The Section Conjecture over Large Algebraic Extensions of Finitely Generated Fields

Moshe Jarden, Tel Aviv University jarden@tauex.tau.ac.il and

Sebastian Petersen, Universität Kassel petersen@mathematik.uni-kassel.de

25 December 2020

Abstract

Let K be a finitely generated extension of its prime field and let $e \geq 2$ an integer. We prove the injectivity part of the section conjecture of Grothendieck for almost all $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e) \in \operatorname{Gal}(K)^e$ and for all smooth geometrically integral projective curves of genus ≥ 1 over the field $\tilde{K}(\boldsymbol{\sigma})$.

MR Classification: 12E30

1 Introduction

Algebraic number theory and Diophantine Geometry prove finiteness theorems for arithmetic and diophantine objects over global fields and, more generally, over **infinite finitely generated fields** K (over their prime fields). For example, the Mordell-Weil-Lang-Néron theorem says that for every abelian variety A over K, the abelian group A(K) has finite rank. Another prominent example due to Faltings (formerly the "Mordell Conjecture") says in the case where $\operatorname{char}(K) = 0$ that C(K) is finite for every geometrically integral curve C over K of genus ≥ 2 . An analog of that result is due to Grauert-Manin in positive characteristic.

Of decisive importance from our point of view is Hilbert irreducibility theorem saying that if $f \in K[T, X]$ is irreducible, then there exist infinitely many $a \in K$ such that f(a, X) is irreducible in K[X].

For these reasons, we consider the finitely generated fields as "small". On the other end of the scale stand the algebraic closure \tilde{K} of K. For this field, we have rank $(A(\tilde{K})) = \infty$ for every non-zero abelian variety A over K, and $V(\tilde{K})$ is infinite for every integral variety V of positive dimension over \tilde{K} . Moreover, every non-constant polynomial in $\tilde{K}[X]$ has a zero, so \tilde{K} is not Hilbertian. Similar statements hold for the maximal separable extension K_{sep} of K in \tilde{K} . Thus, one may say that \tilde{K} and K_{sep} are "large fields".

1 INTRODUCTION

"Just below" \tilde{K} and K_{sep} there lie a big family of fields that are also large for a variety of reasons. To introduce these families we recall that the absolute Galois group $\text{Gal}(K) = \text{Gal}(K_{\text{sep}}/K)$ of K is profinite. Hence, for each positive integer e, the group $\text{Gal}(K)^e$ has a unique Haar measure μ such that $\mu(\text{Gal}(K)^e) = 1$. For every $\boldsymbol{\sigma} := (\sigma_1, \ldots, \sigma_e)$, we write $K_{\text{sep}}(\boldsymbol{\sigma})$ for the fixed field of $\sigma_1, \ldots, \sigma_e$ in K_{sep} and let $\tilde{K}(\boldsymbol{\sigma}) := K_{\text{sep}}(\boldsymbol{\sigma})_{\text{ins}}$ be the maximal purely inseparable extension of $K_{\text{sep}}(\boldsymbol{\sigma})$ in \tilde{K} .

By [FrJ08, p. 380, Thm. 18.6.1], for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ (in the sense of the Haar measure μ) every geometrically integral variety over $K_{\text{sep}}(\boldsymbol{\sigma})$ has a $K_{\text{sep}}(\boldsymbol{\sigma})$ -rational point. This means that $K_{\text{sep}}(\boldsymbol{\sigma})$ is a **PAC-field** for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$. The same holds for $\tilde{K}(\boldsymbol{\sigma})$. By [FrJ08, p. 379, Thm. 18.5.6], for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, the group $\text{Gal}(K_{\text{sep}}(\boldsymbol{\sigma}))$ is isomorphic to the free profinite group \hat{F}_e of e generators. In particular $K_{\text{sep}}(\boldsymbol{\sigma})$ has only finitely many extensions of each degree d, so $K_{\text{sep}}(\boldsymbol{\sigma})$ is definitely not Hilbertian.

For these reasons, Field Arithmetic considers almost all of the fields $K_{\text{sep}}(\boldsymbol{\sigma})$ and $\tilde{K}(\boldsymbol{\sigma})$ as "large". It turns out, that concerning abelian varieties, there is a distinction between the cases e = 1 and $e \ge 2$. This is reflected by the following conjecture, where for an abelian variety A over a field M and for a prime number l, we set $A_l(M) = \{\mathbf{a} \in A(M) \mid l\mathbf{a} = \mathbf{o}\}$ and let $A_{\text{tor}}(M) = \{\mathbf{a} \in A(M) \mid n\mathbf{a} = \mathbf{o}\}$ for some $n \in \mathbb{N}\}$.

Conjecture A [GeJ78, p. 260, Conjecture] Let K be a finitely generated field. Then, for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ and for every non-zero abelian variety A over $\tilde{K}(\boldsymbol{\sigma})$, the following holds:

- (a) If e = 1, then there are infinitely many prime numbers l with $A_l(\tilde{K}(\boldsymbol{\sigma})) \neq \mathbf{0}$. Thus, $A_{tor}(\tilde{K}(\boldsymbol{\sigma}))$ is infinite.
- (b) If $e \geq 2$, then $A_{tor}(K(\boldsymbol{\sigma}))$ is finite.
- (c) If $e \ge 1$, then for every prime number l, the group $A(\tilde{K}(\boldsymbol{\sigma}))$ contains only finitely many points of an l-power order.

Conjecture A is completely proved for elliptic curves in [GeJ78, Thm. 1.1]. Part C is proved in [JaJ01, Thm. 2.7]. Part B in the case where $\operatorname{char}(K) = 0$ is also proved in [JaJ01, Thm. 3.7]. Finally, Part A is proved for $\operatorname{char}(K) = 0$ in [JaP19, Thm. C]. Thus, in this respect, almost all of the fields $\tilde{K}(\boldsymbol{\sigma})$ with $e \geq 2$ are "not so large" as almost all of the fields $\tilde{K}(\boldsymbol{\sigma})$ with e = 1.

Goal of the present article. We enhance the above given information about almost all the fields $\tilde{K}(\boldsymbol{\sigma})$ with an injectivity result concerning the "section conjecture" for abelian varieties over those fields in the case when $e \geq 2$.

To this end let X be a smooth geometrically integral variety over a field M with geometric generic point $\bar{\mathbf{x}}$. We choose a geometric generic point $\bar{\mathbf{x}}_{sep}$ of $X_{M_{sep}}$ that lies over $\bar{\mathbf{x}}$. Then, we consider the short exact sequence

$$\mathbf{1} \longrightarrow \pi_1(X_{M_{\text{sep}}}, \bar{\mathbf{x}}_{\text{sep}}) \longrightarrow \pi_1(X, \bar{\mathbf{x}}) \xrightarrow{\rho} \text{Gal}(M) \longrightarrow \mathbf{1}, \qquad (1) \quad \{\text{STIx}\}$$

where $\operatorname{Gal}(M) = \operatorname{Gal}(M_{\operatorname{sep}}/M)$ is the absolute Galois group of M, $\pi_1(X, \bar{\mathbf{x}})$ (resp. $\pi_1(X_{M_{\operatorname{sep}}}, \bar{\mathbf{x}}_{\operatorname{sep}})$) is the fundamental group of X (resp. of $X_{M_{\operatorname{sep}}}$) with base point $\bar{\mathbf{x}}$ (resp. $\bar{\mathbf{x}}_{sep}$), and ρ is the corresponding restriction map (Remark 6.2). Every point $\mathbf{x} \in X(M)$ gives rise to a group theoretic section of ρ which is unique up to $\pi_1(X_{M_{sep}}, \bar{\mathbf{x}}_{sep})$ -conjugacy (Remark 6.3). We denote the $\pi_1(X_{M_{sep}}, \bar{\mathbf{x}}_{sep})$ conjugacy class of that section by $\kappa_{X/M}(\mathbf{x})$ and let $\mathcal{S}_{X/M}$ be the set of all group theoretic sections of ρ up to $\pi_1(X_{M_{sep}}, \bar{\mathbf{x}}_{sep})$ -conjugacy.

Grothendieck's renowned **section conjecture** says that the **profinite Kummer map**

$$\kappa_{X/M} \colon X(M) \to \mathcal{S}_{X/M}$$
 (2) {grtk}

is bijective if M is a finitely generated extension of \mathbb{Q} and X is a smooth geometrically integral projective curve over M of genus at least 2.

Grothendieck stated his conjecture in a letter to Faltings sent in 1983 [Sti13, p. xiv, 2nd paragraph]. In that letter he mentions that the map $\kappa_{X/M}$ is injective but leaves open the question of its surjectivity.

One may find a proof of the injectivity of $\kappa_{X/M}$ in [Sti13, p. 73, Prop. 73]. To this end we may assume that X(M) is non-empty, otherwise $\kappa_{X/M}$ is trivially injective. Thus, X can be embedded into its Jacobian J. Then, one uses the Mordell-Weil theorem saying that for every finite extension M' of M, the abelian group J(M') is finitely generated [Lan59, p. 71, Thm. 1] to conclude that

$$\bigcap_{n\in\mathbb{N}} nJ(M') = \mathbf{0}, \tag{3} \quad \{\texttt{mord}\}$$

and this implies the injectivity of $\kappa_{X/M}$.

Our main result concerns the large fields mentioned above:

Theorem B [Corollary 7.2 and Corollary 7.3]: Let K be an infinite finitely generated field and let $e \ge 2$ be an integer. Then, the following statements hold for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ and every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$:

- (a) For every non-zero abelian variety A over M and every non-empty smooth geometrically integral subvariety X of A, the profinite Kummer map $\kappa_{X/M}$ is injective, its image is dense (in an appropriate topology) but the map is not surjective.
- (b) For all smooth geometrically integral projective curves C/M of genus ≥ 1 the profinite Kummer map $\kappa_{C/M}$ is injective with a dense image but the map is not surjective.

As mentioned above, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the field $\tilde{K}(\boldsymbol{\sigma})$ is PAC, hence, by Ax-Roquette, so is every algebraic, in particular finite, extension M of $\tilde{K}(\boldsymbol{\sigma})$ [FrJ08, p. 196, Cor. 11.2.5]. By Koenigsmann-Stix, $S_{X/M}$ is uncountable for every smooth geometrically integral variety X over M (Proposition 6.7). On the other hand, X(M) is countable, because M is. Hence, a fortiori, we can not expect $\kappa_{X/M}$ in (2) to be bijective. That is, we can not expect the full section conjecture to hold over M.

In a letter to the authors [Sti20], Stix wrote that [Sti13, p. 73, Prop. 73] should have been stated only for varieties over perfect fields. In addition, Stix added that if A is an abelian variety over a perfect field M, then $\kappa_{A/M}: A(M) \to \mathcal{S}_{A/M}$ is injective if and only if $\operatorname{div}(A(M)) := \bigcap_{n \in \mathbb{N}} nA(M) = \mathbf{0}$ (Lemma 7.1).

1 INTRODUCTION

The truth of the latter condition in our case along with additional vital information is stored in the following result.

Theorem C (Theorem 5.2): Let K be an infinite finitely generated field and let $e \geq 2$. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, all finite extensions M of $\tilde{K}(\boldsymbol{\sigma})$, and every abelian variety A over M we have:

- (a) M is PAC,
- (b) $\operatorname{div}(A(M)) := \bigcap_{n \in \mathbb{N}} nA(M) = \mathbf{0}$,
- (c) $|A_{l^{\infty}}(M)| < \infty$ for every prime number l, and
- (d) if char(K) = 0, also $|A_{tor}(M)| < \infty$.

Here, for each prime number l and a positive integer i, we put $A_{l^i}(M) = \{\mathbf{a} \in A(M) \mid l^i \mathbf{a} = \mathbf{o}\}$ and $A_{l^{\infty}}(M) = \bigcup_{i=1}^{\infty} A_{l^i}(M)$.

By (a) of Theorem C, every smooth geometrically integral curve C over M has an M-rational point, so if its genus is ≥ 1 , it can be embedded into its Jacobian. Thus, Statement (b) of Theorem B is a special case of Statement (a) of that theorem.

Using Weil's restriction of scalars for abelian varieties (Section 5), it suffices to prove Theorem C only in the case where $M = \tilde{K}(\boldsymbol{\sigma})$ and $\boldsymbol{\sigma}$ is chosen at random in $\text{Gal}(K)^e$. In this case (c) and (d) are already proved in [JaJ01]. However, Statement (d) is not needed in the proof of Theorem B and we mentioned it only for completeness.

The proof of (b) of Theorem C depends on the following result:

Lemma D (Corollary 3.4): Let A be a simple abelian variety of dimension g over an infinite finitely generated field K and let \mathbf{p} be a point of A(K) of infinite order. Then, $[K(\mathbf{p}_l) : K] = l^{2g}$ for each point $\mathbf{p}_l \in A(K_{sep})$ with $l\mathbf{p}_l = \mathbf{p}$ and for all sufficiently large prime numbers l.

In addition to Lemma D, the proof of (b) of Theorem C uses the obvious observation that $\lim_{l\to\infty} (1/l^{2g(e-1)}) = 0$ if $e \ge 2$. The failure of this observation for e = 1 forces us to prove Theorem C only for $e \ge 2$. See also Remark 4.5.

The proof of Corollary 3.4 depends on a result that Ribet proves in [Rib79] when char(K) = 0 and that we generalize to the general case in Section 3. In addition, the proof of Corollary 3.4 uses the following heavy result:

Proposition E (Proposition 2.2): The following statements hold for every non-zero abelian variety A over a finitely generated field K.

- (a) A(K) is a finitely generated abelian group.
- (b) For almost all $l \in \mathbb{L}'$, the Gal(K)-module A_l is semi-simple.
- (c) For almost all $l \in \mathbb{L}'$, the natural homomorphism $\operatorname{End}_{K}(A) \otimes \mathbb{Z}/l\mathbb{Z} \to \operatorname{End}_{\mathbb{F}_{l}[\operatorname{Gal}(K)]}(A_{l})$ is an isomorphism.
- (d) $H^1(\text{Gal}(K(A_l)/K), A_l) = 0$ for almost all $l \in \mathbb{L}'$.

In this result, $\mathbb{L}' = \mathbb{L} \setminus \{\operatorname{char}(K)\}$ with \mathbb{L} being the set of all prime numbers. Then, "for almost all $l \in \mathbb{L}'$ " means "for all but finitely many elements l in \mathbb{L}' ".

Statement (a) of Proposition E is the Mordell-Weil-Lang-Néron Theorem. Statement (d) relies on Statement (b) and is due to Nori [Nor87]. Statements (b) and (c) are part of the mod-l version of the l-adic Tate conjecture proved by Faltings. They were proved by Zarhin in the case where K is either a number field or finitely generated of positive characteristic. However, we have not been able to find a proof of that statement in the literature in the case where K is a finitely generated transcendental extension of \mathbb{Q} . We therefore supply full proofs of (b) and (c) in that case in Sections 1 and 2. Among others, we use the theorem of Faltings that assures a generalized Conjecture of Shafarevich for K (Proposition 2.3).

Additional results. Finally we mention two additional results. The first one deals with non-perfect fields M. If A is an abelian variety over a non-perfect field M, then the proof of Lemma 7.1 breaks down. It does not prove that the injectivity of $\kappa_{A/M}$: $A(M) \to S_{A/M}$ follows from div $(A(M)) = \mathbf{0}$. Instead, the injectivity of $\kappa_{A/M}$ follows from the injectivity of the map $\kappa_{A_{M_{ins}}/M_{ins}}$: $A(M_{ins}) \to S_{A_{ins}/M_{ins}}$ (Lemma 8.2). Therefore, Theorem B holds also when the fields $K_{sep}(\boldsymbol{\sigma})$ replace the fields $\tilde{K}(\boldsymbol{\sigma})$ (Theorem 8.3).

The second one is concerned with a finite base field K. It turns out that if $e \geq 2$, then for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ the field $\tilde{K}(\boldsymbol{\sigma})$ is finite, hence so is every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$. Following a hint of the referee, we find that the full section conjecture is true in this case, that is the Kummer map is bijective (Theorem 9.1(b)).

In addition to the case $e \geq 2$, we are able to prove the analog of Theorem B for K finite and e = 1 (Theorem 9.1(a)). Here, $\tilde{K}(\sigma)$ is infinite for almost all $\sigma \in \text{Gal}(K)$. Hence, so is every finite extension M of $\tilde{K}(\sigma)$. Thus, M is PAC. In addition, we use that $A(\tilde{K}) = A_{\text{tor}}(\tilde{K})$ for every abelian variety A over K.

Theorem B for an infinite finitely generated base field K and e = 1 remains open.

The authors are indebted to the anonymous referees for their helpful comments, to Jakob Stix for his enlightened letter [Sti20], and to Aharon Razon for careful reading of the manuscript.

2 Semi-simple Algebras

Yuri Zarhin proves in [Zar77] that the mod-l reduction of a semi-simple \mathbb{Q} algebra that satisfies a few natural finiteness conditions is again semi-simple if l is a sufficiently large prime number. Based on a theorem of Faltings, we generalize Zarhin's result to finitely generated extensions of \mathbb{Q} . This is done in this and the next section.

We denote the algebraic closure of a field K by \tilde{K} and the maximal separable extension of K in \tilde{K} by K_{sep} . Recall that an **abelian variety** over K is, by definition, a group scheme over K which is proper and geometrically integral [Mil86, p. 103, Conventions and Sec. 1]. It is known that abelian varieties are projective [Mil86, p. 113, Thm. 7.1], smooth [Mil86, p. 104, Sec. 1], and commutative [Mil86, p. 105, Cor. 2.4].

{SSMa}

{abel}

2 SEMI-SIMPLE ALGEBRAS

Remark 2.1. We denote the zero point of an abelian variety A by **o** and set $\mathbf{0} = \{\mathbf{o}\}$. For every positive integer n, we let $n_A: A \to A$ be the isogeny of A defined by multiplication with n and let $A_n = \operatorname{Ker}(n_A)$. We abuse our notation and write A_n also for $A_n(\tilde{K}) = \{\mathbf{a} \in A(\tilde{K}) \mid n\mathbf{a} = \mathbf{o}\}$, if $\operatorname{char}(K) \nmid n$. In this case, n_A is étale, [Mil86, p. 115, Thm. 8.2]. In particular each $\mathbf{a} \in A_n(\tilde{K})$ already lies in $A_n(K_{\text{sep}})$ [Mum88, p. 245, Cor.(1)].

As usual, we let $M_n(K)$ be the ring of all $n \times n$ matrices with entries in K.

Lemma 2.2. The following statements about a perfect field K and a finitedimensional K-algebra D are equivalent.

- (a) D is a semi-simple K-algebra.
- (b) $D \otimes_K \tilde{K}$ is a semi-simple \tilde{K} -algebra.
- (c) There exist positive integers n_1, \ldots, n_r such that $D \otimes_K \tilde{K} \cong \prod_{i=1}^r M_{n_i}(\tilde{K})$.
- (d) There exist a finite extension L of K and positive integers n_1, \ldots, n_r such that $D \otimes_K L \cong \prod_{i=1}^r M_{n_i}(L)$

Proof. The implication (a) \implies (b) is a special case of [Lan93, p. 658, Thm. 6.2]. See also the second paragraph of [Lan93, p. 659].

(b) \Longrightarrow (c): By assumption, $D \otimes_K K$ is a direct sum of finitely many simple finite dimensional \tilde{K} -algebras. By a consequence of Wedderburn theorem, each of them is isomorphic to $M_n(\tilde{K})$ for some positive integer n [Lor08, p. 158, Thm. 6]. Hence, (c) is true.

(c) \implies (d): The isomorphism $D \otimes \tilde{K} \cong \prod_{i=1}^{r} M_{n_i}(\tilde{K})$ is already defined over a finite extension L of K. Hence, $D \otimes_K L \cong \prod_{i=1}^{r} M_{n_i}(L)$.

(d) \implies (a): Let J = Rad(D) be the Jacobson radical of D, that is the intersection of all maximal right ideals of D. By [Lor08, p. 148, Thm. 4], there exists a positive integer k such that $J^k = \mathbf{0}$. Thus, the product of k elements of J is always 0. Hence, each element of $J \otimes_K L$ is nilpotent. Therefore, by [Lor08, p. 148, F38],

$$J \otimes_K L \subseteq \operatorname{Rad}(D \otimes_K L). \tag{4} \quad \{Jcbs\}$$

By [Lor08, p. 152, F3], each *L*-algebra $M_{n_i}(L)$ is simple. Hence, $D \otimes_K L$ is semi-simple. Therefore, by [Lan93, p. 658, Thm. 6.1(d)], $\operatorname{Rad}(D \otimes_K L) = \mathbf{0}$, so by (4), $J \otimes_K L = \mathbf{0}$. Finally, the field extension L/K is faithfully flat, so $J = \mathbf{0}$. Therefore, by [Lan93, p. 658, Thm. 6.1(c)], D is semi-simple, as claimed.

 $\{ZARg\}$

Lemma 2.3 ([Zar77], Lemma 3.2). Let D be a \mathbb{Z} -algebra which is finitely generated and free as a \mathbb{Z} -module. Suppose that the \mathbb{Q} -algebra $D \otimes \mathbb{Q}$ is semi-simple. Then, for all large $l \in \mathbb{L}$, the \mathbb{F}_l -algebra $D \otimes \mathbb{F}_l$ is semi-simple.

Proof. By Lemma 1.2, there exist a finite extension L of \mathbb{Q} , positive integers n_1, \ldots, n_r , and an isomorphism $f: D \otimes_{\mathbb{Q}} L \to \prod_{i=1}^r M_{n_i}(L)$ of L-algebras. Then, there exists a positive integer m such that for the integral closure R of $\mathbb{Z}\begin{bmatrix}\frac{1}{m}\end{bmatrix}$ in L, both f and f^{-1} are defined over R. Hence, the restriction f_0 of f to $D \otimes R$ is an isomorphism onto $\prod_{i=1}^r M_{n_i}(R)$.

{MATr}

For each prime number l that does not divide m, and every maximal ideal \mathfrak{p} of R that lies over $l\mathbb{Z}\left[\frac{1}{m}\right]$ we consider the residue field $\bar{L}_{\mathfrak{p}} = R/\mathfrak{p}$. Then,

$$f_0 \otimes_R \bar{L}_{\mathfrak{p}} \colon D \otimes \bar{L}_{\mathfrak{p}} \to \prod_{i=1}^r M_{n_i}(\bar{L}_{\mathfrak{p}})$$

is an isomorphism. It follows from Lemma 1.2, that $D \otimes \mathbb{F}_l$ is semi-simple, as claimed. \Box

The following lemma appears in a remark on page 169 of [Mum74].

Lemma 2.4. Let $f: A \to B$ be an isogeny of abelian varieties over a field K. Let n be a positive integer such that $\text{Ker}(f) \leq \text{Ker}(n_A)$. Then:

(a) There exists an isogeny $g: B \to A$ such that $g \circ f = n_A$ and $f \circ g = n_B$.

(b) $g(B_n) = \operatorname{Ker}(f)$.

Proof. For Statement (a), see [EGM19, p. 75, Prop. 5.12].

For statement (b) we note that since g is surjective, it restricts to a surjective homomorphism $g: B_n = \text{Ker}(f \circ g) \to \text{Ker}(f)$. \Box

As usual, we denote the ring of endomorphisms of A by $\operatorname{End}(A)$ and let $\operatorname{End}_K(A)$ be the ring of endomorphisms of A that are defined over K.

Lemma 2.5. Let A be an abelian variety over a field K. Then, $\operatorname{End}_{K}(A) \otimes \mathbb{F}_{l}$ is a finite dimensional semi-simple \mathbb{F}_{l} -algebra for almost all $l \in \mathbb{L}$.

Proof. By [Mil86, p. 123, Thm. 12.5], End(A) is a free \mathbb{Z} -module of rank $\leq 4\dim(A)^2$. Hence, $\dim_{\mathbb{F}_l}(\operatorname{End}_K(A) \otimes \mathbb{F}_l) \leq 4\dim(A)^2$ for all $l \in \mathbb{L}$.

In general, if abelian varieties B and B' are isogeneous, then $\operatorname{End}(B) \otimes \mathbb{Q} \cong$ $\operatorname{End}(B') \otimes \mathbb{Q}$ [Mil08, Second paragraph after Remark 10.2]. Hence, by Poincaré complete reducibility theorem [Mum74, p. 173, Thm. 1], we may assume that $A = A_1^{n_1} \times \cdots \times A_r^{n_r}$, where A_1, \ldots, A_r are non-isogenous simple abelian varieties. It follows from [Mum74, p. 174, Cor. 2] that $\operatorname{End}_K(A) \otimes \mathbb{Q} \cong \prod_{i=1}^r M_{n_i}(D_i)$, where each D_i is a division ring. Hence, by [Lor08, p. 157, Thm. 4], $\operatorname{End}_K(A) \otimes \mathbb{Q}$ is a semi-simple \mathbb{Q} -algebra. Therefore, by Lemma 1.3, $\operatorname{End}_K(A) \otimes \mathbb{F}_l$ is semisimple for all sufficiently large $l \in \mathbb{L}$, as claimed. \Box

3 Endomorphism Rings of Abelian Varieties

 $\{\texttt{ERAv}\}$

Let K be a finitely generated field of characteristic $p \ge 0$ and A a non-zero abelian variety over K. By [Mum74, p. 64, Prop.(3)], we have for each positive integer n with char(K) $\nmid n$ that

$$A_n \cong (\mathbb{Z}/n\mathbb{Z})^{2\dim(A)} \tag{5} \quad \{\texttt{torl}\}$$

as abelian groups. Moreover, for $l \in \mathbb{L}'$, the group $\operatorname{Gal}(K)$ acts on A_l , so we may consider A_l as an $\mathbb{F}_l[\operatorname{Gal}(K)]$ -module.

{ISOg}

Notation 3.1 (Rings of endomorphisms). For a module M over an associative ring R with 1, one usually denotes the ring of endomorphisms of M by $\operatorname{End}(M)$ or by $\operatorname{End}_R(M)$, if one wishes to stress the underlying ring R. For example, one writes $\operatorname{End}_{\mathbb{Z}}(M)$ for the ring of endomorphisms of M as an abelian group.

The following result includes some well known results about abelian varieties. However, Statements (b) and (c) for function fields over \mathbb{Q} seem to be missing in the literature.

Proposition 3.2.

- (a) A(K) is a finitely generated abelian group.
- (b) For almost all $l \in \mathbb{L}'$, the $\operatorname{Gal}(K)$ -module A_l is semi-simple.
- (c) For almost all $l \in \mathbb{L}'$, the natural homomorphism $\operatorname{End}_{K}(A) \otimes \mathbb{Z}/l\mathbb{Z} \to \operatorname{End}_{\mathbb{F}_{l}[\operatorname{Gal}(K)]}(A_{l})$ is an isomorphism.
- (d) $H^1(\text{Gal}(K(A_l)/K), A_l) = 0$ for almost all $l \in \mathbb{L}'$.

Statement (a) of Proposition 2.2 is the well known Mordell-Weil and Lang-Néron theorem. See [Lan62, Chap. V] for a classical proof and [Con06, Cor. 7.2] for a scheme theoretic proof.

For Part (b) in the case where K is a number field, see [Zar85, Cor. 5.4.3(b)]. Part (b) in the case p > 0 can be found at [Zar14, Cor. 2.3.(iii)].

Part (c) for number fields can be found in [Zar85, Cor. 5.4.5]. The case where p > 0 is covered by [Zar14, Cor. 2.7].

By (b), A_l is a semi-simple $\operatorname{Gal}(K)$ -module for almost all $l \in \mathbb{L}'$. By (5), $\dim_{\mathbb{F}_l}(A_l) = 2\dim(A)$ is independent of l. Hence, Part (d) follows from [Nor87, §4, Thm. E].

The rest of this section is devoted to the proof of Parts (b) and (c) in the remaining case, where K is a function field of several variables over a number field.

Thus, for the remaining of this section, we assume that K is a finitely generated extension of \mathbb{Q} . We start by citing a finiteness theorem for K due to Faltings. To this end we choose a finitely generated regular extension R of \mathbb{Z} with quotient field K and cite two major results.

{FaWu}

Proposition 3.3 ([FaW84], p. 205, Thm. 2). Up to isomorphism, there exist only finitely many abelian varieties of a given dimension g over K which have good reduction at all primes \mathfrak{p} of R of height one.

 $\{\texttt{SRTa}\}$

Proposition 3.4 ([SeT68], Cor. 2). Let v be a discrete valuation of a field F and let A and A' be isogenous abelian varieties over F such that A has good reduction at v. Then, also A' has good reduction at v.

The following result generalizes [Zar85, Prop. 3.1]. That result relies on Faltings' finiteness theorem for number fields [Fal83, Satz 6]. Our proof applies Proposition 2.3.

{MODu}

{galbasics}

3 ENDOMORPHISM RINGS OF ABELIAN VARIETIES

Lemma 3.5. Let A be an abelian variety over K. Then, up to an isomorphism, there exist only finitely many abelian varieties over K that are isogenous to A.

Proof. Since R is finitely generated over \mathbb{Z} , it is Noetherian. By assumption, R is regular, hence also integrally closed [Mat94, p. 157, Thm. 19.4]. If the height of a prime ideal \mathfrak{p} of R is 1, then $\mathfrak{p}R_{\mathfrak{p}}$ is the unique non-zero prime ideal of $R_{\mathfrak{p}}$. Hence, by [CaF67, p. 4, Prop. 3], $R_{\mathfrak{p}}$ is a discrete valuation domain.

Using that conclusion, we infer from [Shi98, p. 95, Prop. 25] that there exists a nonzero element $a \in R$ such that if \mathfrak{p} is a prime ideal of R of height 1 and $a \notin \mathfrak{p}$, then A has a good reduction at \mathfrak{p} . Replacing R by $R[a^{-1}]$, we may assume without loss that A has good reduction at each $\mathfrak{p} \in \operatorname{Spec}(R)$ of height 1.

Let \mathcal{A} be the set of all abelian varieties A' over K (up to isomorphism) with $\dim(A') = \dim(A)$ and with good reduction at each $\mathfrak{p} \in \operatorname{Spec}(R)$ of height 1. By Proposition 2.3, \mathcal{A} is finite.

Next let \mathcal{A}' be the set of all abelian varieties (up to isomorphism) over K that are isogenous to A and consider $A' \in \mathcal{A}'$. Then, A' is isogenous to A, in particular dim $(A') = \dim(A)$. If $\mathfrak{p} \in \operatorname{Spec}(R)$ has height 1, then by the first paragraph of the proof and by Proposition 2.4, A' has good reduction at \mathfrak{p} . Hence, $A' \in \mathcal{A}$. It follows that $\mathcal{A}' \subseteq \mathcal{A}$, so by the preceding paragraph, \mathcal{A}' is finite, as claimed. \Box

The following result generalizes [Zar85, Cor. 5.4.1]

 $\{\texttt{ENDo}\}$

Lemma 3.6. Let A be an abelian variety over K. Then, for almost all $l \in \mathbb{L}$ and every $\operatorname{Gal}(K)$ -submodule W of A_l there exists an endomorphism $u \in \operatorname{End}_K(A)$ such that $u(A_l) = W$.

Proof. Let $A^{(1)}, \ldots, A^{(s)}$ be all of the abelian varieties over K (up to isomorphism) that are isogenous to A (Lemma 2.5). For each j between 1 and s we choose an isogeny $h_j: A \to A^{(j)}$. We set $r = \max(|\text{Ker}(h_1)|, \ldots, |\text{Ker}(h_s)|)$.

Let l > r be a prime number, let W be a Gal(K)-submodule of A_l , and consider the abelian variety B = A/W. By Lemma 1.4, there exists an isogeny $g: B \to A$ such that

$$g(B_l) = W. \tag{6} \quad \{\texttt{Blwu}\}$$

By the first paragraph of the proof, there exists an isomorphism $v: A^{(j)} \to B$ for some $j \in \{1, \ldots, s\}$. Then, $f = v \circ h_j: A \to B$ is an isogeny and $|\text{Ker}(f)| = |\text{Ker}(h_j)| \leq r$. By the choice of l, we have l > r, so $l \nmid |\text{Ker}(f)|$. Hence, f maps A_l injectively into B_l . Since f is an isogeny, $\dim(B) = \dim(A)$, Hence,

$$|A_l| \stackrel{(5)}{=} l^{2\dim(A)} = l^{2\dim(B)} \stackrel{(5)}{=} |B_l|.$$

Therefore, f maps A_l bijectively onto B_l .

It follows that $u = g \circ f$ is a K-endomorphism of A that satisfies

$$u(A_l) = g(f(A_l)) = g(B_l) \stackrel{(6)}{=} W$$

as desired. $\hfill\square$

{ZRHa}

3 ENDOMORPHISM RINGS OF ABELIAN VARIETIES

The following Lemma is part of [Hup67, p. 467, Hilfssatz 3.5].

Lemma 3.7. Let D be a finite dimensional semi-simple algebra over a field F. Then, for every right ideal \mathfrak{r} of D, there exists an idempotent e of D such that $\mathfrak{r} = eD$.

Remark 3.8 (The ring $E_l(A)$). For every abelian variety A over K and every $l \in \mathbb{L}$, we consider the ring homomorphism λ_l : $\operatorname{End}_K(A) \to \operatorname{End}_{\mathbb{F}_l}(A_l) = \operatorname{End}_{\mathbb{Z}}(A_l)$ defined by $\lambda_l(f) = f|_{A_l}$ for each $f \in \operatorname{End}_K(A)$. Let $E_l(A) = \{f|_{A_l} | f \in \operatorname{End}_K(A)\}$ be the image of $\operatorname{End}_K(A)$ in $\operatorname{End}_{\mathbb{F}_l}(A_l)$ under λ_l . For each $f \in \operatorname{End}_K(A)$, every $\sigma \in \operatorname{Gal}(K)$, and all $\mathbf{a} \in A(K)$, we have $f(\sigma(\mathbf{a})) = \sigma(f(\mathbf{a}))$, hence,

$$E_l(A) \subseteq \operatorname{End}_{\mathbb{F}_l[\operatorname{Gal}(K)]}(A_l). \tag{7} \quad \{\texttt{elen}\}$$

By definition, $l \cdot \operatorname{End}_{K}(A) \subseteq \operatorname{Ker}(\lambda_{l})$. Conversely, if $f \in \operatorname{Ker}(\lambda_{l})$, then f vanishes on $A_{l} = \operatorname{Ker}(l_{A})$. Hence, since l_{A} is surjective, there exists a homomorphism $g: A \to A$ such that $g \circ l_{A} = f$. Therefore, $f = l_{A} \circ g \in l \cdot \operatorname{End}(A)$. Moreover, for each $\sigma \in \operatorname{Gal}(K)$, we have $\sigma(g) \circ l_{A} = \sigma(f) = f = g \circ l_{A}$. Since $l_{A}: A(\tilde{K}) \to A(\tilde{K})$ is surjective, we have $\sigma(g) = g$, so $g \in \operatorname{End}_{K}(A)$. We conclude that $\operatorname{Ker}(\lambda_{l}) = l \cdot \operatorname{End}_{K}(A)$. It follows that

$$E_l(A) \cong \operatorname{End}_K(A)/l \cdot \operatorname{End}_K(A) \cong \operatorname{End}_K(A) \otimes \mathbb{F}_l. \tag{8} \quad \{\operatorname{kerl}\}$$

Thus, by Lemma 1.5, $E_l(A)$ is a finite dimensional semi-simple \mathbb{F}_l -algebra for almost all $l \in \mathbb{L}$.

We are now in a position to prove Part (b) of Proposition 2.2 in the remaining case that we restate for the convenience of the reader.

{SEMi}

Lemma 3.9. Let A be a non-zero abelian variety over a finitely generated extension K of \mathbb{Q} . Then, for almost all $l \in \mathbb{L}$ the Gal(K)-module A_l is semi-simple.

Proof. Let l be a sufficiently large prime number and let W be a Gal(K)-submodule of A_l . We have to prove that there exists a Gal(K)-submodule W' of A_l such that $A_l = W \oplus W'$.

Lemma 2.6 yields an element $u \in E_l(A)$ such that

$$u(A_l) = W. \tag{9} \quad \{\texttt{Uual}\}$$

We consider the right ideal

$$\mathfrak{a} = \{ f \in E_l(A) \mid f(A_l) \subseteq W \}$$

of $E_l(A)$. In particular $u \in \mathfrak{a}$. Taking *l* larger, we may assume by Remark 2.8 that $E_l(A)$ is a semi-simple \mathbb{F}_l -algebra. Hence, by Lemma 2.7, there exists an idempotent element *v* of $E_l(A)$ such that $\mathfrak{a} = vE_l(A)$. In particular, there exists $v' \in E_l(A)$ such that u = vv'. It follows from (9) that

$$v(A_l) = W. \tag{10} \quad \{\texttt{Vval}\}$$

10

 $\{LAMl\}$

{IDMp}

Since v is an idempotent, so is $w := \mathrm{id}_{A_l} - v$. By (7), $w \in \mathrm{End}_{\mathbb{F}_l[\mathrm{Gal}(K)]}(A_l)$, so $w \circ \sigma = \sigma \circ w$ for all $\sigma \in \mathrm{Gal}(K)$. Hence,

$$W' := w(A_l) \tag{11} \{\texttt{Wwal}\}$$

is a Gal(K)-module that satisfies $A_l = W + W'$.

Now note that $vw = v - v^2 = v - v = 0$ and similarly wv = 0. Hence, by (10) and (11), a simple classical argument shows that $A_l = W \oplus W'$ [Coh89, p. 172, Prop. 2.3], as desired. \Box

Our final goal in this section is the proof of Proposition 2.2(c) for function fields over \mathbb{Q} .

{DUBc}

Remark 3.10 (The bi-commutant). Let R be an associative ring with 1 and let M be an R-module. We consider M also as a \mathbb{Z} -module, let $\lambda_M : R \to \operatorname{End}_{\mathbb{Z}}(M)$ be the homomorphism defined by $\lambda_M(r)(m) = rm$ for all $r \in R$ and $m \in M$, and set $R_M = \lambda_M(R)$ to be the ring of homotheties of M.

We also consider the centralizer (also known as the **commutant**) of R_M in $\operatorname{End}_{\mathbb{Z}}(M)$:

$$C_M = \{ \gamma \in \operatorname{End}_{\mathbb{Z}}(M) \mid r\gamma(m) = \gamma(rm) \text{ for all } r \in R \text{ and } m \in M \}.$$

The centralizer

$$B_M = \{ \beta \in \operatorname{End}_{\mathbb{Z}}(M) \mid \beta \gamma = \gamma \beta \text{ for all } \gamma \in C_M \}$$

of C_M in $\operatorname{End}_{\mathbb{Z}}(M)$ is the **double centralizer** (also known as the **bi-commutant**) of R_M . Following the definitions, one finds that $R_M \subseteq B_M$.

Claim: When M is a semi-simple R-module which is finitely generated as an $\operatorname{End}_R(M)$ -module (in particular if M is finite), the **double centralizer theo-**rem asserts that $R_M = B_M$.

Indeed, Theorem 2 on page 78 of [Bou12] says "Un module génerateur est équilibré". By Définition 1 on page 73 of [Bou12], being équilibré for an R-module M means that $R_M = B_M$. Définition 2 on page 75 of [Bou12] defines the notion of "being génerateur" for M. We do not repeat that definition here. Instead we note that Exemple 3 on page 77 of [Bou12] says that M is genérateur if M satisfies the assumptions of our claim. Thus, by the above quoted Theorem 2, $R_M = B_M$, as claimed.

4 KUMMER THEORY FOR ABELIAN VARIETIES

Lemma 3.11 (Part (c) of Proposition 2.2 for function fields over \mathbb{Q}). Let A be an abelian variety over a finitely generated extension K of \mathbb{Q} . Then, the restriction map $\operatorname{End}_{K}(A) \to \operatorname{End}_{\mathbb{F}_{l}[\operatorname{Gal}(K)]}(A_{l})$ is surjective for almost all $l \in \mathbb{L}$. In other words, $\operatorname{End}_{\mathbb{F}_{l}[\operatorname{Gal}(K)]}(A_{l}) = E_{l}(A)$ for almost all $l \in \mathbb{L}$.

Proof. In the notation of Remark 2.8 and Remark 2.10 we consider the associative ring $R = E_l(A)$ and the *R*-module $M = A_l$. Fixing a sufficiently large $l \in \mathbb{L}$, we have, by Remark 2.8, that $E_l(A)$ is a finitely generated semi-simple \mathbb{F}_l -algebra. Hence, by [Lan93, p. 651, Prop. 4.1], M is a semi-simple $E_l(A)$ -module. We let λ_M be the identity map of $E_l(A)$ into $\operatorname{End}_{\mathbb{Z}}(M) = \operatorname{End}_{\mathbb{Z}}(A_l)$. Thus, in the notation of Remark 2.10, $R_M = E_l(A)$. Finally let

$$C_l(A) = C_M = \{g \in \operatorname{End}_{\mathbb{Z}}(A_l) \mid g \circ f = f \circ g \text{ for all } f \in E_l(A)\}$$

and

$$B_l(A) = B_M = \{ h \in \operatorname{End}_{\mathbb{Z}}(A_l) \mid h \circ g = g \circ h \text{ for all } g \in C_l(A) \}.$$

By Remark 2.10, $R_M = B_M$. This means that

$$E_l(A) = \{ h \in \operatorname{End}_{\mathbb{Z}}(A_l) \mid h \circ g = g \circ h \text{ for all } g \in C_l(A) \}.$$
(12) {dblc}

Hence, in view of (7), it suffices to prove the following statement:

Claim: for every sufficiently large $l \in \mathbb{L}$, for each $h \in \operatorname{End}_{\mathbb{F}_{l}[\operatorname{Gal}(K)]}(A_{l})$, and all $g \in C_{l}(A)$, we have that $h \circ g = g \circ h$.

To this end we consider the abelian variety $A^2 = A \times A$ over K and observe that the graph $\Gamma = \{(\mathbf{a}, h(\mathbf{a})) \mid \mathbf{a} \in A_l\}$ of h is an $\mathbb{F}_l[\operatorname{Gal}(K)]$ -submodule of A_l^2 and that $h \circ g = g \circ h$ if and only if $(g, g)(\Gamma) \subseteq \Gamma$.

Now, we consider a sufficiently large l, for which Lemma 2.6 applied to A^2 rather than to A, yields an element $u \in E_l(A^2)$ such that $u(A_l^2) = \Gamma$. By the definition of $C_l(A)$, g centralizes $E_l(A)$. Since $\operatorname{End}_K(A^2)$ naturally agrees with $M_2(\operatorname{End}_K(A))$, the map (g,g) centralizes $E_l(A^2)$. Thus, we have $(g,g) \circ u|_{A_l^2} =$ $u|_{A_l^2} \circ (g,g)$. Therefore, $(g,g)(\Gamma) = (g,g)(u(\mathbb{A}_l^2)) = u((g,g)(A_l^2)) \subseteq u(A_l^2) = \Gamma$, as claimed. \Box

4 Kummer Theory for Abelian Varieties

{sec:heins}

Let K be a finitely generated field and let A/K be a non-zero abelian variety. For each $l \in \mathbb{L}'$ we set $K_l = K(A_l)$ and consider the following commutative diagram. Both of its rows are exact cohomology sequences associated with the short exact sequence $0 \to A_l \to A(K_{\text{sep}}) \xrightarrow{l} A(K_{\text{sep}}) \to 0$ of Gal(K) discrete modules:

 $\{ENDl\}$

where δ_l and δ'_l are the appropriate **connecting homomorphisms** [NSW15, p. 15]. Note that $H^1(\text{Gal}(K_l), A_l) = \text{Hom}(\text{Gal}(K_l), A_l)$, because the action of $\text{Gal}(K_l)$ on A_l is trivial. For each $\mathbf{p} \in A(K_l)$ we set

$$\xi_{l,\mathbf{p}} = \delta'_l(\mathbf{p}). \tag{14} \quad \{\mathtt{xi}\}$$

By [NSW15, p. 15, The group $H^1(G, A)$], the map $\xi_{l,\mathbf{p}} \in \text{Hom}(\text{Gal}(K_l), A_l)$ has an explicit description: We choose $\mathbf{p}_l \in A(K_{\text{sep}})$ with $l\mathbf{p}_l = \mathbf{p}$, then

$$\xi_{l,\mathbf{p}}(\sigma) = \sigma(\mathbf{p}_l) - \mathbf{p}_l \tag{15} \quad \{\texttt{eq:xiexplizit}\}$$

for all $\sigma \in \text{Gal}(K_l)$. In particular, the right hand side of (15) does not depend on the choice of \mathbf{p}_l .

The function $\xi_{l,\mathbf{p}}$: Gal $(K_l) \to A(K_{sep})$ satisfies a few useful rules:

Lemma 4.1. Let \mathbf{p} be a point in A(K). Then:

- (a) $\xi_{l,f(\mathbf{p})}(\sigma) = f(\xi_{l,\mathbf{p}}(\sigma))$ for all $f \in \operatorname{End}_K(A)$ and all $\sigma \in \operatorname{Gal}(K_l)$.
- (b) For all $l \gg 0$ in \mathbb{L}' , we have $\xi_{l,\mathbf{p}} = 0 \Leftrightarrow \mathbf{p} \in lA(K)$.
- (c) $\xi_{l,\mathbf{p}}(\tau\sigma\tau^{-1}) = \tau(\xi_{l,\mathbf{p}}(\sigma))$ for all $\sigma \in \operatorname{Gal}(K_l)$ and all $\tau \in \operatorname{Gal}(K)$.

Proof. (a) We choose $\mathbf{p}_l \in A(K_{sep})$ with $l\mathbf{p}_l = \mathbf{p}$ (Remark 1.1). Then, $lf(\mathbf{p}_l) = f(l\mathbf{p}_l) = f(\mathbf{p})$, hence

$$f(\xi_{l,\mathbf{p}}(\sigma)) \stackrel{(15)}{=} f(\sigma(\mathbf{p}_l) - \mathbf{p}_l) = \sigma(f(\mathbf{p}_l)) - f(\mathbf{p}_l) \stackrel{(15)}{=} \xi_{l,f(\mathbf{p})}(\sigma),$$

as stated in (a).

(b) We note that $\operatorname{Gal}(K)/\operatorname{Gal}(K_l) = \operatorname{Gal}(K(A_l)/K)$ and $A_l^{\operatorname{Gal}(K_l)} = A_l$. Thus, for all $l \in \mathbb{L}'$ we have the exact inflation-restriction sequence

$$0 \to H^1(\operatorname{Gal}(K(A_l)/K), A_l) \xrightarrow{\operatorname{inf}} H^1(\operatorname{Gal}(K), A_l) \xrightarrow{\operatorname{res}_l} H^1(\operatorname{Gal}(K_l), A_l)^{\operatorname{Gal}(K)}$$

[NSW15, p. 67, Prop. 1.6.7]. By Proposition 2.2(d), $H^1(\text{Gal}(K(A_l)/K), A_l) = 0$ for almost all $l \in \mathbb{L}'$. Hence,

$$\operatorname{Ker}(\operatorname{res}_l) = 0 \quad \text{for almost all } l \in \mathbb{L}'. \tag{16} \quad \{\operatorname{eq:kerres}\}$$

By Diagram (13) and by (14), $\operatorname{res}_l(\delta_l(\mathbf{p})) = \delta'_l(\mathbf{p}) = \xi_{l,\mathbf{p}}$. Thus, for almost all $l \in \mathbb{L}'$, we have that

$$\xi_{l,\mathbf{p}} = 0 \Leftrightarrow \operatorname{res}_{l}(\delta_{l}(\mathbf{p})) = 0 \stackrel{(16)}{\Leftrightarrow} \delta_{l}(\mathbf{p}) = 0 \stackrel{(13)}{\Leftrightarrow} \mathbf{p} \in lA(K),$$

as desired.

(c) We set $\mathbf{x}_l = \tau^{-1}(\mathbf{p}_l) - \mathbf{p}_l$ and note that $l\mathbf{x}_l = \tau^{-1}(\mathbf{p}) - \mathbf{p} = 0$, so $\mathbf{x}_l \in A_l$, hence $\sigma \mathbf{x}_l = \mathbf{x}_l$. Therefore,

$$\xi_{l,\mathbf{p}}(\tau\sigma\tau^{-1}) \stackrel{(15)}{=} \tau\sigma\tau^{-1}(\mathbf{p}_l) - \mathbf{p}_l = \tau(\sigma(\tau^{-1}(\mathbf{p}_l)) - \tau^{-1}(\mathbf{p}_l))$$
$$= \tau(\sigma(\mathbf{p}_l + \mathbf{x}_l) - (\mathbf{p}_l + \mathbf{x}_l)) = \tau(\sigma(\mathbf{p}_l) - \mathbf{p}_l) \stackrel{(15)}{=} \tau(\xi_{l,\mathbf{p}}(\sigma)),$$

as claimed. \Box

13

{xi-rechenregeln}

4 KUMMER THEORY FOR ABELIAN VARIETIES

Lemma 3.3 below is proven by Ribet in the case where char(K) = 0 [Rib79, Thm. 1.2]. However, the proof remains intact in the general case. We represent it here for the convenience of the reader. The proof uses Lemma 3.1 and the following one.

 $\{\texttt{ribet-lemm}\}$

Lemma 4.2. Let \mathbf{p} be a point of A(K). Suppose that the homomorphism $\Phi_{\mathbf{p}}$: End_K(A) $\rightarrow A(K)$ defined by $\Phi_{\mathbf{p}}(f) = f(\mathbf{p})$ is injective. Then, for almost all $l \in \mathbb{L}'$, the homomorphism $\Phi_{\mathbf{p},l}$: End_K(A)/l End_K(A) $\rightarrow A(K)/lA(K)$ defined by

$$\Phi_{\mathbf{p},l}(f + l \operatorname{End}_K(A)) = f(\mathbf{p}) + lA(K)$$

is also injective.

Proof. Let $Q = A(K)/\Phi_{\mathbf{p}}(\operatorname{End}_{K}(A))$ and consider the commutative diagram with exact rows,

$$\begin{array}{ccc} \mathbf{0} & \longrightarrow \operatorname{End}_{K}(A) \xrightarrow{\Phi_{\mathbf{p}}} A(K) & \longrightarrow Q \longrightarrow \mathbf{0} \\ & & & & & \\ & & & & & \\ & & & & & \\ \mathbf{0} & \longrightarrow \operatorname{End}_{K}(A) \xrightarrow{\Phi_{\mathbf{p}}} A(K) & \longrightarrow Q \longrightarrow \mathbf{0}, \end{array}$$

where $A(K) \rightarrow Q$ is the quotient map. The snake lemma yields an exact sequence

$$Q_l \to \operatorname{End}_K(A)/l\operatorname{End}_K(A) \xrightarrow{\Phi_{\mathbf{p},l}} A(K)/lA(K) \to Q/lQ \to \mathbf{0}, \qquad (17) \quad \{\texttt{eq:tensoredseq}\}$$

where $Q_l = \{x \in Q \mid lx = 0\}$ [NSW15, p. 25, Lemma 1.3.1]. By the Mordell-Weil theorem (Proposition 2.2(a)), Q is a finitely generated abelian group. Let $n_0 = |Q_{\text{tor}}|$ be the order of the torsion part of Q. Then, $Q_l = 0$ for all $l > n_0$ in \mathbb{L}' . Hence, by (17), $\Phi_{\mathbf{p},l}$ is injective for all $l > n_0$ in \mathbb{L}' , as claimed. \Box

{ribet}

Lemma 4.3. Let \mathbf{p} be a point in A(K) with the following property:

The map
$$\operatorname{End}_K(A) \to A(K)$$
 defined by $f \mapsto f(\mathbf{p})$ is injective. (18) {indep}

Then, for almost all $l \in \mathbb{L}'$, the homomorphism $\xi_{l,\mathbf{p}}$: $\operatorname{Gal}(K_l) \to A_l$ is surjective.

Proof. For each $l \in \mathbb{L}'$ we set $I_l = \operatorname{Im}(\xi_{l,\mathbf{p}})$. Each element of I_l has the form $\xi_{l,\mathbf{p}}(\sigma)$ for some $\sigma \in \operatorname{Gal}(K_l)$. Hence, for each $\tau \in \operatorname{Gal}(K)$ we have by 3.1(c) that $\tau(\xi_{l,\mathbf{p}}(\sigma)) = \xi_{l,\mathbf{p}}(\tau\sigma\tau^{-1}) \in I_l$. Since $\operatorname{Gal}(K_l)$ acts trivially on A_l , this implies that I_l is an $\mathbb{F}_l[\operatorname{Gal}(K_l/K)]$ -submodule of A_l .

By Proposition 2.2(b), for almost all $l \in \mathbb{L}'$ there exists an $\mathbb{F}_l[\operatorname{Gal}(K_l/K)]$ submodule J_l of A_l such that $A_l = I_l \oplus J_l$. Thus, it suffices to prove that $J_l = \mathbf{0}$ for almost all $l \in \mathbb{L}'$. Let $\pi_l: A_l \to J_l$ be the projection on J_l . Then, $\pi_l \in \operatorname{End}_{\mathbb{F}_l[\operatorname{Gal}(K)]}(A_l)$.

By Proposition 2.2(c) there exists for almost all $l \in \mathbb{L}'$ an endomorphism $f_l \in \operatorname{End}_K(A)$ whose restriction to A_l coincides with π_l . Now, for almost all $l \in \mathbb{L}'$ and for each $\sigma \in \operatorname{Gal}(K_l)$, we have

$$\xi_{l,f_l(\mathbf{p})}(\sigma) \stackrel{(*)}{=} f_l(\xi_{l,\mathbf{p}}(\sigma)) = \pi_l(\xi_{l,\mathbf{p}}(\sigma)) \stackrel{(**)}{=} 0,$$

where (*) follows from Lemma 3.1(a) and (**) holds because $\xi_{l,\mathbf{p}}(\sigma) \in I_l$. From Lemma 3.1(b), we conclude that $f_l(\mathbf{p}) \in lA(K)$ for almost all $l \in \mathbb{L}'$. Then, Lemma 3.2 implies that $f_l \in l \cdot \text{End}_K(A)$ for almost all $l \in \mathbb{L}'$. Thus, there exists $g \in \text{End}_K(A)$ with $lg = f_l$. It follows that $J_l = \pi_l(A_l) = f_l(A_l) = lg(A_l) = g(lA_l) = g(lA_l) = 0$ for almost all $l \in \mathbb{L}'$, as desired. \Box

Lemma 3.3 enters our proofs via the following corollary.

Corollary 4.4. Let A be a simple abelian variety over K of dimension g and let $\mathbf{p} \in A(K)$ be a point of infinite order. Then, for almost all $l \in \mathbb{L}'$ and for every $\mathbf{q} \in A(K_{sep})$ with $l\mathbf{q} = \mathbf{p}$, we have $\operatorname{Gal}(K_l(\mathbf{q})/K_l) \cong A_l$ and

$$[K(\mathbf{q}):K] = l^{2g}.$$
 (19) {eq:basicestimates}

Proof. We prove that **p** satisfies Condition (18). Indeed, if $f \in \operatorname{End}_K(A)$ and $f(\mathbf{p}) = \mathbf{o}$, then $\operatorname{Ker}(f)$ is an infinite Zariski-closed subgroup of A. The connected component $\operatorname{Ker}(f)^0$ of that subgroup has a finite index in $\operatorname{Ker}(f)$ [Bor91, p. 46, Prop.(b)]. Hence $\operatorname{Ker}(f)^0$ is a non-zero abelian subvariety of A. Since A is simple, $\operatorname{Ker}(f)^0 = A$, so also $\operatorname{Ker}(f) = A$, hence f = 0, so (18) holds.

It follows from Lemma 3.3 that $\xi_{l,\mathbf{p}}$: $\operatorname{Gal}(K_l) \to A_l$ is surjective for almost all $l \in \mathbb{L}'$. By (15), $\operatorname{Ker}(\xi_{l,\mathbf{p}}) = \operatorname{Gal}(K_l(\mathbf{q}))$ for each $\mathbf{q} \in A(K_{\operatorname{sep}})$ with $l\mathbf{q} = \mathbf{p}$. This implies that $\operatorname{Gal}(K_l(\mathbf{q})/K_l) \cong A_l$ for almost all $l \in \mathbb{L}'$. Since $l \neq \operatorname{char}(K)$, we have by (5) that $|A_l| = l^{2g}$. Hence, $[K(\mathbf{q}) : K] \ge [K_l(\mathbf{q}) : K_l] = |A_l| = l^{2g}$.

On the other hand, **q** lies in the fiber of multiplication by l and the degree of this morphism is l^{2g} [Mum74, p. 64, Prop. (1)]. Hence, $[K(\mathbf{q}) : K] \leq l^{2g}$. It follows from the preceding paragraph that $[K(\mathbf{q}) : K] = l^{2g}$. \Box

5 Divisibility Properties

Let A, K, $\operatorname{End}_K(A)$, K_l , $\operatorname{Gal}(K_l)$ be as in Section 3 and set $g = \dim(A)$.

{JCBs}

{ribetcor}

Lemma 5.1. Let A be an abelian variety over a field L and let M be an extension of L. Suppose that

(a) $A(L) \cap \bigcap_{n \in \mathbb{N}} nA(M) \subseteq A_{tor}(L)$ and

(b)
$$A_{l^{\infty}}(M)$$
 is finite for every $l \in \mathbb{L}$.

Then, $A(L) \cap \bigcap_{n \in \mathbb{N}} nA(M) = \mathbf{0}$.

Proof. Assume toward contradiction that there exists a non-zero point $\mathbf{p} \in A(L) \cap \bigcap_{n \in \mathbb{N}} nA(M)$. By (a), $m := \operatorname{ord}(\mathbf{p})$ has a prime divisor l. Set m' = m/l and $\mathbf{p}' = m'\mathbf{p}$. Then, $\mathbf{p}' \in A(L) \cap \bigcap_{n \in \mathbb{N}} nA(M)$ and $\operatorname{ord}(\mathbf{p}') = l$. In particular,

for every $j \in \mathbb{N}$ there exists $\mathbf{p}_j \in A(M)$ with $l^j \mathbf{p}_j = \mathbf{p}'$, so \mathbf{p}_j is a point of order l^{j+1} in A(M). This implies that $A_{l^{\infty}}(M)$ is infinite and contradicts (b). \Box

For each $e \geq 1$, we equip the compact group $\operatorname{Gal}(K)^e$ with its unique normalized Haar measure μ_K . As usual, we say that **almost all** $\sigma \in \operatorname{Gal}(K)^e$ **have a certain property** if the measure of the set of all $\sigma \in \operatorname{Gal}(K)^e$ having that property is 1. Also, we say that a subset S of $\operatorname{Gal}(K)^e$ is a **zero set** if $\mu_K(S) = 0$.

Lemma 5.2. Let $e \geq 2$. Then, $A(K) \cap \bigcap_{l \in \mathbb{L}'} lA(\tilde{K}(\sigma)) \subseteq A_{tor}(K)$ for almost all $\sigma \in Gal(K)^e$.

 $\{\texttt{lemm}:\texttt{sec}\}$

Proof. By definition, the field $K(\boldsymbol{\sigma}) \cap K_{\text{sep}}$ is a separable as well as purely inseparable extension of $K_{\text{sep}}(\boldsymbol{\sigma})$. Hence, $\tilde{K}(\boldsymbol{\sigma}) \cap K_{\text{sep}} = K_{\text{sep}}(\boldsymbol{\sigma})$ for each $\boldsymbol{\sigma} \in \text{Gal}(K)^e$. By Remark 1.1,

$$A(K) \cap \bigcap_{l \in \mathbb{L}'} lA(K_{sep}(\boldsymbol{\sigma})) = A(K) \cap \bigcap_{l \in \mathbb{L}'} lA(\tilde{K}(\boldsymbol{\sigma})).$$

Therefore, it suffices to prove that

$$A(K) \cap \bigcap_{l \in \mathbb{L}'} lA(K_{sep}(\boldsymbol{\sigma})) \subseteq A_{tor}(K) \text{ for almost all } \boldsymbol{\sigma} \in Gal(K)^e.$$
(20) {LSEp}

The proof of (20) splits into two cases.

Case A: A is a simple abelian variety. Let $\mathbf{p} \in A(K)$ be a non-torsion point. We consider $l \in \mathbb{L}'$ and let $X_l(\mathbf{p}) = {\mathbf{q} \in A(K_{sep}) | l\mathbf{q} = \mathbf{p}}$. By (5) and Remark 1.1,

$$|X_l(\mathbf{p})| = l^{2g}.$$
 (21) {eq:betragxell}

Next consider $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e) \in \operatorname{Gal}(K)^e$. Then,

$$\mathbf{p} \in \bigcap_{l \in \mathbb{L}'} lA(K_{\operatorname{sep}}(\boldsymbol{\sigma})) \Leftrightarrow (\forall l \in \mathbb{L}')(\exists \mathbf{q} \in X_l(\mathbf{p})) : \bigwedge_{i=1}^e \sigma_i(\mathbf{q}) = \mathbf{q}$$

$$\Leftrightarrow (\forall l \in \mathbb{L}')(\exists \mathbf{q} \in X_l(\mathbf{p})) : \boldsymbol{\sigma} \in \operatorname{Gal}(K(\mathbf{q}))^e$$

$$\Leftrightarrow \boldsymbol{\sigma} \in \bigcap_{l \in \mathbb{L}'} \bigcup_{\mathbf{q} \in X_l(\mathbf{p})} \operatorname{Gal}(K(\mathbf{q}))^e.$$

$$=:S_l(\mathbf{p})$$
(22) {eq:equivalencessigma}

By (21) and by Corollary 3.4,

$$\mu(S_l(\mathbf{p})) \le \sum_{\mathbf{q}\in X_l(\mathbf{p})} \mu(\operatorname{Gal}(K(\mathbf{q}))^e) = \sum_{\mathbf{q}\in X_l(\mathbf{p})} [K(\mathbf{q}):K]^{-e} = \frac{l^{2g}}{l^{2ge}}.$$

It follows that $\lim_{l\to\infty} \mu(S_l(\mathbf{p})) = 0$, because $e \ge 2$. Thus, $N(\mathbf{p}) := \bigcap_{l\in\mathbb{L}'} S_l(\mathbf{p})$ is a zero set. By (22), for all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \smallsetminus N(\mathbf{p})$, we have $\mathbf{p} \notin \bigcap_{l\in\mathbb{L}'} lA(K_{\operatorname{sep}}(\boldsymbol{\sigma}))$.

Since K is countable,

$$N := \bigcup_{\mathbf{p} \in A(K) \smallsetminus A_{\text{tor}}(K)} N(\mathbf{p})$$
(23)

is also a zero set. Moreover, for all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \smallsetminus N$, we have that $A(K) \cap \bigcap_{l \in \mathbb{L}'} lA(K_{\operatorname{sep}}(\boldsymbol{\sigma}))$ does not contain any non-torsion point, so it consists of torsion points, as desired.

Case B: The general case. By the Poincaré reducibility theorem, there exist simple abelian varieties A_1, \ldots, A_r and an isogeny

$$f: A \to A_1 \times \cdots \times A_r$$

[Mil86, p. 122, Prop. 12.1]. By Case A, for each $i \in \{1, \dots, r\}$ there exists a zero set Z_i of $\text{Gal}(K)^e$ such that

$$A_i(K) \cap \bigcap_{l \in \mathbb{L}'} lA_i(K_{\text{sep}}(\boldsymbol{\sigma})) \subseteq A_i(K)_{\text{tor for all } \boldsymbol{\sigma} \in \text{Gal}(K)^e \smallsetminus Z_i.$$
(24) {tors}

We consider the zero set $Z = \bigcup_{i=1}^{r} Z_i$. Let $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \setminus Z$ and $\mathbf{p} \in A(K) \cap \bigcap_{l \in \mathbb{L}'} lA(K_{\operatorname{sep}}(\boldsymbol{\sigma}))$. We prove that \mathbf{p} is torsion.

To this end let \mathbf{q}_i be the projection of $f(\mathbf{p})$ on $A_i(K)$. Then, $\mathbf{q}_i \in A_i(K) \cap \bigcap_{l \in \mathbb{L}'} lA_i(K_{sep}(\boldsymbol{\sigma}))$, so by (24), $\mathbf{q}_i \in A_i(K)_{tor}$. Hence, there exists a positive integer m such that $mf(\mathbf{p}) = 0$. But then, $m\mathbf{p} \in \text{Ker}(f)(K)$. Since f is an isogeny, Ker(f)(K) is a finite group. Hence, $|\text{Ker}(f)(K)| \cdot m\mathbf{p} = 0$, so \mathbf{p} is torsion, as desired. \Box

{lemm:sec2}

Lemma 5.3. Let $e \geq 2$. Then, $A(K) \cap \bigcap_{n \in \mathbb{N}} nA(\tilde{K}(\boldsymbol{\sigma})) = \mathbf{0}$ for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$.

Proof. Consider the sets

$$S_1 = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid A(K) \cap \bigcap_{n \in \mathbb{N}} nA(\tilde{K}(\boldsymbol{\sigma})) \subseteq A_{\operatorname{tor}}(K) \}, \text{ and} \\ S_2 = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid \text{ for all } l \in \mathbb{L}, \text{ the set } A_{l^{\infty}}(\tilde{K}(\boldsymbol{\sigma})) \text{ is finite } \}.$$

By Lemma 4.2, $\mu(S_1) = 1$. By [JaJ01, Main Theorem], $\mu(S_2) = 1$. Hence, $\mu(S_1 \cap S_2) = 1$.

If $\boldsymbol{\sigma} \in S_1 \cap S_2$, then Conditions (a) and (b) of Lemma 4.1 hold for K and $\tilde{K}(\boldsymbol{\sigma})$ rather than for L and M, respectively. Hence, by that lemma, $A(K) \cap \bigcap_{n \in \mathbb{N}} nA(\tilde{K}(\boldsymbol{\sigma})) = \mathbf{0}$, as desired. \Box

{mtdiv1}

Proposition 5.4. For $e \ge 2$, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, and for all abelian varieties B over $\tilde{K}(\boldsymbol{\sigma})$ we have $\operatorname{div}(B(\tilde{K}(\boldsymbol{\sigma}))) = \mathbf{0}$.

Proof. Let \mathcal{L} be the set of all finite extensions of K in \tilde{K} . For each $L \in \mathcal{L}$, let L_0 be the maximal separable extension of K in L. Then, $K_{\text{sep}} \cap L$ is a separable extension as well as a purely inseparable extension of L_0 . Hence, $K_{\text{sep}} \cap L = L_0$. Since K_{sep}/L_0 is a Galois extension, K_{sep} and L are linearly disjoint over L_0 . Also, L_{sep} is a separable as well as a purely inseparable extension of K_{sep} . Therefore, $K_{\text{sep}}L = L_{\text{sep}}$. It follows that restriction to K_{sep} yields an isomorphism $\text{Gal}(L) \cong \text{Gal}(L_0)$. The uniqueness of the normalized Haar measure implies that this isomorphism respects the Haar measure.

The rest of the proof breaks up into two parts.

Part A: Proving that $\tilde{K}(\boldsymbol{\sigma}) = \tilde{L}(\boldsymbol{\sigma})$. Consider $\boldsymbol{\sigma} := (\sigma_1, \ldots, \sigma_e) \in \operatorname{Gal}(L)^e$ and denote its restriction to K_{sep} also by $\boldsymbol{\sigma}$. If $\operatorname{char}(K) = 0$, then $K_{\operatorname{sep}} = \tilde{K} = \tilde{L} = L_{\operatorname{sep}}$, so $\tilde{K}(\boldsymbol{\sigma}) = \tilde{L}(\boldsymbol{\sigma})$. Otherwise, we assume for the rest of Part A that $\operatorname{char}(K) > 0$.

Then, $L_{\text{sep}}(\boldsymbol{\sigma})$ is a purely inseparable extension of $K_{\text{sep}}(\boldsymbol{\sigma})$, so $K_{\text{sep}}(\boldsymbol{\sigma}) \subseteq L_{\text{sep}}(\boldsymbol{\sigma}) \subseteq \tilde{K}(\boldsymbol{\sigma})$. This implies that $\tilde{K}(\boldsymbol{\sigma}) = \tilde{L}(\boldsymbol{\sigma})$.

Part B: Conclusion of the proof. Let \mathcal{A} be the set of all abelian varieties over \tilde{K} . For each $L \in \mathcal{L}$, let \mathcal{A}_L be the set of all $A \in \mathcal{A}$ defined over L. We set

 $S = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid \operatorname{div}(A(\tilde{K}(\boldsymbol{\sigma}))) = \boldsymbol{0} \text{ for all } A \in \mathcal{A} \text{ defined over } \tilde{K}(\boldsymbol{\sigma}) \}.$

Using Part A, for each $A \in \mathcal{A}_L$, we let

$$S_{L,A} = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(L)^e \mid A(L) \cap \operatorname{div}(A(\tilde{L}(\boldsymbol{\sigma}))) = \mathbf{0} \}$$
$$= \{ \boldsymbol{\sigma} \in \operatorname{Gal}(L)^e \mid A(L) \cap \operatorname{div}(A(\tilde{K}(\boldsymbol{\sigma}))) = \mathbf{0} \}.$$

Since K is countable, so is the set $\mathcal{B} = \{(L, A) \in \mathcal{L} \times \mathcal{A} \mid A \in \mathcal{A}_L\}$. Since every $A \in \mathcal{A}$ is already defined over some $L \in \mathcal{L}$, we have $S = \bigcap_{(L,A)\in\mathcal{B}} S_{L,A}$. Since $\operatorname{Gal}(K)^e = \bigcup_{L\in\mathcal{L}} \operatorname{Gal}(L_0)^e = \bigcup_{L\in\mathcal{L}} \operatorname{Gal}(L)^e$, we have

$$\operatorname{Gal}(K)^{e} \smallsetminus S \subseteq \bigcup_{(L,A) \in \mathcal{B}} (\operatorname{Gal}(L)^{e} \smallsetminus S_{L,A}).$$
(25) {twtf}

For each $(L, A) \in \mathcal{B}$ we have, by Lemma 4.3 applied to L rather than to K, that $\mu_K(\operatorname{Gal}(L)^e \smallsetminus S_{L,A}) = \mu_L(\operatorname{Gal}(L)^e \smallsetminus S_{L,A})/[L:K]^e = 0$. Since \mathcal{B} is countable, it follows from (25) that $\operatorname{Gal}(K)^e \smallsetminus S$ is a zero set, so the Haar measure of S is 1, as claimed. \Box

{CASe1}

Remark 5.5. Starting from the observation that $\bigcap_{n=1}^{\infty} n\mathbb{Z} = \mathbf{0}$ and $\bigcap_{n=1}^{\infty} nA = \mathbf{0}$ if A is a finite abelian group, we find that $\operatorname{div}(A) = \mathbf{0}$ for every finitely generated abelian group. By the Mordell-Weil-Lang-Néron theorem [Lan59, p. 71, Thm. 1], for every finitely generated field K and every abelian variety over K, the group A(K) is a finitely generated abelian group. It follows that $\operatorname{div}(A(K)) = \mathbf{0}$.

On the other hand, multiplication of A(K) by every positive integer n is surjective (Remark 1.1). Hence, $\operatorname{div}(A(\tilde{K})) = A(\tilde{K}) \neq \mathbf{0}$ if $\operatorname{dim}(A) \geq 1$.

6 WEIL'S RESTRICTION

Proposition 4.4 states that if $e \geq 2$, then for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ and for all abelian varieties A over $\tilde{K}(\boldsymbol{\sigma})$, we have $\text{div}(A(\tilde{K}(\boldsymbol{\sigma}))) = \mathbf{0}$. Thus, in this respect, almost all of the fields $\tilde{K}(\boldsymbol{\sigma})$ behave like finitely generated fields. The proof of that proposition is based among others on the observation used in the proof of Lemma 4.2 that $\lim_{l\to\infty} \frac{1}{l^{2g(e-1)}} = 0$.

This is of course wrong if e = 1, so the proof breaks down in that case. Thus, it may be the case that $\operatorname{div}(A(\tilde{K}(\sigma))) \neq \mathbf{0}$ if e = 1. But, we do not know that.

6 Weil's Restriction

Let K'/K be a finite extension of fields and let T be a K-scheme. The Weil restriction attaches to each quasi-projective K'-scheme X' a K-scheme $X = \text{Res}_{K'/K}(X')$ and a natural bijection

$$\eta_T \colon \operatorname{Mor}_K(T, X) \to \operatorname{Mor}_{K'}(T_{K'}, X'). \tag{26} \quad \{\text{weil}\}$$

See [BLR90, p. 194, Thm. 4] or [Poo17, p. 110, Def. 4.61 and p. 111, Prop. 4.6.3]. When T = Spec(K), (26) becomes a natural bijection

$$\eta_K \colon X(K) \to X'(K').$$

If X' is a quasi-projective group scheme over K', then $X = \operatorname{Res}_{K'/K}(X')$ acquires a structure of a group scheme over K such that $X(K) \cong X'(K')$ as groups [BLR90, p. 192, lines 11,12].

{RESa}

Lemma 6.1. If E/K is a finite separable extension of fields and A is an abelian variety over E, then $B = \operatorname{Res}_{E/K}(A)$ is an abelian variety over K. Moreover, $B(K) \cong A(E)$.

Proof. As an abelian variety, A is projective (paragraph preceding Remark 1.1). Hence, by the paragraph preceding our Lemma, B is a group scheme over K. Since E/K is a separable extension, it is étale. Hence, by [BLR90, p. 195, Sec. 7.6, Prop. 5], B/K is proper.

It remains to check that B is geometrically integral, i.e. that $B_{\tilde{K}}$ is integral. It is known that $B_{\tilde{K}} = \prod_{\sigma} A^{\sigma}_{\tilde{K}}$ where σ ranges over the K-embeddings $E \to \tilde{K}$. See [Poo17, p. 113, Exercise 4.7] or [FrJ08, p. 183, Prop. 10.6.2]. Now the A^{σ} are geometrically integral, because A is geometrically integral. Hence, $B_{\tilde{K}}$ is integral, as desired.

Finally, the isomorphism $B(K) \cong A(E)$ of abelian groups follows from the paragraph preceding our lemma. \Box

Recall that a field M is **PAC** (resp. **ample**) if the set of M-rational points of every geometrically integral variety V over M (resp. with a simple M-rational point) is Zariski-dense in V [FrJ08, p. 192, Prop. 11.1.1] (resp. [Jar11, p. 68, Def. 5.3.2]). In particular, every PAC field is ample.

 $\{WLRs\}$

Theorem 6.2. Let K be an infinite finitely generated field and let $e \ge 2$. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, all finite extensions $M/\tilde{K}(\boldsymbol{\sigma})$, and all abelian varieties A/M we have

- (a) M is PAC,
- (b) $\operatorname{div}(A(M)) = 0$,
- (c) $|A_{l^{\infty}}(M)| < \infty$ for all $l \in \mathbb{L}$, and
- (d) if char(K) = 0, also $|A_{tor}(M)| < \infty$.

Proof. By [FrJ08, p. 242, Thm. 13.4.2], K is a Hilbertian field. By [FrJ08, p. 380, Thm. 18.6.1], Proposition 4.4, and [JaJ01, Thm. 2.7 and Thm. 3.7], for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ and all abelian varieties $B/\tilde{K}(\boldsymbol{\sigma})$ we have: {mpac} (27a) $K_{\text{sep}}(\boldsymbol{\sigma})$ is PAC, {mtda}

(27a) $K_{sep}(\boldsymbol{\sigma})$ is PAC, {mtda} (27b) $\operatorname{div}(B(\tilde{K}(\boldsymbol{\sigma}))) = \mathbf{0},$ {mtdb}

(27c) $|B_{l^{\infty}}(\tilde{K}(\boldsymbol{\sigma}))| < \infty$ for all $l \in \mathbb{L}$, and

(27d) if char(K) = 0, also $|B_{tor}(\tilde{K}(\boldsymbol{\sigma}))| < \infty$.

Let $\boldsymbol{\sigma}$ be an element of $\operatorname{Gal}(K)^e$ that satisfies (27a), (27b), (27c), and (27d), let $M/\tilde{K}(\boldsymbol{\sigma})$ be a finite extension, and let A/M be an abelian variety.

As an algebraic extension of $K_{\text{sep}}(\boldsymbol{\sigma})$, the field M is PAC by (27a) and [FrJ08, p. 196, Cor. 11.2.5]. By Lemma 5.1, $B := \text{Res}_{M/\tilde{K}(\boldsymbol{\sigma})}(A)$ is an abelian variety over $\tilde{K}(\boldsymbol{\sigma})$ with $B(\tilde{K}(\boldsymbol{\sigma})) \cong A(M)$. Hence, by (27b), (27c), and (27d), we respectively get (b), (c), and (d).

7 The Profinite Kummer Map

In addition to Theorem 5.2 we need results of Stix and Koenigsmann about ample fields and PAC fields.

{SPCs}

{mtdc}

Remark 7.1 (The space of sections). We consider a short exact sequence of profinite groups:

 $\mathbf{1} \longrightarrow \tilde{\Pi} \longrightarrow \Pi \xrightarrow{\rho} G \longrightarrow \mathbf{1}.$

A section of ρ is a homomorphism $s: G \to \Pi$ that satisfies $\rho \circ s = \mathrm{id}_G$. In particular, s is injective.

Another section $s': G \to \Pi$ is said to be Π -conjugate to s if there exists $\tilde{\pi} \in \Pi$ such that for all $g \in G$ we have $s'(g) = \tilde{\pi}^{-1}s(g)\tilde{\pi}$. We denote the conjugacy Π -class of s by [s] and let $S_{\Pi \to G}$ be the set of all Π -conjugacy classes of sections of ρ .

For every open subgroup H of Π we set

$$U_H = \{ S \in \mathcal{S}_{\Pi \to G} \mid \text{ there exists } s \in S \text{ such that } s(G) \subseteq H \}.$$

If H' is an open subgroup of Π and $H' \leq H$, then $U_{H'} \subseteq U_H$. Hence, the collection of all sets U_H forms a basis to a topology on $S_{\Pi \to G}$ that we call the **pro-discrete topology**.

{mtdiv}

7 THE PROFINITE KUMMER MAP

Remark 7.2 (The fundamental group). By a variety over a field M we mean a separated scheme X of finite type over M.

We consider a geometrically integral normal variety X over M with a geometric generic point $\bar{\mathbf{x}}$ and let $F = M(X) = M(\bar{\mathbf{x}})$ be the function field of X. Let \mathcal{F} be the set of all finite Galois extensions F' of F in F_{sep} such that the normalization X' of X in F' is étale. Thus, $F_{\text{et}} = \bigcup_{F' \in \mathcal{F}} F'$ is a Galois extension of F and $\pi_1(X, \bar{\mathbf{x}}) \cong \text{Gal}(F_{\text{et}}/F)$ is the **fundamental group of** X with base point $\bar{\mathbf{x}}$. For each finite Galois extension M' of M, the variety $X_{M'} := X \times_M \text{Spec}(M')$ is the normalization of X in FM' and it is étale. Hence, $M_{\text{sep}} \subseteq F_{\text{et}}$ and we obtain the following short exact sequence

$$\mathbf{1} \longrightarrow \pi_1(X_{M_{\text{sep}}}, \bar{\mathbf{x}}_{\text{sep}}) \longrightarrow \pi_1(X, \bar{\mathbf{x}}) \xrightarrow{\rho_X} \operatorname{Gal}(M) \longrightarrow \mathbf{1} ,$$

where $\bar{\mathbf{x}}_{sep}$ is a geometric generic point of $X_{M_{sep}}$ that lies over $\bar{\mathbf{x}}$ and ρ_X is the restriction map $\operatorname{Gal}(F_{et}/F) \to \operatorname{Gal}(M)$.

Let $\mathcal{S}_{X/M} = \mathcal{S}_{\pi_1(X,\bar{\mathbf{x}}) \to \operatorname{Gal}(M)}$ be the space of sections of ρ_X up to $\pi_1(X_{M_{\operatorname{sep}}}, \bar{\mathbf{x}}_{\operatorname{sep}})$ -conjugacy equipped with the pro-discrete topology.

Remark 7.3 (Profinite Kummer map). Let \mathbf{x} be a point in X(M), let X_{et} be the normalization of X in F_{et} , let \mathbf{x}_{et} be a point of X_{et} lying over \mathbf{x} , and let $D_{\mathbf{x}_{\text{et}}/\mathbf{x}}$ be the decomposition group of \mathbf{x}_{et} over F. Since \mathbf{x} is M-rational and is unramified in F_{et} (because the extensions X'/X used in Remark 6.2 to define $\pi_1(X, \bar{\mathbf{x}})$ are étale), there is an isomorphism of $D_{\mathbf{x}_{\text{et}}/\mathbf{x}}$ onto Gal(M). The inverse of that isomorphism is a section s of ρ_X . As \mathbf{x}_{et} varies on all points of X_{et} that lie over \mathbf{x} , s ranges over a $\pi_1(X_{M_{\text{sep}}}, \bar{\mathbf{x}}_{\text{sep}})$ -class [s] of sections of ρ_X that we denote by $\kappa_{X/M}(\mathbf{x})$. Following [Sti13, p. xiv, Def. 1], we call the map

$$\kappa_{X/M} \colon X(M) \to \mathcal{S}_{X/M}$$

the profinite Kummer map.

We provide a proof to a result communicated to us by one of the anonymous referees.

Lemma 7.4. Let X and A be geometrically integral normal varieties over a field M such that X is Zariski-closed in A. Suppose that the profinite Kummer map $\kappa_{A/M}$: $A(M) \rightarrow S_{A/M}$ is injective. Then, so is $\kappa_{X/M}$: $X(M) \rightarrow S_{X/M}$.

Proof. We choose geometric generic points $\bar{\mathbf{a}}$ and $\bar{\mathbf{x}}$ for A and X, respectively. Then, the specialization $\bar{\mathbf{a}} \to \bar{\mathbf{x}}$ extends to a place ψ_{et} of $M(\bar{\mathbf{a}})_{\text{et}}$ with residue field N that contains $M(\bar{\mathbf{x}})$ and is contained in $M(\bar{\mathbf{x}})_{\text{et}}$. Since ψ_{et} is unramified over $M(\bar{\mathbf{a}})$, there is an isomorphism of the decomposition group of ψ_{et} over $M(\bar{\mathbf{a}})$ onto $\operatorname{Gal}(N/M(\bar{\mathbf{x}}))$. The restriction map $\operatorname{Gal}(M(\bar{\mathbf{x}})_{\text{et}}/M(\bar{\mathbf{x}})) \to \operatorname{Gal}(N/M(\bar{\mathbf{x}}))$ followed by the inverse of that isomorphism is a homomorphism $\psi: \pi_1(X, \bar{\mathbf{x}}) \to$ {SUBv}

{PFKm}

 $\{\texttt{PRKm}\}$

 $\pi_1(A, \bar{\mathbf{a}})$ such that the following diagram is commutative:

$$\begin{array}{c|c} \pi_1(A, \bar{\mathbf{a}}) & \xrightarrow{\rho_A} \operatorname{Gal}(M) \\ & & & \\ \psi & & \\ \pi_1(X, \bar{\mathbf{x}}) & \xrightarrow{\rho_X} \operatorname{Gal}(M). \end{array}$$

If s: Gal(M) $\rightarrow \pi_1(X, \bar{\mathbf{x}})$ is a section of ρ_X , then $\psi \circ s$ is a section of ρ_A and $\psi(\kappa_{A/M}(\mathbf{x})) = \kappa_{A/M}(\mathbf{x})$ for each $\mathbf{x} \in X(M)$. Hence, with $\psi_* : \mathcal{S}_{X/M} \rightarrow \mathcal{S}_{A/M}$ being the map that maps the $\pi_1(X_{M_{sep}}, \bar{\mathbf{x}}_{sep})$ -conjugacy class of s onto the $\pi_1(A_{M_{sep}}, \bar{\mathbf{a}}_{sep})$ -conjugacy class of $\psi \circ s$, the diagram

$$\begin{array}{c} A(M) \xrightarrow{\kappa_{A/M}} \mathcal{S}_{A/M} \\ \uparrow & \uparrow^{\psi_*} \\ X(M) \xrightarrow{\kappa_{X/M}} \mathcal{S}_{X/M} \end{array}$$

is commutative.

Consider \mathbf{x}, \mathbf{x}' with $\kappa_{X/M}(\mathbf{x}) = \kappa_{X/M}(\mathbf{x}')$. Then,

$$\kappa_{A/M}(\mathbf{x}) = \psi_*(\kappa_{X/M}(\mathbf{x})) = \psi_*(\kappa_{X/M}(\mathbf{x}')) = \kappa_{A/M}(\mathbf{x}').$$

Since $\kappa_{A/M}$ is injective, we have $\mathbf{x} = \mathbf{x}'$. Hence, $\kappa_{X/M}$ is injective, as claimed.

{SEPr}

Remark 7.5 (Linearly disjoint extensions). Observe that $F_{\rm et}/FM_{\rm sep}$ is Galois, because $F_{\rm et}/F$ is Galois. Since F/M is regular, $FM_{\rm sep}/M_{\rm sep}$ is separable. It follows that $F_{\rm et}/M_{\rm sep}$ is a separable extension. Since $\tilde{M}/M_{\rm sep}$ is a purely inseparable extension, we conclude that $F_{\rm et}$ is linearly disjoint from \tilde{M} over $M_{\rm sep}$.

The following result is due to Stix [Sti13, p. 214, Prop. 239]. We provide a proof for the convenience of the reader.

 $\{DNSe\}$

Proposition 7.6. Let M be a PAC field and let X be a geometrically integral normal variety over M. Then, the image of the profinite Kummer map $\kappa_{X/M}$ in $S_{X/M}$ is dense with respect to the pro-discrete topology.

Proof. Let H be an open subgroup of $\pi_1(X, \bar{\mathbf{x}})$ such that U_H (Remark 6.1) is non-empty. We have to prove that there exists a point $\mathbf{x} \in X(M)$ such that $\kappa_{X/M}(\mathbf{x}) \in U_H$.

Indeed, there exists a section s: $\operatorname{Gal}(M) \to \pi_1(X, \bar{\mathbf{x}})$ of the restriction map $\rho_X: \pi_1(X, \bar{\mathbf{x}}) \to \operatorname{Gal}(M)$ such that $s(\operatorname{Gal}(M)) \leq H$. In particular, $\rho_X(H) = \operatorname{Gal}(M)$. Since $s(\operatorname{Gal}(M))\pi_1(X_{M_{\operatorname{sep}}}, \bar{\mathbf{x}}_{\operatorname{sep}}) = \pi_1(X, \bar{\mathbf{x}})$, this implies that $H \cdot \pi_1(X_{M_{\operatorname{sep}}}, \bar{\mathbf{x}}_{\operatorname{sep}}) = \pi_1(X, \bar{\mathbf{x}})$.

8 INJECTIVENESS OF THE KUMMER MAP

Let F' be the fixed field of H in F_{et} . Then, F' is a finite extension of F in F_{et} . By the preceding paragraph, $F'M_{\text{sep}} = F_{\text{et}}$ and $\rho_X(\text{Gal}(F_{\text{et}}/F')) = \rho_X(H) = \text{Gal}(M)$. Hence, F' is linearly disjoint from M_{sep} over M. By Remark 6.5, F_{et} is linearly disjoint from \tilde{M} over M_{sep} . Hence, F' is linearly disjoint from \tilde{M} over M. In other words, F'/M is a regular extension.

It follows that the normalization X' of X in F' is geometrically integral [FrJ08, p. 175, Cor. 10.2.2(a)]. Since M is PAC, this implies that $X'(M) \neq \emptyset$.

We choose a point $\mathbf{x}' \in X'(M)$ and let \mathbf{x} be the point of X(M) below \mathbf{x} . Then, M is the residue field of both \mathbf{x} and \mathbf{x}' . Hence, the decomposition group of each point of $X_{M_{\text{sep}}}$ lying over \mathbf{x} in $\text{Gal}(F_{\text{et}}/F)$ is the same as the decomposition group of each point of $X'_{M_{\text{sep}}}$ lying over \mathbf{x}' and the latter is contained in $\text{Gal}(F_{\text{et}}/F')$ which is H. It follows that $\kappa_{X/M}(\mathbf{x}) \in U_H$, as desired. \Box

We also cite a result of Stix [Sti13, p. 214, Prop. 241 and p. 215, Cor. 242] that generalizes a result of Koenigsmann. See [Sti13, p. 215, Cor. 242] or [Koe05, Prop. 3.1].

Proposition 7.7. Let M be a countable ample field. Let X/M be a smooth geometrically integral variety. If $X(M) \neq \emptyset$, dim(X) > 0, and $\kappa_{X/M}$ is injective, then the closure of Im $(\kappa_{X/M})$ in $S_{X/M}$ under the pro-discrete topology is uncountable, hence so is $S_{X/M}$. In particular, $\kappa_{X/M}$ is not surjective.

8 Injectiveness of the Kummer Map

{IKM} This section contains our main result. It depends on the following lemma from [Sti20].

Lemma 8.1. For an abelian variety A over a perfect field M the sequence

$$\mathbf{0} \longrightarrow \bigcap_{n \in \mathbb{N}} nA(M) \longrightarrow A(M) \xrightarrow{\kappa_{A/M}} \mathcal{S}_{A/M}$$

is exact. Thus, $\kappa_{A/M}$ is injective if and only if $\operatorname{div}(A(M)) = \bigcap_{n \in \mathbb{N}} nA(M) = \mathbf{0}$.

Proof. By [Mil86, p. 115, Thm. 8.2], for each positive integer n, the short sequence

$$\mathbf{0} \longrightarrow A_n(\tilde{M}) \longrightarrow A(\tilde{M}) \xrightarrow{n_A} A(\tilde{M}) \longrightarrow \mathbf{0}$$
(28) {ikma}

is exact. Each term in this series is a discrete $\operatorname{Gal}(M)$ -module. Since M is perfect, the fixed modules of $A_n(\tilde{M})$ and $A(\tilde{M})$ under $\operatorname{Gal}(M)$ are $A_n(M)$ and A(M), respectively. Hence, (28) yields a longer exact sequence,

$$\mathbf{0} \longrightarrow A_n(M) \longrightarrow A(M) \xrightarrow{n_A} A(M) \xrightarrow{\delta_n} H^1(\mathrm{Gal}(M), A_n(\tilde{M})), \qquad (29) \quad \{\texttt{ikmb}\}$$

where δ_n is the first connecting homomorphism of the long exact cohomology sequence [NSW15, p. 27, Thm. 1.3.2]. The sequence (29) yields a somewhat $\{KOEn\}$

{IKMa}

8 INJECTIVENESS OF THE KUMMER MAP

shorter exact sequence:

$$\mathbf{0} \longrightarrow nA(M) \longrightarrow A(M) \xrightarrow{\delta_n} H^1(\operatorname{Gal}(M), A_n(\tilde{M})).$$
(30) {ikmc}

If m|n, then multiplication by $\frac{n}{m}$ gives a homomorphism

$$A_n(\tilde{M}) \stackrel{(n/m)_A}{\longrightarrow} A_m(\tilde{M}).$$

Taking the inverse limit on the exact sequences (30), we get a map

$$A(M) \xrightarrow{\delta} \varprojlim_{n \in \mathbb{N}} H^1(\operatorname{Gal}(M), A_n(\tilde{M})).$$
(31) {ikmd}

with

$$\operatorname{Ker}(\delta) = \bigcap_{n \in \mathbb{N}} \operatorname{Ker}(\delta_n) \stackrel{(30)}{=} \bigcap_{n \in \mathbb{N}} nA(M)$$

Indeed, for each $n \in \mathbb{N}$ let ν_n be the projection of the right hand side of (31) on its *n*th coordinate. If $\mathbf{a} \in \operatorname{Ker}(\delta)$, then $\delta_n(\mathbf{a}) = \nu_n(\delta(\mathbf{a})) = \nu_n(0) = 0$. Conversely, if $\delta_n(\mathbf{a}) = 0$ for each $n \in \mathbb{N}$, then $\delta(\mathbf{a}) = \varprojlim \delta_n(\mathbf{a}) = 0$.

Since $A_n(\tilde{M})$ are finite discrete Gal(M) modules, [NSW15, p. 142, Cor. 2.7.6] makes an identification,

$$\lim_{n \in \mathbb{N}} H^1(\operatorname{Gal}(M), A_n(\tilde{M})) = H^1_{\operatorname{cts}}(\operatorname{Gal}(M), \lim_{n \in \mathbb{N}} A_n(\tilde{M})), \qquad (32) \quad \{\operatorname{ikmf}\}$$

where the right hand side of (32) is the first continuous cochain cohomology group of Gal(M) with coefficients in $\varprojlim_{n \in \mathbb{N}} A_n(\tilde{M})$ [NSW15, p. 137, Def. 2.7.1]. By [EGM19, p. 156, Cor. 10.37], there exists a canonical isomorphism

$$\lim_{n \in \mathbb{N}} A_n(\tilde{M}) \cong \pi_1(A_{\tilde{M}}, \tilde{\mathbf{a}}), \tag{33} \quad \{\texttt{ikmg}\}$$

where $\tilde{\mathbf{a}}$ is a geometrically generic point of $A_{\tilde{M}}$. Hence, (31), (32), and (33) yield the following exact sequence:

$$\mathbf{0} \longrightarrow \bigcap_{n \in \mathbb{N}} nA(M) \longrightarrow A(M) \xrightarrow{\delta} H^1_{\mathrm{cts}}(\mathrm{Gal}(M), \pi_1(A_{\tilde{M}}, \tilde{\mathbf{a}})).$$
(34) {ikmh}

Finally, by [Sti13, p. 72, Cor. 71], there exists an isomorphism

$$\varphi \colon \mathcal{S}_{A/M} \to H^1_{\mathrm{cts}}(\mathrm{Gal}(M), \pi_1(A_{\tilde{M}}, \tilde{\mathbf{a}}))$$

such that $\varphi \circ \kappa_{A/M} = \delta$. Hence, by the exactness of (34) the sequence

$$\mathbf{0} \longrightarrow \operatorname{div}(A(M)) \longrightarrow A(M) \stackrel{\kappa_{A/M}}{\longrightarrow} \mathcal{S}_{A/M}$$

is exact, as claimed.

Theorem 8.2. Let K be an infinite finitely generated field and let $e \geq 2$ be an integer. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, for all finite extensions M of $\tilde{K}(\boldsymbol{\sigma})$, for all abelian varieties A over M, and for every non-empty smooth geometrically integral subvariety X of A over M, the Kummer map $\kappa_{X/M}: X(M) \to S_{X/M}$ is injective with a pro-discrete dense image but it is not surjective.

Proof. By Theorem 5.2(b), for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, for every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$ and all abelian varieties A over M, we have $\text{div}(A(M)) = \mathbf{0}$. Since by definition, $\tilde{K}(\boldsymbol{\sigma})$ is perfect, so is M. Hence, Lemma 7.1 implies that the profinite Kummer map $\kappa_{A/M}$ is injective,

It follows from Lemma 6.4 that $\kappa_{X/M}$ is injective for every smooth geometrically integral subvariety X of A. Moreover, by Theorem 5.2(a), M is PAC. In particular, $X(M) \neq \emptyset$. Therefore, by Propositions 6.6 and 6.7, $\kappa_{X/M}(X(M))$ is dense in $\mathcal{S}_{X/M}$ in the pro-discrete topology but $\kappa_{X/M}$ is not surjective. \Box

 $\{\texttt{IKMc}\}$

Corollary 8.3. Let K be an infinite finitely generated field and let $e \geq 2$. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$, and all smooth geometrically integral projective curves C/M of genus ≥ 1 , the profinite Kummer map $\kappa_{C/M}$ is injective with a dense image but it is not surjective.

Proof. Again, by Theorem 5.2, for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$ is PAC. Now assume that C/M is a smooth geometrically integral projective curve of genus ≥ 1 . In particular $C(M) \neq \emptyset$. Hence, C embeds into its Jacobian J [Lan59, p. 40, Prop. 4]. Now apply Theorem 7.2 for C rather than for X. \Box

9 Injectiveness over Non-perfect Fields

The criterion for the injectivity of the profinite Kummer map for abelian varieties given in Lemma 7.1 depends on the assumption that the base field is perfect. Following [Sti20], we reduce the injectivity over non-perfect fields to the injectivity over perfect fields.

{KSEa}

{KSE}

Lemma 9.1. Let X be a geometrically integral normal projective variety over a field M with geometric generic point \mathbf{x} . Let M' be a purely inseparable extension of M and consider \mathbf{x} also as a generic point of $X' := X_{M'}$. Then, the canonical homomorphism $\pi_1(X', \mathbf{x}) \to \pi_1(X, \mathbf{x})$ is an isomorphism.

Proof. By Remark 6.2,

$$\operatorname{Gal}(M(\mathbf{x})_{\mathrm{et}}/M(\mathbf{x})) \cong \pi_1(X, \mathbf{x}), \qquad \operatorname{Gal}(M'(\mathbf{x})_{\mathrm{et}}/M'(\mathbf{x})) \cong \pi_1(X', \mathbf{x}).$$

Since $M(\mathbf{x})_{\text{et}}/M(\mathbf{x})$ is Galois and M'/M is purely inseparable, the restriction map

$$\rho := \operatorname{Gal}(M'(\mathbf{x})_{\text{et}}/M'(\mathbf{x})) \to \operatorname{Gal}(M(\mathbf{x})_{\text{et}}/M(\mathbf{x}))$$
(35) {kseb}

{IKMb}

is an epimorphism.

It remains to prove that ρ is injective. For this it suffices to prove that $M(\mathbf{x})_{\text{et}} \cdot M'(\mathbf{x}) = M'(\mathbf{x})_{\text{et}}$. Thus, we have to consider a finite extension N of $M'(\mathbf{x})$ in $M'(\mathbf{x})_{\text{et}}$ and to find an extension L of $M(\mathbf{x})$ in $M(\mathbf{x})_{\text{et}}$ such that $L \cdot M'(\mathbf{x}) = N$.

To this end we note that since $M'(\mathbf{x})_{\text{sep}}$ is both separable and purely inseparable extension of $M(\mathbf{x})_{\text{sep}}M'(\mathbf{x})$, we have $M'(\mathbf{x})_{\text{sep}} = M(\mathbf{x})_{\text{sep}}M'(\mathbf{x})$. Since $N \subseteq M'(\mathbf{x})_{\text{sep}}$ we conclude that there exists a finite extension L of $M(\mathbf{x})$ in $M(\mathbf{x})_{\text{sep}}$ such that $L \cdot M'(\mathbf{x}) = N$. Let $\pi: Y \to X$ be the normalization of X in L. Let $Y' = Y \times_X X'$ and let $\pi': Y' \to X'$ be the corresponding projection. Then, π' is étale (because $N \subseteq M'(\mathbf{x})_{\text{et}}$). Since $\text{Spec}(M') \to \text{Spec}(M)$ is flat, so is $X' \to X$. Hence, by [EGA67, p. 72, Prop. 17.7.1], π is étale. Therefore, $L \subseteq M(\mathbf{x})_{\text{et}}$, as needed.

Lemma 8.1 allows now to prove the following reduction step of [Sti20].

{KSEb}

Lemma 9.2. Let M be a field and X a geometrically integral normal projective variety over a field M. Suppose that the profinite Kummer map $\kappa_{\text{ins}} := \kappa_{X_{\text{ins}}/M_{\text{ins}}}$: $X_{\text{ins}}(M_{\text{ins}}) \to S_{X_{\text{ins}}/M_{\text{ins}}}$ is injective. Then, the profinite Kummer map $\kappa_{X/M}$: $X(M) \to S_{X/M}$ is also injective.

Proof. We consider the following commutative square:

$$\begin{array}{c} X_{\mathrm{ins}}(M_{\mathrm{ins}}) \xrightarrow{\kappa_{\mathrm{ins}}} \mathcal{S}_{X_{\mathrm{ins}}/M_{\mathrm{ins}}} \\ \downarrow^{\iota} & \downarrow^{\rho^*} \\ X(M) \xrightarrow{\kappa_{X/M}} \mathcal{S}_{X/M}, \end{array}$$

where ι is the inclusion map (taking into account that $X_{\text{ins}}(M_{\text{ins}}) = X(M_{\text{ins}})$) and $\rho^*(s) = \rho \circ s \circ \rho_0^{-1}$ where ρ_0 : Gal $(M_{\text{ins}}) \to$ Gal(M) is the isomorphism defined by restriction from \tilde{M} to M_{sep} and with ρ being the isomorphism appearing in (35). Since by Lemma 8.1, for $M' = M_{\text{ins}}$, ρ is an isomorphism, so is ρ^* . Since by assumption, κ_{ins} is injective, this implies that $\kappa_{X/M}$ is also injective, as claimed. \Box

As an application we prove the variant of Theorem 7.2 where the fields $K_{\text{sep}}(\boldsymbol{\sigma})$ replace the fields $\tilde{K}(\boldsymbol{\sigma})$.

{ESEc}

Theorem 9.3. Let K be an infinite finitely generated field and let $e \geq 2$ be an integer. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, for every finite extension M of $K_{\operatorname{sep}}(\boldsymbol{\sigma})$, for every abelian variety A over M, and for every non-empty smooth geometrically integral subvariety X of A over M, the profinite Kummer map $\kappa_{X/M}: X(M) \to S_{X/M}$ is injective with a pro-discrete dense image but it is not surjective.

Proof. We prove the theorem only for X = A.

Let $\boldsymbol{\sigma}$ be one of the elements of the subset of measure 1 of $\operatorname{Gal}(K)^e$ that satisfy the conclusion of Theorem 7.2. Let M be a finite extension of $K_{\operatorname{sep}}(\boldsymbol{\sigma})$ and let A be an abelian variety over M. Then, the perfect field M_{ins} is both separable and purely inseparable extension of $\tilde{K}(\boldsymbol{\sigma})M$. Hence, $\tilde{K}(\boldsymbol{\sigma})M = M_{\text{ins}}$. In particular, M_{ins} is a finite extension of $\tilde{K}(\boldsymbol{\sigma})$. By our choice, the map $\kappa_{A_{\text{ins}}/M_{\text{ins}}}$ is injective. Therefore, by Lemma 8.2, so is the map $\kappa_{A/M}$.

In addition, we may assume by (27a) that $K_{\text{sep}}(\boldsymbol{\sigma})$ is PAC and therefore so is M. Hence, by Proposition 6.6, the image of $\kappa_{A/M}$ is pro-discrete dense but according to Proposition 6.7, it is not surjective, as claimed. \Box

10 Finite Base Fields

Finite fields are not Hilbertian. Still, a variant of Theorem 7.2 does hold. That variant gives, in addition to the case $e \ge 2$, also precise information about the missing case e = 1.

{FBFa}

{FBF}

Theorem 10.1. Let K be a finite field and let e be a positive integer. Then, the following statements hold for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$, and every non-zero abelian variety A over M:

- (a) If e = 1, then for every smooth geometrically integral subvariety X of A over M the profinite Kummer map $\kappa_{X/M}$: $X(M) \to S_{X/M}$ is injective but not surjective. Moreover, $\kappa_{X/M}$ has a pro-discrete dense image.
- (b) If $e \ge 2$, then the Kummer map $\kappa_{A/M}: A(M) \to \mathcal{S}_{A/M}$ is bijective.

Proof of (a). In order to avoid repetitions, we only prove that for every finite extension L of K, for every abelian variety A over L, and for almost all $\sigma \in \operatorname{Gal}(L)$ the Kummer map $\kappa_{A/\tilde{K}(\sigma)} \colon A(\tilde{K}(\sigma)) \to \mathcal{S}_{A/\tilde{K}(\sigma)}$ is injective but not surjective and the image of $\kappa_{A/\tilde{K}(\sigma)}$ is pro-discrete dense in $\mathcal{S}_{A/\tilde{K}(\sigma)}$.

First we observe that A(L) is a finite abelian group, so every point of A(L) has a finite order. In particular, for each $\sigma \in \text{Gal}(L)$, we have $A(L) \cap \bigcap_{n \in \mathbb{N}} nA(\tilde{K}(\sigma)) \subseteq A_{\text{tor}}(\tilde{K}(\sigma))$. By [JaJ01, Main theorem], for almost all $\sigma \in \text{Gal}(L)$ and for every $l \in \mathbb{L}$, the group $A_{l^{\infty}}(\tilde{K}(\sigma))$ is finite. Hence, by Lemma 4.1, $A(L) \cap \text{div}(A(\tilde{K}(\sigma))) = \mathbf{0}$.

Arguing as in Part B of the proof of Proposition 4.4, we find that $\operatorname{div}(A(\tilde{K}(\sigma))) = \mathbf{0}$, again for almost all $\sigma \in \operatorname{Gal}(L)$. Since $\tilde{K}(\sigma)$ is perfect, Lemma 7.1 implies that $\kappa_{A/\tilde{K}(\sigma)} \colon A(\tilde{K}(\sigma)) \to \mathcal{S}_{A/\tilde{K}(\sigma)}$ is injective.

By [FrJ08, p. 380, Cor. 18.5.9], for almost all $\sigma \in \text{Gal}(K)$, the field $K(\sigma)$ is an infinite extension of K. As such, $\tilde{K}(\sigma)$ is PAC [FrJ08, p. 196, Cor. 11.2.4]. Hence, by Propositions 6.6 and 6.7, the map $\kappa_{A/\tilde{K}(\sigma)}$ has a dense image with respect to the pro-discrete topology, but it is not surjective.

Proof of (b). In this case $e \geq 2$. Then, for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, the field $\tilde{K}(\boldsymbol{\sigma})$ is finite [FrJ08, p. 380, Cor. 18.5.9]. Hence, so is every finite extension M of $\tilde{K}(\boldsymbol{\sigma})$. Hence, by [Sti13, p. 198, Thm. 222], $\kappa_{A/M}$ is bijective, as claimed. \Box

References

- [Bor91] A. Borel, Linear Algebraic Groups (second enlarged edition), Graduate Texts in Mathematics 126, Springer-Verlag, New York, 1991.
- [BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 21, Springer 1990.
- [Bou12] N. Bourbaki, Algèbre, Chapitre 8, Modules et anneaux semi-simples, N. Bourbaki et Springer-Verlag, Heidelberg 2012.
- [CaF67] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- [Coh89] P. M. Cohn, Algebra, Volume 2, second edition, John Willy & Sons, Chichester, 1989.
- [Con06] B. Conrad, Chow's K/k-image and K/k-trace and the Lang-Néron theorem, L'Enseignement Mathématique, 52 (2006) 37–108.
- [EGA67] A. Grothendieck, Éléments de Géométrie Algébrique IV, quateriéme partie, Publications Mathématiques, IHES 32 (1967), 5–255.
- [EGM19] B. Edixhoven, G. v. d. Geer, and B. Moonen, Abelian varieties, Preliminary version of the first chapters, 2019.
- [Fal83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inventiones mathmaticae 73 (1983), 349–366.
- [FaW84] G. Faltings and G. Wüstholz et al., Rational Points, Seminar Bonn/Wuppertal 1983/84, Vieweg, Braunschweig 1984.
- [FrJ08] M. D. Fried and M. Jarden, Field Arithmetic, third edition, revised by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2008.
- [GeJ78] W.-D. Geyer and M. Jarden, Torsion points of elliptic curves over large algebraic extensions of finitely generated fields, Israel Journal of Mathematics 31 (1978), 157–197.
- [Hup67] B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin, 1967.
- [JaJ01] M. Jacobson and M. Jarden, Finiteness theorems for torsion of abelian varieties over large algebraic fields, Acta Arithmetica 98 (2001), 15– 31.
- [Jar11] M. Jarden, *Algebraic Patching*, Springer Monographs in Mathematics, Springer, Heidelberg, 2011.
- [JaP19] M. Jarden and S. Petersen, Torsion on abelian varieties over large algebraic extensions of finitely generated extensions of Q, Nagoya Mathematical Journal 234 (2019), 1–41.
- [Koe05] J. Koenigsmann, On the section conjecture in anabelian geometry, Journal f
 ür die Reine und Angewandte Mathematik 588 (2005), 221-235.

- [Lan59] S. Lang, Abelian Varieties, Interscience Tracts in Pure and Applied Mathematics 7, Interscience Publishers, New York, 1959.
- [Lan62] S. Lang, Diophantine Geometry, Interscience Tracts in Pure and applied Mathematics 11, Interscience Publishers, New York, 1962.
- [Lan93] S. Lang, Algebra (third edition), Addison-Wesley, Reading, 1993.
- [Lor08] F. Lorenz, Algebra II, Fields with Structure, Algebras and Advanced Topics, Springer 2008.
- [Mat94] H. Matsumura, Commutative ring theory, Cambridge studies in advanced mathematics 8, Cambridge University Press, Cambridge 1994.
- [Mil86] J. S. Milne, Abelian Varieties, Chapter V in "Arithmetic Geometry", edited by G. Cornell and J. H. Silverman, Springer-Verlag, New York, 1986.
- [Mil08] J. S. Milne, Abelian Varieties, Lecture Notes, Version 2.0, 2008 https://www.jmilne.org/math/CourseNotes/AV.pdf
- [Mum74] D. Mumford, Abelian Varieties, Oxford University Press, London, 1974.
- [Mum88] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics 1358, Springer, Berlin, 1988.
- [NSW15] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften 323, Springer-Verlag, Heidelberg, Second Edition, corrected version 2.2, July 2015. Electronic Edition, https://www.mathi.uniheidelberg.de/~schmidt/NSW2e/NSW2.2.pdf
- [Nor87] M. V. Nori, On subgroups of $GL_n(\mathbf{F}_p)$, Inventiones mathematicae 88 (1987), 257-275.
- [Poo17] B. Poonen, Rational points on varieties, Graduate Studies in Mathematics 186, AMS 2017,

https://math.mit.edu/~poonen/papers/Qpoints.pdf

- [Rib79] K. Ribet, Kummer theory on extensions of abelian varieties by tori, Duke Mathematical Journal 46 (1979), 745–761.
- [SeT68] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Annals of Mathematics 88 (1968), 492-571.
- [Shi98] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton University Press, Princeton, 1998.
- [Sti13] Jakob Stix, Rational points and arithmetic of fundamental groups, Evidence for the section conjecture, Lecture Notes in Mathematics 2054, Springer, Berlin, Heidelberg, 2013.
- [Sti20] Jakob Stix, e-mail dated 20 April 2020.
- [Zar77] Y. G. Zarhin, Endomorphisms of abelian varieties and points of finite order in characteristic p, Mathematical Notes 21 (1977), 415–419.
- [Zar85] Y. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction, Inventiones Mathematicae 79 (1985), 309–321.

REFERENCES

[Zar14] Y. Zarhin, Abelian varieties over fields of finite characteristic, Central European Journal of Mathematics, 12 (2014), 659–675.