjoint proper

extensions of K2. Since all of these fields are contained in L and are Galois over
K with the same degree, L/K2 satisfies the K-linearly disjoint condition, as
claimed. �

Recall that a Galois extension L/K is small if for each positive integer n,
K has only finitely many extensions of degree n within L, equivalently, if for
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each positive integer n, K has only finitely many Galois extensions of degree n
within L.

Lemma 1.4. Let L/K be a non-small Galois extension. Then, K has a finite
Galois extension K1 within L such that L/K1 satisfies the K-linearly disjoint
condition.

Proof. By definition, K is contained in infinitely many finite Galois extensions
M1,M2,M3, . . . of K within L of the same degree. Let K1 be a maximal Galois
extension of K which is contained in infinitely many of the Mi’s. Replacing the
above sequence by a subsequence, we may assume that K1 ⊆Mi for all i.

We assume by induction that i1 < i2 < · · · < in are positive integers such
that Mi1 ,Mi2 , . . . ,Min are linearly disjoint over K1. Let M = Mi1Mi2 · · ·Min .
Since K1 has only fintely many extensions within M , K1 has an extension K2

and there exist infinitely many i > in with Mi ∩M = K2. In particular, K2 is
Galois over K. The maximality property of K1 implies that K2 = K1. Let in+1

be the first integer greater than in such that Mn+1 ∩M = K2 = K1. Then,
Mi1 , · · · ,Min ,Min+1

are linearly disjoint over K1.
It follows by induction that Mi1 ,Mi2 ,Mi3 , . . . is an infinite linearly disjoint

sequence of extensions of K1 of the same degree within L that are Galois over
K. Thus, L/K1 satisfies the K-linearly disjoint condition. �

Recall that a profinite group G is small if for each positive integer n, G
has only finitely many open subgroups of the same degree [FrJ08, p. 329, Section
16.10]. Thus, a Galois extension L/K is small if and only if Gal(L/K) is small.

Lemma 1.5 ([FrJ08], p. 332, Prop. 16.11.1). Let L be a Galois extension of a
Hilbertian field K. Suppose Gal(L/K) is small. Then, for every positive integer
r, each separable Hilbert subset H of Lr contains a separable Hilbert subset of
Kr. In particular, L is Hilbertian.

Measures. We cite two basic results about measure spaces.
For a profinite group G we denote the probability Haar measure on G by

µG.

Lemma 1.6 ([BaF13], Lemma 3.1). Let G be a profinite group, H ≤ G an
open subgroup, S ⊆ G a set of representatives of G/H, and Σ1, . . . ,Σk ⊆ H
measurable µH-independent sets. Let Σ∗i =

⋃
g∈S gΣi. Then, Σ∗1, . . . ,Σ

∗
k are

µG-independent.

Lemma 1.7 ([BaF13], Lemma 3.2). Let (Ω, µ) be a measure space. For each
i ≥ 1, let Ai ⊆ Bi be measurable subsets of Ω. If µ(Ai) = µ(Bi) for every i ≥ 1,
then µ(

⋃∞
i=1Ai) = µ(

⋃∞
i=1Bi).

Twisted Wreath Products. Let A and G1 ≤ G be finite groups together
with a right action of G1 on A. The set of G1-invariant functions from G to A,

IndGG1
(A) = {f : G→ A | f(στ) = f(σ)τ for all σ ∈ G and τ ∈ G1},
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forms a group under pointwise multiplication. The group G acts on IndGG1
(A)

from the right by fσ(τ) = f(στ), for all σ, τ ∈ G. The twisted wreath
product is defined to be the semidirect product

AwrG1
G = IndGG1

(A) oG

[FrJ08, p. 253, Def. 13.7.2]. Let π: IndGG1
(A) → A be the projection given by

π(f) = f(1).

Lemma 1.8 ([BaF13], Lemma 4.1). Let G = G1 × G2 be a direct product of
finite groups, let A be a finite G1-group, and let I = IndGG1

(A). Assume that
|G2| ≥ |A|. Then, there exists ζ ∈ I such that for every g1 ∈ G1, the normal
subgroup N of AwrG1

G generated by τ = (ζ, (g1, 1)) satisfies π(N ∩ I) = A.

Following [Har99] we say that a tower of fields

K ⊆ E′ ⊆ E ⊆ N ⊆ N̂

realizes a twisted wreath product AwrG1G if N̂/K is a Galois extension with
Galois group isomorphic to AwrG1

G and the tower of fields corresponds to the
subgroup series

AwrG1G ≥ IndGG1
(A) oG1 ≥ IndGG1

(A) ≥ Ker(π) ≥ 1 .

In particular, we have the following commutative diagram:

Gal(N̂/E)
∼= //

res

��

IndGG1
(A)

π

��
Gal(N/E)

∼= // A .

2 Hilbertian Rings

We present results about Hilbertian rings needed in the proof of our main the-
orem. The first one is an adjusted version of [BaF13, Lemma 5.1].

Lemma 2.1. Let K1 be a Hilbertian field, let x = (x1, . . . , xd) be a d-tuple of
variables, let 0 6= g(x) ∈ K1[x], and consider field extensions M,E,E1, N of K1

as in the following diagram:

M ME1 ME1(x) MN

K1 E E1 E1(x) N

Assume that E,E1,M are finite Galois extensions of K1, E = M ∩ E1, N is a
finite Galois extension of K1(x) that is regular over E1, and let y ∈ N .
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Then, there exists a separable Hilbert subset H of Kd
1 such that for each

b ∈ H we have g(b) 6= 0 and the specialization x 7→ b extends to an E1-place ϕ
of N such that ϕ(y) is finite, the residue fields of K1(x), E1(x, y), and N are
K1, E1(ϕ(y)), and N̄ , respectively, where N̄ is a Galois extension of K1 which
is linearly disjoint from M over E, and Gal(N̄/K1) ∼= Gal(N/K1(x)).

Proof. Since M ∩ E1 = E, M and E1 are linearly disjoint over E. Since N
is regular over E1, N is linearly disjoint from ME1 over E1. Hence, M and N
are linearly disjoint over E. Therefore, M(x) is linearly disjoint from N over
E(x), so M(x) ∩N = E(x).

For every b ∈ Kd
1 there exists a K1-place ϕb of K1(x) with residue field

K1 and ϕb(x) = b. It extends uniquely to ME1(x), and the residue fields of
M(x) and E1(x) are M and E1, respectively.

By [FrJ08, p. 231, Lemma 13.1.1], applied to the separable extensions
E1(x, y), N , and MN of K1(x), there exists a separable Hilbert subset H of Kd

1

such that for each b ∈ H we have g(b) 6= 0 and any extension ϕ of ϕb to MN
satisfies the following: ϕ(y) is finite, the residue field of E1(x, y) is E1(ϕ(y)), the
residue fields MN and N̄ of MN and N , respectively, are Galois over K1, and
ϕ induces isomorphisms Gal(N/K1(x)) ∼= Gal(N̄/K1) and Gal(MN/K1(x)) ∼=
Gal(MN/K1) such that the following diagram commutes:

M(x)

ww
ww

M · E1(x)

ooo
oo

M ME1 MN

��

K1(x)

ww
ww

E(x)

xxx
xx

E1(x)

ppp
ppp

E1(x, y)

ww

N

yy
K1 E E1 E1(ϕ(y)) N̄ MN

By Galois correspondence, the latter isomorphism induces an isomorphism of the
lattices of intermediate fields of MN/K1(x) and MN/K1. Hence, M(x)∩N =
E(x) implies that M ∩ N̄ = E, which means that M and N̄ are linearly disjoint
over E. �

Lemma 2.2 ([JaR18], Lemma 2.1). Let R be a Hilbertian ring with quotient
field K and let L be a finite separable extension of K. Then, the integral closure
RL of R in L is also Hilbertian.

Lemma 2.3 ([JaR18], Lemma 1.2). Let R be an integral domain with quotient
field K. Suppose that each separable Hilbert subset of K of the form HK(g) with
irreducible g ∈ K[X,Y ], separable, monic, and of degree at least 2 in Y , has an
element in R. Then, R is Hilbertian.

The following result is a special case of [FrJ08, p. 235, Lemma 13.1.4].

Lemma 2.4. Let K be an infinite field and let g ∈ K[X,Y ] be an irreducible
polynomial which is monic and separable in Y . Then, there are a finite Galois
extension L of K and an absolutely irreducible polynomial f ∈ K[X,Y ] which as
a polynomial in Y is monic and Galois over L(X) such that K∩HL(f) ⊆ HK(g).
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3 Main Result

The following lemma is the decisive step toward our main result. It generalizes
[BaF13, Lemma 6.1] to rings. Here we abuse our notation and for every field
K and every positive integer e we use µK for the normalized Haar measure of
Gal(K)e.

Lemma 3.1. Let R be a Hilbertian ring with quotient field K and let Rsep be the
integral closure of R in Ksep. Let K ⊆ K1 ⊆ L ⊆ Ksep be a tower of fields such
that L/K is Galois, K1/K is finite Galois, and L/K1 satisfies the K-linearly
disjoint condition (Section 1). Let e be a positive integer, let f ∈ K1[X,Y ] be an
absolutely irreducible polynomial that is monic in Y and Galois over Ksep(X).
Finally, let K ′1 be a finite separable extension of K1.

Then, for almost all σ ∈ Gal(K1)e there exists a ∈ Rsep∩L[σ]K such that
f(a, Y ) is irreducible over K ′1 · L[σ]K .

Proof. We break up the proof into several parts.

Part A: Diagram of fields. Let E be a finite Galois extension of K such that
K ′1 ⊆ E and f is Galois over E(X), and set G1 = Gal(E/K1). It suffices to
prove that for almost all σ ∈ Gal(K1)e there exists a ∈ Rsep ∩ L[σ]K such that
f(a, Y ) is irreducible over E · L[σ]K .

To this end we construct the following diagram of fields:

L Ksep

mmmm
mmmm

m

Ei
G2

QQQ
QQQ

QQQ
Q

G1

00
00
00
00
0

E

G1

E(x)
A

G1

F = E(x, y)

G1E′i

G2
DD

DD

K1 K1(x) F ′ = K1(x, y)

K

(1)

Let x be a transcendental element over K and let y be a root of f(x, Y ) in
a separable algebraic closure of K1(x) that contains Ksep. Let F ′ = K1(x, y)
and F = E(x, y). Since f(X,Y ) is absolutely irreducible, F ′/K1 is regular,
hence F ′ is linearly disjoint from E over K1. Therefore, F ′ is linearly disjoint
from E(x) over K1(x), so Gal(F/F ′) ∼= Gal(E(x)/K1(x)) ∼= Gal(E/K1) = G1.
Since f(x, Y ) is Galois over E(x), the extension F/E(x) is Galois. We set
A = Gal(F/E(x)). Then,

|A| = [F : E(x)] = deg(f(x, Y )) = degY f(X,Y ). (2)

Also, K1(x) is the fixed field of the subgroup 〈A,G1〉 of Aut(F ). Therefore,
F/K1(x) is a Galois extension with Gal(F/K1(x)) = 〈A,G1〉 and G1 acts on A
by conjugation.
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Since L/K1 satisfies the K-linearly disjoint condition, we get by Lemma
1.2, applied to M0 = E, that there exists a finite group G2 with d := |G2| > |A|
and a sequence (E′i)i≥1 of linearly disjoint extensions of K1 within L which are
Galois over K with Gal(E′i/K1) ∼= G2, such that the sequence E,E′1, E

′
2, E

′
3, . . .

is linearly disjoint over K1. Let

Ei = EE′i. (3)

Then, Ei/K is Galois and Gal(Ei/K1) ∼= G := G1 ×G2 for every i.

Part B: Twisted wreath product. Let x = (x1, . . . , xd) be a d-tuple of in-
determinates, and for each i choose a basis wi1, . . . , wid of E′i/K1 such that
wi1, . . . , wid are integral over R. By [Har99, Lemma 3.1], for each i we have a
tower

K1(x) ⊆ E′i(x) ⊆ Ei(x) ⊆ Ni = Ei(x, yi) ⊆ N̂i (4)

that realizes the twisted wreath product AwrG1
G, such that N̂i is regular over

Ei, where irr(yi, Ei(x)) = f(
∑d
ν=1 wiνxν , Y ). In particular, Gal(N̂i/K1(x)) =

AwrG1
G, Gal(N̂i/Ei(x)) = IndGG1

(A), and Gal(Ni/Ei(x)) = A.

Part C: Specialization of (4). We inductively construct an ascending sequence
(ij)
∞
j=1 of positive integers and for each j ≥ 1 an Eij -place ϕj of N̂ij such that

for each positive integer k the following conditions hold.

(5a) For j = 1, . . . , k and ν = 1, . . . , d we have ϕj(xν) ∈ Rsep ∩ K1, hence

aj :=
∑d
ν=1 wijνϕj(xν) ∈ Rsep ∩ E′ij and ϕj(yij ) ∈ Ksep.

(5b) For j = 1, . . . , k and for i = ij , the residue field tower of (4) under ϕj ,

K1 ⊆ E′ij ⊆ Eij ⊆Mij ⊆ M̂ij ,

realizes the twisted wreath product AwrG1
G. Moreover, f(aj , Y ) is ir-

reducible over Eij and Mij is generated over Eij by the root ϕj(yij ) of

f(aj , Y ). Thus, [Mij : Eij ] = deg(f(aj , Y )) = degY (f(X,Y )) =(2) |A|.
(5c) The sequence M̂i1 , . . . , M̂ik is linearly disjoint over E.

Indeed, suppose that i1, . . . , ik−1 and ϕ1, . . . , ϕk−1 with the appropriate
properties have been constructed and let M = M̂i1 · · · M̂ik−1

. By Lemma 1.1,
there is ik > ik−1 such that E′ik is linearly disjoint from M over K1. Hence,
Eik = EE′ik is linearly disjoint from M over E.

Let R1 be the integral closure of R in K1. Since R is Hilbertian and K1/K
is finite and separable, R1 is Hilbertian (Lemma 2.2). Applying Lemma 2.1 to
M,E,Eik , N̂ik , yik , we get a separable Hilbert subset H of Kd

1 such that for

each b ∈ H, the specialization x 7→ b extends to an Eik -place ϕk of N̂ik such
that (5b) and (5c) hold for i1, · · · , ik−1, ik. Since R1 is Hilbertian, there exists
b ∈ H ∩Rd1, so also (5a) is satisfied for i1, . . . , ik−1, ik.

Part D: A special element of IndGG1
(A). We set I = IndGG1

(A), fix j, and

make the following identifications: Gal(M̂ij/K1) = AwrG1G = I o (G1 × G2),
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Gal(M̂ij/Eij ) = I, and Gal(Mij/Eij ) = A. The restriction map Gal(M̂ij/Eij )→
Gal(Mij/Eij ) is thus identified with π: I → A and Gal(M̂ij/Mij ) = Ker(π).

Let ζ ∈ I be as in Lemma 1.8, let

Σ∗j =

e⋂
ν=1

{σ ∈ Gal(K1)e | ∃gν1 ∈ G1:

σν |M̂ij
= (ζ, (gν1, 1)) ∈ I o (G1 ×G2)},

(6)

and note that the intersected sets on the right hand side of (6) are µK1
-ind-

ependent. Then, by that lemma, for each σ ∈ Σ∗j , the normal subgroup N

generated by σ1|M̂ij
, . . . , σe|M̂ij

in Gal(M̂ij/K1) satisfies

π(N ∩ I) = A. (7)

Moreover, with Q = Ksep[σ]K1 , we have N = Gal(M̂ij/M̂ij ∩Q).

Part E: We prove that for a fixed positive integer j and for each σ ∈ Σ∗j the
polynomial f(aj , Y ) is irreducible over E ·L[σ]K . Indeed, consider σ ∈ Σ∗j and
let P = L[σ]K . Then,

P = L ∩Ksep[σ]K ⊆ Ksep[σ]K ⊆ Ksep[σ]K1
= Q . (8)

By Part A, E′ij is Galois over K. By (6), for ν = 1, . . . , e we have σν |M̂ij
=

(ζ, (gν1, 1)) with ζ ∈ I and gν1 ∈ G1. Hence, by the begining of Part D and by
Diagram (1), σν fixes E′ij . Therefore, K ⊆ E′ij ⊆ L[σ]K = P . It follows from

(5a) that aj ∈ P . Moreover,

EijQ
(3)
= EE′ijQ = EQ

(8)

⊇ EP. (9)

Since by (5b) Mij is generated by a root of f(aj , Y ) over Eij , (9) implies that
MijQ is generated by a root of f(aj , Y ) over EQ.

Ksep[σ]K1
=Q EijQ = EQ MijQ M̂ijQ

M̂ij ∩Q
N

(M̂ij ∩Q)Eij (M̂ij ∩Q)Mij M̂ij

E Eij A

I

Mij

Ker(π)

(10)

Using Diagram (10), the equalities N = Gal(M̂ij/M̂ij ∩ Q) and Ker(π) =

Gal(M̂ij/Mij ) that appear in Part D imply that

Gal(M̂ijQ/MijQ) ∼= Gal(M̂ij/(M̂ij ∩Q)Mij ) = N ∩Ker(π)
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and
Gal(M̂ijQ/EijQ) ∼= Gal(M̂ij/(M̂ij ∩Q)Eij ) = N ∩ I .

Hence,

Gal(MijQ/EijQ) ∼= (N ∩ I)/(N ∩Ker(π)) ∼= π(N ∩ I)
(7)
= A .

Therefore, [MijQ : EijQ] = |A|=(2) degY f(X,Y ) = deg f(aj , Y ). Since, by
(5b) MijQ is generated over EijQ by a root of f(aj , Y ), we get that f(aj , Y )
is irreducible over EijQ. It follows from (9) that f(aj , Y ) is irreducible over
EP = E · L[σ]K , as claimed.

Part F: We prove that almost all σ ∈ Gal(K1)e lie in infinitely many Σ∗j . To
this end we set

Σj =

e⋂
ν=1

{σ ∈ Gal(E)e | σν |M̂ij
= (ζ, (1, 1)) ∈ I o (G1 ×G2)

(5b)
= Gal(M̂ij/K1)}.

(11)

This is a coset of Gal(M̂ij )e in Gal(E)e. Since, by (5c), the sequence (M̂ij )∞j=1 is

linearly disjoint over E, the sets Gal(M̂ij )e are µE-independent [FrJ08, p. 378,
Lemma 18.5.1]. Thus, by [FrJ08, p. 373, Lemma 18.3.7], also the sets Σj are

µE-independent. In addition, since Gal(M̂ij/K1) ∼= Io(G1×G2), we can choose

for every positive integer j and for every g ∈ G1 =(1) Gal(E/K1) an element
ĝj ∈ Gal(K1) such that ĝj |M̂ij

= (1, (g, 1)). Then,

S = {ĝj := (ĝ1,j , . . . , ĝe,j) ∈ Gal(K1)e | g1, . . . , ge ∈ G1}

is a set of representatives for the right cosets of Gal(E)e in Gal(K1)e. Moreover,
since (ζ, (1, 1))(1, (g, 1)) = (ζ, (g, 1)) for each g ∈ G1, (6) and (11) imply that
Σ∗j =

⋃
ĝj∈S Σj ĝj for every j. Therefore, Lemma 1.6 implies that the sets Σ∗j

are µK1-independent. Moreover, by (6),

µK1(Σ∗j ) =
|G1|e

|AwrG1
G|e

> 0

does not depend on j, so
∑∞
j=1 µK1

(Σ∗j ) =∞. It follows from the Borel-Cantelli
lemma [FrJ08, p. 372, Lemma 18.3.5] that almost all σ ∈ Gal(K1)e lie in in-
finitely many Σ∗j , as claimed.

End of proof: By Part E, for each positive integer j and for every σ ∈ Σ∗j
the polynomial f(aj , Y ) is irreducible over E · L[σ]K . By Part F, almost all
σ ∈ Gal(K1)e lie in infinitely many Σ∗j . By (5a), aj belong to Rsep ∩ E′ij ,

hence also to Rsep ∩L[σ]K . Therefore, for almost all σ ∈ Gal(K1)e there exists
a ∈ Rsep ∩ L[σ]K such that f(a, Y ) is irreducible over E · L[σ]K , as claimed.
�

The following proposition is a generalization of [BaF13, Prop. 6.2] to rings.



3 MAIN RESULT 11

Proposition 3.2. Let R be a countable Hilbertian ring with quotient field K
and let Rsep be the integral closure of R in Ksep. Let K ⊆ K1 ⊆ L ⊆ Ksep

be a tower of fields such that L/K is Galois, K1/K is finite Galois, and L/K1

satisfies the K-linearly disjoint condition. Let e be a positive integer. Then,
Rsep ∩ L[σ]K is Hilbertian for almost all σ ∈ Gal(K1)e.

Proof. Let F be the set of all triples (K2,K
′
2, f), where K2 is a finite extension

of K1 within L which is Galois over K, K ′2/K2 is a finite separable extension,
and f(X,Y ) ∈ K2[X,Y ] is an absolutely irreducible polynomial that is monic
in Y and Galois over Ksep(X). Since K is countable, the set F is countable.

If (K2,K
′
2, f) ∈ F , then the integral closure R2 of R in K2 is Hilbertian

(Lemma 2.2) and L/K2 satisfies the K-linearly disjoint condition (Lemma 1.3).
Hence, Lemma 3.1, applied to K2 rather than to K1, yields a subset Σ′(K2,K′2,f)

of Gal(K2)e with µK1
(Σ′(K2,K′2,f)

) = µK1
(Gal(K2)e) such that for every σ ∈

Σ′(K2,K′2,f)
there exists a ∈ Rsep ∩ L[σ]K such that f(a, Y ) is irreducible over

K ′2 · L[σ]K . Let

Σ(K2,K′2,f)
= Σ′(K2,K′2,f)

∪ (Gal(K1)e r Gal(K2)e) .

Then, µK1
(Σ(K2,K′2,f)

) = µK1
(Gal(K1)e). Since F is countable, it follows that

the µK1
-measure of Σ =

⋂
(K2,K′2,f)∈F

Σ(K2,K′2,f)
is 1.

We consider σ ∈ Σ and let P = L[σ]K and RP = Rsep ∩ P . In order to
prove that RP is Hilbertian, it suffices, by Lemma 2.3, to consider an irreducible
polynomial g ∈ P [X,Y ], separable, monic, and of degree at least 2 in Y and to
prove that HP (g) has an element in RP .

By Lemma 2.4, there exist a finite Galois extension P ′ of P and an abso-
lutely irreducible polynomial f ∈ P [X,Y ] which as a polynomial in Y is monic
and Galois over P ′(X) such that

P ∩HP ′(f) ⊆ HP (g). (12)

In particular, f is Galois over Ksep(X). Choose a finite extension K2/K1 which
is Galois over K such that K2 ⊆ P ⊆ L and f ∈ K2[X,Y ]. Let K ′2 be a finite
extension of K2 such that PK ′2 = P ′. Then σ ∈ Gal(K2)e. Since, in addition,
σ ∈ Σ(K2,K′2,f)

, we get that σ ∈ Σ′(K2,K′2,f)
. Thus, there exists a ∈ RP such that

f(a, Y ) is irreducible over PK ′2 = P ′, so a ∈ RP ∩HP ′(f)⊆(12)RP ∩HP (g), as
desired. �

Theorem 3.3. Let R be a countable Hilbertian ring with quotient field K and
let Rsep be the integral closure of R in Ksep. Let L be a Galois extension of K
in Ksep and let e be a positive integer. Then, Rsep ∩ L[σ]K is Hilbertian for
almost all σ ∈ Gal(K)e.

Proof. Let F be the set of all finite Galois extensions K1 of K within L for
which L/K1 satisfies the K-linearly disjoint condition. Since K is countable, so
is F . Let

Σ = {σ ∈ Gal(K)e | Rsep ∩ L[σ]K is Hilbertian } .
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For K1 ∈ F , let ΣK1 = Gal(K1)e ∩ Σ. Note that

Gal(K1)e = {σ ∈ Gal(K)e | K1 ⊆ L[σ]K} . (13)

By Proposition 3.2,

µK(ΣK1
) = µK(Gal(K1)e) for each K1 ∈ F . (14)

Let

∆ = Gal(K)er
⋃

K1∈F
Gal(K1)e

(13)
= {σ ∈ Gal(K)e | K1 6⊆ L[σ]K for all K1 ∈ F} .

If σ ∈ ∆, then by Lemma 1.4, L[σ]K/K is small. By Lemma 1.5, for every
positive integer r, each separable Hilbert subset H of L[σ]rK contains a separable
Hilbert subset HK of Kr. Since R is Hilbertian, Rr∩HK 6= ∅. Therefore, Rsep∩
L[σ]K is Hilbertian. Thus, ∆ ⊆ Σ. Since Gal(K)e = ∆ ∪

⋃
K1∈F Gal(K1)e,

Lemma 1.7 implies that

µK(Σ) = µK
(
(Σ ∩∆) ∪

⋃
K1∈F

ΣK1

) (14)
= µK

(
∆ ∪

⋃
K1∈F

Gal(K1)e
)

= µK(Gal(K)e) = 1 ,

which concludes the proof of the theorem. �
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