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Abstract

Consider a noetherian domain R0 with quotient field K0. Let K be a
finitely generated regular transcendental field extension of K0. We con-
struct a noetherian domain R with Quot(R) = K that contains R0 and
embed Spec(R0) into Spec(R). Then, we prove that key properties of
abelian varieties and smooth geometrically integral projective curves over
K are preserved under reduction modulo p for “almost all” p ∈ Spec(R0)
(Remark 1.5).

Notation

� K̃ is the algebraic closure of a field K. Occasionally, we write Kalg for K̃.

� Ksep is the separable closure of K in K̃.

� Kins is the maximal purely inseparable extension of K in K̃.

� Gal(K) := Gal(Ksep/K) is the absolute Galois group of K.

� o denotes the zero point of a given additive abelian variety A.

� 0 = {o} with o as in the preceding notation.

Introduction

The theory of reduction of algebro-geometric objects has a long history that
we won’t try to recapitulate here. We only mention Ehud Hrushovski’s work
[Hru98] in which he proves several “good reduction theorems” modulo prime
numbers for algebro-geometric objects over finitely generated transcendental
extensions of Q.

We consider an integrally closed noetherian domain R0 such that for every
non-zero c ∈ R0 there exist infinitely many prime ideals ofR0 that do not contain
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c. Then we construct an integrally closed noetherian domain R which is finitely
generated as a ring over R0, and a finitely generated regular transcendental
extension K/K0 of fields such that K0 = Quot(R0) and K = Quot(R). We
embed Spec(R0) into Spec(R), consider each p ∈ Spec(R0) as a prime ideal of
R (Convention 1.3), and let K̄p be the quotient field of R/p.

Then, following Hrushovski, we prove in a few cases, that algebro-geometric
objects over K retain their properties under reduction modulo p, for almost
all p ∈ Spec(R0), i.e. for all p ∈ Spec(R0) that lie in a non-empty Zariski-open
subset of Spec(R0) (see Remark 1.5).

Theorem A (Theorem 3.11): Let A be an abelian variety over K such that
A(K0,sepK) is finitely generated. Then, the following statements hold:
(a) For almost all p ∈ Spec(R0), we have that Āp is an abelian variety over K̄p

with dim(Āp) = dim(A).
(b) For almost all p ∈ Spec(R0), the reduction map ρp: A(K) → Āp(K̄p) is

injective on Ator(K).
(c) If l is a prime number such that l 6= char(K0) and Al(K0,sepK) = 0, then

Āp,l(K̄p) = 0 for almost all p ∈ Spec(R0).
(d) For every large prime number l and for almost all p ∈ Spec(R0), the map

ρp induces an injection

ρ̄p,l: A(K)/lA(K)→ Āp(K̄p)/lĀp(K̄p).

(e) ρp: A(K)→ Āp(K̄p) is an injection for almost all p ∈ Spec(R0).

In addition to basic properties of abelian varieties and a simple criterion for
the injectivity of a homomorphism of abelian groups (Lemma 3.1), the proof
of Theorem A applies model theoretic tools, especially ultra-products (Lemma
3.8).

Theorem B (Theorem 4.13): Let A be an abelian variety over K such that
no simple abelian subvariety of AK̃ is defined over K̃0.

Then, for almost all p ∈ Spec(R0), no simple abelian subvariety of the abelian
variety Āp over K̄p is defined over K̄0,p,alg.

This is a generalization to arbitrary characteristic of a result of Hrushovski
in characteristic 0. The proof follows that of Hrushovski, adding the necessary
adjustments to the general case.

Theorem C (Theorem 5.5): Let C be a smooth geometrically integral curve
over K of genus g ≥ 1. Suppose that C has a K-rational point, C is conservative
(Remark 2.1), and CK̃ is not birationally equivalent to a curve which is defined

over K̃0.
Then, for almost all p ∈ Spec(R0) the reduced curve C̄p is geometrically

integral over K̄p, smooth, conservative of genus g, C̄p(K̄p) 6= ∅, but C̄p,K̄p,alg
is

not birationally equivalent to a curve which is defined over K̄0,p,alg.

The proof of Theorem C applies Theorem B for g = 1 and the basic tool
of the coarse moduli space for curves of a fixed genus g up to isomorphism for
g ≥ 2.
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The first four sections of this work follow Hrushovski’s style in [Hru98] and
mainly use “elementary statements” about algebraically closed fields in order to
prove Theorems A and B. In Section 5 we switch to the language of schemes. 1

Remark D: It turns out that not every algebro-geometric statement defined
over K and holds over K̃, where K = K0, is true over K̄0,p,alg for almost all
prime ideals p ∈ Spec(R0).

For example, there are abelian varieties A of dimension 2 defined over a
number field K such that AQ̃ is simple but Āp is not simple for almost all prime
ideals p of the ring of integers of K [EEHK09, p. 146, Rem. 16].

1 Reduction modulo almost all p
{Rmaa}

We fix for the whole work an extension R/R0 of integral noetherian domains
such that K := Quot(R) is a finitely generated regular transcendental extension
of K0 := Quot(R0)2. Let r = trans.deg(K/K0). In Setup 1.1 below we embed
Spec(R0) into Spec(R) and observe that for “almost all p ∈ Spec(R0)” the
residue field K̄p := Quot(R/p) is a finitely generated regular extension of K̄0,p :=
Quot(R0/R0 ∩ p) of transcendence degree r. The main result of Section 2 says
that if C is a conservative geometrically integral curve of genus g over K, then
for almost all p ∈ Spec(R0), the reduced curve C̄p is a conservative geometrically
integral curve of genus g over K̄p.

{FGNe}
Setup 1.1 (Finitely generated extension). Our starting point is an integrally
closed noetherian domain R0 with quotient field K0. We assume that

for every non-zero c ∈ R0 there exist infinitely many prime ideals of R0

that do not contain c.
(1) {infpi}

For example, we may take R0 to be a Dedekind domain with infinitely many
maximal ideals. The ring Z or rings F [t] of polynomials of one variable over an
arbitrary field are Dedekind rings with infinitely many prime ideals. Moreover,
if R0 is a Dedekind ring, then its integral closure in any finitely generated
extension of Quot(R0) is also a Dedekind ring [ZaS75, p. 281, Thm. 19].

We follow [Liu06, p. 55, Def. 3.47] and define an affine variety over K0 to
be an affine scheme associated to a finitely generated algebra over K0 [Liu06,
p. 43, Def. 3.2]. Then, an algebraic variety over K0 is a K0-scheme X which is
covered by finitely many affine open subvarieties over K0. However, in contrast
to [Liu06], we assume all of the algebraic varieties in this work to be separated.

Accordingly, a curve over K0 in this work is just an algebraic variety over
K0 whose irreducible components [Liu06, p. 61, first two paragraphs of Section
4.2] are of dimension 1 [Liu06, p. 73, Sec. 5.3].

1The authors are indebted to Gerhard Frey for his contribution to Section 5.
2All rings appearing in this work are supposed to be commutative with a unit.
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We are especially interested in geometrically integral affine varieties V over
K0 [Liu06, p. 90, Def. 2.8]. In the language of classical algebraic geometry
these objects are just called varieties defined over K0. See [Wei62], [Lan58], or
[FrJ08, Sections 10.1 and 10.2]. See also Example 1.8.

For example, let K be a finitely generated regular extension of K0 of tran-
scendence degree r ≥ 1. Choose a separating transcendence base u1, . . . , ur for
K/K0 and set u = (u1, . . . , ur). Then, the integral closure R of R0[u] in K
is a finitely generated R0[u]-module [Eis95, p. 298, Prop. 13.14], so R = R0[x]
with x = (x1, . . . , xn) and K = Quot(R). In particular, R is a noetherian do-
main [ZaS75, p. 265, Cor. 1]. By [FrJ08, p. 175, Cor. 10.2.2], the affine variety
V := Spec(K0[x]) over K0 is geometrically integral and x is a generic point
of V .

Let w ∈ K0[x] be a basic minor of the Jacobian matrix of V with respect
to polynomials in K0[x] that define V . Adding w−1 to {x1, . . . , xn}, we may
assume that V is also smooth [Mum88, p. 233, Cor. 1].

{ETNs}
Remark 1.2. Let K ′0 be a finite separable extension of K0 and R′0 the integral
closure of R0 in K ′0. Consider a non-zero c′ ∈ R′0. Then, the norm c of c′ from
K ′0 to K0 lies in R0 [Lan93, p. 337, Cor. 1.6]. Therefore, if p is a prime ideal of
R0 that does not contain c, then each prime ideal of R′0 over p does not contain
c′. By Condition (1) on R0, there are infinitely many such prime ideals of R0.
Hence, there are infinitely many prime ideals of R′0 that do not contain c′. Thus,
Condition (1) is also satisfied for R′0 replacing R0.

The most important examples for algebraic varieties over K0 which are not
affine are projective varieties defined by homogeneous polynomials [Liu06,
p. 55, Def. 3.47]. In particular, abelian varieties over K0 can be represented
as projective varieties [Mil85, p. 113, Thm. 7.1].

{ZARo}
Convention 1.3. Let R0 and R be the integral domains introduced in Setup
1.1. We embed Spec(R0) into Spec(R) and fix this embedding for the whole
work in the following way:

For each p ∈ Spec(R0) we choose algebraically independent elements ūp,1, . . . , ūp,r
over K̄0,p, set ūp = (ūp,1, . . . , ūp,r), and let p′ be the kernel of the map R0[u]→
K̄0,p[ūp] that extends the map R0 → K̄0,p and maps u onto ūp. Note that p′ is
the smallest prime ideal of R0[u] that contains p.

Then we apply the going up theorem [AtM69, pp. 61, 62, Cor. 5.9, Thm. 5.10]
to choose a prime ideal ideal p′′ of R that lies over p′ and note that p′′ is a min-
imal prime ideal of R over p′. Thus, p′′ is also a minimal prime ideal of R over
p.

Finally, we fix p′′ and redenote it by p.

Claim: For each non-zero c ∈ R there exists a non-zero c0 ∈ R0 such that if
p ∈ Spec(R0) and c0 /∈ p, then c /∈ p.

Indeed, assume first that c ∈ R0[u]. Then, c = f(u) for some non-zero
polynomial f with coefficients in R0. At least one of those coefficients, say c0,
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is non-zero. Hence, if p ∈ Spec(R0) and c0 /∈ p, then c̄p = f̄p(ūp) 6= 0, which
means that c /∈ p.

In the general case, R is integral over R0[u] (Setup 1.1). Hence, there exist
d0, . . . , dk−1 ∈ R0[u] such that

ck + dk−1c
k−1 + · · ·+ d1c+ d0 = 0 with d0 6= 0. (2) {ukcd}

By the preceding paragraph, there exists a non-zero c0 ∈ R0 such that if p ∈
Spec(R0) and c0 /∈ p, then d0 /∈ p. Hence, by (2), c /∈ p, as claimed.

Having proved the claim, recall that if w is a non-zero element of R, as
in the last paragraph of Setup 1.1, then one can identify Spec(R[w−1]) with
{p ∈ Spec(R) | w /∈ p}. If we now wish to replace R by R[w−1], we may use the
claim to choose a non-zero w0 ∈ R0 such that if p ∈ Spec(R0) and w0 /∈ p, then
w /∈ p. Then, we may replace R0 by R0[w−1

0 ].
Recall that every non-empty Zariski-open subset S0 of Spec(R) (hence, also

of Spec(R[w−1]) contains a set of the form {p ∈ Spec(R) | c /∈ p} for some
non-zero c ∈ R. Hence, by the claim, S0 contains a set of the form {p ∈
Spec(R0) | c0 /∈ p} with a non-zero c0 ∈ R0. Therefore, by our assumption in
Setup 1.1 on R0, S0 is infinite.

{rrrr}
Remark 1.4. We have used the letter r in Setup 1.1 for the transcendence
degree of K/K0. It is reused with this meaning also in Convention 1.3, but
latter on it may get another meaning.

{SPEc}
Remark 1.5 (Reduction modulo almost all p). Let R be the integral domain
introduced in Setup 1.1. For each p ∈ Spec(R) let ϕp: R→ R/p be the residue

map. We say that a “mathematical statement θ about K̃” holds for almost
all p ∈ Spec(R) if there exists a non-zero c ∈ R such that θ holds modulo p in
K̄p,alg whenever c̄p := ϕp(c) 6= 0. Thus, θ holds along a non-empty Zariski-open
subset of Spec(R). It follows from Convention 1.3 that θ holds modulo p also
for almost all p ∈ Spec(R0).

If R0 is a Dedekind domain, then “for almost all p ∈ Spec(R0)” means “for
all but finitely many p ∈ Spec(R0)”. In this case, which is our main concern,
each p ∈ Spec(R0) induces a discrete valuation on Quot(R0) and our extension
of p to R0[u] yields a discrete valuation on Quot(R0(u)), known as the “Gauss’
valuation”. Our next extension of p (in Convention 1.3) to a prime ideal of R
yields a discrete valuation on K but it is not unique. Nevertheless, the “almost
all” claim mentioned in the preceding paragraph holds for each choice of the
extensions of the p’s to R.

{ELSt}
Remark 1.6 (Elementary statements). One type of statements about K̃ that
we consider are the elementary statements, that is, those that are equivalent
to sentences in the first order language L(ring, R) of rings with a constant symbol
b for each element b of R [FrJ08, p. 135, Example 7.3.1 and p. 136, Example
7.3.2]. By [FrJ08, p. 167, Cor. 9.2.2], if a statement θ of this type holds over K̃,
then there exists a non-zero c ∈ R such that θ holds in F̃ for each algebraically
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closed field F̃ which contains a homomorphic image R̄ of R in which the image
c̄ of c is non-zero. In particular, θ holds in K̄p,alg for almost all p ∈ Spec(R).
By Remark 1.5, θ holds in K̄p,alg also for almost all p ∈ Spec(R0).

The simplest example for such a θ is “a 6= b”, where a, b are distinct elements
of R. In case c = a− b, this statement holds for all p ∈ Spec(R) with c /∈ p.

Note that the proof of Corollary 9.2.2 of [FrJ08] is solely based on the Eu-
clid algorithm for dividing polynomials with residue. This makes it immediately
available for all algebro geometric statements that involve finitely many poly-
nomials with bounded degrees.

We consider also statements about algebro-geometric objects defined over K̃
(hence, by elements of R) for which reduction modulo p is defined, at least for
almost all p ∈ Spec(R). For many of these statements one may prove that they
are elementary. However, a direct proof that a certain mathematical statement θ
is elementary could be tedious. In such cases, one may first use algebro geometric
tools in order to prove that θ is equivalent to an elementary statement θ′. This
has to be done in such a way that the proof of the equivalence θ ↔ θ′ itself is
formal in the sense of [FrJ08, p. 150] (see also Remark 1.7 below). Then, one
may apply the preceding paragraph to θ′ and to the proof of θ ↔ θ′ to conclude
that θ holds for almost all p ∈ Spec(R).

{frml}
Remark 1.7 (Formal proofs). Following [FrJ08, p. 135, Example 7.3.1], let
L := L(ring, R) be the first order language for the theory of fields which contain
a homomorphic image of R. Let Π(R) be the usual axioms of the theory of fields
enhanced by all of the equalities a1 + b1 = c1 and a2b2 = c2 with ai, bi, ci ∈ R
that hold in R (i.e. the positive diagram of R).

A formal proof of a sentence ϕ of L ([FrJ08, p. 149, Sec. 8.1]) is a finite
sequence (ϕ1, . . . , ϕn) of sentences of L with ϕn = ϕ such that each sentence ϕm
with m ≤ n is either a logical axiom given by (3a), (3b), or (3c) on pages 150,
151 of [FrJ08], or an axiom in Π(R), or ϕm is a consequence of {ϕ1, . . . , ϕm−1}
by one of the inference rules (2a) and (2b) on page 150 of [FrJ08].

{frey}
Example 1.8. (a) Let W be a geometrically integral affine variety over K
in An′

K of dimension r′ with generic point y := (y1, . . . , yn′) and function field
F := K(y). For almost all p ∈ Spec(R) the variety W is defined by polynomial
equations with coefficients in the localization Rp of R at p. For those p let

W̄p be the Zariski-closed subset of An′

K̄p
defined by the equations that define W

reduced modulo pRp. Thus, one considers the closure of W in An
′

R and passes
to the fiber induced by the combined homomorphism R→ Rp → Rp/pRp = K̄p

Then, the Bertini-Noether theorem says that for almost all p ∈ Spec(R), {good}
(3) W̄p is a geometrically integral affine variety in An′

K̄p
with dim(W̄p) =

dim(W ).

The proof given in [FrJ08, p. 179, Prop. 10.4.2] is not direct. It uses the bi-
rational equivalence between W and a hypersurface and applies the absolute
irreducibility modulo almost all p of the polynomial that defines that hypersur-
face.
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(b) Moreover, in the notation of Remark 1.5, for almost all p ∈ Spec(R) we
may extend the residue map R→ R/p to a place K̃(y)→ K̄p,alg(ȳp) that maps
y onto an n′-tuple ȳp := (ȳ1,p, . . . , ȳn′,p) which is a generic point of W̄p. By
[FrJ08, p. 175, Cor. 10.2.2(a)], F̄p := K̄p(ȳp) is a regular extension of K̄p. By
(3),

trans.deg(F̄p/K̄p) = dim(W̄p) = dim(W ) = trans.deg(F/K) = r′. (4) {trrd}

(c) If f1, . . . , fm ∈ K[X1, . . . , Xn′ ] generate the ideal of polynomials that
vanish on W , then by the Jacobian matrix criterion, a point a ∈ W (K̃) is
simple on W if and only if

rank
( ∂fi
∂Xj

(a)
)

= n′ − r′ (5) {jacb}

[Mum88, p. 233, Cor. 1].
Since by (4), r′ = dim(W̄p) for almost all p ∈ Spec(R), (5) implies that

āp ∈ W̄p(K̄p,alg) is simple on W̄p, again for almost all p ∈ Spec(R). Therefore,
if W is smooth, then W̄p is a smooth affine geometrically integral algebraic
variety over K̄p for almost all p ∈ Spec(R).

(d) Following [Liu06, p. 90, Def. 2.8], a geometrically integral algebraic
variety W over K is an algebraic variety over K (see Setup 1.1) such that WK̃

is integral. By [GoW10, p. 70, Prop. 3.10], W can be consider as a union of a
finite sets {Wi}i∈I of geometrically integral affine open subschemes such that
for all i, j ∈ I there exist a non-empty open subset Wij and an isomorphism
ϕji: Wij →Wj of schemes such that

Wii = Wi, and ϕkj ◦ ϕji = ϕki on Wij ∩Wik for i, j, k ∈ I. (6) {abst}

Indeed, W is uniquely determined by the gluing datum {Wi,Wij , ϕji}i,j∈I .
In particular, dim(W ) := dim(Wi) is independent of i.

The corresponding object in the classical algebraic geometry is called an
abstract variety. See [Lan58, Sec. IV6] or [FrJ08, p. 187], where the ϕji
in the preceding paragraph are replaced by birational functions that satisfy a
modification of Condition (6).

It follows that the mathematical statement “W is a geometrically integral
algebraic variety over K of dimension d” is elementary and therefore it remains
true under reduction modulo p for almost all p ∈ Spec(R).

Similarly, the analogue statements (b) and (c) about W hold also in the case
where W is an abstract variety.

{DFNd}
Notation 1.9. Given morphisms of schemes, X → S and T → S, we write XT

for the fiber product X×S T . If S = Spec(D) for a ring D and T = Spec(D′) for
some homomorphism D → D′ of rings, then we often abbreviate XSpec(D′) by
XD′ . If in particular, D′ = Dp/pDp for some prime ideal p of D and D → D′ is
the combined homomorphism D → Dp → Dp/pDp, then Xp := XSpec(Dp/pDp)

is the fiber of X at p [Liu06, p. 83, Def. 1.13 and p. 46, Example 3.18].
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Finally, given a homomorphism D → D′ of rings, the canonical isomorphism
D′ ⊗D Dp ⊗Dp

Dp/pDp
∼= D′p/pD

′
p allows us to identify the fiber Xp with the

reduction X̄p of X := Spec(D′) at p.
However, in Section 5, we use the convention of the theory of schemes and

consider the prime ideals of the ring R introduced in Setup 1.1 as points of the
scheme S = Spec(R) for which we use the letter s. Still, the expression “for
almost all s ∈ S” will mean “for all s ∈ S that do not contain a fixed non-zero
element c of R”, equivalently “for all s in the open subscheme Spec(Rc) of S”,
where Rc is the localization of R at c. Also, we drop the bar over the reduced
varieties and write for example Ws rather than W̄s if W is an algebraic variety
over K.

2 The genus of a curve
{CRV}

We prove that a conservative geometrically integral curve over K preserves its
genus under almost all reductions modulo p ∈ Spec(R0).

{RSNl}
Remark 2.1. Let C be a geometrically integral curve over K with function
field F . Then, F is a finitely generated regular extension of K [FrJ08, p. 175,
Cor. 10.2.2(a)]. Riemann-Roch’s theorem supplies a unique non-negative integer
g := genus(F/K), called the genus of F/K, such that dim(a) = deg(a) + 1 −
g+ dim(w−a) for every divisor a and every canonical divisor w of F/K [FrJ08,
p. 55, Thm. 3.2.1]. One also calls g the genus of C and denote it by genus(C).

Being a regular extension of K, the field F is linearly disjoint from K̃ over
K. By [Deu73, p. 132, Thm. 1], genus(FL/L) ≤ genus(F/K) for each algebraic
extension L of K. Thus, there exists a finite extension L of K such that the
genus(FL/L) does not drop any more under algebraic extensions of the base
field. This means that genus(CL) = genus(CK̃). We say that CL is conserva-
tive. Hence, replacing K by L makes C conservative.

If C is conservative, then C is birationally equivalent over K to a smooth
projective curve [GeJ89, Prop. 8.3]. Conversely, if C is smooth and projective,
then C is conservative [Ros52, Thm. 12].

However, since removing the finitely many singular points from an arbitrary
curve C makes it smooth, smoothness by itself does not make C conservative.

Finally we note that if C is smooth and projective (hence conservative), then
in the language of schemes, genus(CK̃) = dimK̃H

1(CK̃ ,OCK̃
) [Har77, p. 294,

Prop. 1.1 and p. 295, Thm. 1.3].

{ABSg}
Lemma 2.2. Let C be a conservative geometrically integral curve of genus g
over K. Then, for almost all p ∈ Spec(R), the curve C̄p is a conservative
geometrically integral curve of genus g over K̄p and the same statement holds
for almost all p ∈ Spec(R0).

Proof. As in (3), C̄p is a geometrically integral curve over K̄p, for almost
all p ∈ Spec(R). By assumption, genus(CK̃) = g. By [GrR21, Thm. 23],
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genus(C̄p,K̄p,alg
) = g for almost all p ∈ Spec(R). By [GrR21, Cor. 25], genus(C̄p) =

g for almost all p ∈ Spec(R). Hence, for almost all p ∈ Spec(R), the curve C̄p

is a conservative geometrically integral curve of genus g. By Remark 1.6, this
statement holds for almost all p ∈ Spec(R0). �

{ABSh}
Remark 2.3. We supply an alternative proof to Lemma 2.2 which is more
elaborate but has the advantage of presenting the genus in terms of the curve.

Since C is conservative, it is birationally equivalent over K to a smooth
projective curve C ′ (Remark 2.1). The birational equivalence of C and C ′ is
an elementary statement on the coefficients of the polynomials that define C
and C ′. Hence, by Example 1.8, for almost all p ∈ Spec(R) the curve C ′p is
smooth and projective, and birationally equivalent to C̄p over K̄p. It follows
from Remark 2.1 that C̄p is conservative for almost all p ∈ Spec(R). Thus,

genus(C̄p) = genus(C̄p,alg) for almost all p ∈ Spec(R). (7) {rsnl}

By [GeJ89, Thm. 10.5], CK̃ is birationally equivalent to a projective plane
node model Γ. Since C is conservative,

g = genus(C) = genus(CK̃) = genus(Γ). (8) {cons}

Let p1, . . . ,pd be the singular points of Γ. For every i ∈ {1, . . . , d}, Γ is de-
fined, after translating pi to the origin (1:0:0), by a homogeneous equation
fi(X0, X1, X2) = 0, where

fi(1, X1, X2) = (ai1X2 − ai2X1)(bi1X2 − bi2X1) +

mi∑
j=3

gij(X1, X2), (9) {fgij}

ai1, ai2, bi1, bi2 ∈ K̃, ai1bi2 6= ai2bi1, and gij ∈ K̃[X1, X2] is a homogeneous
polynomial of degree j.

By [Ful89, p. 199, Prop. 5],

genus(Γ) =
(deg(Γ)− 1)(deg(Γ)− 2)

2
− d, (10) {fulp}

where actually the second term on the right hand side in that proposition is

−
∑d
i=1

rpi
(rpi
−1)

2 , with rpi being the smallest degree of the homogeneous terms
on the right hand side of equation (9), namely 2.

For almost all p ∈ Spec(R) the curve C̄p,alg is birationally equivalent to
Γ̄p, and by the Jacobian criterion, p̄1,p, . . . , p̄d,p are the singular points of Γ̄p.
Finally, the presentation (9) for the polynomial defining Γ in the neighborhood
of p̄i,p (after translation) has the analogous form also modulo p. Hence, (10)
remains valid modulo p, so

genus(C̄p)
(7)
= genus(C̄p,alg) = genus(Γ̄p) = genus(Γ)

(8)
= g,

as claimed.
As above, all of this holds also for almost all p ∈ Spec(R0).
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3 Reduction of Abelian Varieties
{RAB}

Ehud Hrushovski proves in [Hru98, Lemma 4] that if K is a finitely generated
extension of Q and A is an abelian variety over K such that A(K0,sepK) is

finitely generated (with K0 = K ∩ Q̃), then “almost all” reductions A→ Ā map
A(K) injectively into Ā(K̄).

We adjust Hrushovski’s proof to the field extension K/K0, introduced in
Setup 1.1. To this end, given an abelian additive group C and a positive integer
n, we write Cn = {c ∈ C | nc = 0}, Cl∞ =

⋃∞
i=1 Cli for each prime number l,

and Ctor =
⋃∞
n=1 Cn. Recall that if C is finitely generated, then C = C0×Ctor,

where C0 is a finitely generated free abelian group and Ctor is a finite abelian
group [Lan93, p. 46, Thm. 8.5]. In particular, Cl∞ is a finite group for every
prime number l.

The proof relies on a basic lemma about abelian groups.
{INJc}

Lemma 3.1 ([Hru98], p. 198, Lemma 1). Let ρ: B → C be a homomorphism
of abelian groups and let n be a positive integer. Suppose that

⋂∞
i=1 n

iB = 0,
Cn = 0, and ρ induces an injective map ρ̄: B/nB → C/nC. Then, ρ is injective.

Proof. Let b ∈ B with b 6= 0. Since
⋂∞
i=1 n

iB = 0, there exists a smallest
positive integer i such that b /∈ niB. Thus, b = ni−1b′ with i ≥ 1 and b′ ∈
BrnB. Since ρ̄ is injective, ρ(b′) +nC = ρ̄(b′+nB) 6= 0, hence ρ(b′) /∈ nC. In
particular, ρ(b′) 6= 0.

Starting from Cn = 0, induction implies that Cnj = 0 for each j ≥ 1.
If i = 1, then ρ(b) = ρ(b′) 6= 0. Otherwise, i ≥ 2 and, by the preceding

paragraphs, ρ(b) = ni−1ρ(b′) 6= 0, as asserted. �

{ABLv}
Remark 3.2 (Abelian variety over K). Recall that a group variety over a
field K is a geometrically integral algebraic variety A over K equipped with
two morphisms A × A → A (the multiplication) and A → A (the inverse
operation), and a distinguished K-rational point e (the identity element)
that satisfy the group axioms, thereby make A(K̃) a group (not necessarily
commutative). In particular, A is nonsingular [Mil85, p. 104, §1].

The group variety A is an abelian variety if A is in addition complete
[Mil17, p. 155, Def. 7.1]. In particular, A is commutative, and by the preceding
paragraph A is nonsingular. See [Mil85, p. 105, Cor. 2.4] or [Mum74, p. 41, (ii)].
In this case we view the group operation as addition and the identity element
as the zero element o. Moreover, A is projective [Mil85, p. 113, Thm. 7.1].
We fix an embedding of A into PmK for some positive integer m.

Conversely, if a group variety A is a projective algebraic group over a field K,
then A is also complete [Mil17, p. 158, Thm. 7.22], hence is an abelian variety.

Recall that a group scheme π: A → S over S is an abelian scheme if π
is proper [Liu06, p. 103, Def. 3.14] and smooth and the geometric fibers of π
are connected [Mil85, p. 145, Sec. 20]. In particular, the fibers of π are abelian
varieties. Thus, an abelian scheme S can be thought of as a continuous family
of abelian varieties parametrized by S. When S = Spec(K) is the spectrum of
a field K, this is the standard definition of an abelian variety over K.
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The polynomials involved in the homogeneous equations that define the
abelian variety A as well as those involved in the group operations of A have
finitely many non-zero coefficients. Each of these coefficients belongs to K,
so we adjoin them and their inverses to the integral domain R introduced in
Setup 1.1, if necessary, to assume that A extends to an abelian scheme A over
R, that is A = A ×Spec(R) Spec(K) [Mil85, p. 148, Remark 20.9]. Note that
the abelian scheme A depends on the embedding of A into PmK . However, the
statements “for almost all p in Spec(R)” that will follow, do not depend on this
choice. Moreover, every point in A(K) has a representation by an (m+1)-tuple
(a0, a1, . . . , am) with entries in R (see also the paragraph that follows Lemma
3.3 for the notation A(R)).

However, in order for the latter point to belong to A(R), the elements
a0, . . . , am must generate the unit ideal of the principal ideal domain Rp for
all height 1 prime ideals p of the integrally closed noetherian domain R (since,
by [Mts94, p. 81, Thm. 11.5(ii)], R is the intersection of all localizations at
height 1 prime ideals) [Poo17, p. 42, Example 2.3.17], so at this point we only
know that A(R) ⊆ A(K) [Poo17, p. 43, Cor. 2.3.22].

We prove that the later inclusion is actually an equality. The starting point
is the following result that goes back to André Weil.

{BLR}
Lemma 3.3 ([BLR90, p. 109, Sec. 4.4, Thm. 1]). Let S be a normal noetherian
base scheme and let u: Z 99K G be an S-rational map from a smooth S-scheme
Z to a smooth separated S-group scheme G. Suppose that u is defined in codi-
mension ≤ 1, meaning that the domain of definition of u contains all points of
Z of codimenaion ≤ 1. Then, u is defined everywhere.

Let S be a scheme and let X and T be S-schemes. Then, the set of T -
points on X is X(T ) := HomS(T,X) [Poo17, p. 38, Def. 2.3.1]. In the case
where S = Spec(K) and T = Spec(L) for a field extension L of K, an element
of X(L) is called an L-rational point or simply an L-point. See also [Poo17,
p. 41, Example 2.3.5, p. 42, Rem. 2.3.16, Example 2.3.17, and Rem. 2.3.18] for
scheme-valued points on projective space.

{EXD}
Proposition 3.4. Let R be an integrally closed noetherian domain with quotient
field K. Let A be an abelian variety over K and assume that A extends to an
abelian scheme A over Spec(R), i.e. A = A×Spec(R) Spec(K) is the generic fiber
of A. Then, the map A(R)→ A(K) = A(K) is bijective.

Proof. We follow the proof of [Poo17, p. 65, Thm. 3.2.13(ii)] which proves
that if R is a Dedekind domain and X is a proper R-scheme, then the map
X(R)→ X(K) is bijective.

Since A is a projective scheme over R, A is proper over Spec(R) [Liu06,
p. 108, Thm. 3.30]. In particular, A is of finite type and separated over Spec(R)
[Liu06, p. 103, Def. 3.14]. Since R is a noetherian ring, this implies that A is
of finite presentation over Spec(R) [Poo17, p. 59, Def. 3.1.12 and Rem. 3.1.13].
The same holds for K replacing R and A replacing A.
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Let f ∈ A(K) = A(K). We need to extend f : Spec(K) → A to an R-
morphism Spec(R)→ A. To this end we apply [Poo17, p. 60, Thm. 3.2.1(iii)] to
find a dense open subscheme U of Spec(R) such that f extends to a U -morphism
fU : U → AU := A×Spec(R) U , or equivalently, an R-morphism fU : U → A.

The rest of the proof breaks up into three parts.

Minimal prime ideals: Since U is a non-empty open subset of Spec(R), Z =
Spec(R)rU is a proper closed subset of Spec(R). Endow Z with the structure
of a reduced closed subscheme [Liu06, p. 60, Prop. 4.2(e)]. By [Liu06, p. 47,
Prop. 3.20], there exists a non-zero ideal a of R such that Z = Spec(R/a).

Since R is a noetherian ring, so is R/a [Mts94, p. 14]. Thus, Spec(R/a)
is a noetherian scheme [Har77, p. 83, Definition]. By [Liu06, p. 63, Prop. 4.9],
Spec(R/a) has only finitely many components. Hence, by [Liu06, p. 62, Prop. 4.7(b)],
R has only finitely many prime ideals p1, . . . , pn′ that are minimal above a, each
of the schemes V (pi/a) := {p/a | p ∈ Spec(R) and pi ⊆ p} ∼= Spec(R/pi) is

an irreducible component of Spec(R/a) and Spec(R/a) =
⋃n′

i=1 V (pi/a). If
p ∈ Spec(R)rU is of height 1 (equivalently, of codimension 1 in Spec(R)), then
p is a minimal prime ideal of R that contains a, so p = pi for some i between 1
and n′. In particular, there are only finitely many p ∈ Spec(R)rU of height 1,
say p1, . . . , pn.

Claim: We can extend fU to a morphism from an open neighborhood of U ∪
{p1, . . . pn} into A.

Indeed, it suffices to extend fU to a morphism from an open neighborhood
of U ∪{p} into A for each p ∈ Spec(R)rU of height 1, since then we can repeat
the extension argument for each missing point.

Note that Rp is a discrete valuation ring [Mts94, p. 82, Corollary] with
quotient field K. Hence, since A is proper over Spec(R), it follows from the
valuative criterion for properness [Poo17, p. 65, Thm. 3.2.12] that we can
extend f : Spec(K) → A to a morphism Spec(Rp) → A. Next, apply [Poo17,
p. 61, Remark 3.2.2] to spread out this morphism to an R-morphism fV : V →
AV ⊆ A for some dense open V ⊆ Spec(R). Suppose that

⋃k
j=1 Spec(Rj) is an

affine cover of U ∩ V . By [Poo17, p. 65, Thm. 3.2.13(i)], A(Rj) ⊆ A(K), so
(fU )|Spec(Rj) and (fV )|Spec(Rj) define the same point f of A(K), j = 1, . . . , k.
Hence, the restrictions of fU and fV to U ∩V must agree. Thus, we can glue to
obtain an extension of f to U ∪ V , which contains both U and p. This proves
the claim.

End of the proof: By Lemma 3.3, applied to S = Spec(R), Z = S and G = A,
the R-morphism fU , which as an R-rational map Spec(R) 99K A is defined in
codimension ≤ 1 by the claim above, extends to an R-morphism fR: Spec(R)→
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A,

Spec(K) //

f

��

S= Spec(R)

fR

������������������

U

fUzzuuuuuuuuuuu

fU
��

OO

A

��

AUoo

��
Spec(R) Uoo

as desired. �

Remark 3.5. (On the elementary nature of Abelian varieties.) We observe {ELN}
that the statement about the group operations of A satisfying the group axioms
is equivalent to an elementary statement about A(K̃) with parameters in R.
Hence, by the elimination of quantifiers of the theory of algebraically closed
fields (Remark 1.6) and as in Example 1.8, for almost all p ∈ Spec(R) the
reduced variety Āp is a group variety over K̄p, Āp is projective, hence complete,
and dim(Āp) = dim(A) (by (3)). It follows that Āp is an abelian variety. By
Remark 1.6, those statements hold also for almost all p ∈ Spec(R0).

If f : A→ B is a morphism (resp. homomorphism, epimorphism) of abelian
varieties over K, then so is the reduction map fp: Āp → B̄p, again for almost
all p ∈ Spec(R), so also for almost all p ∈ Spec(R0).

By Proposition 3.4, the ring homomorphism R→ K̄p induces a group homo-
morphism ρp: A(K) = A(R) → Āp(K̄p). Let L be a finite separable extension
of K, let RL be the integral closure of R in L, and extend p to a prime ideal of
RL. Then, ρp extends to a group homomorphism ρp: A(L)→ Āp(L̄p). Indeed,
as in Setup 1.1, RL is noetherian [ZaS75, p. 265, Cor. 1]. Thus, by Proposition
3.4, A(L) = A(RL).

Finally, we note that [Shi98, p. 95, Prop. 25] proves that Āp is an abelian
variety for almost all p ∈ Spec(R) in the case where R is a Dedekind domain.

The following result is well-known.
{SEPp}

Lemma 3.6. Let A be an abelian variety over K, consider a ∈ A(K), and let
n be a positive integer with char(K) - n. Then, every point b ∈ A with nb = a
lies in A(Ksep). In particular, An(K̃) ⊆ A(Ksep).

Proof. By [Mil85, p. 115, Thm. 8.2], the map nA: A→ A, defined by nA(b) =
nb is étale. By [Mum88, p. 245, Cor. 1], n−1

A (a) ⊆ A(Ksep), as claimed.

In particular, An(K̃) = n−1
A (o) ⊆ A(Ksep). �
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{ULTp}
Setup 3.7. By Convention 1.3, last paragraph, the intersection of finitely many
non-empty Zariski-open subsets of Spec(R0) is infinite. Hence, [FrJ08, p. 139,
Lemma 7.5.4] yields an ultrafilter D on Spec(R0) that contains every non-empty
Zariski-open subset of Spec(R0). We call an ultrafilter D on Spec(R0) that
satisfies this condition a Zariski-ultrafilter on Spec(R0). In particular, a
Zariski-ultrafilter on Spec(R0) is non-principal, i.e. D contains no finite subset
of Spec(R0) [FrJ08, p. 139, Example 7.5.1(b)].

Let K∗ =
∏
K̄p/D, where p ranges over Spec(R0), be the corresponding

ultraproduct [FrJ08, Sections 7.5 and 7.7]. As in Convention 1.3, we consider
Spec(R0) as a subset of Spec(R). Taking the ultraproduct of the residue maps
ρp: R → K̄p, we obtain a homomorphism ρ∗: R → K∗. Moreover, by that
convention, for every non-zero c ∈ R there exists a non-zero c0 ∈ R0 such that

{p ∈ Spec(R0) | c0 /∈ p} ⊆ {p ∈ Spec(R0) | c /∈ p}. (11) {ulfr}

Since the left hand side of (11) belongs to D, so is the right hand side and
therefore {p ∈ Spec(R0) | c ∈ p} 6∈ D (by the definition of ultrafilter [FrJ08,
p. 138, Sec. 7.5]). Hence, the map ρ∗ is injective. It follows that ρ extends to
an embedding ρ∗: K → K∗. We identify K as a subfield of K∗ under ρ∗ and
consider the following diagram of fields:

Ksep

K0,sep K0,sepK K0,sepK
∗

K0 K K∗.

The following result is a generalization of [Hru98, p. 199, Lemma 3].

Lemma 3.8. Ksep is linearly disjoint from K0,sepK
∗ over K0,sepK. {LNDj}

Proof. By Setup 1.1, K/K0 is a finitely generated regular extension, K =
K0(x), and V = Spec(K0[x]) is the geometrically integral affine variety with
generic point x = (x1, . . . , xn).

Part A: We prove that if K ′ is a finite separable extension of K which is regular
over K0, then K ′ is linearly disjoint from K∗ over K.

To this end, we set d = [K ′ : K]. Then, [K ′K0,sep : KK0,sep] = d. Also, there
exists a geometrically integral affine variety V ′ over K0 such that K ′ = K0(V ′).
Replacing V and V ′ by appropriate non-empty Zariski-open subsets, we may
assume that there exists a finite separable morphism f : V ′ → V such that

|f−1(a)| = d for each a ∈ V (K̃). (12) {degr}

Since (12) is an elementary statement on K̃0, it holds over F :=
∏
K̄p,alg/D.

Hence, [K ′F : KF ] = [F (V ′) : F (V )] ≥ d.
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Note that K∗ ⊆ F and observe the following diagram of fields.

K ′

d

K ′K∗ K ′F= F (V ′)

≥d

K K∗ KF= F (V )

K0 K0 F=
∏
K̄p,alg/D.

Then,

d = [K ′ : K] ≥ [K ′K∗ : KK∗] = [K ′K∗ : K∗] ≥ [K ′F : KF ] ≥ d, (13) {inql}

so all of the terms appearing in (13) are equal to d. In particular, [K ′K∗ :
K∗] = d = [K ′ : K]. This implies that K ′ is linearly disjoint from K∗ over K,
as claimed.

Part B: For an arbitrary finite separable extension K ′ of K we set K ′0 =
K ′ ∩ K̃0. Since the extension K/K0 is regular, so is KK ′0/K

′
0 [FrJ08, p. 35,

Lemma 2.5.3]. In particular, KK ′0/K
′
0 is separable. Since K ′/K is a finite

separable extension, K ′/KK ′0 is also separable. Therefore, K ′/K ′0 is separable
[FrJ08, p. 39, Cor. 2.6.2]. By definition, K ′0 is algebraically closed in K ′. Hence,
K ′/K ′0 is regular [FrJ08, p. 39, Lemma 2.6.4].

Note that since K ′/K and K/K0 are separable extensions, so is K ′/K0

[FrJ08, p. 39, Cor. 2.6.2(a)]. Hence, K ′0 is also a separable extension of K0.
Since K ′0/K0 is algebraic, K ′0 ⊆ K0,sep. It follows that K ′0 = K ′ ∩K0,sep.

By Part A, applied to K ′, KK ′0, and K ′0 rather than to K ′, K, and K0, we
have that K ′ is linearly disjoint from K∗K ′0 over KK ′0.

Conclusion of the proof: Assume by contradiction that Ksep is not linearly
disjoint from K0,sepK

∗ over K0,sepK. Then, there exist z1, . . . , zm ∈ Ksep that
are linearly independent over K0,sepK but linearly dependent over K0,sepK

∗.
Thus, there exist v1, . . . , vm ∈ K0,sepK

∗, not all zero, such that
∑m
i=1 vizi = 0.

Without loss we may assume that vi =
∑ri
j=1 aijuij , with aij ∈ K0,sep and

uij ∈ K∗ for all i and j. Then, we choose a finite separable extension K ′ of K
such that z1, . . . , zm ∈ K ′ and aij ∈ K ′0 for all i, j.

Ksep

K ′

rrrrrrr

K0,sepK K0,sepK
∗

K ′0K

ssssss
K ′0K

∗.

qqqqqqq
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Thus, vi ∈ K ′0K∗ for i = 1, . . . ,m.
Since z1, . . . , zm are linearly independent over K0,sepK, they are linearly in-

dependent also over K ′0K. Hence, by Part B, z1, . . . , zm are linearly independent
over K ′0K

∗. But this contradicts the relation
∑m
i=1 vizi = 0 established above.

We conclude from this contradiction that Ksep is linearly disjoint from
K0,sepK

∗ over K0,sepK, as claimed. �

Next we prove an analog of [Hru98, p. 199, Lemma 4] that for itself partially
strengthen [Lan62, p. 161, Cor.]. As in Convention 1.3, we consider Spec(R0)
as a subset of Spec(R).

The proof of Part (d) of Theorem 3.11 uses the following lemma.
{ML1K}

Lemma 3.9. Let Γ ≤ ∆ be abelian groups such that (∆ : Γ) < ∞. Let l be a
prime number with l - (∆ : Γ). Then, l∆ ∩ Γ = lΓ.

Proof. Consider δ ∈ ∆ and γ ∈ Γ such that lδ = γ. Since l - (∆ : Γ), there
are k,m ∈ Z such that ml = 1 + k(∆ : Γ). Hence,

mγ = mlδ = δ + k(∆ : Γ)δ. (14) {mglk}

Since (∆ : Γ)δ,mγ ∈ Γ, we have by (14) that δ ∈ Γ, so γ ∈ lΓ, as claimed.
�

{INJj}
Remark 3.10. The assumption “A(K0,sepK) is finitely generated” that enters
in the next result, holds by Corollary 4.9, if AK̃ has no simple quotient which

is defined over K̃0.

{INJk}
Theorem 3.11. Let A be an abelian variety over K such that A(K0,sepK) is
finitely generated. Then, the following statements hold:
(a) For almost all p ∈ Spec(R0), we have that Āp is an abelian variety over K̄p

with dim(Āp) = dim(A).
(b) For almost all p ∈ Spec(R0), the reduction map ρp: A(K) → Āp(K̄p) is

injective on Ator(K).
(c) If l is a prime number such that l 6= char(K0) and Al(K0,sepK) = 0, then

Āp,l(K̄p) = 0 for almost all p ∈ Spec(R0).
(d) For every large prime number l and for almost all p ∈ Spec(R0), the map

ρp induces an injection

ρ̄p,l: A(K)/lA(K)→ Āp(K̄p)/lĀp(K̄p).

(e) ρp: A(K)→ Āp(K̄p) is an injection for almost all p ∈ Spec(R0).

In both (c) and (d), the exceptional sets of p’s depend on l.

Proof of (a). See Remark 3.5.

Proof of (b). Since A(K) is a finitely generated abelian group, Ator(K) is
finite. For a point of A(K), being different from o is an elementary property.
Hence, for each non-zero a ∈ Ator(K), and for almost all p ∈ Spec(R), the
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element ρp(a) is non-zero. By Convention 1.3, the same statement holds for
almost all p ∈ Spec(R0). Hence, for almost all p ∈ Spec(R0), the map ρp is
injective on Ator(K).

Proof of (c). Assume by contradiction that for all p in an infinite subset
Sl of Spec(R0) there exists a non-zero point ap ∈ Āp,l(K̄p). We choose a non-
principal ultrafilter D on Spec(R0) that contains Sl as an element [FrJ08, p. 139,
Lemma 7.5.4]. As in Setup 3.7, let K∗ =

∏
K̄p/D. Then, the points ap with

p ∈ Sl yield a non-zero point a in Al(K
∗) [FrJ08, p. 142, Cor. 7.7.2], hence also

in Al(K0,sepK
∗).

In addition, since A is defined over K and since l 6= char(K), the point
a belongs to A(Ksep) (by Lemma 3.6). But, by Lemma 3.8, Ksep is linearly
disjoint from K0,sepK

∗ over K0,sepK. Hence, a ∈ A(K0,sepK). Therefore, a ∈
Al(K0,sepK). This contradicts the assumption we have made in (c).

Proof of (d). Since A(K0,sepK) is a finitely generated abelian group, there
exists a finite separable extension K ′0 of K0 such that A(K ′0K) contains all of
the generators of that group. Let R′0 be the integral closure of R0 in K ′0. For
each p ∈ Spec(R0) extend p to a prime ideal of the integral closure of R′0 and
then to the integral closure RKK′

0
of RR′0 in KK ′0. Note that by Remark 3.5,

A(KK ′0) = A(RKK′
0
). Then consider the following commutative diagram,

A(KK ′0)/lA(KK ′0) // Āp((KK ′0)p)/lĀp((KK ′0)p)

A(K)/lA(K) //

OO

Āp(K̄p)/lĀp(K̄p),

OO

where the vertical arrows are the natural homomorphisms and the horizontal
arrows are the corresponding reduction modulo p. By Lemma 3.9, the left
vertical map is injective if l does not divide the finite index (A(KK ′0) : A(K)).
Therefore, if the upper horizontal map is injective, then so is the lower horizontal
map.

By [ZaS75, p. 265, Cor. 1], R′0 is a noetherian domain. By Remark 1.2 R′0,
replacing R0, satisfies Condition 1. Thus, replacing R0 by R′0, K0 by K ′0, and
K by K ′0K, we may assume that

A(K) = A(K0,sepK). (15) {finx}

As in the proof of (c), assume by contradiction that the map ρ̄p,l is non-
injective for all p in an infinite subset Sl of Spec(R0). Again, let D be a non-
principal ultrafilter on Spec(R0) that contains Sl as an element and let K∗ =∏
K̄p/D. Since the non-injectivity of ρ̄p,l is an elementary statement on A(K),

 Loš’ theorem [FrJ08, p. 142, Prop. 7.7.1], implies that the map

ρ̄∗l :=
∏

ρ̄p,l/D: A(KSpec(R0)/D)/lA(KSpec(R0)/D)→ A(K∗)/lA(K∗) (16) {noni}

is non-injective.
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On the other hand, consider a ∈ A(K) for which there exists b ∈ A(K∗)
with lb = a. By Lemma 3.6, b ∈ A(Ksep). By Lemma 3.8, Ksep is linearly
disjoint from K0,sepK

∗ over K0,sepK. Hence,

b ∈ A(K0,sepK)
(15)
= A(K).

It follows that the map

ϕl: A(K)/lA(K)→ A(K∗)/lA(K∗) (17) {injk}

induced by the ρ̄p,l’s is injective.
By assumption, A(K) is a finitely generated abelian group. Hence, the quo-

tient A(K)/lA(K) is a finite abelian group. Therefore, again by  Loš’ theorem,
both groups A(K)/lA(K) and A(KSpec(R0)/D)/lA(KSpec(R0)/D) have the same
number of elements and the map

ψl: A(K)/lA(K)→ A(KSpec(R0)/D)/lA(KSpec(R0)/D)

is injective [FrJ08, last paragraph of p. 143]. It follows that ψl is even bijective.
Moreover, ρ̄∗l ◦ ψl = ϕl. Comparing (16) and (17), we get a contradiction.

Proof of (e). By assumption, A(K0,sepK) is a finitely generated abelian
group. Hence, for each large l, we have Al(K0,sepK) = 0.

As in the proof of (d), we may replace K0 by a suitable finite separable
extension K ′0 to assume that A(K) = A(K0,sepK) is finitely generated. Note

that if the reduction map A(KK ′0) → Āp((KK ′0)p) is injective, then so is the
reduction map A(K) → Āp(K̄p). Let l 6= char(K0) be a large prime number.
In particular,

Al(K0,sepK) = 0. (18) {alk0}

Then, by (d), (18), and (c),

ρ̄p,l is injective and Āp,l(K̄p) = 0 for almost all p ∈ Spec(R0). (19) {injc}

By (b),
ρp is injective on Ator(K) for almost all p ∈ Spec(R0). (20) {ontr}

Since A(K) is a finitely generated abelian group,

A(K) = Ator(K)⊕B, where B is a finitely generated free abelian group (21) {fabg}

[Lan93, p. 147, Thm. 7.3]. Hence,
⋂∞
i=1 l

iB = 0.
Now consider p ∈ Spec(R0) that satisfies (19) and (20). Then, Āp,l(K̄p) = 0.

Let b ∈ B and suppose that ρ̄p,l(b + lA(K)) ∈ lĀp(K̄p). By (19), b ∈ lA(K),
so there exist a′ ∈ Ator(K) and b′ ∈ B such that b = la′ + lb′. Hence, by (21),
b = lb′. Thus, ρ̄p,l is injective on B/lB. Therefore, by the preceding paragraph
and by Lemma 3.1, with C = Āp(K̄p), we have that ρp is injective on B. This
means that Ker(ρp) ⊆ Ator(K). We conclude from (20) that ρp is injective, as
claimed. �
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4 Isotriviality of Abelian Varieties
{ISOt}

We introduce the notion of K̃/K̃0-isotriviality of abelian varieties and prove
that if an abelian variety has no K̃/K̃0-isotrivial quotients, then the same holds
for almost all of its reductions. Again, K0 and K are the fields introduced in
Setup 1.1.

{ISOu}
Remark 4.1 (Isogenies of abelian varieties). We say that the abelian variety A
overK is simple if A is non-zero and has no non-zero proper abelian subvarieties
over K.

Every morphism α: A → B of abelian varieties over K that maps the zero
point of A onto the zero point of B is a homomorphism [Mil85, p. 107, Cor. 3.6].
Thus, α(a+a′) = α(a)+α(a′) for all a,a′ ∈ A(K̃). If, in addition, α is surjective
and dim(A) = dim(B), then Ker(α) is a finite group scheme and α is an isogeny
[Mil85, p. 114, Prop. 8.1].

In particular, multiplication of A by a positive integer n is an isogeny that
we denote by nA and set An = Ker(nA). By [Mil85, p. 115, Thm. 8.2], nA is
étale if and only if char(K) - n. In that case

|An(Ksep)| = n2dim(A) (22) {dimn}

[Mil85, p. 116, Rem. 8.4].
If α: A → B is an isogeny of abelian varieties over K, then there exists an

isogeny β: B → A and a positive integer n such that β◦α = nA [Mum74, p. 169,
Rem.].

Every birational map A → B between abelian varieties over K that maps
the zero point of A onto the zero point of B is an isomorphism [Mil85, p. 107,
Rem. 3.7].

{CHEv}
Remark 4.2. Let A be an abelian variety over K and let B be an abelian
subvariety of A over K. By a theorem of Poincaré, A has an abelian subvariety
B′ over K such that A = B+B′ and B ∩B′ is a finite group (see [Lan59, p. 28,
Thm. 6] or [Mil85, p. 122, Prop. 12.1]). This gives a short exact sequence

0 −→ C −→ B ×B′ β−→ A −→ 0

with β(b,b′) = b + b′ and

C = {(b,b′) ∈ B ×B′ | b + b′ = o} = {(b,−b) ∈ B ×B′ | b ∈ B} ∼= B ∩B′

is finite. Thus, β is an isogeny.
Using induction on dim(A), we find a short exact sequence

0 −→ A0 −→ A1 × · · · ×Ar
α−→ A −→ 0, (23) {chvb}

where A1, . . . , Ar are simple abelian subvarieties of A, defined over K, such that
A1 + · · · + Ar = A. Thus, A0 is a finite subgroup of A. In particular, α is an
isogeny.
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Claim: Every simple abelian subvariety B of A is isogeneous to Ai for some i
between 1 and r.

Indeed, by Remark 4.1, the short exact sequence (23) yields another short
exact sequence

0 −→ A′0 −→ A
α′

−→ A1 × · · · ×Ar −→ 0, (24) {chva}

with A′0 finite.
Now note that Ker(α′|B) as a subgroup of Ker(α′) is finite. Hence, α′|B : B →

α′(B) is an isogeny and therefore α′(B) is a simple abelian subvariety of A1 ×
· · ·×Ar, in particular α′(B) 6= 0. Therefore, there exists i between 1 and r such
that the projection πi: A1 × · · · × Ar → Ai is non-zero on α′(B). Since Ai and
α′(B) are simple, πi|α′(B): α

′(B) → Ai is an isogeny. Thus, B is isogeneous to
Ai, as claimed.

Following the claim we call A1, . . . , Ar the simple quotients of A. The exis-
tence and the uniqueness (up to isogenies) of the simple quotients is Poincaré’s
complete reducibility theorem (see [Lan59, p. 30, Cor.] or [Mil85, p. 122,
Prop. 12.1]).

By our construction, every simple quotient of A is isomorphic to a simple
abelian subvariety of A. Conversely, by the Claim, every simple abelian subva-
riety of A is also a simple quotient of A.

Finally, we note that if K is separably closed and in particular if K is
algebraically closed, then the decomposition of A into a direct product of simple
abelian varieties does not change, up to isogeny, under extensions of K [Con06,
Cor. 3.21].

As usual, we say that a geometrically integral algebraic variety V over K is
defined over a subfield K0 if there exists a geometrically integral variety V0

over K0 such that V0,K := V0 ×Spec(K0) Spec(K) ∼= V .
Analogous definition applies to the notion “a morphism f : V →W between

geometrically integral varieties”.
{MSPc}

Lemma 4.3. Let A be an abelian variety over K̃0 and let B be an abelian
variety over K̃. Then:
(a) Ator(K̃) = Ator(K̃0).
(b) Ator(K̃0) is Zariski-dense in A.
(c) If B is already defined over K̃0, then every abelian subvariety of B and

every homomorphism α: AK̃ → B are already defined over K̃0.

(d) Every automorphism of AK̃ is already defined over K̃0.

Proof of (a). Let a ∈ Ator(K̃) and let n be the order of a. Then, a is a
K̃-rational point of the finite subgroup scheme An of A (Remark 4.1). Since An
is defined over K̃0, all of its points are K̃0-rational, as claimed.

Proof of (b). We follow [Spe14].
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The Zariski-closure of Ator(K̃0) is an abelian algebraic subgroup T of A over
K̃0. Hence, Ator(K̃0) ⊆ T (K̃0) ⊆ A(K̃0), so Ator(K̃0) ⊆ Ttor(K̃0) ⊆ Ator(K̃0).
Therefore,

Ator(K̃0) = Ttor(K̃0) (25) {atbt}

and dim(T ) ≤ dim(A). The connected component C of the zero point of T is
a projective group variety, hence an abelian variety (Remark 3.2, third para-
graph). Moreover, T (K̃0)/C(K̃0) is a finite group [Bor91, p. 46, Prop.(b)] which
is abelian.

Choose a prime number l > max(|T (K̃0)/C(K̃0)|, char(K)). Since T (K̃0) is
an abelian group, we have |Tl| = |Cl|. Hence,

l2dim(A) (22)
= |Al|

(25)
= |Tl| = |Cl|

(22)
= l2dim(C).

Therefore, dim(A) = dim(C), hence A = C ≤ T , so A = T , as claimed.

Proof of (c). See [Mil85, p. 146, Cor. 20.4].

Proof of (d). Statement (d) is a special case of Statement (c). �

{DEFi}
Corollary 4.4. Let A be an abelian variety over K̃.
(a) If all of the simple quotients of A are defined over K̃0, then A is defined

over K̃0.
(b) If A is defined over K̃0 and B is an abelian variety over K̃ which is isoge-

neous to A, then B is also defined over K̃0.

Proof of (a). The abelian varieties A1, . . . , Ar that appear in the short exact
sequence (23) are the simple quotients of A, so by our assumption, they are
defined over K̃0. Moreover, A0 is a finite subgroup of A (second paragraph of
Remark 4.2). Hence, by Lemma 4.3(a),

A0(K̃) ⊆ A1,tor(K̃)× · · · ×Ar,tor(K̃) ⊆ A1(K̃0)× · · · ×Ar(K̃0).

Hence, A0(K̃) = A0(K̃0), so by (23), A is isomorphic over K̃ to the K0-abelian
variety (A1 × · · · ×Ar)/A0. Thus, A is defined over K̃0.

Proof of (b). The simple quotients of B are isogeneous to the simple quotients
of A, so as in the proof of (a), each of them is defined over K̃0. It follows again
by (a) that B is defined over K̃0. �

{COMp}
Definition 4.5 (Isotriviality). Let A be an abelian variety over K. We say
that AK̃ has a K̃/K̃0-isotrivial quotient if there exist an abelian variety T

over K̃0 and a non-zero homomorphism τ : TK̃ → AK̃ . By Remark 4.2, this is

equivalent for AK̃ to have a quotient which is defined over K̃0.

{TRAv}
Remark 4.6 (The trace of an abelian variety). Let A be an abelian variety
over K. Then, there exists an abelian variety TrK/K0

(A) over K0 and a homo-
morphism

τA,K/K0
: TrK/K0

(A)K → A (26) {trac}



4 ISOTRIVIALITY OF ABELIAN VARIETIES 22

(defined over K) satisfying the following universal property:
Given an abelian variety B over K0 and a homomorphism σ: BK → A, there

exists a unique homomorphism ρ: B → TrK/K0
(A) such that σ = τA,K/K0

◦ ρK .
See [Lan59, p. 213, Thm. 8] or [Con06, Thm. 6.2]. (Note that by Setup 1.1,
K/K0 is a regular extension, in particular K/K0 is a primary extension, as
needed in Conrad’s theorem.)

The pair (TrK/K0
(A), τA,K/K0

) is called the K/K0-trace of A.

By [Con06, Thm. 6.8], the base change from K0 to K̃0 of (26) yields the
trace

τAKK̃0
,K̃/K̃0

: TrKK̃0/K̃0
(AKK̃0

)KK̃0
→ AKK̃0

.

With τ := τA,K/K0
and τ̃ := τAK̃0

,K̃/K̃0
the above mentioned objects fit into

the following commutative diagram:

A AKK̃0

oo

BK
ρK //

σ
??������

��

TrK/K0
(A)K

τ

eeKKKKKKKK

��

TrKK̃0/K̃0
(AKK̃0

)KK̃0

τ̃
iiRRRRRRRRRR

oo

B
ρ // TrK/K0

(A).

In addition, the map τ is injective on K-points, so TrK/K0
(A)(K0) is naturally

a subgroup of A(K) [Con06, first paragraph of §7]. In particular, if A has
no K̃/K̃0-isotrivial quotients, alternatively, A has no simple quotient which is
defined over K̃0, then TrKK̃0/K̃0

(AKK̃0
)(K̃0) = 0, so TrKK̃0/K̃0

(AKK̃0
) = 0.

Hence, TrK/K0
(A) = 0.

The next result is a relative Mordell-Weil theorem and is due to Lang-Néron
[Lan62, Chap. V]. See also [Con06, Thm. 7.1].

{MWLn}
Proposition 4.7. Let A be an abelian variety over K. Then, the quotient group

A(K)/TrK/K0
(A)(K0)

is finitely generated.

Non-regularity of finitely generated extension of fields can be “corrected” by
going over to finite extensions:

{rglr}
Lemma 4.8. Let M/M0 be a finitely generated extension of fields. Then, M0

has a finite extension M ′′0 and M has a finite extension M ′′ such that M ′′/M ′′0
is a finitely generated regular extension.

Proof. The maximal purely inseparable extension M0,ins of M0 is perfect.
Hence, MM0,ins/M0,ins is a finitely generated separable extension. Let t :=
(t1, . . . , tr), with t1, . . . , tr ∈ M , be a separating transcendence base for the
latter extension. In particular, MM0,ins/M0,ins(t) is a finite separable extension.
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Let f ∈ M0,ins(t)[X] be an irreducible polynomial for a primitive element x of
the latter extension and choose a finite extension M ′0 of M0 in M0,ins that
contains the coefficients of the rational functions that appear as coefficients of
f(t, X) as a polynomial in X. Also, suppose that M = M0(t1, . . . , tr, s1, . . . , sm)
and enlarge M ′0 to assume that s1, . . . , sm ∈ M ′′ := M ′0(t, x). Then, M ⊆ M ′′

and M ′′ is a finite separable extension of M ′0(t).

M M ′′ MM0,ins

M ′0(t) M0,ins(t)

M0 M ′0 M0,ins

M // M ′′ M ′′

M ′0(t) M ′′0 (t)

M0 M ′0 M ′′0 := M ′′ ∩ M̃0

Now observe thatM ′′0 is algebraically closed inM ′′. Moreover, sinceM ′′/M ′0(t)
is a finite separable extension, so is M ′′/M ′′0 (t). Since t1, . . . , tr are algebraically
independent over M ′′0 , we conclude that M ′′/M ′′0 is finitely generated and sepa-
rable. Therefore, by [FrJ08, p. 39, Lemma 2.6.4], M ′′/M ′′0 is regular, as desired.
�

If in addition to the assumptions of Proposition 4.7, A has no K̃/K̃0-isotrivial
quotients, then by Remark 4.6, TrK/K0

(A) = 0. This yields the following result.
{FINg}

Corollary 4.9. Let M/M0 be a finitely generated extension of fields and let A
be an abelian variety over M . Suppose that AM̃ has no simple quotient which

is defined over M̃0. Then, A(M) is finitely generated.

Proof. We use Lemma 4.8 to choose finite extensions M ′′0 and M ′′ of M0 and
M , respectively, such that M ′′0 ⊆M ′′ and M ′′/M ′′0 is a finitely generated regular
extension. Then, (AM ′′)M̃

∼= AM̃ has no simple quotient which is defined over

M̃0. By Remark 4.6, TrM ′′/M ′′
0

(AM ′′) = 0. Hence, by Proposition 4.7, A(M ′′)
is finitely generated. Since A(M) ⊆ A(M ′′), also A(M) is finitely generated, as
claimed. �

The next result is Corollary 7 on page 201 of [Hru98].
{BETa}

Lemma 4.10. Let B be an abelian variety over an algebraically closed field F0.
Let F be an extension of F0, let A be an abelian variety over F , and let h: BF →
A be a homomorphism. Then, F has an extension F ′ of degree at most β, where
β = β(dim(A)) depends only on dim(A), such that h(BF )tor(F̃ ) ⊆ A(F ′).

Lemma 4.10 also follows from [Sil92, Thm. 4.2 and Cor. 3.3], with β(dim(A)) =
2(9dim(A))2dim(A), and the fact that a surjective homomorphism of abelian va-
rieties over an algebraically closed field induces an epimorphism on the torsion
points. See https://mathoverflow.net/questions/266512/a-surjective-morphism-
of-abelian-varieties-induces-an-epimorphism-on-the-torsion

https://mathoverflow.net/questions/266512/a-surjective-morphism-of-abelian-varieties-induces-an-epimorphism-on-the-torsion
https://mathoverflow.net/questions/266512/a-surjective-morphism-of-abelian-varieties-induces-an-epimorphism-on-the-torsion
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{SURj}
Lemma 4.11. Let A,K,R be as in Remark 3.2 and let n be a positive integer
with char(K) - n. Then, for almost all p ∈ Spec(R), reduction modulo p maps
An(K̃) isomorphically onto Āp,n(K̄p,alg). Hence, the same holds for almost all
p ∈ Spec(R0).

Proof. The case where R = R0 is a Dedekind ring follows from [SeT68, Lemma
2]. Indeed, in this case for almost all p ∈ Spec(R), Rp is a discrete valuation
ring with a trivial inertia group.

We prove the general case by model theory as follows.
For almost all p ∈ Spec(R) we consider the abelian variety Āp and the ho-

momorphism ρp induced by reduction modulo p which is introduced in Remark

3.5. In particular, ρp maps An(K̃) into Āp,n(K̄p,alg).

Since the statement “y,y′ ∈ An(K̃) and y 6= y′” is elementary, we find that
for almost all p, ρp maps An(K̃) injectively into Āp,n(K̄p,alg).

By Remark 3.5, dim(A) = dim(Āp) for almost all p. Hence,

|An(K̃)|
(22)
= n2dim(A) = n2dim(Āp) (22)

= |Āp,n(K̄p,alg)|

for almost all p. It follows from the preceding paragraph that for almost all p,
ρp maps An(K̃) isomorphically onto Āp,n(K̄p,alg), as claimed. �

The following lemma is not optimal, but it is all we need for the proof of
Theorem 4.13 below.

{HTOr}
Lemma 4.12. Let F be an algebraically closed field and h: B → B′ a non-zero
homomorphism of abelian varieties over F . Let n be a positive integer which is
not a multiple of char(F ). Then, h(B(F )) contains a point of order n.

proof. By assumption, B′′ := h(B) is an abelian subvariety of B′ of posi-
tive dimension. Since F is algebraically closed, B′′(F ) = h(B(F )). By (22),
B′′n(F ) ∼= (Z/nZ)2dim(B′′) 6= 0, as stated. �

We prove an analog of [Hru98, p. 201, Cor. 8].
{HRSo}

Theorem 4.13. Let R0, K0, R, and K be as in Setup 1.1 and let A be an
abelian variety over K such that no simple quotient of AK̃ is defined over K̃0.

Then, for almost all p ∈ Spec(R0), Āp is an abelian variety over K̄p and
no simple quotient of Āp,K̄p,alg

is defined over K̄0,p,alg.

Proof. We fix a prime number l 6= char(K) and let β := β(dim(A)) be the
constant introduced in Lemma 4.10.

Part A: There exists a positive integer i such that for each y in A(K̃) of order
li we have [KK̃0(y) : KK̃0] > β.

Indeed, we assume by contradiction that for each positive integer i the set

Si = {y ∈ A(K̃) | ord(y) = li and [KK̃0(y) : KK̃0] ≤ β}

is non-empty. Since Si ⊆ Ali(K̃), the set Si is finite (Remark 4.1).
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If y ∈ Si+1, then ly ∈ Si. Since the inverse limit of finite non-empty sets is
non-empty [FrJ08, p. 3, Cor. 1.1.4], this yields an infinite sequence y1,y2,y3, . . .
of points in Al∞(K̃) such that lyi+1 = yi for i = 1, 2, 3, . . . and [KK̃0(yi) :
KK̃0] ≤ β.

Note that KK̃0(yi) ⊆ KK̃0(yi+1). Hence, by the preceding paragraph, the
sequence KK̃0(y1) ⊆ KK̃0(y2) ⊆ KK̃0(y3) ⊆ · · · becomes stationary at some
point. Thus, KK̃0 has a finite extension M such that yi ∈ A(M) for all i. It
follows that Al∞(M) is infinite.

On the other hand, M̃ = K̃. Since no simple quotient of AM̃ is defined over

K̃0, the abelian group A(M) is finitely generated (Corollary 4.9). In particular,
Al∞(M) is finite (see the second paragraph of Section 3). This contradiction to
the preceding paragraph proves our claim.

Part B: Reduction modulo p. By Setup 1.1, K = K0(x) with x = (x1, . . . , xn).
Thus, KK̃0 = K̃0(x), so by Part A

[K̃0(x,y) : K̃0(x)] > β for every y ∈ A(K̃) of order li. (27) {kxya}

We embed A in PmK for some positive integer m (Remark 3.2). Let V be the
integral affine variety over K̃0 with generic point x and recall that x has been
chosen in Setup 1.1 such that V is smooth. For every y ∈ A(K̃) of order li we
denote the integral subvariety of An

K̃0
× Pm

K̃0
with generic point (x,y) by Wy.

Claim: For almost all p ∈ Spec(R0) and every y ∈ A(K̃) of order li, we have

[K̄0,p,alg(x̄p, ȳp) : K̄0,p,alg(x̄p)] > β, (28) {hrtb}

where x̄p is a generic point of V̄p and such that, as in Example 1.8, (x̄p, ȳp) is
a reduction modulo p of (x,y) that generates W̄y,p.

Indeed, by Remark 4.1, A(K̃) has only finitely many points y whose order
is li. Hence, it suffices to consider y ∈ A(K̃) of order li and to prove (28) for
almost all p ∈ Spec(R0).

By Lemma 3.6, K̃0(x,y)/K̃0(x) is a finite separable extension. Let ϕ: Wy →
V be the rational map defined by ϕ(x,y) = x. Since ϕ is separable and V is
normal (because V is smooth), d := [K̃0(x,y) : K̃0(x)] = deg(ϕ) is the number
of points in ϕ−1(a) for every a in V0(K̃0) for some non-empty open subset V0 of
V [Mil17, p. 182, Thm. 8.40]. Thus, the equality d = deg(ϕ) is an elementary
statement on K̃0.

It follows by Remarks 3.5 and 1.6 that ϕ̄p: W̄y,p → V̄p is a separable rational
map with deg(ϕ̄p) = d for almost all p ∈ Spec(R0). Hence, by the preceding
paragraph, for almost all p ∈ Spec(R0) we have

[K̄0,p,alg(x̄p, ȳp) : K̄0,p,alg(x̄p)] = deg(ϕ̄p) = d

= deg(ϕ) = [K̃0(x,y) : K̃0(x)]
(27)
> β,

as claimed.
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Conclusion of the proof: For almost all p ∈ Spec(R0), Āp is an abelian va-
riety over K̄p with dim(Āp) = dim(A) (Remark 3.5). By Lemma 4.11, for

almost all p ∈ Spec(R0), reduction modulo p maps Ali(K̃) isomorphically onto
Āp,li(K̄p,alg). Hence, by the claim,

for all ȳ ∈ Āp,li(K̄p,alg) of order li

we have [K̄0,p,alg(x̄p, ȳ) : K̄0,p,alg(x̄p)] > β.
(29) {cncm}

Let p be a prime ideal of R0 that satisfies (29). We assume by contra-
diction that Āp,K̄p,alg

has a non-trivial K̄0,p,alg-quotient. Thus, by Definition

4.5, there exist an abelian variety B over a finite extension of K̄0,p and a
non-zero homomorphism h: BK̄p,alg

→ Āp,K̄p,alg
. By the preceding paragraph,

β(dim(A)) = β(dim(Āp)). By Lemma 4.10 with K̄0,p,alg and K̄0,p,alg(x̄p) re-
placing F0 and F , respectively, all torsion points of h(BK̄0,p,alg

) are rational

over a finite extension of K̄0,p,alg(x̄p) of degree at most β. But by Lemma 4.12,
h(B(K̄0,p,alg)) contains a point ȳ of order li. By what we have just said, the
degree of ȳ over K̄0,p,alg(x̄p) is at most β. This contradiction to (29) proves
that Āp,K̄p,alg

has no K̄0,p,alg-quotient, as claimed. �

{HRSp}
Corollary 4.14. Let R0, K0, R, and K be as in Setup 1.1 and let C be an
elliptic curve over K such that CK̃ is not defined over K̃0.

Then, for almost all p ∈ Spec(R0), C̄p is an elliptic curve over K̄p and
C̄p,K̄p,alg is not defined over K̄0,p,alg.

5 A Moduli Space
{MSp}

Let F/F0 be an extension of fields. We say that a geometrically integral curve
C over F is F̃ /F̃0-isotrivial if there exists a geometrically integral curve C0

over F̃0 such that C0,F̃ is birationally equivalent to CF̃ . Recall that if both C
and C0 are smooth and projective, then the latter condition implies that C0,F̃

is isomorphic to CF̃ [Har77, p. 45, Cor. 6.12].

We prove that “K̃/K̃0-non-isotriviality” for curves over K is preserved under
almost all reductions with respect to prime ideals of R0. As in the preceding
sections, K/K0 is the finitely generated field extension introduced in Setup 1.1
and R0 is a noetherian domain with Quot(R0) = K0.

{morpm}
Remark 5.1. Recall that a quasi-projective morphism (see [Liu06, p. 109,
Def. 3.35] for a definition) is stable under base change. See [Liu06, p. 112,
Exer. 3.20(a)] or [GoW10, p. 575, quasi-projective satisfies (BC)].

{crgn}
Remark 5.2. A curve of genus g over a scheme S is a smooth and proper
morphism π: C → S of schemes whose geometric fibers Cs̃ = C ×S Spec(Ω),
for each morphism s̃: Spec(Ω) → S, where Ω is an algebraically closed field,
are irreducible curves of genus g. By [Liu06, p. 104, Prop. 3.16(c) and p. 143,
Prop. 3.38], Cs̃ is proper and smooth over Spec(Ω). Hence, by [Liu06, p. 109,
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Rem. 3.33], Cs̃ is projective over Spec(Ω). Therefore, by Remark 2.1, Cs̃ is also
conservative.

{rpfn}
Remark 5.3. For a scheme M we denote by hM the representable func-
tor from the category of schemes to the category of sets defined by hM (T ) =
Hom(T,M) for each scheme T , where Hom(T,M) is the set of morphisms of
schemes from T to M [GoW10, p. 93, Section 4.1].

Then, hM is a contravariant functor from the category of schemes to the
category of sets. Thus, for every morphism f : T → S of schemes we have a
map hM (f): hM (S) → hM (T ) that attaches to each morphism ϕ: S → M the
morphism ϕ ◦ f : T →M .

{MgS}
Remark 5.4. Suppose that g ≥ 2 and let S be a noetherian scheme. We denote
by Mg(S) the set of all curves of genus g over S, modulo isomorphism. Then,
Mg is a contravariant functor from the category of noetherian schemes to the
category of sets. Thus, for every morphism f : T → S of noetherian schemes we
have a mapMg(f):Mg(S)→Mg(T ) that attaches to each curve π: C → S of
genus g the curve πT : C ×S T → T , which is also of genus g, with πT being the
projection on the second factor.

By [MFK94, p. 143, Cor. 7.14 and p. 99, Def. 5.6], there exists a scheme Mg

over Spec(Z) which satisfies

Mg is quasi-projective over the open subset Spec(Z)r{pZ}
of Spec(Z), for each prime number p,

(30) {Eq5_1}

and there exists a morphism Φg from the functor Mg to the functor hMg ,
in particular for each noetherian scheme S there is a map Φg(S): Mg(S) →
Hom(S,Mg), such that (Mg,Φg) is a coarse moduli scheme. That is, {CMSa}

(a) for all algebraically closed fields Ω, the map

Φg(Spec(Ω)):Mg(Spec(Ω))→ hMg (Spec(Ω)) = Hom(Spec(Ω),Mg))

is bijective, and {ABSj}
(b) for every scheme N and morphism ψ from Mg to hN , there is a unique

morphism χ: hMg
→ hN such that ψ = χ ◦ Φg.

3

In particular, by (30) and Remark 5.1, for every field F , the scheme Mg,F is
quasi-projective over Spec(F ). Although we don’t use it, we mention that Mg,F

is irreducible [DeM69].
Consider a curve π: C → S of genus g and a geometric fiber Cs̃ = C ×S

Spec(Ω) as in Remark 5.2. Denote by [π] the corresponding element inMg(S).
By definition,

[πΩ] =Mg(s̃)([π]), (31) {piOm}

where πΩ := πSpec(Ω) is as in the first paragraph of the present remark. Let

ϕ = Φg(S)([π]) ∈ hMg (S) = Hom(S,Mg) . (32) {Eq5_2}

3We don’t use condition (b) in the sequel.
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Thus, ϕ: S →Mg is a morphism of schemes and, since Φg is a morphism between
two contravariant functors,

Φg(Spec(Ω))([πΩ]) = ϕ ◦ s̃ ∈ Hom(Spec(Ω),Mg), (33) {Eq5_3}

as follows from the following commutative square:

[π] ∈
_

��

Mg(S)
Φg(S) //

Mg(s̃)

��

Hom(S,Mg)

hMg (s̃)

��

3
_

��

ϕ

[πΩ] ∈ Mg(Spec(Ω))
Φg(Spec(Ω))

// Hom(Spec(Ω),Mg) 3 ϕ ◦ s̃ .

{ISoT}
Theorem 5.5. Let C be a smooth geometrically integral curve over K of genus
g ≥ 1. Suppose that C(K) 6= ∅, C is conservative, and CK̃ is not birationally

equivalent to a curve which is defined over K̃0.
Then, for almost all s ∈ Spec(R0) the reduced curve Cs over K̄s is geomet-

rically integral, smooth, conservative of genus g, and Cs(K̄s) 6= ∅.
In addition, Cs,K̄s,alg

is not birationally equivalent to a curve which is defined

over K̄0,s,alg. In other words, if C is non-K̃/K̃0-isotrivial, then Cs,K̄s,alg
is non-

K̄s,alg/K̄0,s,alg-isotrivial for almost all s ∈ Spec(R0).

Proof. Replacing C by a birationally equivalent curve, we may assume that C is,
in addition to being smooth and geometrically integral, also projective [GeJ89,
Prop. 8.3]. By assumption and the first paragraph of this section, CK̃ is not

defined over K̃0.
By Example 1.8(c),(d), and Lemma 2.2, smoothness, being geometrically

integral, projective, and being conservative of genus g, are preserved under
reduction with respect to almost all s ∈ Spec(R) (see also Remark 5.2), hence
also with respect to almost all s ∈ Spec(R0) (Remark 1.5). Also, the K-rational
point of C yields a K̄s-rational point of Cs for almost all s ∈ Spec(R), hence
also for almost all s ∈ Spec(R0). It remains to prove:

Claim: For almost all s ∈ Spec(R0) the curve C̃s := Cs,K̄s,alg
is not defined over

K̄0,s,alg.
The case g = 1 is covered by Corollary 4.14, since then C is an elliptic curve

over K.
Assume g ≥ 2 and let (Mg,Φg) be the coarse moduli scheme that corresponds

to the functorMg. Let π: C → Spec(R) be a curve of genus g whose generic fiber

is C. Then, Cs = C ×Spec(R) Spec(K̄s) and C̃s = Cs ×Spec(K̄s) Spec(K̄s,alg) for
each s ∈ Spec(R). Let [π] be the corresponding element in Mg(Spec(R)) (last
paragraph of Remark 5.4) and let ϕ := Φg(Spec(R))([π]) ∈ Hom(Spec(R),Mg)
be as in (32).

Since CK̃ is not defined over K̃0,

there is no curve π0: C0 → Spec(K̃0) of genus g such that [πK̃ ] = [π0,K̃ ]. (34) {Eq5_4}
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Let j: Spec(K̃) → Spec(R) (resp. j0: Spec(K̃) → Spec(K̃0)) be the morphism
induced from the inclusion R ⊂ K̃ (resp. K̃0 ⊂ K̃). Then, by (33),

Φg(Spec(K̃))([πK̃ ]) = ϕ ◦ j ∈ Hom(Spec(K̃),Mg) .

The morphism ϕ ◦ j: Spec(K̃)→Mg defines a K̃-rational point a of Mg.

Subclaim A: There is no morphism ϕ0: Spec(K̃0)→Mg such that

ϕ ◦ j = ϕ0 ◦ j0 . (35) {Eq5_5}

Otherwise, since ϕ0 ∈ Hom(Spec(K̃0),Mg), there is by (a), a curve π0: C0 →
Spec(K̃0) of genus g which satisfies Φg(Spec(K̃0))([π0]) = ϕ0. Therefore,

Φg(Spec(K̃))([πK̃ ])
(33)
= ϕ ◦ j

(35)
= ϕ0 ◦ j0

(33)
= Φg(Spec(K̃))([π0,K̃ ]).

Hence, by (a) again, [πK̃ ] = [π0,K̃ ], contrary to (34). Thus, the K̃-rational point

a of Mg is not K̃0-rational, which proves the subclaim.

By (1), we may assume that some prime number is invertible in R0. Hence,
by (30) and Remark 5.1, Mg,R := Mg ×Spec(Z) Spec(R) is quasi-projective over
Spec(R), say Mg,R ⊆ PrR for some positive integer r. Then, by Subclaim A,

there exists a = (a0 : a1 : · · · : ar) ∈ Mg,R(K̃) and there exist distinct k, l

between 0 and r such that al 6= 0 and ak
al

/∈ K̃0. Therefore, for almost all

s ∈ Spec(R0), we have that ās = (ā0,s : ā1,s : · · · : ār,s) ∈ Mg,K̄s
(K̄s,alg) and

āk,s

āl,s
/∈ K̄0,s,alg. Thus, for almost all s ∈ Spec(R0), the K̄s,alg-rational point ās

of Mg,K̄s
is not K̄0,s,alg-rational.

Consider such s ∈ Spec(R0) and let

js: Spec(K̄s,alg)→ Spec(K̄s)→ Spec(R)

(resp. j0,s: Spec(K̄s,alg) → Spec(K̄0,s,alg)) be the morphism induced by the
reduction R → K̄s followed by the inclusion K̄s ⊂ K̄s,alg (resp. the inclusion
K̄0,s,alg ⊂ K̄s,alg). Then, ās is the K̄s,alg-rational point of Mg corresponding to
the morphism ϕ ◦ js: Spec(K̄s,alg)→Mg and, by (33),

Φg(Spec(K̄s,alg))([πK̄s,alg
]) = ϕ ◦ js ∈ Hom(Spec(K̄s,alg),Mg) .

Since the K̄s,alg-rational point ās of Mg is not K̄0,s,alg-rational,

there is no morphism ϕ0,s: Spec(K̄0,s,alg)→Mg

such that ϕ ◦ js = ϕ0,s ◦ j0,s.
(36) {Eq5_6}

Subclaim B: There is no curve π0,s: C0,s → Spec(K̄0,s,alg) of genus g such that

[π0,s,K̄s,alg
]
(31)
= Mg(j0,s)([π0,s]) =Mg(js)([π])

(31)
= [πK̄s,alg

] . (37) {Eq5_7}
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Otherwise, let ϕ0,s := Φg(Spec(K̄0,s,alg))([π0,s]) ∈ Hom(Spec(K̄0,s,alg),Mg).
Then,

ϕ0,s ◦ j0,s
(33)
= Φg(Spec(K̄s,alg))([π0,s,K̄s,alg

])

(37)
= Φg(Spec(K̄s,alg))([πK̄s,alg

])
(33)
= ϕ ◦ js ,

which contradicts (36). This proves the subclaim.

By Subclaim B, the curve πK̄s,alg
: C̃s → Spec(K̄s,alg) is not defined over

K̄0,s,alg. This proves the claim. �
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