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Abstract

Let K be a finitely generated extension of its prime field and let e ≥ 2
an integer. We prove the injectivity part of the section conjecture of
Grothendieck for almost all σ = (σ1, . . . , σe) ∈ Gal(K)e and for all smooth
geometrically integral projective curves of genus ≥ 1 over the field K̃(σ).

MR Classification: 12E30

1 Introduction

Algebraic number theory and Diophantine Geometry prove finiteness theorems
for arithmetic and diophantine objects over global fields and, more generally,
over infinite finitely generated fields K (over their prime fields). For exam-
ple, the Mordell-Weil-Lang-Néron theorem says that for every abelian variety
A over K, the abelian group A(K) has finite rank. Another prominent exam-
ple due to Faltings (formerly the “Mordell Conjecture”) says in the case where
char(K) = 0 that C(K) is finite for every geometrically integral curve C over
K of genus ≥ 2. An analog of that result is due to Grauert-Manin in positive
characteristic.

Of decisive importance from our point of view is Hilbert irreducibility the-
orem saying that if f ∈ K[T,X] is irreducible, then there exist infinitely many
a ∈ K such that f(a,X) is irreducible in K[X].

For these reasons, we consider the finitely generated fields as “small”. On
the other end of the scale stand the algebraic closure K̃ of K. For this field, we
have rank(A(K̃)) =∞ for every non-zero abelian variety A over K, and V (K̃)
is infinite for every integral variety V of positive dimension over K̃. Moreover,
every non-constant polynomial in K̃[X] has a zero, so K̃ is not Hilbertian.
Similar statements hold for the maximal separable extension Ksep of K in K̃.

Thus, one may say that K̃ and Ksep are “large fields”.
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“Just below” K̃ and Ksep there lie a big family of fields that are also large
for a variety of reasons. To introduce these families we recall that the abso-
lute Galois group Gal(K) = Gal(Ksep/K) of K is profinite. Hence, for each
positive integer e, the group Gal(K)e has a unique Haar measure µ such that
µ(Gal(K)e) = 1. For every σ := (σ1, . . . , σe), we write Ksep(σ) for the fixed

field of σ1, . . . , σe in Ksep and let K̃(σ) := Ksep(σ)ins be the maximal purely

inseparable extension of Ksep(σ) in K̃.
By [FrJ08, p. 380, Thm. 18.6.1], for almost all σ ∈ Gal(K)e (in the sense

of the Haar measure µ) every geometrically integral variety over Ksep(σ) has
a Ksep(σ)-rational point. This means that Ksep(σ) is a PAC-field for almost

all σ ∈ Gal(K)e. The same holds for K̃(σ). By [FrJ08, p. 379, Thm. 18.5.6],
for almost all σ ∈ Gal(K)e, the group Gal(Ksep(σ)) is isomorphic to the free

profinite group F̂e of e generators. In particular Ksep(σ) has only finitely many
extensions of each degree d, so Ksep(σ) is definitely not Hilbertian.

For these reasons, Field Arithmetic considers almost all of the fields Ksep(σ)

and K̃(σ) as “large”. It turns out, that concerning abelian varieties, there is a
distinction between the cases e = 1 and e ≥ 2. This is reflected by the following
conjecture, where for an abelian variety A over a field M and for a prime number
l, we set Al(M) = {a ∈ A(M) | la = o} and let Ator(M) = {a ∈ A(M) | na =
o for some n ∈ N}.

Conjecture A [GeJ78, p. 260, Conjecture] Let K be a finitely generated field.
Then, for almost all σ ∈ Gal(K)e and for every non-zero abelian variety A over
K̃(σ), the following holds:
(a) If e = 1, then there are infinitely many prime numbers l with Al(K̃(σ)) 6= 0.

Thus, Ator(K̃(σ)) is infinite.
(b) If e ≥ 2, then Ator(K̃(σ)) is finite.
(c) If e ≥ 1, then for every prime number l, the group A(K̃(σ)) contains only

finitely many points of an l-power order.

Conjecture A is completely proved for elliptic curves in [GeJ78, Thm. 1.1].
Part C is proved in [JaJ01, Thm. 2.7]. Part B in the case where char(K) = 0 is
also proved in [JaJ01, Thm. 3.7]. Finally, Part A is proved for char(K) = 0 in
[JaP19, Thm. C]. Thus, in this respect, almost all of the fields K̃(σ) with e ≥ 2
are “not so large” as almost all of the fields K̃(σ) with e = 1.

Goal of the present article. We enhance the above given information about
almost all the fields K̃(σ) with an injectivity result concerning the “section
conjecture” for abelian varieties over those fields in the case when e ≥ 2.

To this end let X be a smooth geometrically integral variety over a field M
with geometric generic point x̄. We choose a geometric generic point x̄sep of
XMsep that lies over x̄. Then, we consider the short exact sequence

1 // π1(XMsep
, x̄sep) // π1(X, x̄)

ρ // Gal(M) // 1, (1) {STIx}

where Gal(M) = Gal(Msep/M) is the absolute Galois group of M , π1(X, x̄)
(resp. π1(XMsep

, x̄sep)) is the fundamental group of X (resp. of XMsep
) with base
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point x̄ (resp. x̄sep), and ρ is the corresponding restriction map (Remark 6.2).
Every point x ∈ X(M) gives rise to a group theoretic section of ρ which is unique
up to π1(XMsep

, x̄sep)-conjugacy (Remark 6.3). We denote the π1(XMsep
, x̄sep)-

conjugacy class of that section by κX/M (x) and let SX/M be the set of all group
theoretic sections of ρ up to π1(XMsep

, x̄sep)-conjugacy.
Grothendieck’s renowned section conjecture says that the profinite Kum-

mer map
κX/M : X(M)→ SX/M (2) {GRTk}

is bijective if M is a finitely generated extension of Q and X is a smooth geo-
metrically integral projective curve over M of genus at least 2.

Grothendieck stated his conjecture in a letter to Faltings sent in 1983 [Sti13,
p. xiv, 2nd paragraph]. In that letter he mentions that the map κX/M is injective
but leaves open the question of its surjectivity.

One may find a proof of the injectivity of κX/M in [Sti13, p. 73, Prop. 73]. To
this end we may assume that X(M) is non-empty, otherwise κX/M is trivially
injective. Thus, X can be embedded into its Jacobian J . Then, one uses the
Mordell-Weil theorem saying that for every finite extension M ′ of M , the abelian
group J(M ′) is finitely generated [Lan59, p. 71, Thm. 1] to conclude that⋂

n∈N
nJ(M ′) = 0, (3) {morD}

and this implies the injectivity of κX/M .
Our main result concerns the large fields mentioned above:

Theorem B [Corollary 7.2 and Corollary 7.3]: Let K be an infinite finitely
generated field and let e ≥ 2 be an integer. Then, the following statements hold
for almost all σ ∈ Gal(K)e and every finite extension M of K̃(σ):
(a) For every non-zero abelian variety A over M and every non-empty smooth

geometrically integral subvariety X of A, the profinite Kummer map κX/M
is injective, its image is dense (in an appropriate topology) but the map is
not surjective.

(b) For all smooth geometrically integral projective curves C/M of genus ≥ 1
the profinite Kummer map κC/M is injective with a dense image but the
map is not surjective.

As mentioned above, for almost all σ ∈ Gal(K)e the field K̃(σ) is PAC,
hence, by Ax-Roquette, so is every algebraic, in particular finite, extension M of
K̃(σ) [FrJ08, p. 196, Cor. 11.2.5]. By Koenigsmann-Stix, SX/M is uncountable
for every smooth geometrically integral variety X over M (Proposition 6.7). On
the other hand, X(M) is countable, because M is. Hence, a fortiori, we can not
expect κX/M in (2) to be bijective. That is, we can not expect the full section
conjecture to hold over M .

In a letter to the authors [Sti20], Stix wrote that [Sti13, p. 73, Prop. 73]
should have been stated only for varieties over perfect fields. In addition, Stix
added that if A is an abelian variety over a perfect field M , then κA/M : A(M)→
SA/M is injective if and only if div(A(M)) :=

⋂
n∈N nA(M) = 0 (Lemma 7.1).
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The truth of the latter condition in our case along with additional vital infor-
mation is stored in the following result.

Theorem C (Theorem 5.2): Let K be an infinite finitely generated field and
let e ≥ 2. Then, for almost all σ ∈ Gal(K)e, all finite extensions M of K̃(σ),
and every abelian variety A over M we have:

(a) M is PAC,

(b) div(A(M)) :=
⋂
n∈N nA(M) = 0,

(c) |Al∞(M)| <∞ for every prime number l, and

(d) if char(K) = 0, also |Ator(M)| <∞.

Here, for each prime number l and a positive integer i, we put Ali(M) =
{a ∈ A(M) | lia = o} and Al∞(M) =

⋃∞
i=1Ali(M).

By (a) of Theorem C, every smooth geometrically integral curve C over M
has an M -rational point, so if its genus is ≥ 1, it can be embedded into its
Jacobian. Thus, Statement (b) of Theorem B is a special case of Statement (a)
of that theorem.

Using Weil’s restriction of scalars for abelian varieties (Section 5), it suf-
fices to prove Theorem C only in the case where M = K̃(σ) and σ is chosen at
random in Gal(K)e. In this case (c) and (d) are already proved in [JaJ01]. How-
ever, Statement (d) is not needed in the proof of Theorem B and we mentioned
it only for completeness.

The proof of (b) of Theorem C depends on the following result:

Lemma D (Corollary 3.4): Let A be a simple abelian variety of dimension g
over an infinite finitely generated field K and let p be a point of A(K) of infinite
order. Then, [K(pl) : K] = l2g for each point pl ∈ A(Ksep) with lpl = p and
for all sufficiently large prime numbers l.

In addition to Lemma D, the proof of (b) of Theorem C uses the obvious
observation that liml→∞(1/l2g(e−1)) = 0 if e ≥ 2. The failure of this observation
for e = 1 forces us to prove Theorem C only for e ≥ 2. See also Remark 4.5.

The proof of Corollary 3.4 depends on a result that Ribet proves in [Rib79]
when char(K) = 0 and that we generalize to the general case in Section 3. In
addition, the proof of Corollary 3.4 uses the following heavy result:

Proposition E (Proposition 2.2): The following statements hold for every
non-zero abelian variety A over a finitely generated field K.

(a) A(K) is a finitely generated abelian group.

(b) For almost all l ∈ L′, the Gal(K)-module Al is semi-simple.

(c) For almost all l ∈ L′, the natural homomorphism EndK(A) ⊗ Z/lZ →
EndFl[Gal(K)](Al) is an isomorphism.

(d) H1(Gal(K(Al)/K), Al) = 0 for almost all l ∈ L′.

In this result, L′ = Lr{char(K)} with L being the set of all prime numbers.
Then, “for almost all l ∈ L′” means “for all but finitely many elements l in L′”.

Statement (a) of Proposition E is the Mordell-Weil-Lang-Néron Theorem.
Statement (d) relies on Statement (b) and is due to Nori [Nor87]. Statements
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(b) and (c) are part of the mod-l version of the l-adic Tate conjecture proved by
Faltings. They were proved by Zarhin in the case where K is either a number
field or finitely generated of positive characteristic. However, we have not been
able to find a proof of that statement in the literature in the case where K
is a finitely generated transcendental extension of Q. We therefore supply full
proofs of (b) and (c) in that case in Sections 1 and 2. Among others, we use the
theorem of Faltings that assures a generalized Conjecture of Shafarevich for K
(Proposition 2.3).

Additional results. Finally we mention two additional results. The first one
deals with non-perfect fields M . If A is an abelian variety over a non-perfect
field M , then the proof of Lemma 7.1 breaks down. It does not prove that the in-
jectivity of κA/M : A(M)→ SA/M follows from div(A(M)) = 0. Instead, the in-
jectivity of κA/M follows from the injectivity of the map κAMins

/Mins
: A(Mins)→

SAins/Mins
(Lemma 8.2). Therefore, Theorem B holds also when the fields

Ksep(σ) replace the fields K̃(σ) (Theorem 8.3).
The second one is concerned with a finite base field K. It turns out that if

e ≥ 2, then for almost all σ ∈ Gal(K)e the field K̃(σ) is finite, hence so is every
finite extension M of K̃(σ). Following a hint of the referee, we find that the
full section conjecture is true in this case, that is the Kummer map is bijective
(Theorem 9.1(b)).

In addition to the case e ≥ 2, we are able to prove the analog of Theorem
B for K finite and e = 1 (Theorem 9.1(a)). Here, K̃(σ) is infinite for almost all
σ ∈ Gal(K). Hence, so is every finite extension M of K̃(σ). Thus, M is PAC.
In addition, we use that A(K̃) = Ator(K̃) for every abelian variety A over K.

Theorem B for an infinite finitely generated base field K and e = 1 remains
open.

The authors are indebted to the anonymous referees for their helpful com-
ments, to Jakob Stix for his enlightened letter [Sti20], and to Aharon Razon for
careful reading of the manuscript.

2 Semi-simple Algebras
{SSMa}

Yuri Zarhin proves in [Zar77] that the mod-l reduction of a semi-simple Q-
algebra that satisfies a few natural finiteness conditions is again semi-simple
if l is a sufficiently large prime number. Based on a theorem of Faltings, we
generalize Zarhin’s result to finitely generated extensions of Q. This is done in
this and the next section.

We denote the algebraic closure of a field K by K̃ and the maximal separable
extension of K in K̃ by Ksep. Recall that an abelian variety over K is, by
definition, a group scheme over K which is proper and geometrically integral
[Mil86, p. 103, Conventions and Sec. 1]. It is known that abelian varieties
are projective [Mil86, p. 113, Thm. 7.1], smooth [Mil86, p. 104, Sec. 1], and
commutative [Mil86, p. 105, Cor. 2.4].

{abel}
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Remark 2.1. We denote the zero point of an abelian variety A by o and set
0 = {o}. For every positive integer n, we let nA: A → A be the isogeny of A
defined by multiplication with n and let An = Ker(nA). We abuse our notation
and write An also for An(K̃) = {a ∈ A(K̃) | na = o}, if char(K) - n. In this
case, nA is étale, [Mil86, p. 115, Thm. 8.2]. In particular each a ∈ An(K̃)
already lies in An(Ksep) [Mum88, p. 245, Cor.(1)].

As usual, we let Mn(K) be the ring of all n× n matrices with entries in K.
{MATr}

Lemma 2.2. The following statements about a perfect field K and a finite-
dimensional K-algebra D are equivalent.

(a) D is a semi-simple K-algebra.

(b) D ⊗K K̃ is a semi-simple K̃-algebra.

(c) There exist positive integers n1, . . . , nr such that D⊗K K̃ ∼=
∏r
i=1Mni

(K̃).

(d) There exist a finite extension L of K and positive integers n1, . . . , nr such
that D ⊗K L ∼=

∏r
i=1Mni

(L)

Proof. The implication (a) =⇒ (b) is a special case of [Lan93, p. 658, Thm. 6.2].
See also the second paragraph of [Lan93, p. 659].

(b) =⇒ (c): By assumption, D⊗K K̃ is a direct sum of finitely many simple
finite dimensional K̃-algebras. By a consequence of Wedderburn theorem, each
of them is isomorphic to Mn(K̃) for some positive integer n [Lor08, p. 158,
Thm. 6]. Hence, (c) is true.

(c) =⇒ (d): The isomorphism D ⊗ K̃ ∼=
∏r
i=1Mni

(K̃) is already defined
over a finite extension L of K. Hence, D ⊗K L ∼=

∏r
i=1Mni

(L).
(d) =⇒ (a): Let J = Rad(D) be the Jacobson radical of D, that is the

intersection of all maximal right ideals of D. By [Lor08, p. 148, Thm. 4], there
exists a positive integer k such that Jk = 0. Thus, the product of k elements
of J is always 0. Hence, each element of J ⊗K L is nilpotent. Therefore, by
[Lor08, p. 148, F38],

J ⊗K L ⊆ Rad(D ⊗K L). (4) {Jcbs}

By [Lor08, p. 152, F3], each L-algebra Mni
(L) is simple. Hence, D ⊗K L is

semi-simple. Therefore, by [Lan93, p. 658, Thm. 6.1(d)], Rad(D ⊗K L) = 0, so
by (4), J ⊗K L = 0. Finally, the field extension L/K is faithfully flat, so J = 0.
Therefore, by [Lan93, p. 658, Thm. 6.1(c)], D is semi-simple, as claimed. �

{ZARg}
Lemma 2.3 ([Zar77], Lemma 3.2). Let D be a Z-algebra which is finitely gen-
erated and free as a Z-module. Suppose that the Q-algebra D⊗Q is semi-simple.
Then, for all large l ∈ L, the Fl-algebra D ⊗ Fl is semi-simple.

Proof. By Lemma 1.2, there exist a finite extension L of Q, positive integers
n1, . . . , nr, and an isomorphism f : D⊗QL→

∏r
i=1Mni

(L) of L-algebras. Then,
there exists a positive integer m such that for the integral closure R of Z

[
1
m

]
in

L, both f and f−1 are defined over R. Hence, the restriction f0 of f to D ⊗R
is an isomorphism onto

∏r
i=1Mni(R).
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For each prime number l that does not divide m, and every maximal ideal
p of R that lies over lZ

[
1
m

]
we consider the residue field L̄p = R/p. Then,

f0 ⊗R L̄p: D ⊗ L̄p →
r∏
i=1

Mni
(L̄p)

is an isomorphism. It follows from Lemma 1.2, that D ⊗ Fl is semi-simple, as
claimed. �

The following lemma appears in a remark on page 169 of [Mum74].
{ISOg}

Lemma 2.4. Let f : A → B be an isogeny of abelian varieties over a field K.
Let n be a positive integer such that Ker(f) ≤ Ker(nA). Then:

(a) There exists an isogeny g: B → A such that g ◦ f = nA and f ◦ g = nB.

(b) g(Bn) = Ker(f).

Proof. For Statement (a), see [EGM19, p. 75, Prop. 5.12].
For statement (b) we note that since g is surjective, it restricts to a surjective

homomorphism g: Bn = Ker(f ◦ g)→ Ker(f). �

As usual, we denote the ring of endomorphisms of A by End(A) and let
EndK(A) be the ring of endomorphisms of A that are defined over K.

{SEMs}
Lemma 2.5. Let A be an abelian variety over a field K. Then, EndK(A)⊗ Fl
is a finite dimensional semi-simple Fl-algebra for almost all l ∈ L.

Proof. By [Mil86, p. 123, Thm. 12.5], End(A) is a free Z-module of rank ≤
4dim(A)2. Hence, dimFl

(EndK(A)⊗ Fl) ≤ 4dim(A)2 for all l ∈ L.
In general, if abelian varieties B and B′ are isogeneous, then End(B)⊗Q ∼=

End(B′)⊗Q [Mil08, Second paragraph after Remark 10.2]. Hence, by Poincaré
complete reducibility theorem [Mum74, p. 173, Thm. 1], we may assume that
A = An1

1 ×· · ·×Anr
r , where A1, . . . , Ar are non-isogenous simple abelian varieties.

It follows from [Mum74, p. 174, Cor. 2] that EndK(A) ⊗ Q ∼=
∏r
i=1Mni

(Di),
where each Di is a division ring. Hence, by [Lor08, p. 157, Thm. 4], EndK(A)⊗Q
is a semi-simple Q-algebra. Therefore, by Lemma 1.3, EndK(A) ⊗ Fl is semi-
simple for all sufficiently large l ∈ L, as claimed. �

3 Endomorphism Rings of Abelian Varieties
{ERAv}

Let K be a finitely generated field of characteristic p ≥ 0 and A a non-zero
abelian variety over K. By [Mum74, p. 64, Prop.(3)], we have for each positive
integer n with char(K) - n that

An ∼= (Z/nZ)2dim(A) (5) {torl}

as abelian groups. Moreover, for l ∈ L′, the group Gal(K) acts on Al, so we
may consider Al as an Fl[Gal(K)]-module.
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{MODu}
Notation 3.1 (Rings of endomorphisms). For a module M over an associative
ring R with 1, one usually denotes the ring of endomorphisms of M by End(M)
or by EndR(M), if one wishes to stress the underlying ring R. For example,
one writes EndZ(M) for the ring of endomorphisms of M as an abelian group.

The following result includes some well known results about abelian varieties.
However, Statements (b) and (c) for function fields over Q seem to be missing
in the literature.

{galbasics}
Proposition 3.2.

(a) A(K) is a finitely generated abelian group.

(b) For almost all l ∈ L′, the Gal(K)-module Al is semi-simple.

(c) For almost all l ∈ L′, the natural homomorphism EndK(A) ⊗ Z/lZ →
EndFl[Gal(K)](Al) is an isomorphism.

(d) H1(Gal(K(Al)/K), Al) = 0 for almost all l ∈ L′.

Statement (a) of Proposition 2.2 is the well known Mordell-Weil and Lang-
Néron theorem. See [Lan62, Chap. V] for a classical proof and [Con06, Cor. 7.2]
for a scheme theoretic proof.

For Part (b) in the case where K is a number field, see [Zar85, Cor. 5.4.3(b)].
Part (b) in the case p > 0 can be found at [Zar14, Cor. 2.3.(iii)].

Part (c) for number fields can be found in [Zar85, Cor. 5.4.5]. The case
where p > 0 is covered by [Zar14, Cor. 2.7].

By (b), Al is a semi-simple Gal(K)-module for almost all l ∈ L′. By (5),
dimFl

(Al) = 2dim(A) is independent of l. Hence, Part (d) follows from [Nor87,
§4, Thm. E].

The rest of this section is devoted to the proof of Parts (b) and (c) in the
remaining case, where K is a function field of several variables over a number
field.

Thus, for the remaining of this section, we assume that K is a finitely gen-
erated extension of Q. We start by citing a finiteness theorem for K due to
Faltings. To this end we choose a finitely generated regular extension R of Z
with quotient field K and cite two major results.

{FaWu}
Proposition 3.3 ([FaW84], p. 205, Thm. 2). Up to isomorphism, there exist
only finitely many abelian varieties of a given dimension g over K which have
good reduction at all primes p of R of height one.

{SRTa}
Proposition 3.4 ([SeT68], Cor. 2). Let v be a discrete valuation of a field F
and let A and A′ be isogenous abelian varieties over F such that A has good
reduction at v. Then, also A′ has good reduction at v.

The following result generalizes [Zar85, Prop. 3.1]. That result relies on
Faltings’ finiteness theorem for number fields [Fal83, Satz 6]. Our proof applies
Proposition 2.3.
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{ZRHa}
Lemma 3.5. Let A be an abelian variety over K. Then, up to an isomorphism,
there exist only finitely many abelian varieties over K that are isogenous to A.

Proof. Since R is finitely generated over Z, it is Noetherian. By assumption, R
is regular, hence also integrally closed [Mat94, p. 157, Thm. 19.4]. If the height
of a prime ideal p of R is 1, then pRp is the unique non-zero prime ideal of Rp.
Hence, by [CaF67, p. 4, Prop. 3], Rp is a discrete valuation domain.

Using that conclusion, we infer from [Shi98, p. 95, Prop. 25] that there exists
a nonzero element a ∈ R such that if p is a prime ideal of R of height 1 and
a /∈ p, then A has a good reduction at p. Replacing R by R[a−1], we may assume
without loss that A has good reduction at each p ∈ Spec(R) of height 1.

Let A be the set of all abelian varieties A′ over K (up to isomorphism) with
dim(A′) = dim(A) and with good reduction at each p ∈ Spec(R) of height 1.
By Proposition 2.3, A is finite.

Next let A′ be the set of all abelian varieties (up to isomorphism) over K
that are isogenous to A and consider A′ ∈ A′. Then, A′ is isogenous to A, in
particular dim(A′) = dim(A). If p ∈ Spec(R) has height 1, then by the first
paragraph of the proof and by Proposition 2.4, A′ has good reduction at p.
Hence, A′ ∈ A. It follows that A′ ⊆ A, so by the preceding paragraph, A′ is
finite, as claimed. �

The following result generalizes [Zar85, Cor. 5.4.1]
{ENDo}

Lemma 3.6. Let A be an abelian variety over K. Then, for almost all l ∈ L and
every Gal(K)-submodule W of Al there exists an endomorphism u ∈ EndK(A)
such that u(Al) = W .

Proof. Let A(1), . . . , A(s) be all of the abelian varieties over K (up to isomor-
phism) that are isogenous to A (Lemma 2.5). For each j between 1 and s we
choose an isogeny hj : A→ A(j). We set r = max(|Ker(h1)|, . . . , |Ker(hs)|).

Let l > r be a prime number, let W be a Gal(K)-submodule of Al, and
consider the abelian variety B = A/W . By Lemma 1.4, there exists an isogeny
g: B → A such that

g(Bl) = W. (6) {Blwu}

By the first paragraph of the proof, there exists an isomorphism v: A(j) → B
for some j ∈ {1, . . . , s}. Then, f = v ◦ hj : A→ B is an isogeny and |Ker(f)| =
|Ker(hj)| ≤ r. By the choice of l, we have l > r, so l - |Ker(f)|. Hence, f maps
Al injectively into Bl. Since f is an isogeny, dim(B) = dim(A), Hence,

|Al|
(5)
= l2dim(A) = l2dim(B) (5)

= |Bl|.

Therefore, f maps Al bijectively onto Bl.
It follows that u = g ◦ f is a K-endomorphism of A that satisfies

u(Al) = g(f(Al)) = g(Bl)
(6)
= W,

as desired. �
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The following Lemma is part of [Hup67, p. 467, Hilfssatz 3.5].
{IDMp}

Lemma 3.7. Let D be a finite dimensional semi-simple algebra over a field F .
Then, for every right ideal r of D, there exists an idempotent e of D such that
r = eD.

{LAMl}
Remark 3.8 (The ring El(A)). For every abelian varietyA overK and every l ∈
L, we consider the ring homomorphism λl: EndK(A)→ EndFl

(Al) = EndZ(Al)
defined by λl(f) = f |Al

for each f ∈ EndK(A). Let El(A) = {f |Al
| f ∈

EndK(A)} be the image of EndK(A) in EndFl
(Al) under λl. For each f ∈

EndK(A), every σ ∈ Gal(K), and all a ∈ A(K̃), we have f(σ(a)) = σ(f(a)),
hence,

El(A) ⊆ EndFl[Gal(K)](Al). (7) {elen}

By definition, l · EndK(A) ⊆ Ker(λl). Conversely, if f ∈ Ker(λl), then f
vanishes on Al = Ker(lA). Hence, since lA is surjective, there exists a homo-
morphism g: A → A such that g ◦ lA = f . Therefore, f = lA ◦ g ∈ l · End(A).
Moreover, for each σ ∈ Gal(K), we have σ(g) ◦ lA = σ(f) = f = g ◦ lA. Since
lA: A(K̃) → A(K̃) is surjective, we have σ(g) = g, so g ∈ EndK(A). We
conclude that Ker(λl) = l · EndK(A). It follows that

El(A) ∼= EndK(A)/l · EndK(A) ∼= EndK(A)⊗ Fl. (8) {kerl}

Thus, by Lemma 1.5, El(A) is a finite dimensional semi-simple Fl-algebra for
almost all l ∈ L.

We are now in a position to prove Part (b) of Proposition 2.2 in the remaining
case that we restate for the convenience of the reader.

{SEMi}
Lemma 3.9. Let A be a non-zero abelian variety over a finitely generated exten-
sion K of Q. Then, for almost all l ∈ L the Gal(K)-module Al is semi-simple.

Proof. Let l be a sufficiently large prime number and let W be a Gal(K)-
submodule of Al. We have to prove that there exists a Gal(K)-submodule
W ′ of Al such that Al = W ⊕W ′.

Lemma 2.6 yields an element u ∈ El(A) such that

u(Al) = W. (9) {Uual}

We consider the right ideal

a = {f ∈ El(A) | f(Al) ⊆W}

of El(A). In particular u ∈ a. Taking l larger, we may assume by Remark 2.8
that El(A) is a semi-simple Fl-algebra. Hence, by Lemma 2.7, there exists an
idempotent element v of El(A) such that a = vEl(A). In particular, there exists
v′ ∈ El(A) such that u = vv′. It follows from (9) that

v(Al) = W. (10) {Vval}
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Since v is an idempotent, so is w := idAl
− v. By (7), w ∈ EndFl[Gal(K)](Al),

so w ◦ σ = σ ◦ w for all σ ∈ Gal(K). Hence,

W ′ := w(Al) (11) {Wwal}

is a Gal(K)-module that satisfies Al = W +W ′.
Now note that vw = v − v2 = v − v = 0 and similarly wv = 0. Hence, by

(10) and (11), a simple classical argument shows that Al = W ⊕W ′ [Coh89,
p. 172, Prop. 2.3], as desired. �

Our final goal in this section is the proof of Proposition 2.2(c) for function
fields over Q.

{DUBc}
Remark 3.10 (The bi-commutant). Let R be an associative ring with 1 and let
M be an R-module. We consider M also as a Z-module, let λM : R→ EndZ(M)
be the homomorphism defined by λM (r)(m) = rm for all r ∈ R and m ∈ M ,
and set RM = λM (R) to be the ring of homotheties of M .

We also consider the centralizer (also known as the commutant) of RM in
EndZ(M):

CM = {γ ∈ EndZ(M) | rγ(m) = γ(rm) for all r ∈ R and m ∈M}.

The centralizer

BM = {β ∈ EndZ(M) | βγ = γβ for all γ ∈ CM}

of CM in EndZ(M) is the double centralizer (also known as the bi-commutant)
of RM . Following the definitions, one finds that RM ⊆ BM .

Claim: When M is a semi-simple R-module which is finitely generated as an
EndR(M)-module (in particular if M is finite), the double centralizer theo-
rem asserts that RM = BM .

EndR(M) EndZ(M)

BM

ppppppppppp
CM

RM R
λMoo

Indeed, Theorem 2 on page 78 of [Bou12] says “Un module génerateur est
équilibré ”. By Définition 1 on page 73 of [Bou12], being équilibré for an R-
module M means that RM = BM . Définition 2 on page 75 of [Bou12] defines
the notion of “being génerateur” for M . We do not repeat that definition here.
Instead we note that Exemple 3 on page 77 of [Bou12] says that M is genérateur
if M satisfies the assumptions of our claim. Thus, by the above quoted Theorem
2, RM = BM , as claimed.
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{ENDl}
Lemma 3.11 (Part (c) of Proposition 2.2 for function fields over Q). Let A
be an abelian variety over a finitely generated extension K of Q. Then, the
restriction map EndK(A)→ EndFl[Gal(K)](Al) is surjective for almost all l ∈ L.
In other words, EndFl[Gal(K)](Al) = El(A) for almost all l ∈ L.

Proof. In the notation of Remark 2.8 and Remark 2.10 we consider the asso-
ciative ring R = El(A) and the R-module M = Al. Fixing a sufficiently large
l ∈ L, we have, by Remark 2.8, that El(A) is a finitely generated semi-simple
Fl-algebra. Hence, by [Lan93, p. 651, Prop. 4.1], M is a semi-simple El(A)-
module. We let λM be the identity map of El(A) into EndZ(M) = EndZ(Al).
Thus, in the notation of Remark 2.10, RM = El(A). Finally let

Cl(A) = CM = {g ∈ EndZ(Al) | g ◦ f = f ◦ g for all f ∈ El(A)}

and

Bl(A) = BM = {h ∈ EndZ(Al) | h ◦ g = g ◦ h for all g ∈ Cl(A)}.

By Remark 2.10, RM = BM . This means that

El(A) = {h ∈ EndZ(Al) | h ◦ g = g ◦ h for all g ∈ Cl(A)}. (12) {dblc}

Hence, in view of (7), it suffices to prove the following statement:

Claim: for every sufficiently large l ∈ L, for each h ∈ EndFl[Gal(K)](Al), and all
g ∈ Cl(A), we have that h ◦ g = g ◦ h.

To this end we consider the abelian variety A2 = A×A over K and observe
that the graph Γ = {(a, h(a)) | a ∈ Al} of h is an Fl[Gal(K)]-submodule of A2

l

and that h ◦ g = g ◦ h if and only if (g, g)(Γ) ⊆ Γ.
Now, we consider a sufficiently large l, for which Lemma 2.6 applied to A2

rather than to A, yields an element u ∈ El(A2) such that u(A2
l ) = Γ. By the

definition of Cl(A), g centralizes El(A). Since EndK(A2) naturally agrees with
M2(EndK(A)), the map (g, g) centralizes El(A

2). Thus, we have (g, g) ◦ u|A2
l

=

u|A2
l
◦ (g, g). Therefore, (g, g)(Γ) = (g, g)(u(A2

l )) = u((g, g)(A2
l )) ⊆ u(A2

l ) = Γ,
as claimed. �

4 Kummer Theory for Abelian Varieties
{sec:heins}

Let K be a finitely generated field and let A/K be a non-zero abelian variety.
For each l ∈ L′ we set Kl = K(Al) and consider the following commutative
diagram. Both of its rows are exact cohomology sequences associated with the

short exact sequence 0 → Al → A(Ksep)
l−→ A(Ksep) → 0 of Gal(K) discrete

modules:

0 // Al(Kl) // A(Kl)
l // A(Kl)

δ′l // H1(Gal(Kl), Al)

0 // Al(K) //

OO

A(K)
l //

OO

A(K)
δl //

OO

H1(Gal(K), Al),

resl

OO
(13) {eq:longexact}
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where δl and δ′l are the appropriate connecting homomorphisms [NSW15,
p. 15]. Note that H1(Gal(Kl), Al) = Hom(Gal(Kl), Al), because the action of
Gal(Kl) on Al is trivial. For each p ∈ A(Kl) we set

ξl,p = δ′l(p). (14) {xi}

By [NSW15, p. 15, The group H1(G,A)], the map ξl,p ∈ Hom(Gal(Kl), Al) has
an explicit description: We choose pl ∈ A(Ksep) with lpl = p, then

ξl,p(σ) = σ(pl)− pl (15) {eq:xiexplizit}

for all σ ∈ Gal(Kl). In particular, the right hand side of (15) does not depend
on the choice of pl.

The function ξl,p: Gal(Kl)→ A(Ksep) satisfies a few useful rules:
{xi-rechenregeln}

Lemma 4.1. Let p be a point in A(K). Then:

(a) ξl,f(p)(σ) = f(ξl,p(σ)) for all f ∈ EndK(A) and all σ ∈ Gal(Kl).

(b) For all l� 0 in L′, we have ξl,p = 0⇔ p ∈ lA(K).

(c) ξl,p(τστ−1) = τ(ξl,p(σ)) for all σ ∈ Gal(Kl) and all τ ∈ Gal(K).

Proof. (a) We choose pl ∈ A(Ksep) with lpl = p (Remark 1.1). Then, lf(pl) =
f(lpl) = f(p), hence

f(ξl,p(σ))
(15)
= f(σ(pl)− pl) = σ(f(pl))− f(pl)

(15)
= ξl,f(p)(σ),

as stated in (a).

(b) We note that Gal(K)/Gal(Kl) = Gal(K(Al)/K) and A
Gal(Kl)
l = Al.

Thus, for all l ∈ L′ we have the exact inflation-restriction sequence

0→ H1(Gal(K(Al)/K), Al)
inf−→ H1(Gal(K), Al)

resl−→ H1(Gal(Kl), Al)
Gal(K)

[NSW15, p. 67, Prop. 1.6.7]. By Proposition 2.2(d), H1(Gal(K(Al)/K), Al) = 0
for almost all l ∈ L′. Hence,

Ker(resl) = 0 for almost all l ∈ L′. (16) {eq:kerres}

By Diagram (13) and by (14), resl(δl(p)) = δ′l(p) = ξl,p. Thus, for almost all
l ∈ L′, we have that

ξl,p = 0⇔ resl(δl(p)) = 0
(16)⇔ δl(p) = 0

(13)⇔ p ∈ lA(K),

as desired.
(c) We set xl = τ−1(pl)−pl and note that lxl = τ−1(p)−p = 0, so xl ∈ Al,

hence σxl = xl. Therefore,

ξl,p(τστ−1)
(15)
= τστ−1(pl)− pl = τ(σ(τ−1(pl))− τ−1(pl))

= τ(σ(pl + xl)− (pl + xl)) = τ(σ(pl)− pl)
(15)
= τ(ξl,p(σ)),

as claimed. �
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Lemma 3.3 below is proven by Ribet in the case where char(K) = 0 [Rib79,
Thm. 1.2]. However, the proof remains intact in the general case. We represent
it here for the convenience of the reader. The proof uses Lemma 3.1 and the
following one.

{ribet-lemm}
Lemma 4.2. Let p be a point of A(K). Suppose that the homomorphism
Φp: EndK(A) → A(K) defined by Φp(f) = f(p) is injective. Then, for al-
most all l ∈ L′, the homomorphism Φp,l: EndK(A)/lEndK(A)→ A(K)/lA(K)
defined by

Φp,l(f + lEndK(A)) = f(p) + lA(K)

is also injective.

Proof. Let Q = A(K)/Φp(EndK(A)) and consider the commutative diagram
with exact rows,

0 // EndK(A)
Φp //

l

��

A(K) //

l

��

Q //

l

��

0

0 // EndK(A)
Φp // A(K) // Q // 0,

where A(K) → Q is the quotient map. The snake lemma yields an exact
sequence

Ql → EndK(A)/lEndK(A)
Φp,l−→ A(K)/lA(K)→ Q/lQ→ 0, (17) {eq:tensoredseq}

where Ql = {x ∈ Q | lx = 0} [NSW15, p. 25, Lemma 1.3.1]. By the Mordell-
Weil theorem (Proposition 2.2(a)), Q is a finitely generated abelian group. Let
n0 = |Qtor| be the order of the torsion part of Q. Then, Ql = 0 for all l > n0 in
L′. Hence, by (17), Φp,l is injective for all l > n0 in L′, as claimed. �

{ribet}
Lemma 4.3. Let p be a point in A(K) with the following property:

The map EndK(A)→ A(K) defined by f 7→ f(p) is injective . (18) {indep}

Then, for almost all l ∈ L′, the homomorphism ξl,p: Gal(Kl)→ Al is surjective.

Proof. For each l ∈ L′ we set Il = Im(ξl,p). Each element of Il has the form
ξl,p(σ) for some σ ∈ Gal(Kl). Hence, for each τ ∈ Gal(K) we have by 3.1(c)
that τ(ξl,p(σ)) = ξl,p(τστ−1) ∈ Il. Since Gal(Kl) acts trivially on Al, this
implies that Il is an Fl[Gal(Kl/K)]-submodule of Al.

By Proposition 2.2(b), for almost all l ∈ L′ there exists an Fl[Gal(Kl/K)]-
submodule Jl of Al such that Al = Il ⊕ Jl. Thus, it suffices to prove that
Jl = 0 for almost all l ∈ L′. Let πl: Al → Jl be the projection on Jl. Then,
πl ∈ EndFl[Gal(K)](Al).
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By Proposition 2.2(c) there exists for almost all l ∈ L′ an endomorphism
fl ∈ EndK(A) whose restriction to Al coincides with πl. Now, for almost all
l ∈ L′ and for each σ ∈ Gal(Kl), we have

ξl,fl(p)(σ)
(∗)
= fl(ξl,p(σ)) = πl(ξl,p(σ))

(∗∗)
= 0,

where (*) follows from Lemma 3.1(a) and (**) holds because ξl,p(σ) ∈ Il. From
Lemma 3.1(b), we conclude that fl(p) ∈ lA(K) for almost all l ∈ L′. Then,
Lemma 3.2 implies that fl ∈ l ·EndK(A) for almost all l ∈ L′. Thus, there exists
g ∈ EndK(A) with lg = fl. It follows that Jl = πl(Al) = fl(Al) = lg(Al) =
g(lAl) = g(0) = 0 for almost all l ∈ L′, as desired. �

Lemma 3.3 enters our proofs via the following corollary.
{ribetcor}

Corollary 4.4. Let A be a simple abelian variety over K of dimension g and
let p ∈ A(K) be a point of infinite order. Then, for almost all l ∈ L′ and for
every q ∈ A(Ksep) with lq = p, we have Gal(Kl(q)/Kl) ∼= Al and

[K(q) : K] = l2g. (19) {eq:basicestimates}

Proof. We prove that p satisfies Condition (18). Indeed, if f ∈ EndK(A) and
f(p) = o, then Ker(f) is an infinite Zariski-closed subgroup of A. The connected
component Ker(f)0 of that subgroup has a finite index in Ker(f) [Bor91, p. 46,
Prop.(b)]. Hence Ker(f)0 is a non-zero abelian subvariety of A. Since A is
simple, Ker(f)0 = A, so also Ker(f) = A, hence f = 0, so (18) holds.

It follows from Lemma 3.3 that ξl,p: Gal(Kl) → Al is surjective for almost
all l ∈ L′. By (15), Ker(ξl,p) = Gal(Kl(q)) for each q ∈ A(Ksep) with lq = p.
This implies that Gal(Kl(q)/Kl) ∼= Al for almost all l ∈ L′. Since l 6= char(K),
we have by (5) that |Al| = l2g. Hence, [K(q) : K] ≥ [Kl(q) : Kl] = |Al| = l2g.

On the other hand, q lies in the fiber of multiplication by l and the degree
of this morphism is l2g [Mum74, p. 64, Prop. (1)]. Hence, [K(q) : K] ≤ l2g. It
follows from the preceding paragraph that [K(q) : K] = l2g. �

5 Divisibility Properties

Let A, K, EndK(A), Kl, Gal(Kl) be as in Section 3 and set g = dim(A).
{JCBs}

Lemma 5.1. Let A be an abelian variety over a field L and let M be an exten-
sion of L. Suppose that
(a) A(L) ∩

⋂
n∈N nA(M) ⊆ Ator(L) and

(b) Al∞(M) is finite for every l ∈ L.

Then, A(L) ∩
⋂
n∈N nA(M) = 0.

Proof. Assume toward contradiction that there exists a non-zero point p ∈
A(L)∩

⋂
n∈N nA(M). By (a), m := ord(p) has a prime divisor l. Set m′ = m/l

and p′ = m′p. Then, p′ ∈ A(L) ∩
⋂
n∈N nA(M) and ord(p′) = l. In particular,



5 DIVISIBILITY PROPERTIES 16

for every j ∈ N there exists pj ∈ A(M) with ljpj = p′, so pj is a point of order
lj+1 in A(M). This implies that Al∞(M) is infinite and contradicts (b). �

For each e ≥ 1, we equip the compact group Gal(K)e with its unique nor-
malized Haar measure µK . As usual, we say that almost all σ ∈ Gal(K)e

have a certain property if the measure of the set of all σ ∈ Gal(K)e having
that property is 1. Also, we say that a subset S of Gal(K)e is a zero set if
µK(S) = 0.

{lemm:sec}
Lemma 5.2. Let e ≥ 2. Then, A(K) ∩

⋂
l∈L′ lA(K̃(σ)) ⊆ Ator(K) for almost

all σ ∈ Gal(K)e.

Proof. By definition, the field K̃(σ) ∩ Ksep is a separable as well as purely

inseparable extension of Ksep(σ). Hence, K̃(σ) ∩ Ksep = Ksep(σ) for each
σ ∈ Gal(K)e. By Remark 1.1,

A(K) ∩
⋂
l∈L′

lA(Ksep(σ)) = A(K) ∩
⋂
l∈L′

lA(K̃(σ)).

Therefore, it suffices to prove that

A(K) ∩
⋂
l∈L′

lA(Ksep(σ)) ⊆ Ator(K) for almost all σ ∈ Gal(K)e. (20) {LSEp}

The proof of (20) splits into two cases.

Case A: A is a simple abelian variety. Let p ∈ A(K) be a non-torsion point.
We consider l ∈ L′ and let Xl(p) = {q ∈ A(Ksep) | lq = p}. By (5) and Remark
1.1,

|Xl(p)| = l2g. (21) {eq:betragxell}

Next consider σ = (σ1, . . . , σe) ∈ Gal(K)e. Then,

p ∈
⋂
l∈L′

lA(Ksep(σ)) ⇔ (∀l ∈ L′)(∃q ∈ Xl(p)) :

e∧
i=1

σi(q) = q

⇔ (∀l ∈ L′)(∃q ∈ Xl(p)): σ ∈ Gal(K(q))e

⇔ σ ∈
⋂
l∈L′

⋃
q∈Xl(p)

Gal(K(q))e.

︸ ︷︷ ︸
=:Sl(p)

(22) {eq:equivalencessigma}

By (21) and by Corollary 3.4,

µ(Sl(p)) ≤
∑

q∈Xl(p)

µ(Gal(K(q))e) =
∑

q∈Xl(p)

[K(q) : K]−e =
l2g

l2ge
.

It follows that liml→∞ µ(Sl(p)) = 0, because e ≥ 2. Thus, N(p) :=
⋂
l∈L′ Sl(p)

is a zero set. By (22), for all σ ∈ Gal(K)erN(p), we have p /∈
⋂
l∈L′ lA(Ksep(σ)).
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Since K is countable,

N :=
⋃

p∈A(K)rAtor(K)

N(p) (23)

is also a zero set. Moreover, for all σ ∈ Gal(K)e r N , we have that A(K) ∩⋂
l∈L′ lA(Ksep(σ)) does not contain any non-torsion point, so it consists of tor-

sion points, as desired.

Case B: The general case. By the Poincaré reducibility theorem, there exist
simple abelian varieties A1, . . . , Ar and an isogeny

f : A→ A1 × · · · ×Ar

[Mil86, p. 122, Prop. 12.1]. By Case A, for each i ∈ {1, · · · , r} there exists a
zero set Zi of Gal(K)e such that

Ai(K) ∩
⋂
l∈L′

lAi(Ksep(σ)) ⊆ Ai(K)tor for all σ ∈ Gal(K)e r Zi. (24) {tors}

We consider the zero set Z =
⋃r
i=1 Zi. Let σ ∈ Gal(K)e r Z and p ∈

A(K) ∩
⋂
l∈L′ lA(Ksep(σ)). We prove that p is torsion.

To this end let qi be the projection of f(p) on Ai(K). Then, qi ∈ Ai(K) ∩⋂
l∈L′ lAi(Ksep(σ)), so by (24), qi ∈ Ai(K)tor. Hence, there exists a positive

integer m such that mf(p) = 0. But then, mp ∈ Ker(f)(K). Since f is an
isogeny, Ker(f)(K) is a finite group. Hence, |Ker(f)(K)| · mp = 0, so p is
torsion, as desired. �

{lemm:sec2}
Lemma 5.3. Let e ≥ 2. Then, A(K) ∩

⋂
n∈N nA(K̃(σ)) = 0 for almost all

σ ∈ Gal(K)e.

Proof. Consider the sets

S1 = {σ ∈ Gal(K)e | A(K) ∩
⋂
n∈N

nA(K̃(σ)) ⊆ Ator(K)}, and

S2 = {σ ∈ Gal(K)e | for all l ∈ L, the set Al∞(K̃(σ)) is finite }.

By Lemma 4.2, µ(S1) = 1. By [JaJ01, Main Theorem], µ(S2) = 1. Hence,
µ(S1 ∩ S2) = 1.

If σ ∈ S1 ∩ S2, then Conditions (a) and (b) of Lemma 4.1 hold for K and
K̃(σ) rather than for L and M , respectively. Hence, by that lemma, A(K) ∩⋂
n∈N nA(K̃(σ)) = 0, as desired. �

{mtdiv1}
Proposition 5.4. For e ≥ 2, for almost all σ ∈ Gal(K)e, and for all abelian
varieties B over K̃(σ) we have div(B(K̃(σ))) = 0.
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Proof. Let L be the set of all finite extensions of K in K̃. For each L ∈ L,
let L0 be the maximal separable extension of K in L. Then, Ksep ∩ L is a
separable extension as well as a purely inseparable extension of L0. Hence,
Ksep ∩ L = L0. Since Ksep/L0 is a Galois extension, Ksep and L are linearly
disjoint over L0. Also, Lsep is a separable as well as a purely inseparable ex-
tension of KsepL. Therefore, KsepL = Lsep. It follows that restriction to Ksep

yields an isomorphism Gal(L) ∼= Gal(L0). The uniqueness of the normalized
Haar measure implies that this isomorphism respects the Haar measure.

The rest of the proof breaks up into two parts.

Part A: Proving that K̃(σ) = L̃(σ). Consider σ := (σ1, . . . , σe) ∈ Gal(L)e

and denote its restriction to Ksep also by σ. If char(K) = 0, then Ksep = K̃ =

L̃ = Lsep, so K̃(σ) = L̃(σ). Otherwise, we assume for the rest of Part A that
char(K) > 0.

Then, Lsep(σ) is a purely inseparable extension of Ksep(σ), so Ksep(σ) ⊆
Lsep(σ) ⊆ K̃(σ). This implies that K̃(σ) = L̃(σ).

Part B: Conclusion of the proof. Let A be the set of all abelian varieties over
K̃. For each L ∈ L, let AL be the set of all A ∈ A defined over L. We set

S = {σ ∈ Gal(K)e | div(A(K̃(σ))) = 0 for all A ∈ A defined over K̃(σ)}.

Using Part A, for each A ∈ AL, we let

SL,A = {σ ∈ Gal(L)e | A(L) ∩ div(A(L̃(σ))) = 0}
= {σ ∈ Gal(L)e | A(L) ∩ div(A(K̃(σ))) = 0}.

Since K is countable, so is the set B = {(L,A) ∈ L×A | A ∈ AL}. Since every
A ∈ A is already defined over some L ∈ L, we have S =

⋂
(L,A)∈B SL,A. Since

Gal(K)e =
⋃
L∈LGal(L0)e =

⋃
L∈LGal(L)e, we have

Gal(K)erS ⊆
⋃

(L,A)∈B

(Gal(L)erSL,A). (25) {twtf}

For each (L,A) ∈ B we have, by Lemma 4.3 applied to L rather than to K, that
µK(Gal(L)erSL,A) = µL(Gal(L)erSL,A)/[L : K]e = 0. Since B is countable,
it follows from (25) that Gal(K)erS is a zero set, so the Haar measure of S is
1, as claimed. �

{CASe1}
Remark 5.5. Starting from the observation that

⋂∞
n=1 nZ = 0 and

⋂∞
n=1 nA =

0 if A is a finite abelian group, we find that div(A) = 0 for every finitely
generated abelian group. By the Mordell-Weil-Lang-Néron theorem [Lan59,
p. 71, Thm. 1], for every finitely generated field K and every abelian variety
over K, the group A(K) is a finitely generated abelian group. It follows that
div(A(K)) = 0.

On the other hand, multiplication of A(K̃) by every positive integer n is
surjective (Remark 1.1). Hence, div(A(K̃)) = A(K̃) 6= 0 if dim(A) ≥ 1.
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Proposition 4.4 states that if e ≥ 2, then for almost all σ ∈ Gal(K)e and
for all abelian varieties A over K̃(σ), we have div(A(K̃(σ))) = 0. Thus, in this
respect, almost all of the fields K̃(σ) behave like finitely generated fields. The
proof of that proposition is based among others on the observation used in the
proof of Lemma 4.2 that liml→∞

1
l2g(e−1) = 0.

This is of course wrong if e = 1, so the proof breaks down in that case. Thus,
it may be the case that div(A(K̃(σ))) 6= 0 if e = 1. But, we do not know that.

6 Weil’s Restriction
{WLRs}

Let K ′/K be a finite extension of fields and let T be a K-scheme. The Weil
restriction attaches to each quasi-projective K ′-scheme X ′ a K-scheme X =
ResK′/K(X ′) and a natural bijection

ηT : MorK(T,X)→ MorK′(TK′ , X
′). (26) {weil}

See [BLR90, p. 194, Thm. 4] or [Poo17, p. 110, Def. 4.61 and p. 111, Prop. 4.6.3].
When T = Spec(K), (26) becomes a natural bijection

ηK : X(K)→ X ′(K ′).

If X ′ is a quasi-projective group scheme over K ′, then X = ResK′/K(X ′) ac-
quires a structure of a group scheme over K such that X(K) ∼= X ′(K ′) as groups
[BLR90, p. 192, lines 11,12].

{RESa}
Lemma 6.1. If E/K is a finite separable extension of fields and A is an abelian
variety over E, then B = ResE/K(A) is an abelian variety over K. Moreover,
B(K) ∼= A(E).

Proof. As an abelian variety, A is projective (paragraph preceding Remark 1.1).
Hence, by the paragraph preceding our Lemma, B is a group scheme over K.
Since E/K is a separable extension, it is étale. Hence, by [BLR90, p. 195,
Sec. 7.6, Prop. 5], B/K is proper.

It remains to check that B is geometrically integral, i.e. that BK̃ is integral.

It is known that BK̃ =
∏
σ A

σ
K̃

where σ ranges over the K-embeddings E → K̃.
See [Poo17, p. 113, Exercise 4.7] or [FrJ08, p. 183, Prop. 10.6.2]. Now the Aσ

are geometrically integral, because A is geometrically integral. Hence, BK̃ is
integral, as desired.

Finally, the isomorphism B(K) ∼= A(E) of abelian groups follows from the
paragraph preceding our lemma. �

Recall that a field M is PAC (resp. ample) if the set of M -rational points of
every geometrically integral variety V over M (resp. with a simple M -rational
point) is Zariski-dense in V [FrJ08, p. 192, Prop. 11.1.1] (resp. [Jar11, p. 68,
Def. 5.3.2]). In particular, every PAC field is ample.
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{mtdiv}
Theorem 6.2. Let K be an infinite finitely generated field and let e ≥ 2. Then,
for almost all σ ∈ Gal(K)e, all finite extensions M/K̃(σ), and all abelian
varieties A/M we have

(a) M is PAC,

(b) div(A(M)) = 0,

(c) |Al∞(M)| <∞ for all l ∈ L, and

(d) if char(K) = 0, also |Ator(M)| <∞.

Proof. By [FrJ08, p. 242, Thm. 13.4.2], K is a Hilbertian field. By [FrJ08,
p. 380, Thm. 18.6.1], Proposition 4.4, and [JaJ01, Thm. 2.7 and Thm. 3.7], for
almost all σ ∈ Gal(K)e and all abelian varieties B/K̃(σ) we have: {mpac}
(27a) Ksep(σ) is PAC, {mtda}
(27b) div(B(K̃(σ))) = 0, {mtdb}
(27c) |Bl∞(K̃(σ))| <∞ for all l ∈ L, and {mtdc}
(27d) if char(K) = 0, also |Btor(K̃(σ))| <∞.

Let σ be an element of Gal(K)e that satisfies (27a), (27b), (27c), and (27d), let
M/K̃(σ) be a finite extension, and let A/M be an abelian variety.

As an algebraic extension of Ksep(σ), the field M is PAC by (27a) and
[FrJ08, p. 196, Cor. 11.2.5]. By Lemma 5.1, B := ResM/K̃(σ)(A) is an abelian

variety over K̃(σ) with B(K̃(σ)) ∼= A(M). Hence, by (27b), (27c), and (27d),
we respectively get (b), (c), and (d). �

7 The Profinite Kummer Map
{sec:Application}

In addition to Theorem 5.2 we need results of Stix and Koenigsmann about
ample fields and PAC fields.

{SPCs}
Remark 7.1 (The space of sections). We consider a short exact sequence of
profinite groups:

1 // Π̃ // Π
ρ // G // 1.

A section of ρ is a homomorphism s: G → Π that satisfies ρ ◦ s = idG. In
particular, s is injective.

Another section s′: G → Π is said to be Π̃-conjugate to s if there exists
π̃ ∈ Π̃ such that for all g ∈ G we have s′(g) = π̃−1s(g)π̃. We denote the
conjugacy Π̃-class of s by [s] and let SΠ→G be the set of all Π̃-conjugacy classes
of sections of ρ.

For every open subgroup H of Π we set

UH = {S ∈ SΠ→G | there exists s ∈ S such that s(G) ⊆ H}.

If H ′ is an open subgroup of Π and H ′ ≤ H, then UH′ ⊆ UH . Hence, the
collection of all sets UH forms a basis to a topology on SΠ→G that we call the
pro-discrete topology.
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{PRKm}
Remark 7.2 (The fundamental group). By a variety over a field M we mean
a separated scheme X of finite type over M .

We consider a geometrically integral normal variety X over M with a ge-
ometric generic point x̄ and let F = M(X) = M(x̄) be the function field of
X. Let F be the set of all finite Galois extensions F ′ of F in Fsep such that
the normalization X ′ of X in F ′ is étale. Thus, Fet =

⋃
F ′∈F F

′ is a Galois
extension of F and π1(X, x̄) ∼= Gal(Fet/F ) is the fundamental group of X
with base point x̄. For each finite Galois extension M ′ of M , the variety
XM ′ := X ×M Spec(M ′) is the normalization of X in FM ′ and it is étale.
Hence, Msep ⊆ Fet and we obtain the following short exact sequence

1 // π1(XMsep
, x̄sep) // π1(X, x̄)

ρX // Gal(M) // 1 ,

where x̄sep is a geometric generic point of XMsep that lies over x̄ and ρX is the
restriction map Gal(Fet/F )→ Gal(M).

Let SX/M = Sπ1(X,x̄)→Gal(M) be the space of sections of ρX up to
π1(XMsep

, x̄sep)-conjugacy equipped with the pro-discrete topology.

{PFKm}
Remark 7.3 (Profinite Kummer map). Let x be a point in X(M), let Xet be
the normalization of X in Fet, let xet be a point of Xet lying over x, and let
Dxet/x be the decomposition group of xet over F . Since x is M -rational and is
unramified in Fet (because the extensions X ′/X used in Remark 6.2 to define
π1(X, x̄) are étale), there is an isomorphism of Dxet/x onto Gal(M). The inverse
of that isomorphism is a section s of ρX . As xet varies on all points of Xet that
lie over x, s ranges over a π1(XMsep

, x̄sep)-class [s] of sections of ρX that we
denote by κX/M (x). Following [Sti13, p. xiv, Def. 1], we call the map

κX/M : X(M)→ SX/M

the profinite Kummer map.

We provide a proof to a result communicated to us by one of the anonymous
referees.

{SUBv}
Lemma 7.4. Let X and A be geometrically integral normal varieties over a
field M such that X is Zariski-closed in A. Suppose that the profinite Kummer
map κA/M : A(M)→ SA/M is injective. Then, so is κX/M : X(M)→ SX/M .

Proof. We choose geometric generic points ā and x̄ for A and X, respectively.
Then, the specialization ā → x̄ extends to a place ψet of M(ā)et with residue
field N that contains M(x̄) and is contained in M(x̄)et. Since ψet is unramified
over M(ā), there is an isomorphism of the decomposition group of ψet over M(ā)
onto Gal(N/M(x̄)). The restriction map Gal(M(x̄)et/M(x̄)) → Gal(N/M(x̄))
followed by the inverse of that isomorphism is a homomorphism ψ: π1(X, x̄)→
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π1(A, ā) such that the following diagram is commutative:

π1(A, ā)
ρA // Gal(M)

π1(X, x̄)

ψ

OO

ρX //

OO

Gal(M).

If s: Gal(M) → π1(X, x̄) is a section of ρX , then ψ ◦ s is a section of ρA and
ψ(κA/M (x)) = κA/M (x) for each x ∈ X(M). Hence, with ψ∗: SX/M → SA/M
being the map that maps the π1(XMsep

, x̄sep)-conjugacy class of s onto the
π1(AMsep

, āsep)-conjugacy class of ψ ◦ s, the diagram

A(M)
κA/M // SA/M

X(M)
κX/M //

OO

SX/M

ψ∗

OO

is commutative.
Consider x,x′ with κX/M (x) = κX/M (x′). Then,

κA/M (x) = ψ∗(κX/M (x)) = ψ∗(κX/M (x′)) = κA/M (x′).

Since κA/M is injective, we have x = x′. Hence, κX/M is injective, as claimed.
�

{SEPr}
Remark 7.5 (Linearly disjoint extensions). Observe that Fet/FMsep is Galois,
because Fet/F is Galois. Since F/M is regular, FMsep/Msep is separable. It

follows that Fet/Msep is a separable extension. Since M̃/Msep is a purely insep-

arable extension, we conclude that Fet is linearly disjoint from M̃ over Msep.

The following result is due to Stix [Sti13, p. 214, Prop. 239]. We provide a
proof for the convenience of the reader.

{DNSe}
Proposition 7.6. Let M be a PAC field and let X be a geometrically integral
normal variety over M . Then, the image of the profinite Kummer map κX/M
in SX/M is dense with respect to the pro-discrete topology.

Proof. Let H be an open subgroup of π1(X, x̄) such that UH (Remark 6.1) is
non-empty. We have to prove that there exists a point x ∈ X(M) such that
κX/M (x) ∈ UH .

Indeed, there exists a section s: Gal(M) → π1(X, x̄) of the restriction map
ρX : π1(X, x̄) → Gal(M) such that s(Gal(M)) ≤ H. In particular, ρX(H) =
Gal(M). Since s(Gal(M))π1(XMsep

, x̄sep) = π1(X, x̄), this implies that H ·
π1(XMsep

, x̄sep) = π1(X, x̄).
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Let F ′ be the fixed field of H in Fet. Then, F ′ is a finite extension of F
in Fet. By the preceding paragraph, F ′Msep = Fet and ρX(Gal(Fet/F

′)) =
ρX(H) = Gal(M). Hence, F ′ is linearly disjoint from Msep over M . By Remark

6.5, Fet is linearly disjoint from M̃ over Msep. Hence, F ′ is linearly disjoint from

M̃ over M . In other words, F ′/M is a regular extension.
It follows that the normalization X ′ of X in F ′ is geometrically integral

[FrJ08, p. 175, Cor. 10.2.2(a)]. Since M is PAC, this implies that X ′(M) 6= ∅.
We choose a point x′ ∈ X ′(M) and let x be the point of X(M) below

x. Then, M is the residue field of both x and x′. Hence, the decomposition
group of each point of XMsep

lying over x in Gal(Fet/F ) is the same as the
decomposition group of each point of X ′Msep

lying over x′ and the latter is

contained in Gal(Fet/F
′) which is H. It follows that κX/M (x) ∈ UH , as desired.

�

We also cite a result of Stix [Sti13, p. 214, Prop. 241 and p. 215, Cor.
242] that generalizes a result of Koenigsmann. See [Sti13, p. 215, Cor. 242] or
[Koe05, Prop. 3.1].

{KOEn}
Proposition 7.7. Let M be a countable ample field. Let X/M be a smooth
geometrically integral variety. If X(M) 6= ∅, dim(X) > 0, and κX/M is injec-
tive, then the closure of Im(κX/M ) in SX/M under the pro-discrete topology is
uncountable, hence so is SX/M . In particular, κX/M is not surjective.

8 Injectiveness of the Kummer Map
{IKM}

This section contains our main result. It depends on the following lemma from
[Sti20].

{IKMa}
Lemma 8.1. For an abelian variety A over a perfect field M the sequence

0 −→
⋂
n∈N

nA(M) −→ A(M)
κA/M−→ SA/M

is exact. Thus, κA/M is injective if and only if div(A(M)) =
⋂
n∈N nA(M) = 0.

Proof. By [Mil86, p. 115, Thm. 8.2], for each positive integer n, the short
sequence

0 −→ An(M̃) −→ A(M̃)
nA−→ A(M̃) −→ 0 (28) {ikma}

is exact. Each term in this series is a discrete Gal(M)-module. Since M is
perfect, the fixed modules of An(M̃) and A(M̃) under Gal(M) are An(M) and
A(M), respectively. Hence, (28) yields a longer exact sequence,

0 −→ An(M) −→ A(M)
nA−→ A(M)

δn−→ H1(Gal(M), An(M̃)), (29) {ikmb}

where δn is the first connecting homomorphism of the long exact cohomology
sequence [NSW15, p. 27, Thm. 1.3.2]. The sequence (29) yields a somewhat
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shorter exact sequence:

0 −→ nA(M) −→ A(M)
δn−→ H1(Gal(M), An(M̃)). (30) {ikmc}

If m|n, then multiplication by n
m gives a homomorphism

An(M̃)
(n/m)A−→ Am(M̃).

Taking the inverse limit on the exact sequences (30), we get a map

A(M)
δ−→ lim←−

n∈N
H1(Gal(M), An(M̃)). (31) {ikmd}

with

Ker(δ) =
⋂
n∈N

Ker(δn)
(30)
=
⋂
n∈N

nA(M).

Indeed, for each n ∈ N let νn be the projection of the right hand side of (31)
on its nth coordinate. If a ∈ Ker(δ), then δn(a) = νn(δ(a)) = νn(0) = 0.
Conversely, if δn(a) = 0 for each n ∈ N, then δ(a) = lim←− δn(a) = 0.

Since An(M̃) are finite discrete Gal(M) modules, [NSW15, p. 142, Cor. 2.7.6]
makes an identification,

lim←−
n∈N

H1(Gal(M), An(M̃)) = H1
cts(Gal(M), lim←−

n∈N
An(M̃)), (32) {ikmf}

where the right hand side of (32) is the first continuous cochain cohomology
group of Gal(M) with coefficients in lim←− n∈NAn(M̃) [NSW15, p. 137, Def. 2.7.1].

By [EGM19, p. 156, Cor. 10.37], there exists a canonical isomorphism

lim←−
n∈N

An(M̃) ∼= π1(AM̃ , ã), (33) {ikmg}

where ã is a geometrically generic point of AM̃ . Hence, (31), (32), and (33)
yield the following exact sequence:

0 −→
⋂
n∈N

nA(M) −→ A(M)
δ−→ H1

cts(Gal(M), π1(AM̃ , ã)). (34) {ikmh}

Finally, by [Sti13, p. 72, Cor. 71], there exists an isomorphism

ϕ: SA/M → H1
cts(Gal(M), π1(AM̃ , ã))

such that ϕ ◦ κA/M = δ. Hence, by the exactness of (34) the sequence

0 −→ div(A(M)) −→ A(M)
κA/M−→ SA/M

is exact, as claimed. �
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{IKMb}
Theorem 8.2. Let K be an infinite finitely generated field and let e ≥ 2
be an integer. Then, for almost all σ ∈ Gal(K)e, for all finite extensions
M of K̃(σ), for all abelian varieties A over M , and for every non-empty
smooth geometrically integral subvariety X of A over M , the Kummer map
κX/M : X(M)→ SX/M is injective with a pro-discrete dense image but it is not
surjective.

Proof. By Theorem 5.2(b), for almost all σ ∈ Gal(K)e, for every finite extension
M of K̃(σ) and all abelian varieties A over M , we have div(A(M)) = 0. Since
by definition, K̃(σ) is perfect, so is M . Hence, Lemma 7.1 implies that the
profinite Kummer map κA/M is injective,

It follows from Lemma 6.4 that κX/M is injective for every smooth geomet-
rically integral subvariety X of A. Moreover, by Theorem 5.2(a), M is PAC. In
particular, X(M) 6= ∅. Therefore, by Propositions 6.6 and 6.7, κX/M (X(M)) is
dense in SX/M in the pro-discrete topology but κX/M is not surjective. �

{IKMc}
Corollary 8.3. Let K be an infinite finitely generated field and let e ≥ 2.
Then, for almost all σ ∈ Gal(K)e, every finite extension M of K̃(σ), and all
smooth geometrically integral projective curves C/M of genus ≥ 1, the profinite
Kummer map κC/M is injective with a dense image but it is not surjective.

Proof. Again, by Theorem 5.2, for almost all σ ∈ Gal(K)e every finite extension
M of K̃(σ) is PAC. Now assume that C/M is a smooth geometrically integral
projective curve of genus ≥ 1. In particular C(M) 6= ∅. Hence, C embeds into
its Jacobian J [Lan59, p. 40, Prop. 4]. Now apply Theorem 7.2 for C rather
than for X. �

9 Injectiveness over Non-perfect Fields
{KSE}

The criterion for the injectivity of the profinite Kummer map for abelian va-
rieties given in Lemma 7.1 depends on the assumption that the base field is
perfect. Following [Sti20], we reduce the injectivity over non-perfect fields to
the injectivity over perfect fields.

{KSEa}
Lemma 9.1. Let X be a geometrically integral normal projective variety over a
field M with geometric generic point x. Let M ′ be a purely inseparable extension
of M and consider x also as a generic point of X ′ := XM ′ . Then, the canonical
homomorphism π1(X ′,x)→ π1(X,x) is an isomorphism.

Proof. By Remark 6.2,

Gal(M(x)et/M(x)) ∼= π1(X,x), Gal(M ′(x)et/M
′(x)) ∼= π1(X ′,x).

Since M(x)et/M(x) is Galois and M ′/M is purely inseparable, the restriction
map

ρ := Gal(M ′(x)et/M
′(x))→ Gal(M(x)et/M(x)) (35) {kseb}
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is an epimorphism.
It remains to prove that ρ is injective. For this it suffices to prove that

M(x)et · M ′(x) = M ′(x)et. Thus, we have to consider a finite extension N
of M ′(x) in M ′(x)et and to find an extension L of M(x) in M(x)et such that
L ·M ′(x) = N .

To this end we note that since M ′(x)sep is both separable and purely insep-
arable extension of M(x)sepM

′(x), we have M ′(x)sep = M(x)sepM
′(x). Since

N ⊆ M ′(x)sep we conclude that there exists a finite extension L of M(x) in
M(x)sep such that L ·M ′(x) = N . Let π: Y → X be the normalization of X
in L. Let Y ′ = Y ×X X ′ and let π′: Y ′ → X ′ be the corresponding projection.
Then, π′ is étale (because N ⊆ M ′(x)et). Since Spec(M ′) → Spec(M) is flat,
so is X ′ → X. Hence, by [EGA67, p. 72, Prop. 17.7.1], π is étale. Therefore,
L ⊆M(x)et, as needed. �

Lemma 8.1 allows now to prove the following reduction step of [Sti20].
{KSEb}

Lemma 9.2. Let M be a field and X a geometrically integral normal projec-
tive variety over a field M . Suppose that the profinite Kummer map κins :=
κXins/Mins

: Xins(Mins) → SXins/Mins
is injective. Then, the profinite Kummer

map κX/M : X(M)→ SX/M is also injective.

Proof. We consider the following commutative square:

Xins(Mins)
κins // SXins/Mins

ρ∗

��
X(M)

κX/M //

ι

OO

SX/M ,

where ι is the inclusion map (taking into account that Xins(Mins) = X(Mins))
and ρ∗(s) = ρ◦s◦ρ−1

0 where ρ0: Gal(Mins)→ Gal(M) is the isomorphism defined
by restriction from M̃ to Msep and with ρ being the isomorphism appearing in
(35). Since by Lemma 8.1, for M ′ = Mins, ρ is an isomorphism, so is ρ∗.
Since by assumption, κins is injective, this implies that κX/M is also injective,
as claimed. �

As an application we prove the variant of Theorem 7.2 where the fields
Ksep(σ) replace the fields K̃(σ).

{ESEc}
Theorem 9.3. Let K be an infinite finitely generated field and let e ≥ 2 be
an integer. Then, for almost all σ ∈ Gal(K)e, for every finite extension M of
Ksep(σ), for every abelian variety A over M , and for every non-empty smooth
geometrically integral subvariety X of A over M , the profinite Kummer map
κX/M : X(M)→ SX/M is injective with a pro-discrete dense image but it is not
surjective.

Proof. We prove the theorem only for X = A.
Let σ be one of the elements of the subset of measure 1 of Gal(K)e that

satisfy the conclusion of Theorem 7.2. Let M be a finite extension of Ksep(σ)
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and let A be an abelian variety over M . Then, the perfect field Mins is both sep-
arable and purely inseparable extension of K̃(σ)M . Hence, K̃(σ)M = Mins. In
particular, Mins is a finite extension of K̃(σ). By our choice, the map κAins/Mins

is injective. Therefore, by Lemma 8.2, so is the map κA/M .
In addition, we may assume by (27a) that Ksep(σ) is PAC and therefore so

is M . Hence, by Proposition 6.6, the image of κA/M is pro-discrete dense but
according to Proposition 6.7, it is not surjective, as claimed. �

10 Finite Base Fields
{FBF}

Finite fields are not Hilbertian. Still, a variant of Theorem 7.2 does hold. That
variant gives, in addition to the case e ≥ 2, also precise information about the
missing case e = 1.

{FBFa}
Theorem 10.1. Let K be a finite field and let e be a positive integer. Then,
the following statements hold for almost all σ ∈ Gal(K)e, every finite extension
M of K̃(σ), and every non-zero abelian variety A over M :
(a) If e = 1, then for every smooth geometrically integral subvariety X of A

over M the profinite Kummer map κX/M : X(M) → SX/M is injective but
not surjective. Moreover, κX/M has a pro-discrete dense image.

(b) If e ≥ 2, then the Kummer map κA/M : A(M)→ SA/M is bijective.

Proof of (a). In order to avoid repetitions, we only prove that for every
finite extension L of K, for every abelian variety A over L, and for almost all
σ ∈ Gal(L) the Kummer map κA/K̃(σ): A(K̃(σ))→ SA/K̃(σ) is injective but not
surjective and the image of κA/K̃(σ) is pro-discrete dense in SA/K̃(σ).

First we observe that A(L) is a finite abelian group, so every point of
A(L) has a finite order. In particular, for each σ ∈ Gal(L), we have A(L) ∩⋂
n∈N nA(K̃(σ)) ⊆ Ator(K̃(σ)). By [JaJ01, Main theorem], for almost all

σ ∈ Gal(L) and for every l ∈ L, the group Al∞(K̃(σ)) is finite. Hence, by
Lemma 4.1, A(L) ∩ div(A(K̃(σ))) = 0.

Arguing as in Part B of the proof of Proposition 4.4, we find that div(A(K̃(σ))) =
0, again for almost all σ ∈ Gal(L). Since K̃(σ) is perfect, Lemma 7.1 implies
that κA/K̃(σ): A(K̃(σ))→ SA/K̃(σ) is injective.

By [FrJ08, p. 380, Cor. 18.5.9], for almost all σ ∈ Gal(K), the field K̃(σ) is
an infinite extension of K. As such, K̃(σ) is PAC [FrJ08, p. 196, Cor. 11.2.4].
Hence, by Propositions 6.6 and 6.7, the map κA/K̃(σ) has a dense image with
respect to the pro-discrete topology, but it is not surjective.

Proof of (b). In this case e ≥ 2. Then, for almost all σ ∈ Gal(K)e, the field
K̃(σ) is finite [FrJ08, p. 380, Cor. 18.5.9]. Hence, so is every finite extension
M of K̃(σ). Hence, by [Sti13, p. 198, Thm. 222], κA/M is bijective, as claimed.
�
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