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Abstract

We compute the number of generators and the number of relations needed
to present the absolute Galois group of a given finite extension of Qp.

1 Introduction

Let p be a prime number and K a finite extension of Qp. Uwe Jannsen proved
in [Jan82] that the absolute Galois group Gal(K) of K is finitely generated (as
a profinite group). The third paragraph of the introduction of [JaR91] provides
another proof of Jannsen’s result.

Our goal in this note is to prove that Gal(K) is even “finitely presented”
and to compute the number of “generators” and “relations” needed for the
“presentation”. Here we say that an arbitrary profinite group G is finitely
presented if there exist a short exact sequence 1 → N → F̂e → G → 1
for some positive integer e and elements y1, . . . , yd ∈ F̂e such that N is the
smallest closed normal subgroup of the free profinite group F̂e on e generators
that contains y1, . . . , yd. The elements y1, . . . , yd are said to be relations of G.

Uwe Jannsen and Kay Wingberg give in [JaW82] an “explicit description” of
Gal(K) for p 6= 2. Indeed, with n = [K : Qp], the article [JaW82] gives genera-
tors σ, τ, x0, . . . , xn satisfying two “tame relations” and the following condition:

(1) The closed normal subgroup N of Gal(K) generated by x0, . . . , xn is a {jawn}
pro-p-group.

Volker Diekert [Die84] proves an analogous result for p = 2 under the condi-
tion that K(

√
−1)/K is an unramified extension. In particular, Diekert’s result

does not cover the case K = Q2.
Theorem 1.1 states that the minimal number of generators of Gal(K) is

[K : Qp] + 2 while Theorem 3.4 says that the minimal number of relations
needed to define Gal(K) is [K : Qp] + 1.
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A central tool in the proof of our results was initiated by Alexander Lubotzky
(Section 2). The authors were inspired to apply that initiative in the present
context by several recent works using the initiative to obtain a finite presentation
for some other profinite groups in arithmetic geometry and algebraic number
theory. Most notably, these are the papers [Shu18], [Liu20], and [ESV21].

For every prime number `, an explicit presentation for the maximal pro-`
quotient of Gal(K) is known from the works of Demushkin and Labute. The
latter group is either free or a Demushkin group defined by a single explicit
relation. We shall use this presentation for the case ` = p in order to obtain a
lower bound on the rank of Gal(K) (see proof of Thm. 1.1).

Remark 1.1. Acknowledgment The authors are indebted to Aharon Razon for
carefully reading drafts of this work.

The authors also thank the anonymous referee for useful comments and
suggestions.

2 Number of Generators
{NGN}

Recall that the rank of a finitely generated profinite group G is the minimal
number of elements x1, . . . , xe of G (called generators) such that G is the
minimal closed subgroup of itself containing x1, . . . , xe. In this case, we write
rank(G) := e [FrJ08, Sec. 16.10].

As mentioned in the introduction, the absolute Galois group of a finite ex-
tension K of Qp is finitely generated. It turns out that rank(Gal(K)) depends
only on [K : Qp].

Indeed, well known results imply that rank(Gal(K)) is either [K : Qp] + 1
or [K : Qp] + 2. This is pointed our in the proof of Theorem 1.1 below. The
Theorem says that the later option holds.

{GNGa}
Theorem 2.1. Let p be a prime number and K a finite extension of Qp. Then,
rank(Gal(K)) = [K : Qp] + 2.

Proof. Theorem 7.4.1 of [NSW20] says that Gal(K) is generated by [K : Qp]+2
elements. By definition,

rank(Gal(K)) ≤ [K : Qp] + 2. (2) {ngna}

Let K(p) be the maximal pro-p extension of K. Thus, K(p)/K is a Galois
extension and Gal(K(p)/K) is the maximal pro-p quotient of Gal(K). In partic-
ular, rank(Gal(K)) ≥ rank(Gal(K(p)/K)). Let ζp be a primitive root of unity
of order p.

Case A: ζp ∈ K. In this case, Gal(K(p)/K) is a Demushkin group of rank
[K : Qp] + 2 [NSW20, p. 416, Thm. 7.5.11(ii)] (see also [Koc70, p. 96, Satz 10.3]
for the rank of Gal(K(p)/K)). Thus,

rank(Gal(K)) ≥ rank(Gal(K(p)/K)) = [K : Qp] + 2
(2)

≥ rank(Gal(K)),
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so rank(Gal(K)) = [K : Qp] + 2.

Case B: ζp /∈ K. Then, Gal(K(p)/K) is the free pro-p group of rank [K : Qp]+1
[NSW20, p. 416, Thm. 7.5.11(i)] and the method used in Case A does not work.

However, we may apply Case A to the field L := K(ζp) and get

rank(Gal(L)) = [L : Qp] + 2. (3) {ngnc}

Assume toward contradiction that rank(Gal(K)) 6= [K : Qp] + 2. Then, by (2),
rank(Gal(K)) ≤ [K : Qp] + 1. Hence,

[L : Qp] + 2
(3)
= rank(Gal(L)) ≤ 1 + [L : K](rank(Gal(K))− 1) (4) {ngnd}

≤ 1 + [L : K][K : Qp] = 1 + [L : Qp], (5)

where the inequality in (4) is a special case of the Nielsen-Schreier inequality
[FrJ08, p. 359, Cor. 17.6.3] applied to the open subgroup Gal(L) of Gal(K).
Thus, 2 ≤ 1, which is a contradiction. �

3 Lubotzky’s initiative
{LBI}

Again, let K be a finite extension of Qp. We establish the finite presentation
of Gal(K) in all cases but we do not attempt to give explicit generators and
relations. The existence of the presentation is based on the following result of
Alexander Lubotzky.

Proposition 3.1. [Lub01, Thm. 0.3] A finitely generated profinite group G is {GEN1}
finitely presented if and only if there exists a constant c such that for every prime
number `, and every finite simple F`[G]-module A, we have dimF`

H2(G,A) ≤
c · dimF`

A.

Another tool that we need is due to John Tate:

Proposition 3.2. [NSW20, Thm. 7.3.1] Every finite Gal(K)-module A satisfies {GEN2}
the following equality:

card(H0(Gal(K), A)) · card(H2(Gal(K), A))

card(H1(Gal(K), A))
= ||card(A)||K . (6) {gen2}

Here, card(S) is the cardinality of a set S and for each a ∈ K we have
||a||K := q−ordK(a) [Neu99, p. 134], where q is the cardinality of the residue field
of K and ordK is the normalized valuation of K. If a ∈ Qp, in particular if
a = card(A), then ordK(a) = e(K/Qp)ordp(a), where ordp is the usual p-adic
valuation of Qp and e(K/Qp) is the ramification index of K over Qp.

Moreover, q = pf(K/Qp), where f(K/Qp) is the degree of the residue degree
of K over Qp. Since e(K/Qp)f(K/Qp) = [K : Qp] [CaF67, p. 19, Prop. 3], we
have ||a||K = p−[K:Qp]ordp(a). In particular,

||card(A)||K = p−[K:Qp]ordp(card(A)). (7) {hen2}

Finally, we need the following elementary result:
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{GEN3}
Lemma 3.3. Let G be a profinite group with e generators and A a finite G-
module. Then, card(H1(G,A)) ≤ card(A)e.

Thus, if A is a finite F`[G]-module for a prime number `, then
dimF`

(H1(G,A)) ≤ e · dimF`
(A).

Proof. By definition, H1(G,A) is the quotient of the group Z1(G,A) of all
crossed homomorphisms from G to A modulo the group of all principal crossed
homomorphisms [Rib70, p. 97, Sec. II2]. Thus, it suffices to prove that
card(Z1(G,A)) ≤ card(A)e.

Indeed, by definition, each crossed homomorphism χ: G→ A is a continuous
map that satisfies χ(στ) = χ(σ)− σχ(τ) for all σ, τ ∈ G [Rib70, p. 97]. Hence,
χ is determined by its values on a system of generators σ1, . . . , σe of G, first on
the discrete subgroup generated by σ1, . . . , σe and then, by continuity, on G.
This implies that the number of crossed homomorphisms of G into A is at most
card(A)e, as claimed.

For the second part of the lemma note that if A is a finite F`[G]-module,
then A is also a finite dimensional vector space over F`, so card(A) = `dim(A).

Similarly, card(H1(G,A)) = `dim(H1(G,A)). Taking the `-th logarithm on both
sides of the already proved first inequality yields the second inequality. �

This brings us to our second main result.
{GEN4}

Theorem 3.4. Let K be a finite extension of Qp. Then, Gal(K) is finitely
presented.

Proof. By Theorem 1.1, Gal(K) is a finitely generated profinite group. Thus,
by Proposition 2.1, it suffices to prove the existence of a constant c such that
for each prime number ` and every finite F`[Gal(K)]-module A we have

dimF`
H2(Gal(K), A) ≤ c · dimF`

A.

If ` 6= p, then ||`||K = 1, hence ||card(A)||K = 1. As in the proof of Lemma
2.3, taking the `-th logarithm of (6) and using (7), gives

dimF`
(H0(Gal(K), A)) + dimF`

(H2(Gal(K), A))

− dimF`
(H1(Gal(K), A)) = h(`),

(8) {gen4}

where
h(`) = 0 if ` 6= p and h(`) = −[K : Qp]dimFp

(A) if ` = p. (9) {gen5}

Thus, in each case h(`) ≤ 0. The first summand on the left hand side of
(8) is non-negative. Hence, dimF`

(H2(Gal(K), A)) ≤ dimF`
(H1(Gal(K), A)).

Denoting the number of generators of Gal(K) by e, we conclude from Lemma
2.3 that dimFl

(H2(Gal(K), A)) ≤ e · dimFl
(A). It follows from Proposition 2.1

that Gal(K) is finitely presented, as claimed. �
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4 Number of Relations

We strengthen Theorem 2.4 with a simple formula for the number of relations of
Gal(K), where K is, as before, a finite extension of Qp. To this end we deduce
from Hensel’s lemma that if the residue field K̄ of K contains a root of unity
of prime order ` 6= p, then K contains a root of unity of order `. Thus, the
following lemma is a consequence of [CaF67, p. 32, Prop. 1].

{CFRc}
Proposition 4.1. Let ` 6= p be a prime number.
(a) Let L be a totally and tamely ramified Galois extension of K of degree `.

Then, K̄ contains a root of unity of order `.
(b) Conversely, suppose that K̄ contains a root of unity of order `. Then, K

has a cyclic extension L of degree ` which is a totally and tamely extension
of K.

For a finitely generated profinite group G, the paragraph preceding [Lub01,
Thm. 0.1] says that G is rank(G)-abelian-indexed if for every closed subgroup

H of G of finite index, H/[H,H] is isomorphic to Ẑr with r = 1 + (rank(G) −
1)(G : H). To this end note that if H = Gal(K ′) for some finite extension K ′

of K, then (G : H) = [K ′ : K] is finite and H/[H,H] ∼= Gal(K ′ab/K
′), where

K ′ab is the maximal abelian extension of K ′.
{IWSw}

Lemma 4.2. The field K has a finite extension K ′ such that Gal(K ′ab/K
′) is

isomorphic to no group of the form Ẑr. Thus, Gal(K) is not rank(Gal(K))-
abelian-indexed.

Proof. Consider a prime number ` 6= p. Replacing K by a finite extension, we
may assume that K̄× contains a primitive `-th root of unity.

Let Kur be the maximal unramified extension of K. By [CaF67, p. 28,

I], Gal(Kur/K) ∼= Ẑ. Hence, K has a unique extension K` in Kur such that
Gal(K`/K) ∼= Z/`Z.

On the other hand, by Proposition 3.1(b), K has a totally and tamely rami-
fied Galois extension L of degree `. In particular K`∩L = K, so Gal(K`L/K) ∼=
Z/`Z×Z/`Z. Thus, Z/`Z×Z/`Z is a quotient of Gal(Kab/K) but not of Ẑ. It

follows that Gal(Kab/K) 6∼= Ẑ.

Now assume toward contradiction that Gal(Kab/K) ∼= Ẑr for some r ≥ 2.
Then, for each prime number `′, K has two cyclic extensions L0, L1 of degree
`′ of K, such that L0 ∩ L1 = K. In particular, we may choose `′ 6= p such
that K̄× contains no root of unity of order `′. Also, we may assume without
loss that L1/K is ramified, hence totally and tamely ramified. This contradicts
Proposition 3.1(a). �

We denote the minimal number of relations needed to define a finitely gen-
erated group G by rel(G). Also, we denote the minimal integer which is greater
or equal to a real number x by dxe.
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Now we apply a special case of [Lub01, Thm. 0.2] to establish an explicit
formula for rel(Gal(K)). The latter theorem is used in [Lub01] to deduce [Lub01,
Thm. 0.3] which we cited as Proposition 2.1.

Recall that a finite F`[Gal(K)]-module A is said to be simple if A 6= 0 and
if A contains no F`[Gal(K)]-submodules except itself and 0.

Proposition 4.3. Let K be a finite extension of Qp. Then, {GEN5}

rel(Gal(K)) = sup
`,A

{⌈dimF`
(H2(Gal(K), A))− dimF`

(H1(Gal(K), A))

dimF`
(A)

⌉
+ rank(Gal(K))− ξK,A

}
,

(10) {gen6}

where ` runs over all prime numbers, A ranges over all finite simple F`[Gal(K)]-
modules, and for all such A we have ξK,A is 0 if Gal(K) acts trivially on A and
ξK,A = 1 otherwise.

Proof. Lemma 3.2 assures that Gal(K) is not rank(Gal(K))-abelian-indexed.
Hence, equality (10) is a special case of [Lub01, Thm. 0.2]. �

This brings us to our main result.

Theorem 4.4. Let p be a prime number and K a finite extension of Qp. Then, {MANt}

rel(Gal(K)) = rank(Gal(K))− 1 = [K : Qp] + 1. (11) {heil}

Proof. The second equality in (11) is just Theorem 1.1. In view of equality (10),
it suffices for the proof of the first equality of (11) to prove that for each prime
number `, and every simple finite F`[Gal(K)]-module A we have⌈dimF`

(H2(Gal(K), A))− dimF`
(H1(Gal(K), A))

dimF`
(A)

⌉
− ξK,A ≤ −1. (12) {geil}

and that there exists a simple finite F`[Gal(K)]-module A for which the left
hand side of (12) is −1.

Indeed, recall that H0(Gal(K), A) is the subgroup AGal(K) of elements of A
fixed under the action of Gal(K) [Rib70, p. 97]. Also note that dx−me ≤ dxe
for every real number x and every non-negative number m. Finally, for each
prime number `, let h(`) be as in (9). Hence,⌈dimF`

(H2(Gal(K), A))− dimF`
(H1(Gal(K), A))

dimF`
(A)

⌉
− ξK,A (13) {ceil}

(8)
=

⌈−dimF`
(H0(Gal(K), A)) + h(`)

dimF`
(A)

⌉
− ξK,A (14)

(9)
=


⌈
−dimFp (A

Gal(K))

dimFp (A) − [K : Qp]
⌉
− ξK,A if ` = p⌈

−dimF` (A
Gal(K))

dimF` (A)

⌉
− ξK,A if ` 6= p,

(15) {deil}
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where ξK,A is the constant introduced in Proposition 3.3.
If the action of Gal(K) on A is non-trivial, then ξK,A = 1 and AGal(K) = 0

(because A is a simple F`[Gal(K)]-module). Thus, the expression on the upper
row of (15) is −[K : Qp] − 1. Similarly, for ` 6= p, the expression on the lower
row of (15) is −1.

If Gal(K) acts trivially on A, then AGal(K) = A and ξK,A = 0. If, in
addition ` = p, then the left expression on the upper row of (15) becomes
d−1− [K : Qp]e ≤ −1. Similarly, for ` 6= p, the left expression on the lower row
of (15) is −1. Note that this case occurs for A := Z/`Z with the trivial action
of Gal(K) on A, because Z/`Z has no non-trivial proper subgroup, so A is a
simple F`[Gal(K)]-module.

It follows that in all cases the expression in (13) is at most −1 and the
equality holds in at least one case, as claimed. �

5 Comments

We conclude with three remarks, with K being, as above, a p-adic field.

Remark 5.1. The equality of the left hand side of (12) to −1 in the case
` 6= p and A = Z/`Z with a trivial action of Gal(K) follows also from a precise
knowledge of Hi(Gal(K),Z/`Z) for i = 1, 2.

Indeed, let ζ` be a primitive root of unity of order `. Let δ = 1 if ζ` ∈ K and
δ = 0 if ζ` /∈ K. By [NSW20, p. 399, Cor. 7.3.9], dimF`

H1(Gal(K),Z/`Z) = 1+δ.
By the proof of the latter corollary

dimF`
H2(Gal(K),Z/`Z) = δ.

Also, dimF`
(Z/`Z) = 1 and ξK,Z/`Z = 0. Hence,⌈dimF`

(H2(Gal(K),Z/`Z))− dimF`
(H1(Gal(K),Z/`Z))

dimF`
(Z/`Z)

⌉
− ξK,Z/`Z = −1,

as claimed.
{cntb}

Remark 5.2. For an element w in a profinite group G, the condition “the
closed subgroup 〈w〉 of G generated by w is a pro-p group” can be expressed

by the profinite relation wπ = 1, where π is the element of Ẑ =
∏
` Zl (with `

ranging over all prime numbers) whose `th entry is 1 if ` = p and 0 if ` 6= p. In
this case (wσ)π = (wπ)σ = 1 for each σ ∈ G.

By Jannsen-Wingberg, [NSW20, p. 419, Thm. 7.5.14], Gal(K) is generated
by elements σ, τ, x0, . . . , xn, with n = [K : Qp], satisfying two relations, (B) and
(C), and the following one:

(A) The closed normal subgroup N of Gal(K) generated by x0, . . . , xn is a
pro-p group.
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Let G0 be the abstract subgroup of G generated by σ, τ, x0, . . . , xn and let N0

be the abstract normal subgroup of G0 generated by x0, . . . , xn. Then, N is the
closure of N0 in G and the condition “wπ = 1 for each word in N0” is equivalent
to (A).

Note that N0 is countable. Hence, Condition (A) can be replaced by infinite
countable set of explicit relations involving σ, τ, x0, . . . , xn. But a priori it is not
clear that the result of Jannsen-Wingberg yields a finite presentation of Gal(K).
Compare footnote on page 418 of [NSW20].

{Dem}
Remark 5.3. The first equality rel(Gal(K)) = rank(Gal(K)) − 1 in Theorem
3.4 does not always hold if we replace Gal(K) by a quotient Gal(N/K), with N
being a Galois extension of K.

For example, put G = Gal(K) and let, K(p) be the maximal pro-p extension
of K. Then, G(p) := Gal(K(p)/Qp) is the maximal pro-p quotient of G. It is well
known that G(p) is either a finitely generated free pro-p group or a Demuskin
group.

Indeed, let µp be the group of roots of unity of order p in Q̃p. If µp 6⊆ K, then
by [NSW20, p. 416, Thm. 7.5.11(i)], G(p) is a free pro-p group (i.e. rel(G(p)) =
0) with rank(G(p)) = [K : Qp] + 1 ≥ 2. Thus, rel(G(p)) < rank(G(p))− 1.

If µp ⊆ K, then, by [NSW20, p. 416, Thm. 7.5.11(ii)], G(p) is a Demuskin
group of rank [K : Qp] + 2, so rank(G(p)) ≥ 3. Also, by [NSW20, p. 231,
Def. 3.9.9(ii)], dimFp

H2(G(p),Fp) = 1, so by [NSW20, p. 227, Cor. 3.9.5],
rel(G(p)) = 1. Hence, res(G(p)) = 1 < 2 ≤ rank(G(p))− 1.

Thus, in all cases rel(G(p)) < rank(G(p))− 1.
{MTRf}

Remark 5.4. Theorem 1.1 does not apply to infinite algebraic extensions of
Qp. For example, the algebraic closure Q̃p of Qp is an infinite extension of

Qp, while its absolute Galois group is trivial, so rank(Gal(Q̃p)) = 0, hence

rank(Gal(Q̃p)) 6= [Q̃p : Qp] + 2.
Similarly, the left hand side of Theorem 3.4 does not apply to infinite alge-

braic extensions of Qp. For example, let K be the fixed field of the ramification
group of Gal(Qp). By [NSW20, p. 423, Prop. 7.5.1], Gal(K) is the free pro-p
group of rank ℵ0. Hence, rel(Gal(K)) = 0 and rank(Gal(K)) = ∞. Therefore,
rel(Gal(K)) 6= rank(Gal(K))− 1.

{CHRp}
Remark 5.5. The analog of a p-adic field in positive characteristic p is the field
Fq((t)) of formal power series in an indeterminate t with coefficients in the field
Fq of q elements, where q is a power of p. Helmut Koch proved in [Koc65] that
Gal(Fq((t))) is generated by infinitely many elements σ, τ, x1, x2, x3, . . . such
that τστ−1 = σq, the closed normal subgroup generated by x1, x2, x3, . . . is a
free pro-p group of rank ℵ0, and σ, τ “act freely” on this subgroup (see also
[NSW20, p. 418, Thm. 7.5.13]). On the other hand, Fq((t)) has infinitely many
Artin-Schreier cyclic extensions of degree p [BJL16, Rem. 4.3]. In particular,
Gal(Fq((t))) is not finitely generated. A posteriori, Gal(Fq((t))) is not finitely
presented.
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[Koc65] H. Koch, Über Galoissche Gruppen von p-adischen Zahlkörpern,
Mathematische Nachrichten 29 (1965), 77–111.

[Koc70] H. Koch, Galoissche Theorie der p-Erweiterungen, Mathematische
Monographien 10, VEB Deutscher Verlag der Wissenschaften, Berlin
1970.

[Lan97] S. Lang, Algebra (third edition), Addison-Wesley, Reading, 1997.

[Liu20] Y. Liu, Presentations of Galois groups of maximal extensions with
restricted ramification, arXiv.org ¿ math ¿ arXiv:2005.07329

[Lub01] A. Lubotzky, Pro-finite Presentations, Journal of Algebra 242 (2001),
672–690.

[Neu99] J. Neukirch, Algebraic Number Theory, translated from German
by N. Schppachar, Grundlehren der mathematischen Wissenschaften
322, Springer, Heidelberg, 1999.

[NSW20] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of Num-
ber Fields, Grundlehren der mathematischen Wissenschaften 323,
Springer-Verlag, Heidelberg, Second Edition, corrected version 2.3,
May 2020. Electronic Edition,
www.mathi.uni-heidelberg.de/~schmidt/NSW2e/index-de.html



REFERENCES 10

[Rib70] L. Ribes, Introduction to Profinite Groups and Galois Cohomology,
Queen’s papers in Pure and Applied Mathematics 24, Queen’s Uni-
versity, Kingston, 1970.

[Shu18] M. Shusterman, Balanced presentation for fundamental groups of
curves over finite fields, arXiv.org > math > arXiv:1811.04192


	Number of Generators
	Lubotzky's initiative
	Number of Relations
	Comments

