Random Galois extensions of Hilbertian rings

by

Moshe Jarden, Tel Aviv University, jarden@post.tau.ac.il

and

Aharon Razon, Elta, razona@elta.co.il

Abstract: Let R be a countable Hilbertian ring with quotient field K and let L be a Galois extension of K. We generalize a result of Lior Bary-Soroker and Arno Fehm from fields to rings and prove that for an abundance of large Galois extensions N of K within L, the integral closure of R in N is Hilbertian.

8 November 2018

Introduction

Let R be an integral domain with quotient field K. Let $\mathbf{T} = (T_1, \ldots, T_r)$ be an r-tuple of indeterminates and let X be an additional indeterminate. Given irreducible polynomials $f_1, \ldots, f_m \in K(\mathbf{T})[X]$ that are separable in X, the set $H_K(f_1, \ldots, f_m; g)$ of all $\mathbf{a} \in K^r$ such that $f_1(\mathbf{a}, X), \ldots, f_m(\mathbf{a}, X)$ are defined and irreducible in K[X] is a **separable Hilbert subset** of K^r . We say that R is a **Hilbertian ring** if $H \cap R^r \neq \emptyset$ for every positive integer r and every separable Hilbert subset H of K^r .

Let K be a field with a separable algebraic closure K_{sep} , let e be a positive integer, and write $\text{Gal}(K) = \text{Gal}(K_{\text{sep}}/K)$ for the absolute Galois group of K. For a Galois extension L/K and for an e-tuple $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e) \in \text{Gal}(K)^e$ we let

$$[\boldsymbol{\sigma}]_K = \langle \sigma_{\nu}^{\tau} \mid \nu = 1, \dots, e \text{ and } \tau \in \operatorname{Gal}(K) \rangle$$

be the closed normal subgroup of Gal(K) that is generated by $\sigma_1, \ldots, \sigma_e$. We also consider the maximal Galois subextension

$$L[\boldsymbol{\sigma}]_K = \{ a \in L \mid a^{\tau} = a, \forall \tau \in [\boldsymbol{\sigma}]_K \}$$

of L/K that is fixed by each σ_{ν} , $\nu = 1, \ldots, e$. Note that the group $[\boldsymbol{\sigma}]_K$ and the field $L[\boldsymbol{\sigma}]_K$ depend on the base field K.

Since $\operatorname{Gal}(K)^e$ is profinite, hence compact, it is equipped with a probability Haar measure [FrJ08, §18.5]. In [Jar97], the first author proves that if K is a countable Hilbertian field, then $K_{\operatorname{sep}}[\boldsymbol{\sigma}]_K$ is Hilbertian for **almost all** $\boldsymbol{\sigma} \in$ $\operatorname{Gal}(K)^e$, that is for all $\boldsymbol{\sigma}$ in $\operatorname{Gal}(K)^e$ but a set of measure zero. Bary-Soroker and Fehm generalize this result by replacing K_{sep} with an arbitrary Galois extension L of K. They prove that $L[\boldsymbol{\sigma}]_K$ is Hilbertian for almost all $\boldsymbol{\sigma} \in$ $\operatorname{Gal}(K)^e$ [BaF13, Thm. 1.1]. The purpose of this work is to generalize their result to the level of rings:

Theorem: Let R be a countable Hilbertian ring with quotient field K and let R_{sep} be the integral closure of R in K_{sep} . Let L be a Galois extension of K in K_{sep} and let e be a positive integer. Then, $R_{sep} \cap L[\boldsymbol{\sigma}]_K$ is Hilbertian for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$.

1 Preliminaries

We recall several concepts and results about linear disjointness of fields, measure theory, and twisted wreath products of groups.

Linear Disjointness. Let $K \subseteq K_1 \subseteq L$ be a tower of fields. We say that L/K_1 satisfies the *K*-linearly disjoint condition if there exists an infinite linearly disjoint sequence of finite proper extensions of K_1 within *L* of the same degree that are Galois over *K*.

This condition is related to the " \mathcal{L}_{K} -condition" introduced at the beginning of Section 2 of [BaF13]. The following four lemmas are the counterparts of the lemmas that appear in that section.

Lemma 1.1. Let $(M_i)_{i\geq 1}$ be a linearly disjoint sequence of extensions of a field K and let E/K be a finite Galois extension. Then, M_i is linearly disjoint from E over K for all but finitely many i.

Proof. Assume toward contradiction that there there is an increasing sequence $i_1 < i_2 < i_3 < \cdots$ of positive integers such that E is not linearly disjoint from M_{i_j} over K for each $j \ge 1$. Since E/K is Galois, this means that $E \cap M_{i_j}$ is a proper extension of K for each $j \ge 1$. Since K has only finitely many extensions in E, there are positive integers j < k such that $E \cap M_{i_j} = E \cap M_{i_k}$. In particular, $M_{i_j} \cap M_{i_k}$ is a proper extension of K, contradicting the linear disjointness of M_{i_j} and M_{i_k} over K. \Box

Lemma 1.2. Let $K \subseteq K_1 \subseteq L$ be fields such that L/K is Galois, K_1/K is a finite extension, and L/K_1 satisfies the K-linearly disjoint condition. Let M_0 be a finite Galois extension of K_1 and let d be a positive integer. Then, there exist a finite group G with |G| > d and an infinite sequence $(M_i)_{i\geq 1}$ of extensions of K_1 within L that are Galois over K such that $\operatorname{Gal}(M_i/K_1) \cong G$ for every $i \geq 1$ and the sequence $(M_i)_{i\geq 0}$ is linearly disjoint over K_1 .

Proof. By assumption, K_1 has a linearly disjoint sequence M'_1, M'_2, M'_3, \ldots of proper extensions within L of the same degree that are Galois over K. For each positive integer j we set $M''_j = M'_{(j-1)d+1} \cdots M'_{jd}$. By the linear disjointness

 $[M_j'':K_1] = [M_{(j-1)d+1}':K_1] \cdots [M_{jd}':K_1] = [M_1':K_1]^d \ge 2^d > d.$

As a compositum of Galois extensions over K, each of the fields M''_j is Galois over K. In addition, the sequence $M''_1, M''_2, M''_3, \ldots$ is linearly disjoint over K_1 . Since there are, up to isomorphism, only finitely many groups of order $[M'_1 : K_1]^d$, we may replace the sequence $M''_1, M''_2, M''_3, \ldots$ by a subsequence to assume the existence of a finite group G of order greater than d such that $\operatorname{Gal}(M''_i/K_1) \cong G$ for each $j \geq 1$.

Finally, we may apply induction and Lemma 1.1 to extract an infinite subsequence M_1, M_2, M_3, \ldots of $M_1'', M_2'', M_3'', \ldots$ such that M_0, M_1, M_2, \ldots is linearly disjoint over K_1 , as desired. \Box

Lemma 1.3. Let $K \subseteq K_1 \subseteq K_2 \subseteq L$ be fields such that L/K is Galois, K_2/K is finite Galois, and L/K_1 satisfies the K-linearly disjoint condition. Then, also L/K_2 satisfies the K-linearly disjoint condition.

Proof. By assumption, K_1 has a linearly disjoint sequence K'_1, K'_2, K'_3, \ldots of proper extensions within L that are Galois over K of the same degree. We apply Lemma 1.1 to inductively construct an increasing sequence $i_1 < i_2 < i_3 < \cdots$ of positive integers such that $K_2K'_{i_1}, K_2K'_{i_2}, K_2K'_{i_3}, \ldots$ are linearly disjoint proper extensions of K_2 . Since all of these fields are contained in L and are Galois over K with the same degree, L/K_2 satisfies the K-linearly disjoint condition, as claimed. \Box

Recall that a Galois extension L/K is **small** if for each positive integer n, K has only finitely many extensions of degree n within L, equivalently, if for

1 PRELIMINARIES

each positive integer n, K has only finitely many Galois extensions of degree n within L.

Lemma 1.4. Let L/K be a non-small Galois extension. Then, K has a finite Galois extension K_1 within L such that L/K_1 satisfies the K-linearly disjoint condition.

Proof. By definition, K is contained in infinitely many finite Galois extensions M_1, M_2, M_3, \ldots of K within L of the same degree. Let K_1 be a maximal Galois extension of K which is contained in infinitely many of the M_i 's. Replacing the above sequence by a subsequence, we may assume that $K_1 \subseteq M_i$ for all i.

We assume by induction that $i_1 < i_2 < \cdots < i_n$ are positive integers such that $M_{i_1}, M_{i_2}, \ldots, M_{i_n}$ are linearly disjoint over K_1 . Let $M = M_{i_1}M_{i_2}\cdots M_{i_n}$. Since K_1 has only fintely many extensions within M, K_1 has an extension K_2 and there exist infinitely many $i > i_n$ with $M_i \cap M = K_2$. In particular, K_2 is Galois over K. The maximality property of K_1 implies that $K_2 = K_1$. Let i_{n+1} be the first integer greater than i_n such that $M_{n+1} \cap M = K_2 = K_1$. Then, $M_{i_1}, \cdots, M_{i_n}, M_{i_{n+1}}$ are linearly disjoint over K_1 .

It follows by induction that $M_{i_1}, M_{i_2}, M_{i_3}, \ldots$ is an infinite linearly disjoint sequence of extensions of K_1 of the same degree within L that are Galois over K. Thus, L/K_1 satisfies the K-linearly disjoint condition. \Box

Recall that a profinite group G is **small** if for each positive integer n, G has only finitely many open subgroups of the same degree [FrJ08, p. 329, Section 16.10]. Thus, a Galois extension L/K is small if and only if Gal(L/K) is small.

Lemma 1.5 ([FrJ08], p. 332, Prop. 16.11.1). Let L be a Galois extension of a Hilbertian field K. Suppose $\operatorname{Gal}(L/K)$ is small. Then, for every positive integer r, each separable Hilbert subset H of L^r contains a separable Hilbert subset of K^r . In particular, L is Hilbertian.

Measures. We cite two basic results about measure spaces.

For a profinite group G we denote the probability Haar measure on G by μ_G .

Lemma 1.6 ([BaF13], Lemma 3.1). Let G be a profinite group, $H \leq G$ and open subgroup, $S \subseteq G$ a set of representatives of G/H, and $\Sigma_1, \ldots, \Sigma_k \subseteq H$ measurable μ_H -independent sets. Let $\Sigma_i^* = \bigcup_{g \in S} g\Sigma_i$. Then, $\Sigma_1^*, \ldots, \Sigma_k^*$ are μ_G -independent.

Lemma 1.7 ([BaF13], Lemma 3.2). Let (Ω, μ) be a measure space. For each $i \ge 1$, let $A_i \subseteq B_i$ be measurable subsets of Ω . If $\mu(A_i) = \mu(B_i)$ for every $i \ge 1$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} B_i)$.

Twisted Wreath Products. Let A and $G_1 \leq G$ be finite groups together with a right action of G_1 on A. The set of G_1 -invariant functions from G to A,

$$\operatorname{Ind}_{G_1}^G(A) = \{ f \colon G \to A \mid f(\sigma\tau) = f(\sigma)^\tau \text{ for all } \sigma \in G \text{ and } \tau \in G_1 \},\$$

forms a group under pointwise multiplication. The group G acts on $\operatorname{Ind}_{G_1}^G(A)$ from the right by $f^{\sigma}(\tau) = f(\sigma\tau)$, for all $\sigma, \tau \in G$. The **twisted wreath product** is defined to be the semidirect product

$$Awr_{G_1}G = Ind_{G_1}^G(A) \rtimes G$$

[FrJ08, p. 253, Def. 13.7.2]. Let π : $\operatorname{Ind}_{G_1}^G(A) \to A$ be the projection given by $\pi(f) = f(1)$.

Lemma 1.8 ([BaF13], Lemma 4.1). Let $G = G_1 \times G_2$ be a direct product of finite groups, let A be a finite G_1 -group, and let $I = \text{Ind}_{G_1}^G(A)$. Assume that $|G_2| \geq |A|$. Then, there exists $\zeta \in I$ such that for every $g_1 \in G_1$, the normal subgroup N of $Awr_{G_1}G$ generated by $\tau = (\zeta, (g_1, 1))$ satisfies $\pi(N \cap I) = A$.

Following [Har99] we say that a tower of fields

$$K \subseteq E' \subseteq E \subseteq N \subseteq \hat{N}$$

realizes a twisted wreath product $A \operatorname{wr}_{G_1} G$ if \hat{N}/K is a Galois extension with Galois group isomorphic to $A \operatorname{wr}_{G_1} G$ and the tower of fields corresponds to the subgroup series

$$\operatorname{Awr}_{G_1} G \ge \operatorname{Ind}_{G_1}^G(A) \rtimes G_1 \ge \operatorname{Ind}_{G_1}^G(A) \ge \operatorname{Ker}(\pi) \ge \mathbf{1}$$
.

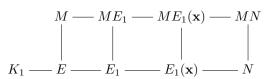
In particular, we have the following commutative diagram:

$$\begin{array}{c|c} \operatorname{Gal}(\hat{N}/E) \xrightarrow{\cong} \operatorname{Ind}_{G_1}^G(A) \\ & & & & & \\ & & & & \\ \operatorname{Gal}(N/E) \xrightarrow{\cong} A \,. \end{array}$$

2 Hilbertian Rings

We present results about Hilbertian rings needed in the proof of our main theorem. The first one is an adjusted version of [BaF13, Lemma 5.1].

Lemma 2.1. Let K_1 be a Hilbertian field, let $\mathbf{x} = (x_1, \ldots, x_d)$ be a d-tuple of variables, let $0 \neq g(\mathbf{x}) \in K_1[\mathbf{x}]$, and consider field extensions M, E, E_1, N of K_1 as in the following diagram:



Assume that E, E_1, M are finite Galois extensions of $K_1, E = M \cap E_1, N$ is a finite Galois extension of $K_1(\mathbf{x})$ that is regular over E_1 , and let $y \in N$.

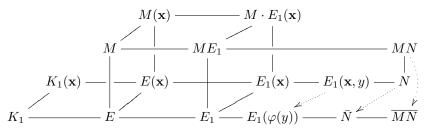
2 HILBERTIAN RINGS

Then, there exists a separable Hilbert subset H of K_1^d such that for each $\mathbf{b} \in H$ we have $g(\mathbf{b}) \neq 0$ and the specialization $\mathbf{x} \mapsto \mathbf{b}$ extends to an E_1 -place φ of N such that $\varphi(y)$ is finite, the residue fields of $K_1(\mathbf{x})$, $E_1(\mathbf{x}, y)$, and N are K_1 , $E_1(\varphi(y))$, and \bar{N} , respectively, where \bar{N} is a Galois extension of K_1 which is linearly disjoint from M over E, and $\operatorname{Gal}(\bar{N}/K_1) \cong \operatorname{Gal}(N/K_1(\mathbf{x}))$.

Proof. Since $M \cap E_1 = E$, M and E_1 are linearly disjoint over E. Since N is regular over E_1 , N is linearly disjoint from ME_1 over E_1 . Hence, M and N are linearly disjoint over E. Therefore, $M(\mathbf{x})$ is linearly disjoint from N over $E(\mathbf{x})$, so $M(\mathbf{x}) \cap N = E(\mathbf{x})$.

For every $\mathbf{b} \in K_1^d$ there exists a K_1 -place $\varphi_{\mathbf{b}}$ of $K_1(\mathbf{x})$ with residue field K_1 and $\varphi_{\mathbf{b}}(\mathbf{x}) = \mathbf{b}$. It extends uniquely to $ME_1(\mathbf{x})$, and the residue fields of $M(\mathbf{x})$ and $E_1(\mathbf{x})$ are M and E_1 , respectively.

By [FrJ08, p. 231, Lemma 13.1.1], applied to the separable extensions $E_1(\mathbf{x}, y)$, N, and MN of $K_1(\mathbf{x})$, there exists a separable Hilbert subset H of K_1^d such that for each $\mathbf{b} \in H$ we have $g(\mathbf{b}) \neq 0$ and any extension φ of $\varphi_{\mathbf{b}}$ to MN satisfies the following: $\varphi(y)$ is finite, the residue field of $E_1(\mathbf{x}, y)$ is $E_1(\varphi(y))$, the residue fields \overline{MN} and \overline{N} of MN and N, respectively, are Galois over K_1 , and φ induces isomorphisms $\operatorname{Gal}(N/K_1(\mathbf{x})) \cong \operatorname{Gal}(\overline{MN}/K_1)$ and $\operatorname{Gal}(MN/K_1(\mathbf{x})) \cong$ $\operatorname{Gal}(\overline{MN}/K_1)$ such that the following diagram commutes:



By Galois correspondence, the latter isomorphism induces an isomorphism of the lattices of intermediate fields of $MN/K_1(\mathbf{x})$ and \overline{MN}/K_1 . Hence, $M(\mathbf{x}) \cap N = E(\mathbf{x})$ implies that $M \cap \overline{N} = E$, which means that M and \overline{N} are linearly disjoint over E. \Box

Lemma 2.2 ([JaR18], Lemma 2.1). Let R be a Hilbertian ring with quotient field K and let L be a finite separable extension of K. Then, the integral closure R_L of R in L is also Hilbertian.

Lemma 2.3 ([JaR18], Lemma 1.2). Let R be an integral domain with quotient field K. Suppose that each separable Hilbert subset of K of the form $H_K(g)$ with irreducible $g \in K[X, Y]$, separable, monic, and of degree at least 2 in Y, has an element in R. Then, R is Hilbertian.

The following result is a special case of [FrJ08, p. 235, Lemma 13.1.4].

Lemma 2.4. Let K be an infinite field and let $g \in K[X,Y]$ be an irreducible polynomial which is monic and separable in Y. Then, there are a finite Galois extension L of K and an absolutely irreducible polynomial $f \in K[X,Y]$ which as a polynomial in Y is monic and Galois over L(X) such that $K \cap H_L(f) \subseteq H_K(g)$.

3 Main Result

The following lemma is the decisive step toward our main result. It generalizes [BaF13, Lemma 6.1] to rings. Here we abuse our notation and for every field K and every positive integer e we use μ_K for the normalized Haar measure of $\operatorname{Gal}(K)^e$.

Lemma 3.1. Let R be a Hilbertian ring with quotient field K and let R_{sep} be the integral closure of R in K_{sep} . Let $K \subseteq K_1 \subseteq L \subseteq K_{sep}$ be a tower of fields such that L/K is Galois, K_1/K is finite Galois, and L/K_1 satisfies the K-linearly disjoint condition (Section 1). Let e be a positive integer, let $f \in K_1[X,Y]$ be an absolutely irreducible polynomial that is monic in Y and Galois over $K_{sep}(X)$. Finally, let K'_1 be a finite separable extension of K_1 .

Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K_1)^e$ there exists $a \in R_{\operatorname{sep}} \cap L[\boldsymbol{\sigma}]_K$ such that f(a, Y) is irreducible over $K'_1 \cdot L[\boldsymbol{\sigma}]_K$.

Proof. We break up the proof into several parts.

Part A: Diagram of fields. Let E be a finite Galois extension of K such that $K'_1 \subseteq E$ and f is Galois over E(X), and set $G_1 = \operatorname{Gal}(E/K_1)$. It suffices to prove that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K_1)^e$ there exists $a \in R_{\operatorname{sep}} \cap L[\boldsymbol{\sigma}]_K$ such that f(a, Y) is irreducible over $E \cdot L[\boldsymbol{\sigma}]_K$.

To this end we construct the following diagram of fields:

Let x be a transcendental element over K and let y be a root of f(x, Y) in a separable algebraic closure of $K_1(x)$ that contains K_{sep} . Let $F' = K_1(x, y)$ and F = E(x, y). Since f(X, Y) is absolutely irreducible, F'/K_1 is regular, hence F' is linearly disjoint from E over K_1 . Therefore, F' is linearly disjoint from E(x) over $K_1(x)$, so $\operatorname{Gal}(F/F') \cong \operatorname{Gal}(E(x)/K_1(x)) \cong \operatorname{Gal}(E/K_1) = G_1$. Since f(x, Y) is Galois over E(x), the extension F/E(x) is Galois. We set $A = \operatorname{Gal}(F/E(x))$. Then,

$$|A| = [F : E(x)] = \deg(f(x, Y)) = \deg_Y f(X, Y).$$
(2)

Also, $K_1(x)$ is the fixed field of the subgroup $\langle A, G_1 \rangle$ of Aut(F). Therefore, $F/K_1(x)$ is a Galois extension with $\operatorname{Gal}(F/K_1(x)) = \langle A, G_1 \rangle$ and G_1 acts on A by conjugation.

3 MAIN RESULT

Since L/K_1 satisfies the K-linearly disjoint condition, we get by Lemma 1.2, applied to $M_0 = E$, that there exists a finite group G_2 with $d := |G_2| > |A|$ and a sequence $(E'_i)_{i\geq 1}$ of linearly disjoint extensions of K_1 within L which are Galois over K with $\operatorname{Gal}(E'_i/K_1) \cong G_2$, such that the sequence $E, E'_1, E'_2, E'_3, \ldots$ is linearly disjoint over K_1 . Let

$$E_i = E E'_i. \tag{3}$$

Then, E_i/K is Galois and $\operatorname{Gal}(E_i/K_1) \cong G := G_1 \times G_2$ for every *i*.

Part B: Twisted wreath product. Let $\mathbf{x} = (x_1, \ldots, x_d)$ be a *d*-tuple of indeterminates, and for each *i* choose a basis w_{i1}, \ldots, w_{id} of E'_i/K_1 such that w_{i1}, \ldots, w_{id} are integral over *R*. By [Har99, Lemma 3.1], for each *i* we have a tower

$$K_1(\mathbf{x}) \subseteq E'_i(\mathbf{x}) \subseteq E_i(\mathbf{x}) \subseteq N_i = E_i(\mathbf{x}, y_i) \subseteq \hat{N}_i \tag{4}$$

that realizes the twisted wreath product $Awr_{G_1}G$, such that \hat{N}_i is regular over E_i , where $irr(y_i, E_i(\mathbf{x})) = f(\sum_{\nu=1}^d w_{i\nu}x_{\nu}, Y)$. In particular, $Gal(\hat{N}_i/K_1(\mathbf{x})) = Awr_{G_1}G$, $Gal(\hat{N}_i/E_i(\mathbf{x})) = Ind_{G_1}^G(A)$, and $Gal(N_i/E_i(\mathbf{x})) = A$.

Part C: Specialization of (4). We inductively construct an ascending sequence $(i_j)_{j=1}^{\infty}$ of positive integers and for each $j \geq 1$ an E_{i_j} -place φ_j of \hat{N}_{i_j} such that for each positive integer k the following conditions hold.

- (5a) For j = 1, ..., k and $\nu = 1, ..., d$ we have $\varphi_j(x_\nu) \in R_{\text{sep}} \cap K_1$, hence $a_j := \sum_{\nu=1}^d w_{i_j\nu}\varphi_j(x_\nu) \in R_{\text{sep}} \cap E'_{i_j}$ and $\varphi_j(y_{i_j}) \in K_{\text{sep}}$.
- (5b) For j = 1, ..., k and for $i = i_j$, the residue field tower of (4) under φ_j ,

$$K_1 \subseteq E'_{i_j} \subseteq E_{i_j} \subseteq M_{i_j} \subseteq M_{i_j}$$

realizes the twisted wreath product $Awr_{G_1}G$. Moreover, $f(a_j, Y)$ is irreducible over E_{i_j} and M_{i_j} is generated over E_{i_j} by the root $\varphi_j(y_{i_j})$ of $f(a_j, Y)$. Thus, $[M_{i_j} : E_{i_j}] = \deg(f(a_j, Y)) = \deg_Y(f(X, Y)) = {}^{(2)}|A|$.

(5c) The sequence M_{i_1}, \ldots, M_{i_k} is linearly disjoint over E.

Indeed, suppose that i_1, \ldots, i_{k-1} and $\varphi_1, \ldots, \varphi_{k-1}$ with the appropriate properties have been constructed and let $M = \hat{M}_{i_1} \cdots \hat{M}_{i_{k-1}}$. By Lemma 1.1, there is $i_k > i_{k-1}$ such that E'_{i_k} is linearly disjoint from M over K_1 . Hence, $E_{i_k} = EE'_{i_k}$ is linearly disjoint from M over E.

Let R_1 be the integral closure of R in K_1 . Since R is Hilbertian and K_1/K is finite and separable, R_1 is Hilbertian (Lemma 2.2). Applying Lemma 2.1 to $M, E, E_{i_k}, \hat{N}_{i_k}, y_{i_k}$, we get a separable Hilbert subset H of K_1^d such that for each $\mathbf{b} \in H$, the specialization $\mathbf{x} \mapsto \mathbf{b}$ extends to an E_{i_k} -place φ_k of \hat{N}_{i_k} such that (5b) and (5c) hold for i_1, \dots, i_{k-1}, i_k . Since R_1 is Hilbertian, there exists $\mathbf{b} \in H \cap R_1^d$, so also (5a) is satisfied for i_1, \dots, i_{k-1}, i_k .

Part D: A special element of $\operatorname{Ind}_{G_1}^G(A)$. We set $I = \operatorname{Ind}_{G_1}^G(A)$, fix j, and make the following identifications: $\operatorname{Gal}(\hat{M}_{i_j}/K_1) = \operatorname{Awr}_{G_1}G = I \rtimes (G_1 \times G_2)$,

3 MAIN RESULT

 $\operatorname{Gal}(\hat{M}_{i_j}/E_{i_j}) = I$, and $\operatorname{Gal}(M_{i_j}/E_{i_j}) = A$. The restriction map $\operatorname{Gal}(\hat{M}_{i_j}/E_{i_j}) \to \operatorname{Gal}(M_{i_j}/E_{i_j})$ is thus identified with $\pi: I \to A$ and $\operatorname{Gal}(\hat{M}_{i_j}/M_{i_j}) = \operatorname{Ker}(\pi)$. Let $\zeta \in I$ be as in Lemma 1.8, let

$$\Sigma_{j}^{*} = \bigcap_{\nu=1}^{e} \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K_{1})^{e} \mid \exists g_{\nu 1} \in G_{1} : \\ \sigma_{\nu}|_{\hat{M}_{i_{j}}} = (\zeta, (g_{\nu 1}, 1)) \in I \rtimes (G_{1} \times G_{2}) \},$$
(6)

and note that the intersected sets on the right hand side of (6) are μ_{K_1} -independent. Then, by that lemma, for each $\boldsymbol{\sigma} \in \Sigma_j^*$, the normal subgroup Ngenerated by $\sigma_1|_{\hat{M}_{i_j}}, \ldots, \sigma_e|_{\hat{M}_{i_j}}$ in $\operatorname{Gal}(\hat{M}_{i_j}/K_1)$ satisfies

$$\pi(N \cap I) = A. \tag{7}$$

Moreover, with $Q = K_{\text{sep}}[\boldsymbol{\sigma}]_{K_1}$, we have $N = \text{Gal}(\hat{M}_{i_j}/\hat{M}_{i_j} \cap Q)$.

Part E: We prove that for a fixed positive integer j and for each $\boldsymbol{\sigma} \in \Sigma_j^*$ the polynomial $f(a_j, Y)$ is irreducible over $E \cdot L[\boldsymbol{\sigma}]_K$. Indeed, consider $\boldsymbol{\sigma} \in \Sigma_j^*$ and let $P = L[\boldsymbol{\sigma}]_K$. Then,

$$P = L \cap K_{\text{sep}}[\boldsymbol{\sigma}]_K \subseteq K_{\text{sep}}[\boldsymbol{\sigma}]_K \subseteq K_{\text{sep}}[\boldsymbol{\sigma}]_{K_1} = Q.$$
(8)

By Part A, E'_{i_j} is Galois over K. By (6), for $\nu = 1, \ldots, e$ we have $\sigma_{\nu}|_{\hat{M}_{i_j}} = (\zeta, (g_{\nu 1}, 1))$ with $\zeta \in I$ and $g_{\nu 1} \in G_1$. Hence, by the begining of Part D and by Diagram (1), σ_{ν} fixes E'_{i_j} . Therefore, $K \subseteq E'_{i_j} \subseteq L[\sigma]_K = P$. It follows from (5a) that $a_j \in P$. Moreover,

$$E_{i_j}Q \stackrel{(3)}{=} EE'_{i_j}Q = EQ \stackrel{(8)}{\supseteq} EP.$$
(9)

Since by (5b) M_{i_j} is generated by a root of $f(a_j, Y)$ over E_{i_j} , (9) implies that $M_{i_j}Q$ is generated by a root of $f(a_j, Y)$ over EQ.

$$K_{\text{sep}}[\boldsymbol{\sigma}]_{K_{1}} = Q - \underbrace{E_{i_{j}}Q = EQ}_{K_{1}} = Q - \underbrace{M_{i_{j}}Q}_{K_{1}} = \underbrace{M_{i_{j}}Q}_{K_{j}} = \underbrace{M_{i_{j}}Q$$

Using Diagram (10), the equalities $N = \text{Gal}(\hat{M}_{i_j}/\hat{M}_{i_j} \cap Q)$ and $\text{Ker}(\pi) = \text{Gal}(\hat{M}_{i_j}/M_{i_j})$ that appear in Part D imply that

$$\operatorname{Gal}(\hat{M}_{i_j}Q/M_{i_j}Q) \cong \operatorname{Gal}(\hat{M}_{i_j}/(\hat{M}_{i_j}\cap Q)M_{i_j}) = N \cap \operatorname{Ker}(\pi)$$

and

$$\operatorname{Gal}(\hat{M}_{i_i}Q/E_{i_i}Q) \cong \operatorname{Gal}(\hat{M}_{i_i}/(\hat{M}_{i_i}\cap Q)E_{i_i}) = N \cap I$$

Hence,

$$\operatorname{Gal}(M_{i_i}Q/E_{i_i}Q) \cong (N \cap I)/(N \cap \operatorname{Ker}(\pi)) \cong \pi(N \cap I) \stackrel{(7)}{=} A$$

Therefore, $[M_{i_j}Q : E_{i_j}Q] = |A| = {}^{(2)} \deg_Y f(X,Y) = \deg f(a_j,Y)$. Since, by (5b) $M_{i_j}Q$ is generated over $E_{i_j}Q$ by a root of $f(a_j,Y)$, we get that $f(a_j,Y)$ is irreducible over $E_{i_j}Q$. It follows from (9) that $f(a_j,Y)$ is irreducible over $EP = E \cdot L[\sigma]_K$, as claimed.

Part F: We prove that almost all $\sigma \in \operatorname{Gal}(K_1)^e$ lie in infinitely many Σ_j^* . To this end we set

$$\Sigma_{j} = \bigcap_{\nu=1}^{e} \{ \boldsymbol{\sigma} \in \operatorname{Gal}(E)^{e} \mid \sigma_{\nu}|_{\hat{M}_{i_{j}}} = (\zeta, (1, 1)) \in I \rtimes (G_{1} \times G_{2})$$

$$\stackrel{(5b)}{=} \operatorname{Gal}(\hat{M}_{i_{j}}/K_{1}) \}.$$
(11)

This is a coset of $\operatorname{Gal}(\hat{M}_{i_j})^e$ in $\operatorname{Gal}(E)^e$. Since, by (5c), the sequence $(\hat{M}_{i_j})_{j=1}^{\infty}$ is linearly disjoint over E, the sets $\operatorname{Gal}(\hat{M}_{i_j})^e$ are μ_E -independent [FrJ08, p. 378, Lemma 18.5.1]. Thus, by [FrJ08, p. 373, Lemma 18.3.7], also the sets Σ_j are μ_E -independent. In addition, since $\operatorname{Gal}(\hat{M}_{i_j}/K_1) \cong I \rtimes (G_1 \times G_2)$, we can choose for every positive integer j and for every $g \in G_1 = {}^{(1)} \operatorname{Gal}(E/K_1)$ an element $\hat{g}_j \in \operatorname{Gal}(K_1)$ such that $\hat{g}_j|_{\hat{M}_{i_j}} = (1, (g, 1))$. Then,

$$S = \{ \hat{\mathbf{g}}_j := (\hat{g}_{1,j}, \dots, \hat{g}_{e,j}) \in \text{Gal}(K_1)^e \mid g_1, \dots, g_e \in G_1 \}$$

is a set of representatives for the right cosets of $\operatorname{Gal}(E)^e$ in $\operatorname{Gal}(K_1)^e$. Moreover, since $(\zeta, (1, 1))(1, (g, 1)) = (\zeta, (g, 1))$ for each $g \in G_1$, (6) and (11) imply that $\Sigma_j^* = \bigcup_{\hat{\mathbf{g}}_j \in S} \Sigma_j \hat{\mathbf{g}}_j$ for every j. Therefore, Lemma 1.6 implies that the sets Σ_j^* are μ_{K_1} -independent. Moreover, by (6),

$$\mu_{K_1}(\Sigma_j^*) = \frac{|G_1|^e}{|A w r_{G_1} G|^e} > 0$$

does not depend on j, so $\sum_{j=1}^{\infty} \mu_{K_1}(\Sigma_j^*) = \infty$. It follows from the Borel-Cantelli lemma [FrJ08, p. 372, Lemma 18.3.5] that almost all $\boldsymbol{\sigma} \in \text{Gal}(K_1)^e$ lie in infinitely many Σ_j^* , as claimed.

End of proof: By Part E, for each positive integer j and for every $\boldsymbol{\sigma} \in \Sigma_j^*$ the polynomial $f(a_j, Y)$ is irreducible over $E \cdot L[\boldsymbol{\sigma}]_K$. By Part F, almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K_1)^e$ lie in infinitely many Σ_j^* . By (5a), a_j belong to $R_{\operatorname{sep}} \cap E'_{i_j}$, hence also to $R_{\operatorname{sep}} \cap L[\boldsymbol{\sigma}]_K$. Therefore, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K_1)^e$ there exists $a \in R_{\operatorname{sep}} \cap L[\boldsymbol{\sigma}]_K$ such that f(a, Y) is irreducible over $E \cdot L[\boldsymbol{\sigma}]_K$, as claimed. \Box

The following proposition is a generalization of [BaF13, Prop. 6.2] to rings.

Proposition 3.2. Let R be a countable Hilbertian ring with quotient field Kand let R_{sep} be the integral closure of R in K_{sep} . Let $K \subseteq K_1 \subseteq L \subseteq K_{sep}$ be a tower of fields such that L/K is Galois, K_1/K is finite Galois, and L/K_1 satisfies the K-linearly disjoint condition. Let e be a positive integer. Then, $R_{sep} \cap L[\boldsymbol{\sigma}]_K$ is Hilbertian for almost all $\boldsymbol{\sigma} \in Gal(K_1)^e$.

Proof. Let \mathcal{F} be the set of all triples (K_2, K'_2, f) , where K_2 is a finite extension of K_1 within L which is Galois over K, K'_2/K_2 is a finite separable extension, and $f(X, Y) \in K_2[X, Y]$ is an absolutely irreducible polynomial that is monic in Y and Galois over $K_{\text{sep}}(X)$. Since K is countable, the set \mathcal{F} is countable.

If $(K_2, K'_2, f) \in \mathcal{F}$, then the integral closure R_2 of R in K_2 is Hilbertian (Lemma 2.2) and L/K_2 satisfies the K-linearly disjoint condition (Lemma 1.3). Hence, Lemma 3.1, applied to K_2 rather than to K_1 , yields a subset $\Sigma'_{(K_2,K'_2,f)}$ of $\operatorname{Gal}(K_2)^e$ with $\mu_{K_1}(\Sigma'_{(K_2,K'_2,f)}) = \mu_{K_1}(\operatorname{Gal}(K_2)^e)$ such that for every $\boldsymbol{\sigma} \in \Sigma'_{(K_2,K'_2,f)}$ there exists $a \in R_{\operatorname{sep}} \cap L[\boldsymbol{\sigma}]_K$ such that f(a, Y) is irreducible over $K'_2 \cdot L[\boldsymbol{\sigma}]_K$. Let

$$\Sigma_{(K_2,K'_2,f)} = \Sigma'_{(K_2,K'_2,f)} \cup \left(\operatorname{Gal}(K_1)^e \smallsetminus \operatorname{Gal}(K_2)^e\right).$$

Then, $\mu_{K_1}(\Sigma_{(K_2,K'_2,f)}) = \mu_{K_1}(\operatorname{Gal}(K_1)^e)$. Since \mathcal{F} is countable, it follows that the μ_{K_1} -measure of $\Sigma = \bigcap_{(K_2,K'_2,f) \in \mathcal{F}} \Sigma_{(K_2,K'_2,f)}$ is 1.

We consider $\boldsymbol{\sigma} \in \Sigma$ and let $P = L[\boldsymbol{\sigma}]_K$ and $R_P = R_{\text{sep}} \cap P$. In order to prove that R_P is Hilbertian, it suffices, by Lemma 2.3, to consider an irreducible polynomial $g \in P[X, Y]$, separable, monic, and of degree at least 2 in Y and to prove that $H_P(g)$ has an element in R_P .

By Lemma 2.4, there exist a finite Galois extension P' of P and an absolutely irreducible polynomial $f \in P[X, Y]$ which as a polynomial in Y is monic and Galois over P'(X) such that

$$P \cap H_{P'}(f) \subseteq H_P(g). \tag{12}$$

In particular, f is Galois over $K_{sep}(X)$. Choose a finite extension K_2/K_1 which is Galois over K such that $K_2 \subseteq P \subseteq L$ and $f \in K_2[X, Y]$. Let K'_2 be a finite extension of K_2 such that $PK'_2 = P'$. Then $\boldsymbol{\sigma} \in \text{Gal}(K_2)^e$. Since, in addition, $\boldsymbol{\sigma} \in \Sigma_{(K_2,K'_2,f)}$, we get that $\boldsymbol{\sigma} \in \Sigma'_{(K_2,K'_2,f)}$. Thus, there exists $a \in R_P$ such that f(a, Y) is irreducible over $PK'_2 = P'$, so $a \in R_P \cap H_{P'}(f) \subseteq^{(12)} R_P \cap H_P(g)$, as desired. \Box

Theorem 3.3. Let R be a countable Hilbertian ring with quotient field K and let R_{sep} be the integral closure of R in K_{sep} . Let L be a Galois extension of Kin K_{sep} and let e be a positive integer. Then, $R_{sep} \cap L[\sigma]_K$ is Hilbertian for almost all $\sigma \in \text{Gal}(K)^e$.

Proof. Let \mathcal{F} be the set of all finite Galois extensions K_1 of K within L for which L/K_1 satisfies the K-linearly disjoint condition. Since K is countable, so is \mathcal{F} . Let

$$\Sigma = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid R_{\operatorname{sep}} \cap L[\boldsymbol{\sigma}]_K \text{ is Hilbertian} \}.$$

For $K_1 \in \mathcal{F}$, let $\Sigma_{K_1} = \operatorname{Gal}(K_1)^e \cap \Sigma$. Note that

$$\operatorname{Gal}(K_1)^e = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid K_1 \subseteq L[\boldsymbol{\sigma}]_K \}.$$
(13)

By Proposition 3.2,

$$\mu_K(\Sigma_{K_1}) = \mu_K(\operatorname{Gal}(K_1)^e) \text{ for each } K_1 \in \mathcal{F}.$$
(14)

Let

$$\Delta = \operatorname{Gal}(K)^e \setminus \bigcup_{K_1 \in \mathcal{F}} \operatorname{Gal}(K_1)^e \stackrel{(13)}{=} \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid K_1 \not\subseteq L[\boldsymbol{\sigma}]_K \text{ for all } K_1 \in \mathcal{F} \}$$

If $\boldsymbol{\sigma} \in \Delta$, then by Lemma 1.4, $L[\boldsymbol{\sigma}]_K/K$ is small. By Lemma 1.5, for every positive integer r, each separable Hilbert subset H of $L[\boldsymbol{\sigma}]_K^r$ contains a separable Hilbert subset H_K of K^r . Since R is Hilbertian, $R^r \cap H_K \neq \emptyset$. Therefore, $R_{\text{sep}} \cap$ $L[\boldsymbol{\sigma}]_K$ is Hilbertian. Thus, $\Delta \subseteq \Sigma$. Since $\text{Gal}(K)^e = \Delta \cup \bigcup_{K_1 \in \mathcal{F}} \text{Gal}(K_1)^e$, Lemma 1.7 implies that

$$\mu_{K}(\Sigma) = \mu_{K} \left((\Sigma \cap \Delta) \cup \bigcup_{K_{1} \in \mathcal{F}} \Sigma_{K_{1}} \right) \stackrel{(14)}{=} \mu_{K} \left(\Delta \cup \bigcup_{K_{1} \in \mathcal{F}} \operatorname{Gal}(K_{1})^{e} \right)$$
$$= \mu_{K} \left(\operatorname{Gal}(K)^{e} \right) = 1,$$

which concludes the proof of the theorem.

References

- [BaF13] L. Bary-Soroker and A. Fehm, Random Galois extensions of Hilbertian rings, Journal die Théorie de Nombres de Bordeaux 25 (2013), 31–42.
- [Har99] D. Haran, Hilbertian fields under separable algebraic extensions, Invent. Math. 137 (1999), no. 1, 113–126.
- [FrJ08] M. Fried and M. Jarden, Field Arithmetic (3rd Edition), Ergebnisse der Mathematik (3), 11, Springer, Heidelberg, 2008.
- [Jar97] M. Jarden, Large normal extension of Hilbertian fields, Mathematische Zeitschrift 224 (1997), 555–565.
- [JaR18] M. Jarden and A. Razon, Extensions of Hilbertian rings, Manuscript, 2018.