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The Generalized Transfer Theorem {GTTm}

Abstract

We generalize the transfer theorem for global fields proved in [FrJ08,
Chap. 20] to a transfer theorem for finitely generated extensions of global
fields. The main tool used in the proof is the Artin-Chebotarev density
theorem for the latter fields, due to Serre [Ser65].

Introduction

The transfer theorem [FrJ08, p. 447, Thm. 20.9.3] considers the ring of integers
OK of a global field K and a sentence θ of the language L(ring, OK) of rings
with each element of OK being a constant symbol. It says that the set ΣK̃/K(θ)

of all σ in the absolute Galois group Gal(K) of K for which θ holds in the
fixed field K̃(σ) of σ in the algebraic closure K̃ of K is measurable and its Haar
measure µK(ΣK̃/K(θ)) is equal to the Dirichlet density δ(AOK

(θ)) of the set

AOK
(θ) of all maximal ideals p of OK for which θ holds in K̄p := OK/p.

The aim of this work is to generalize the transfer theorem to integrally closed
integral domains R that are finitely generated as Z-algebras or finitely generated
as Fp-algebras and are infinite.

To this end we recall that an element p of Spec(R) is closed if and only if p
is a maximal ideal of R, so R/p is a finite field (Lemma 1.7). Then we use the
“Dirichlet density” δ on the set Max(R) of all maximal ideals of R introduced
by Serre in [Ser65, p. 91] and the Artin-Chebotarev density theorem [Ser65,
p. 91, Thm. 7]. Let K = Quot(R). The generalized transfer theorem says that
µK(ΣK̃/K(θ)) = δ(AR(θ)) for every sentence θ of L(ring, R) (Theorem 4.4).

Moreover, combining the latter theorem with [FrJ08, p. 440, Lemma 20.6.1],
we get that δ(AR(θ)) is a rational number for each sentence θ of L(ring, R).
Furthermore, if R and θ are “explicitly given”, then δ(AR(θ)) can be recursively
(and even primitive recursively) computed (Theorem 4.7).

Acknowledgement: The authors are indebted to the anonymous referee for
many useful comments.

1 Preliminaries
{PRL}

The classical Chebotarev density theorem deals with a finite Galois extension
L/K of global fields and with the corresponding extension OL/OK of their rings
of integers. The generalized density theorem replaces OL/OK by a “finite Galois
cover X → Y ” of irreducible schemes of finite type over Spec(Z). Thus, there
is a finite group G that acts on X such that Y = X/G and the associated
action of G on the function field of X being faithful (Remark 1.9). Subsets of
closed points of Y which are contained in closed subsets of Y of lower dimension
replace the finite exceptional sets that appear in the classical case.
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The generalized theorem is due to Jean-Pierre Serre [Ser65, p. 91, Thm. 7],
who calls it the Artin-Chebotarev density theorem. The missing proofs in
[Ser65] can be found in the master thesis [Hol04] of Armin Holschbach.

A central geometric concept that enters the density theorem is a “morphism
of finite type”.

{FGN}
Remark 1.1 (Finitely generated). Let φ: R0 → R be a homomorphism of
integral domains and set r̄0 = φ(r0) for r0 ∈ R0 and R̄0 = φ(R0). Then, the
rule r0 · r = φ(r0)r for r0 ∈ R0 and r ∈ R makes R into an R0-algebra. Assume
that as such R is finitely generated. Thus, there exist x1, . . . , xm ∈ R such
that every element r in R is a polynomial in x1,0 ·r = φ(r0)r for r0 ∈ R0

and r ∈ R makes R into an R0-algebra. Assume that as such R is finitely
generated. Thus, there exist x1, . . . , xm ∈ R such that every element r in
R is a polynomial in x1, . . . , xm with coefficients in R̄0, so R = R̄0[x] with
x = (x1, . . . , xm). 1

Let φ∗: Spec(R) → Spec(R0) be the morphism induced by φ. In particular,
φ∗(p) = φ−1(p) for each p ∈ Spec(R). Since both Spec(R) and Spec(R0) are
affine, “φ∗ is of finite type”.

To this end recall that a morphism f : X → Y of schemes is of finite type
if there exists a covering of Y by open affine subsets Vi := Spec(Bi) such that
for each i, f−1(Vi) can be covered by finitely many open affine subsets Uij :=
Spec(Aij), where each Aij is a finitely generated Bi-algebra [Har77, p. 84, 1st
Definition].

By [Har77, p. 91, Exer. 3.3(a)], every morphism of schemes f that is of finite
type is quasi-compact. Hence, our definition (taken from [Har77]) coincides
with other definitions that demand f to be quasi-compact (e.g. [GoW10, p. 243,
Def. 10.6]).

In the special case where R/R0 is an extension of integral domains such that
R is a finitely generated R0-algebra, we take φ: R0 → R to be the inclusion
map. In particular, φ∗(p) = p ∩R0 for each p ∈ Spec(R). Again, φ∗ is of finite
type.

If, in addition, R′ := R[y1, . . . , yn] is an integral domain extension of R, then
R′ = R0[x, y1, . . . , yn] is a finitely generated R0-algebra, so the corresponding
map Spec(R′) → Spec(R0) is also of finite type. Replacing R by R′ turns out
to be useful in the sequel.

{HlN}
Example 1.2. The case where Y in Remark 1.1 is Spec(Z): Let L be a
finitely generated field extension of Q and let t := (t1, . . . , tr) be a transcen-
dence basis for L/Q. Then, by the Hilbert basis theorem, Z[t] is a Noetherian
domain [Eis95, p. 27, Thm. 1.2]. Hence, a theorem of Emmy Noether, [Eis95,
p. 127, Thm. 4.14], gives u1, . . . , us ∈ L such that S :=

∑s
j=1 Z[t]uj is the

integral closure of Z[t] in L. In particular, S = Z[t,u] is a finitely generated

1One could also write R = R0[x], where each element in R is a polynomial over R0

interpreted in R via φ [Eis95, p. 13, 2nd paragraph]. However, in this note we will write
R = R0[x] only if R0 ⊆ R and φ is the inclusion map R0 → R.
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Z-algebra. Hence, by the second paragraph of the current example, the epimor-
phism Spec(S) → Spec(Z) attached to the inclusion Z → S is of finite type.

If L is a finitely generated field extension of Fp, then one may choose a
finitely generated integral domain extension S of Fp with Quot(S) = L. Then,
the reduction Z → Fp modulo p combined with the inclusion map Fp → S give
a homomorphism φ: Z → S that makes S a finitely generated Z-algebra. As
above, the corresponding morphism φ∗: Spec(S) → Spec(Z) is of finite type.

Whenever needed in the comming proofs we may replace S by S[u1, . . . , ur],
where u1, . . . , ur are arbitrary elements of L, in particular, when we need S to
be integrally closed.

{GRL}
Definition 1.3 (Generalized ring of integers). Recall that a field K is said to
be global if K is either a finite extension of Q or K is a finite extension of Fp(t)
for some prime number p and a transcendental element t over Fp. The ring of
integers of K is the integral closure of Z in K, in the first case, and the integral
closure of Fp[t] in K, in the second case. Note that in the second case, the ring
of integers depends on t.

We say that K is a generalized global field if K is either a finitely gener-
ated field extension of Q or a finitely generated infinite field extension of Fp for
some prime number p.

Likewise, we say that an integral domain R is a generalized subring of
integers if R = Z[x1, . . . , xn] is a finitely generated ring extension of Z or
R = Fp[x1, . . . , xn] is an infinite finitely generated ring extension of Fp for some
prime number p.

Note that in both cases the scheme Spec(R) is integral [Liu06, p. 65, Prop. 4.17]
(hence, irreducible), Noetherian, and of finite type over Spec(Z). Moreover, the
quotient field of R is a generalized global field.

If in addition R is integrally closed, we say that R is a generalized ring of
integers. In this case Spec(R) is also normal.

{GPD}
Definition 1.4 (Dimension). Let X be an irreducible scheme of finite type
over Spec(Z). Then, the dimension of X is the maximum length of a chain
X0 ⊆ X1 ⊆ · · · ⊆ Xn of closed irreducible subschemes of X wih Xi ̸= Xi+1

for i = 0, . . . , n − 1 [Liu06, p. 68, Def. 5.1]. Moreover, dim(X) is also the
Kronecker dimension of the function field F of X. This means that dim(X) =
trans.deg(F/Q) + 1 if char(F ) = 0 and dim(X) = trans.deg(F/Fp) if char(F ) =
p > 0 [Ser65, p. 83, (1)].

Here and in the sequel, the adjectives open, closed, dense and alike for subsets
of a scheme are meant in the Zariski topology of the scheme.

Here and in the sequel, the adjectives open, closed, dense and alike for subsets
of a scheme are meant in the Zariski topology of the scheme.

{CLP}
Definition 1.5 (Closed points). A point x of a scheme X is closed if the set
{x} is closed in X [GoW10, p. 43, Def. 2.8(1)].

If X = Spec(S) for an integral domain S, then x is a prime ideal p of S, and
x is a closed point of X if and only if p is a maximal ideal of S [GoW10, p. 44,
Example 2.9(1)], that is if and only if the quotient ring S/p is a field.
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{SCP}
Remark 1.6 (Sets of closed points). Given a scheme X of finite type over
Spec(Z), [Ser65, p. 83, 1.2] denotes the set of closed points of X by X̄. We find
this notation somewhat misleading, because the bar notation could be confused
with the closure operation. Therefore, we denote the set of closed points of X
by CLP(X). Given a subset A of X we write CLP(A) = A ∩ CLP(X) for the
set of closed points of A. This notation satisfies the obvious rule: {disj}
(1) If A and A′ are disjoint subsets of X, then so are CLP(A) and CLP(A′)

and CLP(A ∪A′) = CLP(A) ∪ CLP(A′).

By Definition 1.5, if X = Spec(S) for an integral domain S, then CLP(X)
is the set Max(S) of all maximal ideals of S.

{RFF}
Lemma 1.7. Let S be a generalized subring of integers. Then, a point x of
Spec(S) is closed if and only if the residue field of x is a finite field.

Proof. (See also [Hol04, Lemma 3.1.1].) By Definition 1.3, X = Spec(S) where
S = Z[x1, . . . , xn] is a finitely generated extension of Z, in the characteristic 0
case, and S = Fp[x1, . . . , xn] in the characteristic p case. Let p be a closed point
of Spec(S). By Definition 1.5, p is a maximal ideal of S, so S/p is a field.

Note that both Z and Fp are Jacobson rings, i.e. rings in which every prime
ideal is the intersection of maximal ideals [Eis95, p. 131]. Hence, by a general
form of the Nullstellensatz [Eis95, p. 132, Thm. 4.19], in the characteristic 0
case, p ∩ Z is a maximal ideal of Z, that is p ∩ Z = pZ for some prime number
p. Similarly p ∩ Fp = 0 in the characteristic p case.

In both cases, S/p is a finite field extension of Fp [Eis95, p. 132, Thm. 4.19].
Therefore, S/p is a finite field, as claimed. □

In the notation of the proof of Lemma 1.7 we denote the order of S/p by
N(p) and also by N(x) when we consider p as a point x of X.

{NPT}
Lemma 1.8 (Number of Points). Let X be a scheme of finite type over Spec(Z)
and F a finite field. Then
(a) X has only finitely many closed points with residue field isomorphic to F .

Moreover, let m be a positive integer. Then, X has only finitely many closed
points with resdue fields of cardinality at most m.

(b) The set of all closed points of X is countable.

Proof. (See also [Hol04, Lemma 3.1.4].) By [Har77, p. 90, Exer. 3.1], X is a
union of finitely many open affine subsets, each of them is of finite type over
Spec(Z). Hence, we may assume that X = Spec(S), where, in the character-
istic 0 case, S = Z[x1, . . . , xn] is a finitely generated algebra over Z. In the
characteristic p case, S = Fp[x1, . . . , xn] is a finitely generated algebra over Fp.

Statement (b) is now a consequence of statement (a) and Lemma 1.7, so it
suffices now to prove statement (a).

Note that the set of closed points of X with residue field isomorphic to F
is contained in the set X(F ) of F -rational points of X. By definition, each
F -rational point of X corresponds to a homomorphism h: S → F . In the char-
acteristic 0 case, the restriction of h to Z is the reduction Z → Fp modulo
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p := char(F ). In the characteristic p case, S = Fp[x1, . . . , xn] and the restric-
tion of h to Fp is the identity map. Thus, in both cases, the F -rational point
corresponds to the n-tuple (h(x1), . . . , h(xn)). Since Fn is a finite set, there
are up to isomorphism only finitely many such n-tuples, so X has only finitely
many F -rational points.

Let m be a positive integer. Since F = Fpk for some prime number p and
a positive integer k, there are up to isomorphism only finitely many fields with
cardinality at most m. Hence, by the preceding paragraph, X has only finitely
many closed points with residue fields, up to isomorphism, of cardinality at most
m. □

{AFG}
Remark 1.9 (Action of a finite group on a scheme). Let S be an integral domain
and G a finite group of automorphisms of S. Write R := SG := {a ∈ S | σa =
a for all σ ∈ G} for the fixed integral domain of S under the action of G. Then,
the action of G on S extends to an action of G on the field L := Quot(S) and L
is a Galois extension of the fixed field K := LG = Quot(R) of L under G with
Gal(L/K) = G [Lan02, p. 264, Thm. 1.8]. By definition, the action of G on S,
hence the action of G on L, is faithful. Thus, σa = a for all a ∈ S implies that
σ is the identity element of G.

The action of G on S naturally induces an action of G on X := Spec(S).
Let Y = Spec(R) and ρ: X → Y be the restriction morphism, in particular,
ρ(p) = p ∩R for each p ∈ Spec(S).

It turns out that Y is then the quotient scheme of X under G, also
denoted by X/G [GoW10, p. 44, (2.3) and Prop. 2.10]. This means that ρ◦σ = ρ
for each σ ∈ G, and for every morphism f : X → Y ′ of schemes with f ◦ σ = f
for all σ ∈ G there exists a unique morphism ρ̄: Y → Y ′ with ρ̄◦ρ = f [GoW10,
p. 331, (12.7)].

By [GoW10, p. 331, Prop. 12.27(2)], for all x,x′ ∈ X the equality ρ(x) =
ρ(x′) holds if and only if there exists σ ∈ G with σ(x) = x′. Moreover, the
morphism ρ is integral and surjective [GoW10, p. 331, Prop. 12.27(3)]. In
particular, ρ is closed [GoW10, p. 325, Prop. 12.12]. If X is of finite type
over a Noetherian ring S0 and G acts on X by S0-automorphisms, then the
morphism ρ: X → Y is finite [Har77, p. 84, second definition] and X/G is of
finite type over Spec(S0) [GoW10, p. 331, Prop. 12.27(4)].

Although we won’t use the following remark, it is still interesting to note
the ring theoretic analogue of the geometric one appearing in Remark 1.9.

{INC}
Remark 1.10. If S in Remark 1.9 is integrally closed, then so is R and S is
the integral closure of R in L. Morever, if R is Noetherian, then S is a finitely
generated module [GoW10, p. 331, Prop. 12.27(4)].

Indeed, if r ∈ K is integral over R, then r ∈ L and r is integral over S. Since
S is integrally closed, r ∈ S. In addition, σr = r for each σ ∈ G, so r ∈ SG = R.
Therefore, R is also integrally closed.

Further, each s ∈ S is a root of the monic polynomial
∏

σ∈G(T − σs) with
coefficients in R, so s is integral over R.
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Conversely, if s ∈ L is integral over R, then s is integral over S, so s ∈ S.
Therefore, S is the integral closure of R in L, as claimed.

Now assume that S in Remark 1.9 is a generalized ring of integers. Then,
L = Quot(S) is a generalized global field. Moreover, R = SG is a generalized
ring of integers of the generalized global field K.

{DIG}
Definition 1.11 (Decomposition and inertia groups). Let ρ: X → Y and G be
as in Remark 1.9. Then G acts on CLP(X), so CLP(Y ) may be identified with
CLP(X)/G.

Indeed, let x ∈ CLP(X). Since ρ is closed, y := ρ(x) lies in CLP(Y ). Let
p ∈ Max(S) and q = p∩R ∈ Max(R) be the maximal ideals corresponding to x
and y, respectively. Then, the field K̄y := R/q naturally embeds in L̄x := S/p.

Assume that S is integrally closed. Then Dx := {σ ∈ G | σx = x} is the
decomposition group of x, the extension of residue fields L̄x/K̄y is normal,
and there is a natural epimorphism

Dx → Aut(L̄x/K̄y)

mapping each σ ∈ Dx onto the unique automorphism σ̄ ∈ Aut(L̄x/K̄y) sat-
isfying σ̄x̄ = σx for each x ∈ S, where the reduction is modulo the maximal
ideal p [FrJ08, p. 108, Lemma 6.1.1(a)]. The kernel Ix of that homomorphism
is the inertia group of x. When Ix is the trivial subgroup 1 of G and L̄x/K̄y

is separable, the morphism X → Y is unramified at x. In this case, Dx is
canonically isomorphic to Gal(L̄x/K̄y).

In the notation of Remark 1.9, we may choose an element z of S with K(z) =
L. Then, consider the discriminant u := discr(f) of the irreducible polynomial
f of z over K. Note that f is monic, irreducible, with coefficients in R, and
separable (because L/K is Galois), so u ∈ R and u ̸= 0. Then, in the language
of [FrJ08, p. 109, Def. 6.1.3], S[u−1]/R[u−1] is a ring cover. In particular
X ′ := Spec(S[u−1]) is unramified over Y ′ := Spec(R[u−1]), i.e. X ′ → Y ′ is
unramified at each x′ ∈ X ′ [FrJ08, p. 109, Lemma 6.1.4]. Indeed, that map is
even standard étale at each point x′ ∈ X ′ [Mil80, p. 26, 3rd paragraph].

Assume that S is a generalized ring of integers and the morphism X → Y
is unramified at x. Since, by Lemma 1.7, L̄x/K̄y is a finite extension of finite
fields, this extension is Galois and Dx is generated by the unique element Frobx

that corresponds to the Frobenius element Frobx of Gal(L̄x/K̄y) defined by

Frobx(c) = ccard(K̄y) for each c ∈ L̄x.

2 The Artin-Chebotarev Density Theorem
{ACD}

START HERE
One of the main tools in the proof of the transfer theorem for generalized

global fields mentioned in Definition 1.3 is the Chebotarev density theorem:
Let L/K be a finite Galois extension of global fields, OL/OK the corresponding
extension of its rings of integers, and C a conjugacy class of Gal(L/K). Then,
the Dirichlet density of the set of prime ideals p of OK for which the “Artin

symbol”
(L/K

p

)
is contained in C is card(C)

[L:K] (e.g. [FrJ08, Sections 6.2 and 6.3]).
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One of the features of the Dirichlet density is that it is zero on finite sets.
Hence, one may assume that the prime ideals that appear in the theorem are
unramified, so that the corresponding Artin symbols are well defined.

Following [Ser65], we generalize the density theorem to irreducible schemes
of dimension ≥ 1 and of finite type over Spec(Z).

{ZFN}
Remark 2.1 (The zeta function). Let Y be a scheme of finite type over Spec(Z).
The zeta function of Y is defined by the formal Euler product

ζ(Y, s) =
∏

y∈CLP(Y )

1

1 − 1
N(y)s

(2) {ztfn}{ztfn}

for a complex variable s, where CLP(Y ) is, as above, the set of all closed points
of Y [Ser65, p. 83, (2)].

By [Ser65, p. 83, Thm. 1], ζ(Y, s) converges absolutely (meaning, “the prod-
uct on the right hand side of (2) converges absolutely”) on the right half complex
plane Re(s) > dim(Y ). Thus, ζ(Y, s) is an analytic function on that right half
plane. By [Ser65, p. 84, Thm. 2], ζ(Y, s) can be continued as a meromorphic
function to the half-plane Re(s) > dim(Y ) − 1

2 .
Assume that Y is irreducible and let E be the function field of Y . Then,

[Ser65, p. 84, Thm. 3] supplies the following information:
If char(E) = 0, then the only pole of ζ(Y, s) in the half plane Re(s) >

dim(Y ) − 1
2 is s = dim(Y ) and it is a simple pole. In particular, the domain

of convergence of the zeta function ζ(Y, s) is the half plane Re(s) > dim(Y ).
Moreover, if Y = Spec(Z), then ζ(Y, s) coincides with the classical Riemann
zeta function [FrJ08, p. 80, Prop. 4.2.2].

If char(E) = p > 0, let q be the highest power of p with Fq ⊆ E. Then,
the only poles of ζ(Y, s) in the half plane Re(s) > dim(Y ) − 1

2 are the points

s = dim(Y ) + 2πi·n
log(q) with n ∈ Z and they are simple.

Remark 2.2 (Dirichlet’s density). Let Y be an irreducible scheme of finite type
over Spec(Z) of dimension ≥ 1. Using the fact that ζ(Y, s) has a simple pole {DDN}
s = dim(Y ) one proves that∑

y∈CLP(Y )

1

N(y)s
∼ log

1

s− dim(Y )
as s → dim(Y )+ (3) {simp}{simp}

[Ser65, p. 91, (18)].
Here and in the sequel “s → r+” for a real number r and a complex variable

s means, as usual, that s approaches r on the real axis from the right.
A subset A of CLP(Y ) has Dirichlet density δ(A) if

δ(A) = lim
s→dim(Y )+

( ∑
y∈A

1

N(y)s

)/
log

1

s− dim(Y )
(4) {drdn}{drdn}

[Ser65, p. 91, first paragraph of Section 2.7].
Whenever we write δ(A) for a subset A of CLP(Y ), we assume that A has

a Dirichlet density, given by (4). In particular this means that the limit on the
right hand side of (4) exists.
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{UPR}
Lemma 2.3. The Dirichlet density has the following useful properties:
(a) δ(CLP(Y )) = 1.
(b) If A,A′ ⊆ CLP(Y ), both A and A′ have a Dirichlet density, and A ⊆ A′,

then δ(A) ≤ δ(A′).
(c) If A ⊆ CLP(Y ) has density 0 and A0 ⊆ A, then δ(A0) = 0.
(d) If A,A′ ⊆ CLP(Y ), A∩A′ = ∅, and both A and A′ have a Dirichlet density,

then δ(A ∪A′) = δ(A) + δ(A′).
(e) If A,A′, B ⊆ CLP(Y ), A ∩ A′ = ∅, A ∪ A′ = B, and both A and B have a

Dirichlet density, then δ(A′) = δ(B)−δ(A). In particular, δ(CLP(Y )∖A) =
1 − δ(A).

(f) If A is a finite subset of CLP(Y ), then δ(A) = 0. If B,B′ are subsets of
CLP(Y ) with δ(B) = δ(B′) = 0, then δ(B ∪B′) = 0.

(g) If Y0 is a closed subset of Y with dim(Y0) < dim(Y ), then δ(CLP(Y0)) = 0.
(h) If a subset A of CLP(Y ) has a Dirichlet density and U is a nonempty open

subset of Y , then δ(A ∩ U) = δ(A). In particular, by (a), δ(CLP(U)) = 1.
(i) Let U be a nonempty open subset of Y . Then, δ(CLP(Y ∖U)) = 0.
(j) Let A be a subset of CLP(Y ) and U a nonempty open subset of Y . If A∩U

has a Dirichlet density, then δ(A) = δ(A ∩ U).
(k) If R is a ring of integers of a global field and Y = Spec(R), then (4) is the

usual definition of the Dirichlet density of a set of prime ideals of R.

Proof of (a). Use (3).

Proof of (b). Use (4).

Proof of (c). Indeed,
∑

y∈A0

1
N(y)s ≤

∑
y∈A

1
N(y)s for every real number

s > dim(Y ). Thus, our claim follows from (4).

Proof of (d). Use (4).

Proof of (e). Consider the continuous real valued functions

g(s) =
( ∑

y∈B

1/N(y)s
)/

log
1

s− dim(Y )
and

h(s) =
( ∑

y∈A

1/N(y)s
)/

log
1

s− dim(Y )

defined for s > dim(Y )+. Then,

lim
s→dim(Y )+

g(s) − lim
s→dim(Y )+

h(s) = lim
s→dim(Y )+

(g(s) − h(s))

= lim
s→dim(Y )+

( ∑
y∈A′

1

N(y)s

)/
log

1

s− dim(Y )
.

Hence, by (4), δ(B) − δ(A) = δ(A′), as claimed.

Proof of (f). Both statements follow from (4).
Proof of (g). By definition (4), δ(CLP(Y0)) is equal to the expression

lim
s→dim(Y )+

∑
y∈CLP(Y0)

1

N(y)s

/
log

1

s− dim(Y )
, (5) {nzsl}{nzsl}
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if the limit exists.
We endow Y0 with the induced reduced subscheme structure [GoW10, p. 88,

Prop. 3.52]. Let ι: Y0 → Y be the corresponding closed immersion [GoW10,
p. 84, first paragraph after Def. 3.41]. By [GoW10, p. 243, Prop. 10.7(1)], the
morphism ι is of finite type. Hence, by [GoW10, p. 244, Prop. 10.7(2)], the
combined morphism Y0 → Y → Spec(Z) is of finite type.

By Remark 2.1, applied to Y0 rather than to Y , we get that ζ(Y0, s) con-
verges at s = dim(Y ) > dim(Y0). Hence, ζ(Y0,dim(Y )) < ∞. Therefore, the
numerator in (5) converges at s = dim(Y ).

Indeed, by Lemma 1.8(b), the set CLP(Y0) is countable. For each y ∈
CLP(Y0) let ay = 1

N(y)dim(Y ) . Then 0 < ay < 1 and∑
y∈CLP(Y0)

1

N(y)dim(Y )
=

∑
y∈CLP(Y0)

ay ≤
∏

y∈CLP(Y0)

(1 + ay)

≤
∏

y∈CLP(Y0)

1

1 − ay

(2)
= ζ(Y0,dim(Y )) < ∞.

On the other hand, the denominator of the right hand side of (5) diverges
at s = dim(Y ). Hence, δ(CLP(Y0)) = 0, as claimed.

Proof of (h). Indeed, Y ∖U is a proper closed subset of Y . Since Y is
irreducible, we have dim(Y ∖U) < dim(Y ). Hence, by (g), δ(CLP(Y ∖U)) = 0.
Taking into account that A∖U ⊆ CLP(Y ∖U), we have by (c) that δ(A∖U) =
0. Therefore,

δ(A ∩ U)
(e)
= δ(A) − δ(A∖U) = δ(A),

as claimed.

Proof of (i). By assumption, Y ∖U is a proper closed subset of Y . Since Y
is irreducible, dim(Y ∖U) < dim(Y ). Hence, by (g), δ(CLP(Y ∖U)) = 0, as
claimed.

Proof of (j). Since A is a subset of CLP(Y ), so are A∖U and A∩U . By (i)
and (c), δ(A∖U) = 0. Hence,

δ(A)
(d)
= δ(A∖U) + δ(A ∩ U) = δ(A ∩ U),

as claimed.

Proof of (k). See for example, [FrJ08, p. 113, Sec. 6.3]. □

{DNT}
Theorem 2.4 (The Density Theorem). Let X be an irreducible scheme of finite
type over Spec(Z) with dim(X) ≥ 1 and let F be the function field of X. Let G
be a finite group that acts on X such that G acts faithfully on F and suppose
that Y := X/G exists. Assume that the inertia group of each x ∈ CLP(X)
is trivial. Finally, consider a G-conjugacy domain C in G. Then, the set of
elements y ∈ CLP(Y ) such that Froby ⊆ C has a Dirichlet density equal to
card(C)/card(G).
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This theorem is stated as [Ser65, p. 91, Thm. 7], using the analytic theory
of L-functions. Detailed proofs of the statements included in [Ser65] are given
in [Hol04, p. 55, Thm. 3.7.2]. The case where X is the spectrum of the ring of
integers of a global field appears for example in [FrJ08, p. 114, Thm. 6.3.1].

We improve Theorem 2.4 in the special case where X = Spec(S) as intro-
duced in Remark 1.9, with S0 = Z, by getting rid of the ramification condition:

{RAC}
Corollary 2.5. Let S be a generalized ring of integers (Definition 1.3). Let
G be a finite group that acts faithfully on S, let C be a conjugacy domain of
G, and set R = SG. Put L = Quot(S), K = Quot(R), X = Spec(S), and
Y = Spec(R).

Then, the set CLP(Y )C of points y ∈ CLP(Y ) unramified under the mor-
phism X → Y with Froby ⊆ C has a Dirichlet density equal to card(C)/card(G).

Proof. As in Definition 1.11, we choose a nonzero element u ∈ R such that
X ′ := Spec(S[u−1]) is unramified over Y ′ := Spec(R[u−1]). Then, G acts on
X ′.

Since S is a finitely generated Z-algebra, so is R [Lan02, p. 147, Cor. 7.2].
Hence, by Example 1.1, both morphisms X ′ → Spec(Z) and Y ′ → Spec(Z) are
of finite type. In addition L = Quot(S[u−1]) and K = Quot(R[u−1]).

Note that, by Remark 1.9, G acts faithfully on L and Y ′ = X ′/G (see also
[Tak69, p. 325, Thm. 1.7]). Hence, by Theorem 2.4, the Dirichlet density of the
set

CLP(Y ′)C := {y ∈ CLP(Y ′) | Froby ∈ C}

is card(C)/card(G). Since Y is irreducible and Y ′ is a nonempty open subset
of Y , it follows from Lemma 2.3(j) that the density of CLP(Y )C is the same as
that of CLP(Y ′)C , that is, card(C)/card(G), as claimed. □

3 Test Sentences
{GTT}

This and the next section generalize the transfer theorem from rings of integers
of global fields [FrJ08, p. 447, Thm. 20.9.3] to generalized rings of integers
(whose quotient fields are generalized global fields), as introduced in Definition
1.3. By [FrJ08, p. 242, Thm. 13.4.2], {prc}
(6) every generalized global field is Hilbertian [FrJ08, p. 219, Section 12.1].

We choose a generalized ring of integers R with Quot(R) = K and a mor-
phism Spec(R) → Spec(Z) of finite type as in Example 1.1, “The case where
Y = Spec(Z)”.

As in Definition 1.11, we denote the residue field of a closed point p ∈
Spec(R) by K̄p. By Lemma 1.7 and the paragraph that follows that lemma,
K̄p is a finite field with N(p) = card(K̄p). In addition we denote the first order
language of rings whose constant symbols are the elements of R by L(ring, R)
[FrJ08, p. 135, Example 7.3.1] and consider L(ring, R)-structures which are
either field extensions of K or one of the residue fields K̄p with p ∈ Max(R).
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{SMS}
Remark 3.1 (Small sets). Let S be the family of all subsets A of Max(R)
which are contained in a proper closed subset of Spec(R). By Lemma 2.3(g),
δ(A) = 0 for each A ∈ S. The family S has the following properties: {sms1}

(7a) Max(R) /∈ S, {sms2}
(7b) A,B ∈ S implies A ∪B ∈ S, {sms3}
(7c) B ∈ S and A ⊆ B imply A ∈ S, and {sms4}
(7d) A ∈ S for every finite subset A of Max(R).

Proof of (7a). Let W be a proper closed subset of Spec(R). We endow
W with the induced reduced subscheme structure [GoW10, p. 88, Prop. 3.52].
Thus, W = V (a) for some nonzero ideal a of R [GoW10, p. 84, Thm. 3.42], where
its underlying topological space is {p ∈ Spec(R) | a ⊆ p}. By assumption, R is
finitely generated over Z. Hence, since Z is a Jacobson ring, so is R [Eis95, p.
132, Thm. 4.19]. In particular, the intersection of all maximal ideals of R is the
zero ideal. Thus, there is a maximal ideal q of R not containing a. It follows
that Max(R) ̸⊆ W . Conclude that Max(R) /∈ S.

Proof of (7b). By assumption, there exist proper closed subsets V,W of
Spec(R) such that A ⊆ V and B ⊆ W . Hence, A ∪ B ⊆ V ∪ W ⊂ Spec(R),
again, because Spec(R) is irreducible.

Proof of (7c). By assumption Spec(R) has a proper closed subset V such that
A ⊆ B ⊆ V ⊂ Spec(R). Hence A ∈ S.

Proof of (7d). As a finite subset of Max(R), the finite set A is closed. Since
dim(Spec(R)) ≥ 1, A is a proper subset of Spec(R). Hence, A ∈ S.

Thus, in the terminology of [FrJ08, p. 139, Sec. 7.6], S is a family of small
sets that contains every finite subset of Max(R). Henceforth, we will say that a
subset A of Max(R) is small if A ∈ S. Then, we say that a subset B of Max(R)
is large if Max(R)∖B is small.

{pisq}
Example 3.2. Consider the case where K is a global field and OK is the ring
of integers of K. Then, OK is a Dedekind ring and dim(Spec(OK)) = 1. Thus,
small subsets of Spec(OK) are just finite sets of nonzero prime ideals of OK ,
in agreement with the convention of [FrJ08, p. 446, Section 20.9 and p. 147,
Section 7.9].

This convention is stronger than taking the small sets to be those with
density zero. Consider, for example, the case where K = Q and OK = Z. In
this case there exist infinite sets of prime numbers of Dirichlet density zero.

{LRS}
Remark 3.3 (Filter). Taking complements of subsets of Max(R) and using
Remark 3.1, we find that the family S ′ := {A ⊆ Max(R) | A′ ∈ S} with A′ :=
Max(R)∖A satisfies the following rules: {lrg1}

(8a) ∅ /∈ S ′, {lrg2}
(8b) A,B ∈ S ′ implies A ∩B ∈ S ′, {lrg3}
(8c) A ∈ S ′ and A ⊆ B ⊆ Max(R) imply B ∈ S ′, and



3 TEST SENTENCES 12

{lrg4}
(8d) A ∈ S ′ if A is cofinite in Max(R).

Conditions (8a)–(8c) say that S ′ is a filter on Max(R) [FrJ08, p. 138, Sec. 7.5].
By [FrJ08, p. 139, Cor. 7.5.3], S ′ is contained in an ultrafilter D of subsets

of Max(R). Thus, in addition to conditions (8a)–(8c) for D rather that for S ′,
the family D satisfies the following one: {ulf}
(9) A,B ⊆ Max(R) and A ∪B ∈ D imply A ∈ D or B ∈ D.

In addition, D contains no finite subset. Thus, D is a nonprincipal ultra-
filter [FrJ08, p. 139, Example 5.1(b)].

{TRS}
Definition 3.4. Given a sentence θ of L(ring, R) [FrJ08, p. 133], we set

AR(θ) = {p ∈ Max(R) | K̄p |= θ},
where “K̄p |= θ” means that “θ is true in K̄p” [FrJ08, p. 134]. We call AR(θ)
the truth set of θ along Max(R) and say that θ is true in K̄p for almost
all p ∈ Max(R) if AR(θ) is a large subset of Max(R).

{PSG}
Remark 3.5 (The probability space Gal(K)). We denote the maximal sep-
arable extension of K in K̃ by Ksep and let Gal(K) be the absolute Galois
group Gal(Ksep/K) of K. Then we denote the fixed field in Ksep of an element

σ ∈ Gal(K) by Ksep(σ) and write K̃(σ) for the maximal purely inseparable

extension of Ksep(σ) in K̃.
Being a profinite group, Gal(K) is equipped with a unique Haar measure µK

with µK(Gal(K)) = 1 [FrJ08, p. 366, Prop. 18.2.1]. In this case, a small subset
of Gal(K) is just a subset of measure 0 and a large subset of Gal(K) is a
subset of measure 1. Each of the perfect fields K̃(σ) is an L(ring, R)-structure.
Then, “a sentence θ of L(ring, R) is true in K̃(σ) for almost all σ” means that
θ is true in K̃(σ) for a large set of σ’s in Gal(K).

We define the truth set of θ along Gal(K) by

ΣK̃/K(θ) := {σ ∈ Gal(K) | K̃(σ) |= θ},

(observe the change of notation from [FrJ08, p. 440, (1)]).
{BPL}

Remark 3.6 (Boolean polynomials). Following [FrJ08, p. 140], we define Boo-
lean polynomials in the variables Z1, . . . , Zm recursively: Z1, . . . , Zm are
Boolean polynomials, and if U,U1, U2 are Boolean polynomials, then U ′, U1∪U2,
and U1 ∩ U2 are Boolean polynomials.

Evaluate a Boolean polynomial P(Z1, . . . , Zm) at subsets A1, . . . , Am of a set
by interpreting the symbols ∪,∩, and ′ as a union, an intersection, and taking
the complement, respectively. Likewise, evaluate P(Z1, . . . , Zm) at sentences
θ1, . . . , θm of a first order language [FrJ08, p. 132, Sec. 7.1] by interpreting ∪,∩,
and ′ as disjunction, conjunction, and negation, respectively.

Thus, in order to prove a property P of P(A1, . . . , An) for subsets (resp. P(θ1, . . . , θn)
for sentences) it suffices to prove:

(10a) P holds for each Ai (resp. θi),

(10b) P holds for a subset A (resp. a sentence θ) implies that P holds for the
complement of A (resp. for the negation of θ), and
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(10c) P holds for sets A1, A2 (resp. sentences θ1, θ2) implies that P holds for
the union A1 ∪A2 (resp. the disjunction θ1 ∨ θ2).

This procedure is called an induction on structure [FrJ08, p. 133].
In particular, induction on structure shows for sentences θ1, . . . , θm of L(ring, R)

and a Boolean polynomial P(Z1, . . . , Zm) that

AR(P(θ1, . . . , θm)) = P(AR(θ1), . . . , AR(θm)) and

ΣK̃/K(P(θ1, . . . , θm)) = P(ΣK̃/K(θ1), . . . ,ΣK̃/K(θm))

in the notation of Definition 3.4 and Remark 3.5.
{TSN}

Remark 3.7 (Test sentences). We call a sentence λ of L(ring, R) of the form

P((∃T )[f1(T ) = 0], . . . , (∃T )[fm(T ) = 0]) (11) {tss}{tss}

with f1, . . . , fm ∈ R[T ] separable polynomials and P a boolean polynomial a
test sentence. It is also a test sentence of L(ring,K) in the sense of [FrJ08,
p. 440, Sect. 20.6]. Let L be the splitting field of f1f2 · · · fm over K. Denote
the set of all τ ∈ Gal(L/K) with L(τ) |= λ (i.e. λ is true in the fixed field L(τ)
of τ in L) by ΣL/K(λ). Then, by [FrJ08, p. 440, (3)],

ΣK̃/K(λ) = {σ ∈ Gal(K) | resLσ ∈ ΣL/K(λ)}. (12) {srl}{srl}

Therefore, by [FrJ08, p. 370, Example 18.2.3],

µK(ΣK̃/K(λ)) =
card(ΣL/K(λ))

[L : K]
. (13) {mus}{mus}

{DPS}
Definition 3.8 (Decomposition and inertia groups). We give here the ring
theoretic analog of the notions introduced in Definition 1.11. These notions will
be used in the next lemma.

Recall that if R is an integrally closed domain with quotient field K, L is a
finite Galois extension of K, S is the integral closure of R in L, p ∈ Spec(R), and
q ∈ Spec(S) lies over p (i.e. q ∩ R = p), then Dq := {σ ∈ Gal(L/K) | σq = q}
is the decomposition group of q over K (alternatively, over p). Let K̄p :=
Quot(R/p) = Rp/pRp and L̄q := Quot(S/q) = Sq/qSq be the respective residue
fields. For each x ∈ S let x̄ := x+q be the equivalence class of x modulo q. Each
σ ∈ Dq induces a unique automorphism σ̄ of L̄q over K̄p satisfying σ̄x̄ = σx for
each x ∈ S. By [FrJ08, p. 108, Lemma 6.1.1(a)], the field extension L̄q/K̄p is
normal and the map σ 7→ σ̄ is an epimorphism from Dq onto Aut(L̄q/K̄p).

The inertia group of q over K is

Iq : = {σ ∈ Gal(L/K) | σx ∈ x + q for each x ∈ S}
= {σ ∈ Gal(L/K) | σ̄ = 1}.

If K̄p is a finite field, then L̄q/K̄p is a Galois extension. If, in addition, Iq is
trivial, then the map σ 7→ σ̄ is an isomorphism of Dq onto Gal(L̄q/K̄q) [FrJ08,
p. 108, Lemma 6.1.1(b)]. Again, in this case, we say that q is unramified over
K and p is unramified in L.

The following result generalizes [FrJ08, p. 446, Lemma 20.9.2].
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{TSS}
Lemma 3.9. Let λ be the test sentence (11) of L(ring, R). Let B be the set of
all p ∈ Spec(R) such that the leading coefficients and the discriminants of the
fi’s are units of Rp, i = 1, . . . ,m. Denote the splitting field of f1 · · · fm over K
by L and let S be the integral closure of R in L. Then:
(a) For each p ∈ CLP(B), every q ∈ Spec(S) over p, every σ ∈ Dq, and every

field extension F of K̄p satisfying L̄q ∩ F = L̄q(σ̄), where σ̄ is the image of
σ under the map Dq → Gal(L̄q/K̄p) induced by q, we have L(σ) |= λ if and
only if F |= λ.

(b) B ∩AR(λ) = {p ∈ B ∩ Max(R) | Frobp ⊆ ΣL/K(λ)}.
(c) δ(AR(λ)) =

card(ΣL/K(λ))

[L:K] .

Proof of (a). If m = 1, then λ is (∃T )[f1(T ) = 0] and statement (a) is a
consequence of [FrJ08, p. 111, Lemma 6.1.8(a)]. The general case follows by
induction on the structure of λ.

Proof of (b). Each p that belongs to either of the sides of (b) lies in Max(R)
(Definition 3.4).

Consider p that belongs to the right hand side of (b). Let q be a prime ideal
of S lying over p, so q ∈ Max(S). Let L̄q = S/q and K̄p = R/p. Then, L̄q/K̄p

is a finite Galois extension of finite fields and there is a generator σ of Dq which
is mapped onto a generator σ̄ of Gal(L̄q/K̄p). Since L(σ) |= λ, we get, by (a),
that K̄p |= λ. Thus, p ∈ B ∩AR(λ).

The other direction of (b) follows similarly.

Proof of (c). Note that B is a nonempty open subset of Spec(R) with
dim(B) = dim(Spec(R)), because each fi is separable. By [FrJ08, p. 111,
Lemma 6.1.8(b)], the inertia group in Gal(L/K) of each closed point of B is
trivial. By Lemma 2.3(h), δ(B ∩AR(λ)) = δ(AR(λ)).

By Corollary 2.5, with G = Gal(L/K),

δ({p ∈ B ∩ Max(R) | Frobp ⊆ ΣL/K(λ)}) =
card(ΣL/K(λ))

[L : K]
.

Therefore, by (b), δ(AR(λ)) = δ(B∩AR(λ)) =
card(ΣL/K(λ))

[L:K] , as claimed. □

4 Ultraproducts
{ULP}

We refer to Remark 3.3 and [FrJ08, p. 141, Sec. 7.7], respectively, for the con-
cepts “ultrafilter of a family D of subsets of a set S” and “ultraproduct

∏
As/D

of models As of an elementary theory with indices s ∈ S modulo D”. If S is
equipped with a family of small sets (hence, also a family of large sets), then
an ultrafilter D is regular if it contains no small set of S, equivalently if “each
large set of S belongs to D”. In this case we say that

∏
As/D is a regular

ultraproduct.
As in Section 3, K is a generalized global field and R is a generalized ring

of integers with Quot(R) = K equipped with a morphism Spec(R) → Spec(Z)
of finite type, as in Definition 1.3.
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The following result is a special case of [FrJ08, p. 437, Prop. 20.4.4]. To
this end note that since every element of K is a quotient of two elements of
R, the language L(ring,K) used in the latter proposition can be interpreted in
L(ring, R).

{AxR}
Lemma 4.1. There exists a set Ax(R) of axioms in the language L(ring, R)
such that a field extension F of K satisfies those axioms if and only if F is
perfect, PAC, and Gal(F ) is procyclic.

These axioms are sentences that interpret the field axioms [FrJ08, p. 135,
Example 7.3.1], perfectness axioms, [p ̸= 0] ∨ (∀X)(∃Y )[Y p = X], as p ranges
over the prime numbers, the positive diagram of R [FrJ08, p. 135, Example
7.3.1], and the following axioms:
(a) PAC axioms: Every absolutely irreducible polynomial f(X,Y ) of degree d

has a zero, d = 1, 2, 3, . . . .
(b) Procyclic axioms: The finite groups which appear as Galois groups over F

are all cyclic. Thus, Gal(F ) is procyclic [FrJ08, p. 16, Exer. 6].

The following result connects the fields K̃(σ) with σ ∈ Gal(K) to the residue
fields K̄p where p ∈ Max(R). It generalizes [FrJ08, p. 446, Lemma 20.9.1].

{SAL}
Lemma 4.2. If a sentence θ of L(ring, R) is true in K̃(σ) for almost all σ ∈
Gal(K), then θ is true in K̄p for almost all p ∈ Max(R).

Proof. By [FrJ08, p. 146, Prop. 7.8.1(a)], a sentence θ ∈ L(ring, R) is true
in K̄p for almost all p ∈ Max(R) if and only if θ is true in every regular ul-
traproduct of the K̄p’s. By Remark 3.3, every regular ultrafilter D on Max(R)
is nonprincipal, hence the map a 7→ āp, with p ranging on Max(R), embeds R
into the ultraproduct F :=

∏
K̄p/D. In particular, if a ∈ R and a ̸= 0, then

āp ∈ K̄×
p for almost all p ∈ Max(R).

By Lemma 1.8(a), {ulp1}
(14) for each positive integer m there are only finitely many p ∈ Max(R) such

that card(K̄p) ≤ m.

Using that every finite subset of Max(R) is small, Lemma 4.1, and  Loš ’

theorem [FrJ08, p. 142, Prop. 7.7.1], we have that F is perfect, Gal(F ) ∼= Ẑ,
and F is a PAC field.

Indeed, every finite field is perfect. By [FrJ08, p. 15, Section 1.5], Gal(K̄p) ∼=
Ẑ for each p ∈ Max(R). Also, by [FrJ08, p. 105, Cor. 5.4.2] and (14), the
following statement is true for all but finitely many p ∈ Max(R): {ulp2}
(15) For every absolutely irreducible polynomial f ∈ K̄p[X,Y ] of degree d there

is a point (x, y) ∈ K̄p × K̄p with f(x, y) = 0.

Moreover, by (6), K is Hilbertian. Hence, by [FrJ08, p. 439, Thm. 20.5.4],
θ is true in K̄p for almost all p ∈ Max(R), as claimed. □

We write Almost(K) for the theory of all θ ∈ L(ring, R) that are true in
K̃(σ) for almost all σ ∈ Gal(K). Likewise, we write Almost(R) for the theory
of all θ ∈ L(ring, R) that are true in K̄p for almost all p ∈ Max(R).
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{TST}
Lemma 4.3. For each sentence θ of L(ring, R) there exists a test sentence λ
satisfying the following condition:

The sets ΣK̃/K(θ) and ΣK̃/K(λ) differ only by a small subset of Gal(K),

i.e. by a set of measure zero. Thus, the sentence θ ↔ λ belongs to Almost(K).

Proof. By (6), K is Hilbertian. Hence, [FrJ08, p. 442, Prop. 20.6.6] gives
a test sentence λ in L(ring,K) that satisfies the requirement of the lemma.
Multiplying all of the polynomials that appear in λ by an appropriate nonzero
element of R, we may assume that the coefficients of those polynomials are in
R, so λ is a test sentence in L(ring, R), as required. □

Here is our main result:
{TRT}

Theorem 4.4 (The Generalized Transfer Theorem). Let θ be a sentence of
L(ring, R). Then, ΣK̃/K(θ) is measurable, AR(θ) has a Dirichlet density, and

δ(AR(θ)) = µK(ΣK̃/K(θ)). (16) {mukd}{mukd}

Moreover:
(a) δ(AR(θ)) is a rational number.
(b) δ(AR(θ)) = 0 if and only if AR(θ) is a small set.
(c) δ(AR(θ)) depends only on K.

Proof. Lemma 4.3 provides a test sentence λ in L(ring, R) of the form (11)
such that θ ↔ λ is true in K̃(σ) for almost all σ ∈ Gal(K). By Lemma 4.2,
θ ↔ λ is also true in K̄p for almost all p ∈ Max(R). Hence, ΣK̃/K(θ) and

ΣK̃/K(λ) differ only by a subset of Gal(K) of measure 0 and AR(θ) differs from

AR(λ) only by a small set, i.e. a subset of Max(R) which is contained in a
proper closed subset of Spec(R), so its Dirichlet density is zero (Remark 3.1).
Therefore, it suffices to prove the theorem for λ rather than for θ.

Let L be the splitting field over K of the polynomial f1 · · · fm, with f1, . . . , fm
being the polynomials occurring in the definition (11) of the test sentence λ.
Then L is a finite Galois extension of K, ΣL/K(λ) := {τ ∈ Gal(L/K) | L(τ) |=
λ} is a conjugacy domain of Gal(L/K), and ΣK̃/K(λ) = {σ ∈ Gal(K) | resLσ ∈
ΣL/K(λ)} (by (12)). By (13), µK(ΣK̃/K(λ)) =

card(ΣL/K(λ))

[L:K] . By Lemma 3.9(c),

δ(AR(λ)) =
card(ΣL/K(λ))

[L:K] . Consequently, δ(AR(λ)) is a rational number, so (a)

holds. Also, µK(ΣK̃/K(λ)) = δ(AR(λ)). This proves (16).

If AR(θ) is a small set, then by Remark 3.1, δ(AR(θ)) = 0. Conversely, if
µK(ΣK̃/K(λ)) = δ(AR(λ)) = 0, then ΣL/K(λ) = ∅. Hence, by Lemma 3.9(b),

B ∩AR(λ) = ∅, where B is the nonempty open subset of Spec(R) from Lemma
3.9. Thus, AR(λ) is a subset of Max(R) which is contained in the proper closed
subset Spec(R)∖B of Spec(R), so AR(λ) is a small set, as required. This proves
(b).

Finally, µK(ΣK̃/K(θ)) depends only on the quotient field K of R, hence so

does δ(AR(θ)), as stated in (c). □

Here is a generalization of Theorem 4.4(c).
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{IND}
Proposition 4.5. Let R ⊆ R′ be generalized rings of integers and θ a sentence
of L(ring, R), viewed also as a sentence of L(ring, R′). Suppose that K ′ :=
Quot(R′) is a regular extension of K := Quot(R). Then, δ(AR(θ)) = δ(AR′(θ)).

Proof. Both K and K ′ are generalized global fields and K ′ is a regular
extension of K. In particular, by (6), both K and K ′ are Hilbertian, so (K, 1)
and (K ′, 1) are “Hilbertian pairs” in the sense of [FrJ08, p. 439].

By Theorem 4.4, δ(AR(θ)) = µK(ΣK̃/K(θ)) and δ(AR′(θ)) = µK′(Σ
K̃′/K′(θ)).

By [FrJ08, p. 443, Thm. 20.7.1(c)], µK(ΣK̃/K(θ)) = µK′(
∑

K̃′/K′(θ)). Hence,

δ(AR(θ)) = δ(AR′(θ)). □

{RGL}
Example 4.6. The regularity condition in Proposition 4.5 is essential. For
example, let R = Z and R′ = Z[

√
2]. Then Quot(R) = Q and Quot(R′) =

Q(
√

2). By [Lan70, p. 76, Thm. 5], R′ is the integral closure of Z in Q(
√

2).
Let θ be the sentence (∃X)[X2 = 2]. Then, µQ(ΣQ̃/Q(θ)) = 1

2 but

µQ(
√
2)

(
ΣQ̃/Q(

√
2)(θ)

)
= 1.

The following result generalizes [FrJ08, p. 442, Thm. 20.6.7]. In this result
we refer to the field K, its subring R introduced in the second paragraph of
this section, and a sentence θ of L(ring, R). As in [FrJ08, p. 440, Sec. 20.6], we
speak about the explicit case, when all of these objects are “presented” in the
sense of [FrJ08, p. 403–406, Sec. 19.1] and K has an elimination theory as
defined in [FrJ08, p. 410, Def. 19.2.8].

{DCT}
Theorem 4.7 (Decidability Theorem). Let R be a generalized ring of integers,
and K := Quot(R) the corresponding generalized global field. Let θ be a sentence
of L(ring, R). Then, in the explicit case, the rational number δ(AR(θ)) can be
recursively computed. Indeed, it can be even primitive recursively computed.

Thus, Th(Almost(R)) is recursive and even primitive recursive.

Proof. By [FrJ08, p. 442, Thm. 20.6.7], the rational number µK(ΣK̃/K(θ))

can be recursively computed. Since, by Theorem 4.4, δ(AR(θ)) = µK(ΣK̃/K(θ)),

also δ(AR(θ)) can be recursively computed. In particular, one can recursively
decide whether µK(ΣK̃/K(θ)) = 1. Hence, one can recursively decide whether

δ(AR(θ)) = 1, which by Theorem 4.4(b) happens if and only if AR(θ) is large.
Therefore, one can recursively decide whether θ holds in K̄p for almost all p ∈
Max(R). Thus, Th(Almost(R)) is recursive.

Finally, by [FrJ08, p. 726, Thm. 30.7.2], again in the explicit case, the func-
tion µK(ΣK̃/K(θ)) from sentences of L(ring,K) to rational numbers is primitive

recursive. Hence, as in the previous paragraph, δ(AR(θ)) can be primitive re-
cursively computed and Th(Almost(R)) is even primitive recursive. □
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