Abelian Absolute Galois Groups

In Erinnerung an Wulf-Dieter Geyer (1939–2019)

Moshe Jarden, Tel Aviv University jarden@tauex.tau.ac.il

4 January 2025

Abstract

Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if K is a finitely generated extension of transcendence degree r of a global field and A is a closed abelian subgroup of $\operatorname{Gal}(K)$, then $\operatorname{rank}(A) \leq r+1$. Moreover, if $\operatorname{char}(K) = 0$, then $\hat{\mathbb{Z}}^{r+1}$ is isomorphic to a closed subgroup of $\operatorname{Gal}(K)$.

Introduction

A consequence of class field theory appearing in [Rib70, p. 302, Thm. 8.8(b)(iii)] says that the cohomological dimension of every number field K which is not embeddable in \mathbb{R} is 2. On the other hand, $\operatorname{cd}(\hat{\mathbb{Z}} \times \hat{\mathbb{Z}}) = 2$ [Rib70, p. 217, Cor. 3.2 and p. 221, Prop. 4.4] and the group $\hat{\mathbb{Z}}$ occurs as a closed subgroup of $\operatorname{Gal}(\mathbb{Q})$ in many ways [FrJ08, p. 379, Thm. 18.5.6]. One may therefore wonder whether $\hat{\mathbb{Z}} \times \hat{\mathbb{Z}}$ is isomorphic to a closed subgroup of $\operatorname{Gal}(\mathbb{Q})$.

A somewhat surprising result of Geyer's thesis says that this is not the case. Indeed, every closed abelian subgroup of $Gal(\mathbb{Q})$ is procyclic [Gey69, p. 357, Satz 2.3] (see also [Rib70, p. 306, Thm. 9.1]).

We generalize this result for every finitely generated extension K of transcendence degree r of a global field. We prove that if a profinite group A is isomorphic to a closed abelian subgroup of $\operatorname{Gal}(K)$, then $\operatorname{rank}(A) \leq r + 1$. In particular, $\hat{\mathbb{Z}}^{r+2}$ is not a subgroup of $\operatorname{Gal}(K)$ (Proposition 3.3).

In the rest of this note, we abuse our language and write "A is a closed subgroup of Gal(K)" rather than "A is isomorphic to a closed subgroup of Gal(K)".

It turns out that the latter inequality is sharp. Indeed, if $\operatorname{char}(K) = 0$, then $\hat{\mathbb{Z}}^{r+1}$ is a closed subgroup of $\operatorname{Gal}(K)$, while if $\operatorname{char}(K) = p > 0$, then $\hat{\mathbb{Z}}$ is a closed subgroup of $\operatorname{Gal}(K)$, $\prod_{l \neq p} \mathbb{Z}_l^{r+1}$ is a closed subgroup of $\operatorname{Gal}(K)$ if $r \geq 0$ (Theorem 4.7), but $\hat{\mathbb{Z}}^{r+1}$ is not a closed subgroup of $\operatorname{Gal}(K)$ if $r \geq 1$ (Remark 4.8). Here l ranges over the prime numbers. The exclusion of the factor \mathbb{Z}_p in

1 PRELIMINARIES

2

the case when p > 0 and $r \ge 1$ follows from the rule $\operatorname{cd}_p(\operatorname{Gal}(F)) \le 1$ for each field F of characteristic p [Rib70, p. 256, Thm. 3.3].

The author thanks Ido Efrat for many comments to earlier versions of this note. The author also thanks Aharon Razon for a carefull reading of the manuscript.

1 Preliminaries

{PREL}

One of the basic tools needed in the proof of the generalization of Geyer's result is a special case of the renowned Pontryagin – van Kampen theorem. Here, and in the rest of this note, l stands for a prime number, \mathbb{Z}_l is the ring of l-adic numbers, viewed as a profinite abelian group or as a principal ideal domain. We also write $\hat{\mathbb{Z}} := \prod_l \mathbb{Z}_l$ for the Prüfer group [FrJ08, p. 12]. Thus, \mathbb{Z}_l is the free pro-l cyclic group and $\hat{\mathbb{Z}}$ is the free pro-cyclic group.

{Pontryagin}

Proposition 1.1 ([RiZ10], p. 129, Thm. 4.3.3). Let A be a torsion-free abelian profinite group. Then $A \cong \prod_{l} \mathbb{Z}_{l}^{r_{l}}$, where r_{l} is a cardinal number for each l.

The proof of Proposition 1.1 uses a special case of the Pontryagin – van Kampen duality theorem saying that every locally compact abelian topological group A is canonically isomorphic to its double dual group A^{**} , where $A^* = \text{Hom}(A, \mathbb{R}/\mathbb{Z})$. The proof of that special case needed in our proposition, dealing only with abelian profinite groups, appears in [RiZ10, Section 2.9]. It is much simpler than the proof of the general theorem [HeR63, p. 376, Thm. 24.2].

We denote the algebraic closure of a field K by \tilde{K} and its separable algebraic closure by K_{sep} . We write Gal(K) for the absolute Galois group $\text{Gal}(K_{\text{sep}}/K)$ of K. If A is a closed subgroup of Gal(K), then $K_{\text{sep}}(A)$ denotes the fixed field of A in K_{sep} .

{Real}

Lemma 1.2. Let K be a field and A a nontrivial finite subgroup of Gal(K). Then, $A \cong \mathbb{Z}/2\mathbb{Z}$, char(K) = 0, and the fixed field $\tilde{K}(A)$ of A in \tilde{K} is real closed. In addition, A is the centralizer of itself in Gal(K).

Proof. Let $R = K_{\text{sep}}(A)$. Then, a theorem of Artin says that char(K) = 0, $K_{\text{sep}} = \tilde{K}$, and $\tilde{K} = R(\sqrt{-1})$ [Lan97, p. 299, Cor. 9.3]. Let τ be the unique element of order 2 of Gal(R) defined by $\tau(\sqrt{-1}) = -\sqrt{-1}$.

By [Lan97, p. 452, Prop. 2.4], R is real closed. Let < be the ordering of K induced by the unique ordering of R. If R' is a real closed field extension of K in \tilde{K} whose ordering extends <, then by [Lan97, p. 455, Thm. 2.9], there exists a unique K-isomorphism $R \to R'$.

Let σ be an element of the centralizer $C_{\operatorname{Gal}(K)}(A)$ of A in $\operatorname{Gal}(K)$. Then, σR is a real closure of (K,<) and $\operatorname{Gal}(\sigma R) \cong \mathbb{Z}/2\mathbb{Z}$. Also, $\tau(\sigma R) = \tau \sigma R = \sigma \tau R = \sigma R$. By the preceding paragraph applied to σR rather than to R, the restriction of τ to σR is the identity map. In other words, $\tau \in \operatorname{Gal}(\sigma R)$. Since $\operatorname{ord}(\tau) = 2$, the element τ generates $\operatorname{Gal}(\sigma R)$, so $R = \sigma R$. The uniqueness of the K-isomorphism of R into R implies that $\sigma \in \operatorname{Gal}(R) = A$, as desired. \square

{ABCL}

Corollary 1.3. Let K be a field and A a closed abelian subgroup of Gal(K). Then, $A \cong \mathbb{Z}/2\mathbb{Z}$ or $A \cong \prod_{l} \mathbb{Z}_{l}^{r_{l}}$, where l ranges over all prime numbers and r_{l} is a cardinal number.

Proof. If A has a non-unit element α of a finite order, then by Lemma 1.2, $\langle \alpha \rangle \cong \mathbb{Z}/2\mathbb{Z}$ and $\langle \alpha \rangle$ is its own centralizer in $\operatorname{Gal}(K)$. Since A is abelian, A is contained in that centralizer. Therefore, $A = \langle \alpha \rangle$.

Otherwise, A is torsion-free. Hence, by Proposition 1.1, A has the desired structure. \Box

Given a profinite group G and a prime number l we write $\operatorname{cd}_l(G)$ for the lth cohomology dimension of G [Rib70, p. 196, Def. 1.1]. Also, we write ζ_n for a primitive root of unity of order n.

{UNITY}

Lemma 1.4. The following statements hold for prime numbers p, l, and a finite extension E of \mathbb{Q}_p :

- (a) E contains only finitely many roots of unity.
- (b) $l^{\infty}|[E(\zeta_{l^j})_{j>1}:E].$
- (c) $\operatorname{cd}_{l}(\operatorname{Gal}(E(\zeta_{l^{j}})_{j\geq 1})) \leq 1.$

Proof of (a). Let O be the ring of integers of E, \bar{E} the residue field of E, π a prime element of O, U the group of invertible elements of O, and $U^{(1)} = 1 + \pi O$ the subgroup of 1-units of O. Reduction modulo πO yields the following short exact sequence

$$1 \longrightarrow U^{(1)} \longrightarrow U \longrightarrow \bar{E}^{\times} \longrightarrow 1$$
,

where **1** is the trivial group. By [Ser79, p. 213, Chap. XIV, Prop. 10], $U^{(1)}$ is isomorphic to a direct product of a finite abelian group with a free abelian group. Since \bar{E}^{\times} is also finite, the torsion group of U is finite. That group is the group of roots of unity in E.

Proof of (b). By (a), E has only finitely many roots of unity of order l^j with $j \geq 1$. Thus, there exists a non-negative integer j with $\zeta_{l^j} \in E$ and $\zeta_{l^{j+1}} \notin E$. By [Lan97, p. 297, Thm. 9.1], $[E(\zeta_{l^{j+1}}):E(\zeta_{l^j})]=l$. Apply the same argument to the field $E_1:=E(\zeta_{l^{j+1}})$ to find an integer $j_2>j_1:=j$ such that $\zeta_{l^{j_2}}\in E_1$ and $\zeta_{l^{j_2+1}}\notin E_1$, so $[E_2:E_1]=l$ with $E_2:=E(\zeta_{l^{j_1+1}},\zeta_{l^{j_2+1}})$. Continue to find a sequence $j_1< j_2< j_3<\ldots$ and fields $E\subset E_1\subset E_2\subset E_3\subset\cdots$ such that $\zeta_{l^{j_{n+1}}}\in E_n:=E(\zeta_{l^{j_{i+1}}})_{i=1}^n$ and $\zeta_{l^{j_{n+1}+1}}\notin E_n$, so $[E_{n+1}:E_n]=l$, for each $n\geq 1$. Hence, $l^{\infty}|[E(\zeta_{l^j})_{j>1}:E]$.

Proof of (c). The claim follows from (b) and [Rib70, p. 291, Cor. 7.4(i),(ii)]. \Box

Note that the citation in the proof of (c) relies on local class field theory.

2 Geyer's theorem

We generalize Geyer's theorem which asserts that every closed abelian subgroup of $Gal(\mathbb{Q})$ is procyclic [Gey69, p. 357, Satz 2.3].

{Positive}

Lemma 2.1. Let F be a field of positive characteristic p. Then, no pro-p closed subgroup of Gal(F) is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.

Proof. Let G be a closed pro-p subgroup of $\operatorname{Gal}(F)$. By [Rib70, p. 256, Thm. 3.3], $\operatorname{cd}(G) \leq 1$. On the other hand, \mathbb{Z}_p is a free pro-p group of rank 1. Hence, by [Rib70, p. 217, Cor. 3.2], $\operatorname{cd}(\mathbb{Z}_p) = 1$. It follows from [Rib70, p. 221, Prop. 4.4] that $\operatorname{cd}(\mathbb{Z}_p \times \mathbb{Z}_p) = \operatorname{cd}(\mathbb{Z}_p) + \operatorname{cd}(\mathbb{Z}_p) = 2$. Therefore, $G \not\cong \mathbb{Z}_p \times \mathbb{Z}_p$, as claimed. \square

{ROOTS}

Lemma 2.2. Let K be a global field, $l \neq \operatorname{char}(K)$ a prime number, and M a separable algebraic extension of K. Suppose that M contains all of the roots of unity of order l^i for $i=1,2,3,\ldots$. Then, $\operatorname{cd}_l(\operatorname{Gal}(M)) \leq 1$. In particular, $\operatorname{Gal}(M) \ncong \mathbb{Z}_l \times \mathbb{Z}_l$.

Proof. We distinguish between two cases:

Case A: K is a number field. We assume without loss that $K = \mathbb{Q}$. By assumption, $\zeta_{l^2} \in M \setminus \mathbb{R}$. Thus, M can not be embedded into \mathbb{R} , i.e. M is **totally imaginary**. Hence by [Rib70, p. 302, Thm. 8.8(a)], $\operatorname{cd}_l(\operatorname{Gal}(M)) \neq \infty$.

Now we consider a prime number p, a valuation v of M lying over p, and the completion \hat{M}_v of M at v. Then, $\zeta_{l^i} \in M \subseteq \hat{M}_v$ for each i. Hence, by Lemma 1.4(b), $l^{\infty}|[\hat{M}_v:\mathbb{Q}_p]$. Therefore, by [Rib70, p. 302, Thm. 8.8(b)], $\operatorname{cd}_l(\operatorname{Gal}(M)) \leq 1$.

Finally, by [Rib70, p. 217, Cor. 3.2 and p. 221, Prop. 4.4] and [Rib70, p. 217, Cor. 3.2],

$$\operatorname{cd}_{l}(\mathbb{Z}_{l} \times \mathbb{Z}_{l}) = \operatorname{cd}_{l}(\mathbb{Z}_{l}) + \operatorname{cd}_{l}(\mathbb{Z}_{l}) = 1 + 1 = 2.$$

Hence, $Gal(M) \not\cong \mathbb{Z}_l \times \mathbb{Z}_l$, as claimed.

Case B: K is a finite separable extension of $\mathbb{F}_p(t)$ with t transcendental over \mathbb{F}_p . We assume without loss that $K = \mathbb{F}_p(t)$. By assumption, M contains the field $L := \mathbb{F}_p(\zeta_{l^i})_{i \geq 1}$, so $L(t) \subseteq M$. Since there are infinitely many roots of unity ζ_{l^i} in \mathbb{F}_p and only finitely many of them belong to each finite field, L is an infinite field. In addition, for each $i \geq 1$ the extension $\mathbb{F}_p(\zeta_{l^{i+1}})/\mathbb{F}_p(\zeta_{l^i})$ is cyclic of degree l or trivial. Hence, $\operatorname{Gal}(L/\mathbb{F}_p(\zeta_l)) \cong \mathbb{Z}_l$. Therefore, L is contained in the maximal extension L' of $\mathbb{F}_p(\zeta_l)$ of an l'th power degree. Since $\operatorname{Gal}(L'/\mathbb{F}_p(\zeta_l)) \cong \mathbb{Z}_l$, the restriction map $\operatorname{Gal}(L'/\mathbb{F}_p(\zeta_l)) \to \operatorname{Gal}(L/\mathbb{F}_p(\zeta_l))$ is surjective, and \mathbb{Z}_l is generated by one element, that map is an isomorphism [FrJ08, p. 331, Cor. 16.10.8]. It follows that L = L'. Therefore, l does not divide the order of $\operatorname{Gal}(L)$.

By [Rib70, p. 208, Cor. 2.3], $\operatorname{cd}_l(\operatorname{Gal}(L)) = 0$. Hence, by [Rib70, p. 272, Prop. 5.2], $\operatorname{cd}_l(\operatorname{Gal}(L(t))) = 1$. Since $\operatorname{Gal}(M) \leq \operatorname{Gal}(L(t))$, we have by [Rib70, p. 204, Prop. 2.1(a)], that $\operatorname{cd}_l(\operatorname{Gal}(M)) \leq 1$. As in Case A, this inequality implies that $\operatorname{Gal}(M) \not\cong \mathbb{Z}_l \times \mathbb{Z}_l$, as claimed.

Here is the promised result of Geyer.

{Geyer}

Theorem 2.3. Let K be a global field and A a closed abelian subgroup of Gal(K). Then, A is procyclic.

Proof. We start the proof with the special case where the torsion group A_{tor} of A is nontrivial. In this case there exists a non-unit $\tau \in A$ of finite order. By Lemma 1.2, char(K) = 0 and $A \cong \mathbb{Z}/2\mathbb{Z}$. In particular, A is procyclic.

We may therefore assume that A is a nontrivial torsion-free abelian profinite group. By Proposition 1.1, $A \cong \prod_{l} \mathbb{Z}_{l}^{r_{l}}$, where l ranges over all prime numbers and for each l, r_{l} is a cardinal number, so we may assume that $A \cong \mathbb{Z}_{l}^{r}$ for a prime number l and a positive cardinal number r and prove that $A \cong \mathbb{Z}_{l}$.

Otherwise, A contains a closed subgroup which is isomorphic to $\mathbb{Z}_l \times \mathbb{Z}_l$. Thus, we may assume that $A \cong \mathbb{Z}_l \times \mathbb{Z}_l$ and prove that this assumption leads to a contradiction.

To this end we denote the fixed field of A in K_{sep} by M and identify Gal(M) with A. By Lemma 2.1, $l \neq \text{char}(K)$.

Claim: M contains a root of unity ζ_l of order l. Indeed, if l=2, then $\zeta_l=-1\in M$. Otherwise l>2 and if $\zeta_l\notin M$, then $[M(\zeta_l):M]$ is a divisor of l-1 which is greater than 1. On the other hand, $[M(\zeta_l):M]$ divides the (profinite) order of A which is l^{∞} , a contradiction.

Since $\operatorname{Gal}(M) \cong \mathbb{Z}_l \times \mathbb{Z}_l$, Lemma 2.2 implies that not all roots of unity of order l^i with $i \geq 1$ belong to M. Let n be the smallest positive integer such that M contains a root of unity of order l^{n-1} but does not contain a root of unity of order l^n . Choose a root of unity ζ_{l^n} and set $M_1 = M(\zeta_{l^n})$. Then, $\zeta_{l^n}^l \in M$ but $\zeta_{l^n} \notin M$. Hence, $[M_1:M]|l$ and $[M_1:M] \neq 1$ (by the Claim and [Lan97, p. 289, Thm. 6.2(ii)], so $[M_1:M] = l$.

Let U be the open subgroup of \mathbb{Z}_l of index l. Then, the index of each of the subgroups $\mathbb{Z}_l \times U$ and $U \times \mathbb{Z}_l$ of $\operatorname{Gal}(M)$ is l. We choose one of them which is different from $\operatorname{Gal}(M_1)$ and denote its fixed field in K_{sep} by M_2 . Then, M_2 is a cyclic extension of M of degree l and $M_1 \neq M_2$.

Since $\zeta_l \in M$, [Lan97, p. 289, Thm. 6.2(i)] implies the existence of $a, x \in K_{\text{sep}}$ with $M_2 = M(x)$ and $a := x^l \in M$. Choose $b \in K_{\text{sep}}$ with $b^{l^{n-1}} = x$, so $b^{l^n} = a$. In particular, $M_2 = M(b^{l^{n-1}}) \subseteq M(b)$ and $[M(b) : M_2] \le l^{n-1}$. It follows from the preceding paragraph that

$$[M(b):M] \le l^n. \tag{1} \quad \{\texttt{M2x}\}$$

Next choose $\sigma \in A$ such that $\sigma|_{M_1} = \mathrm{id}$ and $\sigma|_{M_2} \neq \mathrm{id}$. In particular, $\sigma x \neq x$, so $\zeta := (\sigma b)b^{-1}$ satisfies

$$\zeta^{l^n} = \sigma b^{l^n} \cdot b^{-l^n} = \sigma a \cdot a^{-1} = aa^{-1} = 1 \text{ and } \zeta^{l^{n-1}} = \sigma b^{l^{n-1}} \cdot b^{-l^{n-1}} = \sigma x \cdot x^{-1} \neq 1,$$
 thus ζ is a primitive root of 1 of order l^n .

The definition of M_1 implies that $M_1 = M(\zeta)$. But M(b) is a Galois extension of M (because Gal(M) is abelian). Hence, $\zeta = (\sigma b)b^{-1} \in M(b)$, so $M_1 \subseteq M(b)$. Since $[M_1 : M] = l$, we have by (1) that $[M(b) : M_1] \leq l^{n-1}$. Since σ is the identity on M_1 , the latter inequality implies that $\operatorname{ord}(\sigma|_{M(b)}) \leq l^{n-1}$.

On the other hand, the relation $\sigma b = b\zeta$ implies by induction on i that $\sigma^i b = b\zeta^i \neq b$ for each $1 \leq i \leq l^{n-1}$. Hence, $\operatorname{ord}(\sigma|_{M(b)}) > l^{n-1}$. This contradicts the conclusion of the preceding paragraph, as required.

3 Generalization of Geyer's theorem

{GENERAL}

The central part of the proof of Geyer's theorem says that for each prime number l, the largest positive integer n for which \mathbb{Z}_l^n is a closed subgroup of $\operatorname{Gal}(\mathbb{Q})$ or of $\operatorname{Gal}(\mathbb{F}_p(t))$ is 1. The next lemma will allow us to generalize that statement to each finitely generated extension of a global field.

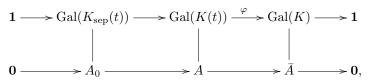
{RANK}

Remark 3.1. Let A be a finitely generated torsion-free abelian pro-l group for a prime number l. [FrJ08, p. 519, Prop. 22.7.12(a)] allows us to also consider A as a finitely generated \mathbb{Z}_l -module. Since \mathbb{Z}_l is a principal ideal domain, [Lan97, p. 147, Thm. 7.3] implies that $A = \mathbb{Z}_l^n$ is a finitely generated free \mathbb{Z}_l -module of rank n for some non-negative integer n. Since \mathbb{Z}_l is generated, as a profinite group, by one element, n is also the rank, $\operatorname{rank}(A)$, of A as a profinite group. In other words, $\operatorname{rank}(A) = \operatorname{rank}_{\mathbb{Z}_l}(A)$.

{TRANS}

Lemma 3.2. Let K be a field, t an indeterminate, and l a prime number. Suppose that n is the largest positive integer for which \mathbb{Z}^n_l is a closed subgroup of $\operatorname{Gal}(K)$. Then, the largest positive integer m for which \mathbb{Z}^m_l is a closed subgroup of $\operatorname{Gal}(K(t))$ does not exceed n+1.

Proof. Suppose that $A := \mathbb{Z}_l^{n'}$ is a closed subgroup of $\operatorname{Gal}(K(t))$ for some positive integer n'. Let $\varphi : \operatorname{Gal}(K(t)) \to \operatorname{Gal}(K)$ be the restriction map. Then, $\operatorname{Ker}(\varphi) = \operatorname{Gal}(K_{\operatorname{sep}}(t))$. Setting $\bar{A} = \varphi(A)$ and $A_0 = \operatorname{Ker}(\varphi) \cap A$, we get the following commutative diagram of profinite groups:



where **0** stands for the trivial group of an additive abelian group. Since \mathbb{Z}_l is a principal ideal domain and A is a free \mathbb{Z}_l -module of rank n', A_0 is a free \mathbb{Z}_l -module, by [Lan97, p. 146, Thm. 7.1]. Also, by [Lan97, p. 148, Lemma 7.4], \bar{A} is a free \mathbb{Z}_l -module and $n' = \operatorname{rank}(A_0) + \operatorname{rank}(\bar{A})$.

By [Rib70, p. 272, Prop. 5.2], $\operatorname{Gal}(K_{\operatorname{sep}}(t))$ is a projective group, so also A_0 is a projective group. In other words, $\operatorname{rank}(A_0) \leq 1$. Also, by Corollary 1.3 and the assumption of the lemma, $\bar{A} = \mathbb{Z}_l^m$ with $m \leq n$ or l = 2 and $\bar{A} \cong \mathbb{Z}/2\mathbb{Z}$. In each case $\operatorname{rank}(\bar{A}) \leq n$, hence $\operatorname{rank}(A) = \operatorname{rank}(\bar{A}) + \operatorname{rank}(A_0) \leq n + 1$, as claimed. \square

{FINGEN}

Proposition 3.3. Let K be a finitely generated extension with transcendence degree r of a global field K_0 and let A be a closed abelian subgroup of Gal(K). Then, $A \cong \mathbb{Z}/2\mathbb{Z}$ or $A \cong \prod_{l} \mathbb{Z}_{l}^{r_{l}}$, where l ranges over all prime numbers and $r_{l} \leq r+1$ for each prime number l.

Proof. By Corollary 1.3, $A \cong \mathbb{Z}/2\mathbb{Z}$ or $A \cong \prod_{l} \mathbb{Z}_{l}^{r_{l}}$, with cardinal numbers r_{l} . Assume the latter case. If K is a global field, then r = 0. Hence, by Theorem 2.3, $r_{l} \leq 0 + 1$ for each l.

Otherwise, $r \geq 1$ and K is a finitely generated extension of transcendence degree 1 of a finitely generated extension K'_0 of transcendence degree r-1 of K_0 . By induction, for each prime number l, r is the largest positive integer such that \mathbb{Z}^r_l is a closed subgroup of $\operatorname{Gal}(K'_0)$. Hence, by Lemma 3.2, r+1 is the largest positive number for which \mathbb{Z}^{r+1}_l is a closed subgroup of $\operatorname{Gal}(K)$. In particular, $r_l \leq r+1$, as claimed.

4 Realizing $\hat{\mathbb{Z}}^{r+1}$ as a closed subgroup of Gal(K)

{RPO}

Let K be a finitely generated extension of \mathbb{Q} of transcendence degree r. We complete Proposition 3.3 in this section by proving that $\hat{\mathbb{Z}}^{r+1}$ is a closed subgroup of $\operatorname{Gal}(K)$. An analogous result holds for a finitely generated extension K of transcendence degree r of $\mathbb{F}_p(t)$, in which case $\prod_{l\neq p} \mathbb{Z}_l^{r+1}$ replaces $\hat{\mathbb{Z}}^{r+1}$.

{KPR}

Remark 4.1 (Valued fields). We denote the residue field of a valued field (F, v) by \bar{F}_v and its value group by $v(F^{\times})$. In addition, we extend v to a valuation of F_{sep} that we also denote by v, consider its valuation ring $O_{v,\text{sep}}$, and let $D_{v,\text{sep}} = \{\sigma \in \text{Gal}(F) \mid \sigma O_{v,\text{sep}} = O_{v,\text{sep}}\}$ be the corresponding **decomposition group**. Then, we let F_v be the fixed field of $D_{v,\text{sep}}$ in F_{sep} . Abusing our notation, we also let v be the restriction of v to F_v . Then, (F_v, v) is the **Henselization** of (F, v).

One knows that (F_v, v) has the same residue field and value group as those of (F, v) [Efr06, p. 138, Prop. 15.3.7]. Moreover, the valued fields (F_{sep}, v) and (F_v, v) depend on the extension of v to F_{sep} up to isomorphism [Efr06, p. 138, Cor. 15.3.6].

If v is a rank-1 valuation, then so is its extension to F_v . In this case, the completion (\hat{F}_v, v) of (F, v) is also discrete with the same value group and residue field as those of (F, v). Moreover, (\hat{F}_v, v) is also the completion of (F_v, v) . By Hensel's lemma, (\hat{F}_v, v) is also Henselian [Efr06, p. 167, Cor. 18.3.2]. We embed F_{sep} into $\hat{F}_{v,\text{sep}}$ and observe that $F_{\text{sep}} \cap \hat{F}_v = F_v$ (since $(F_{\text{sep}} \cap \hat{F}_v, v)$) is an immediate separable algebraic extension of (F_v, v)) and $F_{\text{sep}}\hat{F}_v = \hat{F}_{v,\text{sep}}$ (by the Krasner-Ostrowski lemma [Efr06, p. 172, Cor. 18.5.3]). Thus, restriction gives an isomorphism $\text{Gal}(\hat{F}_v) \cong \text{Gal}(F_v)$ of the corresponding absolute Galois groups.

We denote the maximal unramified extension of F_v (resp. \hat{F}_v) by $F_{v,ur}$ (resp. $\hat{F}_{v,ur}$) and the maximal tamely ramified extension by $F_{v,tr}$ (resp. $\hat{F}_{v,tr}$). These fields are Galois extensions of F_v (resp. \hat{F}_v). As in [Efr06, p. 133, p. 141, and p. 145], we set $Z(v) = \text{Gal}(F_v)$ for the **decomposition group**, $T(v) = \text{Gal}(F_{v,ur})$ for the **inertia group**, and $V(v) = \text{Gal}(F_{v,tr})$ for the **ramification group** of (F,v). The letters Z, T, and V are borrowed from the German translations Zerlegsungruppe, Trägheitsgruppe, and Verzweigungsgruppe of the English expressions decomposition group, inertia group, and ramification

group,

$$F \longrightarrow F_v \xrightarrow{T(v)} F_{\text{sep}}. \tag{2} \quad \{\text{dir}\}$$

Each of the fields $F_{v,ur}$, $F_{v,tr}$, and F_{sep} is a Galois extension of F_v . By [Efr06, p. 199, Thm. 22.1.1] and [KPR86, Thm. 2.2] (resp. [Efr06, p. 203, Thm. 22.2.1]) both restriction maps

$$\operatorname{Gal}(F_{v,\operatorname{tr}}/F_v) \to \operatorname{Gal}(F_{v,\operatorname{ur}}/F_v)$$
 and $\operatorname{Gal}(F_v) \to \operatorname{Gal}(F_{v,\operatorname{tr}}/F_v)$

split. In particular, each closed subgroup of $Gal(F_{v,ur}/F_v)$, hence each closed subgroup of $Gal(\bar{F}_v)$, is isomorphic to a closed subgroup of $Gal(F_{v,tr}/F_v)$. Also, each closed subgroup of $Gal(F_{v,tr}/F_v)$ is isomorphic to a closed subgroup of $Gal(F_v)$.

Note that E in Theorem 22.1.1 of [Efr06] is F_{sep} , in our notation, so it satisfies the condition $E=E^l$ for all prime numbers $l \neq \text{char}(\bar{F}_v)$ needed in that theorem.

{KrWb}

Notation 4.2. We denote the group of roots of unity in a field F by $\mu(F)$. If $\operatorname{char}(F) = p > 0$ and F is separably closed, then $\mu(F) = \tilde{\mathbb{F}}_p^{\times}$. If $\operatorname{char}(F) = 0$ and F is algebraically closed, then $\mu(F) = \mu(\tilde{\mathbb{Q}})$ and $\mathbb{Q}_{ab} := \mathbb{Q}(\mu(\tilde{\mathbb{Q}}))$ is the maximal abelian extension of \mathbb{Q} (by the theorem of Kronecker–Weber [Neu99, p. 324, Thm. 110]).

{Laurent}

Remark 4.3. Given a field K, the field of formal power series K((t)) in the variable t with coefficients in K, also called the field of Laurent series over K, is the field of all formal power series $\sum_{i=m}^{\infty} a_i t^i$ with $m \in \mathbb{Z}$ and $a_i \in K$ for all $i \geq m$. If l < m, then $\sum_{i=m}^{\infty} a_i t^i$ is identified with $\sum_{i=l}^{\infty} a_i t^i$ with $a_i = 0$ for each $l \leq i < m$. Summation and multiplication in K((t)) are defined by the following rules:

$$\sum_{i=m}^{\infty} a_i t^i + \sum_{i=m'}^{\infty} a_i' t^i = \sum_{i=\min(m,m')}^{\infty} (a_i + a_i') t^i,$$

$$\left(\sum_{i=m}^{\infty} a_i t^i\right) \left(\sum_{j=m'}^{\infty} a'_j t^j\right) = \sum_{k=m+m'}^{\infty} \left(\sum_{i+j=k}^{\infty} a_i a'_j\right) t^k.$$

Let v be the unique discrete valuation of K(t) with v(a) = 0 for each $a \in K$ and v(t) = 1. Then, (K((t)), v) is the completion of (K(t), v), where $v(\sum_{i=m}^{\infty} a_i t^i) = m$ whenever $a_m \neq 0$. By [Efr06, p. 167, Cor. 18.3.2], K((t)) is Henselian with respect to v.

By [CaF67, p. 28, Cor. 2] (or [Efr06, p. 141, Thm. 16.1.1]),

$$Gal(K((t))_{ur}/K((t))) \cong Gal(K).$$

Replacing K by K_{sep} , we have that $K_{\text{sep}}((t))_{\text{ur}} = K_{\text{sep}}((t))$. Since the roots of unity of order n with $\text{char}(K) \nmid n$ are in K_{sep} , we have that $K_{\text{sep}}((t))$ has a cyclic extension of degree n in $K_{\text{sep}}((t))_{\text{tr}}$. Indeed, that extension is $K_{\text{sep}}((t^{1/n}))$.

Going to the limit of these extensions, we obtain with $p := \operatorname{char}(K)$ that $K_{\operatorname{sep}}((t))_{\operatorname{tr}} = \bigcup_{p \nmid n} K_{\operatorname{sep}}((t^{1/n}))$ and $\operatorname{Gal}(K_{\operatorname{sep}}((t))_{\operatorname{tr}}/K_{\operatorname{sep}}((t))) \cong \prod_{l \neq p} \mathbb{Z}_l$.

Moreover, if $\operatorname{char}(K) = 0$, then the ramification group $\operatorname{Gal}(K(t))_{\operatorname{tr}})$ of $\tilde{K}((t))$ is trivial [Efr06, p. 145, Thm. 16.2.3], so $\tilde{K}((t))_{\operatorname{tr}} = K((t))$. Thus, by the preceding paragraph, in this case, $\operatorname{Gal}(K(t)) \cong \hat{\mathbb{Z}}$.

{Efrat3}

Lemma 4.4. Let K_0 be a field of characteristic p, t an indeterminate, and r a positive integer. Suppose that $\mu(K_{0,\text{sep}}) \subseteq K_0$ and $\prod_{l \neq p} \mathbb{Z}_l^r$ is a closed subgroup of $\operatorname{Gal}(K_0)$. Then, $\prod_{l \neq p} \mathbb{Z}_l^{r+1}$ is a closed subgroup of $\operatorname{Gal}(K_0(t))$.

Proof. By assumption, the field K_0 has a separable algebraic extension K with $\operatorname{Gal}(K) \cong \prod_{l \neq p} \mathbb{Z}_l^r$. Let v be the discrete K-valuation of K(t) with v(t) = 1 and choose a Henselization $M := K(t)_v$ of K(t) with respect to v. Then,

$$\bar{M} := \overline{K(t)}_v = K \tag{3} \quad \{ae\}$$

is the residue field of both K(t) and M with respect to v.

Claim: M is linearly disjoint from \tilde{K} over K. Indeed, let $\tilde{k}_1, \ldots, \tilde{k}_n$ be linearly independent elements of \tilde{K} over K. Assume toward contradiction that there exist $m_1, \ldots, m_n \in M$ not all zero with $\sum_{i=1}^n m_i \tilde{k}_i = 0$. Dividing m_1, \ldots, m_n by the element with the least v-value, we may assume that the v-residues $\bar{m}_1, \ldots, \bar{m}_n$ are elements of K and one of them is non-zero. Thus, $\sum_{i=1}^n \bar{m}_i \tilde{k}_i = 0$, contradicting the assumption on $\tilde{k}_1, \ldots, \tilde{k}_n$. This proves our claim.

By [Efr06, p. 200, Cor. 22.1.2],

$$Z(v)/V(v) \cong \chi(v) \rtimes \operatorname{Gal}(\bar{M}) \stackrel{(3)}{=} \chi(v) \rtimes \operatorname{Gal}(K),$$
 (4) {bb}

where Z(v) = Gal(M) and V(v) are respectively the corresponding decomposition and the ramification groups of M and

$$\chi(v) = \operatorname{Hom}(v(M_{\operatorname{sep}}^{\times})/v(M^{\times}), \mu(K_{0,\operatorname{sep}})). \tag{5} \quad \{\operatorname{chiv}\}$$

See [Efr06, last line of page 144] with $\bar{\mu}$ in that line being $\mu(K_{0,\text{sep}})$, as introduced in the first paragraph of [Efr06, p. 143, Sec. 16.2].

The action of $\operatorname{Gal}(K)$ on $\chi(v)$ is given for each $\tau \in \operatorname{Gal}(K)$, each homomorphism $h: v(M_{\operatorname{sep}}^{\times})/v(M^{\times}) \to \mu(K_{0,\operatorname{sep}})$, and every $\gamma \in v(M_{\operatorname{sep}}^{\times})$, by

$$\tau(h)(\gamma + v(M^{\times})) = \tau(h(\gamma + v(M^{\times}))) = h(\gamma + v(M^{\times})),$$

where the latter equality holds because $\mu(K_{0,\text{sep}}) \subseteq K_0 \subseteq K$. In other words, that action is trivial. It follows that

$$\operatorname{Gal}(M_{\operatorname{tr}}/M) \stackrel{(2)}{\cong} Z(v)/V(v) \stackrel{(4)}{\cong} \chi(v) \times \operatorname{Gal}(K). \tag{6}$$

By [Efr06, p. 147, Cor. 16.2.7], there is a short exact sequence

$$\mathbf{1} \longrightarrow V(v) \longrightarrow T(v) \longrightarrow \chi(v) \longrightarrow \mathbf{1}.$$

Hence, $\chi(v) \cong T(v)/V(v)$.

By our choice of v, the completion of K(t) with respect to v (which is also the completion of the Henselian field M) is the field K((t)) of formal power series

in t with coefficients in K [Efr06, p. 83, Example 9.2.2]. The maximal unramified extension of K((t)) is $K_{\rm sep}((t))$ and by Remark 4.3, $\chi(v) \cong T(v)/V(v) \cong \operatorname{Gal}(M_{\rm tr}/M_{\rm ur}) \cong \prod_{l \neq p} \mathbb{Z}_l$.

By the definition of K, $Gal(K) \cong \prod_{l \neq p} \mathbb{Z}_l^r$. Hence, by the preceding paragraph,

$$\operatorname{Gal}(M_{\operatorname{tr}}/M) \stackrel{(6)}{\cong} \chi(v) \times \operatorname{Gal}(K) \cong \prod_{l \neq p} \mathbb{Z}_l \times \prod_{l \neq p} \mathbb{Z}_l^r = \prod_{l \neq p} \mathbb{Z}_l^{r+1}.$$

Since by [KPR86, Thm. 2.2], the epimorphism $\operatorname{Gal}(M) \to \operatorname{Gal}(M_{\operatorname{tr}}/M)$ splits, $\prod_{l \neq p} \mathbb{Z}_l^{r+1}$ is a closed subgroup of $\operatorname{Gal}(M)$. Since M is a separable algebraic extension of $K_0(t)$ [Efr06, p. 137, Thm. 15.3.5], $\prod_{l \neq p} \mathbb{Z}_l^{r+1}$ is also a closed subgroup of $\operatorname{Gal}(K_0(t))$, as claimed.

Remark 4.5. Note that the references that support both (4) and (5) hold also in the case where $char(K_0) = 0$.

The following result will be needed in Theorem 4.7.

Lemma 4.6. Let L be a set of prime numbers and H an open subgroup of $\prod_{l \in L} \mathbb{Z}_l$. Then, $H \cong \prod_{l \in L} \mathbb{Z}_l$.

Proof. We set $Z := \prod_{l \in L} \mathbb{Z}_l$ and consider all the groups appearing in this proof as additive groups. Since H is open in Z, its index n := (Z : H) is a positive integer. Since Z is abelian, H is normal in Z, so $nZ \leq H$

By [FrJ08, p. 13, Lemma 1.4.2(e)], $n\mathbb{Z}_l\cong\mathbb{Z}_l$ for each $l\in L$. Hence, $nZ=\prod_{l\in L}n\mathbb{Z}_l\cong\prod_{l\in L}\mathbb{Z}_l=Z$.

Let $n = \prod_{l \in L'} l^{i(l)}$ be the decomposition of n into a product of prime powers. If l and l' are distinct prime numbers, then l' is a unit of the ring \mathbb{Z}_l , so $l'\mathbb{Z}_l = \mathbb{Z}_l$. Hence, $nZ = \prod_{l \in L \cap L'} l^{i(l)}\mathbb{Z}_l \times \prod_{l \in L \setminus L'} \mathbb{Z}_l$. Therefore, $(Z:nZ) = \prod_{l \in L \cap L'} (\mathbb{Z}_l: l^{i(l)}\mathbb{Z}_l) = \prod_{l \in L \cap L'} l^{i(l)} \le n = (Z:H)$. Combining this result with the result of the first paragraph of the proof, we have H = nZ. Therefore, by the second paragraph of the proof, $H \cong Z$, as claimed.

This bring us to the main result of the current section.

{INDUC}

Theorem 4.7. Let F be a finitely generated extension of transcendence degree $r \geq 0$ of a global field F_0 of characteristic p and let $F' = F(\mu(F_{0,\text{sep}}))$. Then, $\prod_{l \neq p} \mathbb{Z}_l^{r+1}$ is a closed subgroup of Gal(F'), hence also of Gal(F).

Proof. In the case where r=0, F itself is a global field, hence Hilbertian [FrJ08, p. 242, Thm. 13.4.2]. Since F' is an abelian extension of F, a theorem of Kuyk asserts that F' is also Hilbertian [FrJ08, p. 333, Thm. 16.11.3]. Since F is countable, so is F'. By [FrJ08, p. 379, Thm. 18.5.6], for almost all $\sigma \in \operatorname{Gal}(F')$ (in the sense of the Haar measure of $\operatorname{Gal}(F')$) the closed subgroup $\langle \sigma \rangle$ of $\operatorname{Gal}(F')$ generated by σ is isomorphic to $\hat{\mathbb{Z}}$. Since $\prod_{l \neq p} \mathbb{Z}_l$ is a closed subgroup of $\prod_l \mathbb{Z}_l$ and $\prod_l \mathbb{Z}_l \cong \hat{\mathbb{Z}}$ [FrJ08, p. 15, Lemma 1.4.5], $\prod_{l \neq p} \mathbb{Z}_l$ is a closed subgroup of $\operatorname{Gal}(F')$.

REFERENCES 11

Alternatively, by a theorem of Whaples, for each $l \neq p$ the field F' has a Galois extension F'_l with $\operatorname{Gal}(F'_l/F') \cong \mathbb{Z}_l$ [FrJ08, p. 314, Cor. 16.6.7]. Then, $F'' := \prod_{l \neq p} F'_l$ is a Galois extension of F' with $\operatorname{Gal}(F''/F') \cong \prod_{l \neq p} \mathbb{Z}_l$. Since $\prod_{l \neq p} \mathbb{Z}_l$ is projective [FrJ08, p. 507, Cor. 22.4.6], the restriction map $\operatorname{Gal}(F') \to \operatorname{Gal}(F''/F')$ splits [FrJ08, p. 506, Remark 22.4.2]. Hence, again, $\prod_{l \neq p} \mathbb{Z}_l$ is a closed subgroup of $\operatorname{Gal}(F')$.

Next assume by induction that $r \geq 1$ and the theorem holds for r-1. Choose a finitely generated extension F_{r-1} of transcendence degree r-1 of F_0 in F and let $F'_{r-1} = F_{r-1}(\mu(F_{0,\text{sep}}))$. Since F is finitely generated over F_0 of transcendence degree r, we may choose t in F which is transcendental over F_{r-1} and $[F:F_{r-1}(t)] < \infty$. Then, $F' = F'_{r-1}F$ is a finite extension of $F'_{r-1}(t)$. Let L be the maximal separable extension of $F'_{r-1}(t)$ in F', so F'/L is a purely inseparable extension of L. Then, L is a finite separable extension of $F'_{r-1}(t)$.

$$F_{r-1}(\mu(F_{0,\text{sep}})) = F'_{r-1} - \dots - F'_{r-1}(t) - \dots - L - \dots - F' = F'_{r-1}F$$

$$\begin{vmatrix} & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

Hence,

$$\operatorname{Gal}(L)$$
 is an open subgroup of $\operatorname{Gal}(F'_{r-1}(t))$. (7) {ddd}

By the induction hypothesis, $\prod_{l\neq p} \mathbb{Z}_l^r$ is a closed subgroup of $\operatorname{Gal}(F'_{r-1})$. Therefore, by (7), Lemma 4.4, and Lemma 4.6, $\prod_{l\neq p} \mathbb{Z}_l^{r+1}$ is a closed subgroup of $\operatorname{Gal}(L)$. Since F'/L is a purely inseparable extension (in particular F'=L if $\operatorname{char}(F_0)=0$), $\prod_{l\neq p} \mathbb{Z}_l^{r+1}$ is a closed subgroup of $\operatorname{Gal}(F')$, hence also of $\operatorname{Gal}(F)$, as claimed.

{Zlp}

Remark 4.8. Let F be a field as in Theorem 4.7. If p=0, then $\hat{\mathbb{Z}}^{r+1}=\prod_{l\neq p}\mathbb{Z}_l^{r+1}$. Hence, by that theorem, $\hat{\mathbb{Z}}^{r+1}$ is isomorphic to a closed subgroup of $\mathrm{Gal}(F)$.

If $p \neq 0$ but r = 0, then $F = F_0$ is a countable Hilbertian field and again, by [FrJ08, p. 379, Thm. 18.5.6], for almost all $\sigma \in \operatorname{Gal}(F)$ we have $\langle \sigma \rangle \cong \hat{\mathbb{Z}}$.

However, by [Rib70, p. 256, Thm. 3.3], $\operatorname{cd}_p(\operatorname{Gal}(F)) \leq 1$. On the other hand, by [Rib70, p. 221, Prop. 4.4], $\operatorname{cd}_p(\mathbb{Z}_p^{r+1}) = r+1 \geq 2$ if $r \geq 1$. Hence, \mathbb{Z}_p^{r+1} is isomorphic to no closed subgroup of $\operatorname{Gal}(F)$. Therefore, $\hat{\mathbb{Z}}^{r+1}$ is isomorphic to no closed subgroup of $\operatorname{Gal}(F)$.

References

- [CaF67] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- [Efr06] I. Efrat, Valuations, Orderings, and Milnor K-Theory, Mathematical surveys and monographs 124, American Mathematical Society, Providence, 2006.

REFERENCES 12

[FrJ08] M. D. Fried and M. Jarden, Field Arithmetic, third edition, revised by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2008.

- [Gey69] W.-D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist, Journal of Number Theory 1, 346–374 (1969).
- [HeR63] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften 115, Springer-Verlag, Berlin, 1963.
- [KPR86] F.-V. Kuhlmann, M. Pank, and P. Roquette, Immediate and purely wild extensions of valued fields, manuscripta mathematicae 55 (1986), 39–67.
- [Lan97] S. Lang, Algebraic Number Theory (third edition), Addison-Wesley, Reading, 1997.
- [Neu99] J. Neukirch, Algebraic Number Theory, translated from German by N. Schppachar, Grundlehren der mathematischen Wissenschaften 322, Springer, Heidelberg, 1999.
- [Rib70] L. Ribes, Introduction to Profinite Groups and Galois Cohomology, Queen's papers in Pure and Applied Mathematics 24, Queen's University, Kingston, 1970.
- [RiZ10] L. Ribes and P. Zalesskii, *Profinite Groups (second edition)*, Ergebnisse der Mathematik (3) **40**, Springer, Berlin, 2000.
- [Ser79] J.-P. Serre, Local Fields, 2nd Edition, translated from French by M. J. Greenberg, Graduate Text in Mathematics 67, Springer, New York, 1979.