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Introduction

J. Ax proved in [2] that the theory of elementary statements true in all but a finite
number of fields IF, of p elements is decidable. In [6] it was proved that this theory
coincides with the theory of elementary statements true in @ (o) for almost all
ce%(@Q/Q). Here “almost all” is used in the sense of the Haar measure p of ¢ ((Q/(Q)
defined with respect to its Krull topology and Q(o) is the fixed field of ¢ in Q.

Natural generalizations of the Q (o) are the fixed fields Q(0)=DQ(o,,...,0,) of
e-tuples (o, ..., 0,)€ 4(Q/O). Here e is a positive integer which will remain fixed
throughout this paper. It was proved in [6] and [7] that for almost all (0)e4Q/Q)

we have:

(x) Every non-void absolutely irreducible variety defined over Qo) has a
@) (g)-rational point;

(+x) Theclosed subgroup (g generated by oy, ..., 0, is (topologically) isomorphic
to the free pro-finite group, F,, generated by e elements

These two properties of the Q(g) make it possible to prove that the theory of
elementary statements true in Q(g), for almost all (¢)e % (Q/Q)’, is decidable. We
note that our notations can be interpreted also for e=0. In this case 4Q/Q)F=1,
Q()=0 and it is well known that the theory of @ is decidable (cf. Kreisel and
Krivine [8, p. 597). Thus our result can be considered as a generalization of this
classical result as well as of Ax’.

* This work is partially a revised form of the doctoral dissertation of the second author done in Heidel-
berg University under the supervision of the first author.
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In the proof we follow AX’ method and begin with a proof of an algebraic
theorem.

If E and F are two fields of characteristic 0 which satisfy () and (+#) and if
QnE=QnF, then Eis elementary equivalent to F.

The proof of this theorem is, however, quite different from the corresponding
theorem of Ax [6, Thm. 1]. Ax relies heavily on the fact that in the case e=1 the
Galois groups involved are abelian, which is by no means the case for e=2. Our
proof is a general one and its crucial point is the application of a theorem of Ga-
schiitz which asserts that if 0: G— H is an epimorphism of finite groups such that
G is generated by e elements, then every system yy, ..., y, of generators of H can be
lifted to a system of generators of G.

Ax uses non-principal ultraproducts of the TF, to bridge the gap between al-
gebraic properties and logical properties of fields. We replace the non-principal
ultraproducts by regular ultraproducts of the ® (o). They are so constructed as to
have the property that an elementary statement @ is true in Q(g) for almost all
(0)e%(@/Q)° if and only if it is true in all the regular ultraproducts of the Qo)
Using the regular ultraproducts we prove that the theory of elementary statements
true in Q(g), for almost all (c)e¥ (Q/Q), is the same as the theory of elementary
statements true in all fields of characteristic 0 which satisfy (+) and (). These
properties in turn are shown to be equivalent to a conjunction [I of ¥, elementary
statements. Again, using regular ultraproducts we show that every elementary
statement is equivalent modulo I to a one-variable statement, i.e., to a boolean
expression in statements of the form 3X f(X)=0, where fe Z[ X ]. For one-variable
statements we establish a decision procedure which applies the fact that one can
calculate the Galois group of a polynomial f(X) over Q. The general decision
procedure is reduced to the former one by using Gdel’s completeness theorem.

Finally, we note that all our results, apart from the decision procedure, are
actually proved for an arbitrary denumerable hilbertian field K rather than for Q.
The decision procedure is simultaneously established for @ and all the fields IF,(¢).

The authors wish to acknowledge their indebtedness to P. Roquette for his interest, and especially
for his crucial contribution in simplifying a former proof of the second author of the important
Lemma 2.1. They thank also J. Janko for calling their attention to Gaschlitz’ theorem.

1. Ax Fields and Hyper Ax Fields

We start with some definitions which are similar to those which appear in Ax
[2,§52,3,4].

Let F be a field and A a (commutative) F-algebra. We say that A is absolutely
entire over F if F ®y A is an integral domain. If D is a field extension of F then to
say that D is absolutely entire over F is equivalent to saying that D is a regular
extension of F. Clearly, every subalgebra of an absolutely entire F-algebra is also
absolutely entire. In particular, if 4 is an F-algebra contained in a regular extension
D of F, then A is absolutely entire. Note that this also applies to the case where 4
is the coordinate ring of an affine absolutely irreducible variety ¥ which is defined
over F, since in this case the quotient field of 4 is regular over F (cf. Lang[9, p. 71

We call a perfect field F an Ax field, if every non-void absolutely irreducible
variety V which is defined over F has an F-rational point. This is equivalent to
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saying that for every finitely generated absolutely entire F-algebra A there exists
an F-algebra homomorphism of 4 into F.

Following the second version in the definition of an Ax field one says that a
perfect field F is hyper Ax if for every denumerably generated absolutely entire
F-algebra A there exists an F-algebra homomorphism of 4 into F.

Clearly every hyper Ax field is also an Ax field. The converse does not hold in
general, but it does hold if the field in question is saturated. In order to explain what
we mean we consider a field K and denote by 2(K) the usual first order predicate
calculus language of field theory € enriched with new constants, one for every
element of K. The variables of £(K) are denoted by X, X,, X5, .... As models of
2 (K) we take only fields F which contain K and then we interpret the new constants
as the corresponding elements of K. We call these ficlds K-fields. A mathematical
statement @ on K-fields is said to be K-elementary, if it is equivalent to a sentence
in 2(K). We use the notation F| =0 to denote that @ holds over F. Two K-fields
F,,F, are said to be K-equivalent, if F|=0< ;| =0 for every K-elementary
statement @; we denote this by F; =y F;.

A field F is said to be N,-saturated, if it has the following property. Let @, ®,,
@, ... be a sequence of formulas of 2(K). If for every positive integer n there exist
elements a,, a,, as, ... of F such that

Fl=®,a) fori=1,...,n,
then there exist elements b,, b, by, ... of F such that

Fl=®b) for i=1,2,3,....

Note that our definition of the saturation property is apparently stronger
than the usual one which allows the formulas @; to have only one free variable
(cf. Bell and Slomson [3, p. 2187), but actually both can be proved to be equivalent

(cf. Ax [2, p.254)).
The same arguments used by Ax in proving Proposition 3 of [6] can be applied

to the following lemma.
Lemma 1.1. If F is an ¥, -saturated Ax field, then F is also a hyper Ax field.

Also using Ax’ arguments for proving his Lemma 8 of [ 11}, one can prove the
following slightly strengthened lemma.

Lemma 1.2. Let 9 be a non-principal ultra filter of a countable set 1. Suppose
that for every iel we are given a field F. Then F = [1F/@is an N, -saturated field.

Our aim now is to axiomatize the notion of an Ax field. Clearly, to say that a
field is perfect is an elementary statement. As to the second condition we need the
following lemma.

Lemma 1.3. The following two statements on a perfect field F are equivalent.

1) Fisan Ax field.

2) For every absolutely irreducible polynomial feF[X,,..., X,] of positive
degree <n, and for every ge F[X,, ..., X,] of degree =n which is not a multiple of
f there exist a, ..., a,eF such that f(a,, ..., a,)=0 and gla;, oy @) F0.
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Proof. (1) = (2). If (x) is a generic point of the variety f(X)=0 then g(x)=0.
Writing y=g(x)~! we have that F(x, y)=F (x) is a regular extension of F; hence
(x, y) has an F-specialization (g, b) with coordinates in F. It follows that f(a)=0
and bg(a)=1, whence g(a)=+0.

(2) = (1). Let V be a non-void absolutely irreducible variety of dimension r
defined over F. Then, as is well known, V is birationally equivalent over Ftoa
hyper-surface W in §7*', ie. to a variety of the form f(X,,..., X,,)=0, where
feF[X,,..., X,.,] is an absolutely irreducible polynomial of positive degree.
There exists a polynomial ge F[X,, ..., X, ] which is nota multiple of f'such that
the birational transformation W— V is biregular at every point (a) of W for which
g(a)%0. Every such point with coordinates in F will supply an F-rational point
of V. |

Our aim will be achieved if we show that for every polynomial f(X;, vy X)
of degree <n with general coefficients the statement “fis absolutely irreducible”
is elementary, i.. is equivalent to a formula in L with the coefficients of f as the
free variables.

Consider the Kronecker substitution S, which transforms S(X1s s X
into the polynomial S,f(Y)=f(Y, Y% .., Y¥™') with one variable Y, where
d=n+1 (cf. Lang [10, p. 150]). The degree of S,/ is £d"—1; hence, if S, [ factors
over an extension F' of F, then [F': F]1<(d"—1)!.

If f(X)=g;(X)g,(X), then S f(Y)=S,8,(Y) S48,(Y), and .81, S48, have the
same coefficients as g, , g, respectively. It follows that if /(X ) factors over an exten-
sion F' of F, then [F':F]<(d"—1)!. If F is perfect then F'~ F[Y]/hY)F[Y],
where h is an irreducible polynomial of degree =(d"—1)!. Thus, to say that f(X) is
absolutely irreducible over a perfect field F is equivalent to the following elemen-
tary statement.

For every irreducible polynomial he F[Y] of degree <(d"—1)!, there do not
exist polynomials g;, g2, gs€ F[Y, X] such that (a) degy g; <(d"— 1)! and degx g;<n
fori=1,2;(b)degygs <2((d"—1)!) and degy g3 <n; and (c) -

FO0) =g (Y, X) g2(Y, X)+ g3 (Y, X) h(Y).
We sum up these results in the following lemma.

Lemma 1.4. For every p there is a sequence @4, 0,0, ... of sentences in the
language £ of the theory of fields, which we can explicitely write down, such that a
field F of characteristic p is an Ax field if and only if F satisfies 0, for every i 2 0.

Lemmas 1.1, 1.2 and 1.4 imply

Theorem 1.5. Every non-principal ultraproduct of ¥y Ax fields is a hyper Ax
field.

2. The Elementary Equivalence Lemma for Hyper Ax Fields
The hyper Ax fields are of cardinality at least N, (cf. Bell and Slomson [3, p. 218]);

hence they are big enough to contain an ascending sequence of elementary sub-
fields of cardinality &, . This property is used in this section to prove that every two
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hyper Ax fields F,, F, which contain isomorphic denumerable subfields K,, K,
such that F/K,i=1,2,are regular, and such that a certain group theoretical prop-
erty is satisfied, are elementarily equivalent.

We begin with the following lemma, which is the main step toward the elemen-
tary equivalence theorem. All the maps in the category of pro-finite groups appear-
ing in the sequel should be interpreted as continuous maps. In particular this
applies to maps between Galois groups.

Lemma 2.1 (The embedding lemma). Let E/L, F/M be two regular field exten-
sions such that:

a) E is a denumerable perfect field,

b) F is hyper Ax field,

¢) there exists an isomorphism @, of L onto M such that Dy (L)y=M;

d) there exists a homomorphism @ of 4(F/F) into 9(E/E) such that the diagram
is commutative:

Y(E/E) «——%(F/F)
|
4(L/L) T%(M/M)

where the vertical arrows are the natural restriction maps and @, is the isomorphism
induced by @,.
Then there exists an extension of @, to a monomorphism @ of E into F such that

P(E)SF, and P(p(o)x)=c®(x) forevery o9 (F/F) and xek. (1

If, in addition, @ is surjective, then F is regular over ®(E).

Proof. Without loss of generality we can assume that L=M and that &,,
¢, are the identity isomorphisms. Furthermore, we can assume that E is free from
F over L. Hence E is free from F over L, so that they are linearly disjoint over L.
This means that the map x ® y— xy, xeE, ye F, defines an embedding of E ®; F
onto E[F]. It follows that every ce%(F/F) can be uniquely extended to a
€% (EF/EF) which satisfies

. p(o)x if xeE
GX= ) -
oX if xeF,

since @(g)x=0x for xel. The map ¢—& is an embedding of ¥(F/F) into
9(EF/EF) whose inverse is the natural restriction map. Denote the fixed field of
the image of 4(F/F) by D. Then the restriction of the elements of ¢(EF/D) to F
gives rise to an isomorphism %4(EF/D)=~%(F/F). It follows that DA F=F and
DF =EF.

In particular, we get that D is linearly disjoint from F over F, i.e. D is a regular
extension of F. EF is an algebraic extension of D; hence EcD[F]=F[D]. It
follows that every element xe E can be written in the form

X:Zyidi yiEF, diED. (2)
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Denote by D, the set of all the d; which appear in the expressions (2) for all xek.
D, is denumerable, since E is such, and we have that

EcF[D,]. 3)

If x in (2) belongs to E, then, representing the y; as a linear combination of a basis
{z;} of F over F which contains 1, and noting that D is linearly disjoint from F
over F, we find a representation of the form (2) of x in which the y; belong to F.
Thus ESF[D,]. F[D,] is a denumerably generated F-algebra which is contained
in D, hence it is absolutely entire. It follows, by (b), that there exists an F-homo-
morphism ¥: F[Do]—F. ¥ can be extended to an F-homomorphism

¥: F[D]— F,
since D is linearly disjoint from F over F. Our definitions imply that

P (G5 x)=0¥(x) 4

for every oe%(F/F) and for every x which belongs to F or to Dy, hence also for
every xe F'[D,]. In particular (4) holds for every xeE, by (3). Hence, if we denote
by @ the restriction of ¥ to E, we get that d is a monomorphism of £ into ' which
fixes the elements of L and satisfies (1).

Suppose now that the map ¢ is surjective. Let xe £ such that @(x)eF. Then,
by (1), @(@(0) x)=P(x), ie. (o) x=x, for every ce%(F/F); hence xeE. It follows
that @(E)~ F = @(E). This means that F is a regular extension of ®(E). ||

Remark. 1f g(ﬁ/F);@(E/E);i then condition (d) of Lemma 2.1 is automati-
cally fulfilled. (We shall prove later a generalization of this fact) Our lemma
reduces in this case to Proposition 2 of Ax [2]. Our proof appears to be simpler
than that of Ax.

Lemma 2.2. Let K be a field, let L and M be extensions of K and let E and F
be regular extensions of L and M respectively. Suppose that

(a) E and F are hyper Ax fields;

(b) there exists a K-isomorphism @, of Lonto M such that ®,(L)=M;
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(c) there exists an isomorphism @ of 4(F/F) onto % (E/E) such that the diagram
G(E/E) «—5—F(F/F)

]
G(L/L) «—5—F(M/M)

is commutative. Here ¢ is induced by @,.
Then E is K-elementarily equivalent to F.

Proof. Suppose first that L and M are denumerable. By the Skolem-Lowen-
heim Theorem there exists a denumerable K-elementary subfield M, of F which
contains M (cf. Bell and Slomson [3, p.807). Then M, is a perfect field which is
algebraically closed in F. Hence, the map pop 1 9(E/E)— 4(M /M), where p
is the natural restriction map of 4(F/F) onto 4(M,/M,), is surjective. By Lemma 2.1
there exists a monomorphism ¥ of M, into E which extends @5' such that
W, (M,) is algebraically closed in E. Moreover, the isomorphism y, of

e ——”

(¥ (M) (M)
onto %(M,/M,) which is induced by ¥ makes the diagram

G(E/E)—2— G(F|F)

]

(W (M) ¥, (M) —"— G(M,/M,)

commutative. Again we can find a denumerable K-clementary subfield L, of E
which contains ¥ (M,) and then a monomorphism &, of L, into F which extends
¥~! such that @,(L,) is algebraically closed in F and the corresponding group
theoretical condition is fulfilled. In this way we can construct by induction two
towers of denumerable fields,

LcL,cl,c-SE; McM M= <F,

and monomorphisms ®,: L,— M, ., ¥: M, — L, such that L, is a K-elementary
subfield of E, M, is a K-elementary subfield of F, &, extends ¥, ' and ¥ extends
&Y. Let

LOOZOLD MwZGM."
i1 i1

Then L, and M, are K-elementary subfields of E and F respectively, as can be
easily proved (e.g. using Corollary 1.9 of Bell and Slomson [ 100, p. 76]). Moreover,
the @, and ¥, can be combined to give a K-isomorphism @_ of L_ onto M, and
¥_of M, onto L, which are inverse to each other. It follows that E=F.
Consider now the general case. Let @ be a sentence of 8(K) which is true in
E. There are only finitely many elements of K, say x, ..., X,, which occur in ©.
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Let K, be a denumerable subfield of K which contains x,, ..., X, let Ly = LnK,
and M, =M nK,. Then @ is also a sentence of 2(K,), L, and M, are denumerable
and &, induces a K -isomorphism of L, onto M. It follows, by the first part of
the proof that E= F. Hence Fl=0. |

Remark. If E and F have cardinality N,, then one can extend the complete
induction to a transfinite induction on all ordinals o <¥; and eventually get a
K-isomorphism between E and F. However, we do not need this result, so we do
not state it as a theorem.

3. The Elementary Equivalence Theorem for Ax Fields

We want now to obtain Lemma 2.2 for Ax fields rather than for hyper Ax fields.
By Theorem 1.6 we can obtain hyper Ax fields from Ax fields by raising them
to & non-principal ultrapower with an index set of cardinality N,. We can there-
fore achieve our result if we show that the group theoretic condition which
appears in Lemma 2.2 is preserved in the passage to ultrapowers. This is done in
the following lemma.

Lemma 3.1. Let E, F be two perfect fields such that there exists an isomorphism
@ of 9(F/F) onto %(EJE). Let @ be an ultrafilter of a set 1, and write *E=E"/9),
*F=F'/%. Then there exists an isomorphism ¢ of G(*F, *F) onto G(*E/*E) such
that the diagram

G(FE/*E) ——9(T/*F)

G(E/E) «———G(F/F)

P
is commutative.

Proof. Let M be a Galois extension of *F of degree n. Then there exists a
pe*F=F1/2 such that M =*F(y). Let ge*F[Y] be an irreducible polynomial
such that g(y)=0. Then g is normal over *F (i.e. all the roots of g are contained
in *F(y)). These are elementary statements, hence, for almost all iel (i.e. for a set
of iel which belongs to &) we have: g,eF[Y] is an irreducible normal poly-
nomial over F of degree n such that g(y)=0. Here {g,liel} and {y|iel} are
representative sets for g and y respectively. Write M;= F(y,). Then M, is a Galois
extension of F of degree n, for almost all i, and M=][M/%. If we denote by L;
the fixed field of @ %(F/M,), then we get the following commutative diagram of
exact short sequences

> G(FIF) —— GM/F)—— 1

| ———— G(F/M)

P 73 PM;

1 » G(E/L) — G(E/E)—— Y(LJE) — L
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Here ¢,,, is the isomorphism induced by ¢. Then L, is a Galois extension of E
of degree n, for almost all i. Write L=[]L/% and ¢,,=[]¢, /2. Then L is a
Galois extension of *E of degree n and ¢,, is an 1somorphlsm of 9(M/*F)
onto 9(L/*E). It is easy to sec that L is uniquely defined by M, i.e. it does not
depend on the choice of y or on the choice of the representative of y. Moreover,
if we exchange the roles of E and F and start with L, then M will be the correspond-
ing field and , =¢,;' will be the corresponding isomorphism.

If M is another finite Galois extension of *F which contains M, then I
contains L and the diagram

G(L/*E) < G(M'/*F)

J |

G(L/*E) " —G(M/*F)

is commutative. It follows that the ¢,,’s can be combined to form an isomorphism
@ of G(*F/*F) onto G(*E/E).

It remains now to show that the diagram (+) is commutative. Let M, be a
finite Galois extension of F and let yeF be such that M,=F(y). Let L, be the
fixed field of (p‘”(F/MO) and write L,=E(x), with xeE. Put M=*F(y ) Then
yi=y M;=M, and L,=L, for every iel. Hence L= HL/J—*E(x) and it is
clear thdt if ae“j(*F/*F) then @(c| F) x = @(0) x. Hence () is indeed commutative.

Theorem 3.2. Let K be a field, let L and M be extensions of K and let E and F
be regular extensions of L and M respectively. Suppose that :

(a) E and F are Ax fields;

(b) there exists a K-isomorphism &, of L onto M such that P (L)=M;

(c) there exists an isomorphism ¢ of 4(F/F) onto %(E/E) such that the diagram

G(E/E) «———— G(F/F)

®

|

G(LIL) «——F(M/M)
is commutative. Here ¢ is induced by &, .
Then E is K-elementarily equivalent to F.

Proof. Let I be a denumerable set and let & be a non-principal ultrafilter of I.
In the notations of Lemma 3.1 we have, by Theorem 1.5, that *E and *F are
hyper Ax fields and we have the commutative diagram (*) of Lemma 3.1. If we
combine it with the diagram of Lemma 22 we get the following commutative

diagram

K

(FE/*E) —"—%(*F/*F)

o

G(L/L) «L—G(M/M).
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Moreover, *E/E and *F/F are regular extensions, hence *E/L and *F/M are
regular extensions. It follows from Lemma 2.2 that *E is K-elementarily equiv-
alent to *F. Hence E is K-clementarily equivalent to F, since *E and *F are
K-elementary extensions of E and F respectively. ||

4. A Consequence of a Theorem of Gaschiitz

There are some cases in which the group theoretic condition which appears in
Theorem 3.2 is automatically fulfilled. This happens when the groups involved
are finitely generated free pro-finite groups.

For each positive integer e we denote by E the free pro-finite group generated
by e elements. (For the definition of E and its properties, consult, for example,
Ribes [12, Chap.,§7].)

The following lemma is a special case of an astonishing lemma of Gaschiitz
[4, Satz 1].

Lemma 4.1. Let 9: G — H be an epimorphism of finite groups. If G is generated
by e elements, then for every system yi,...,Y, of generators of H there exists a
system x,, ..., X, of generators of G such that $x;=y, for i=1,..., e.

The pro-finite equivalent to Lemma 4.1 is the following lemma.

Lemma 4.2. Let 9: G— H be an epimorphism of pro-finite groups. If G is
(topologically) generated by e elements, then for every system yy, ..., Ve of gen-
erators of H there exists a system Xy, ..., x, of generators of G such that 9x;=y,
fori=1,...,e.

Proof. Consider first the case where H is finite. Then the kernel N of 9 is a
closed normal subgroup of G of finite index. For every closed normal subgroup
M of G of finite index which is contained in N we write #(M)={(x, ..., x,)e G*|(x)
generates G modulo M and 9(x)=(y)}. Then ¥(M) is a closed subset of G¢ and
it is not empty, by Lemma 4.1. Since 9(M,)nG(M,)2% (M, M) and G° is
compact, there exists an e-tuple (x) which belongs to all the %(M). This e-tuple
generates G and satisfies the condition §x;=y, for i=1,..., e.

Return now to the general case. For every closed normal subgroup I of H of
finite index we write

H(D={(x,, ..., x,)e G°|(x) generates G and J(x)=(y) (mod I)}.
Then, by the first part of the proof, #(I) is a non-empty closed subset of G*. As

before, we find that there exists an e-tuple (x) which belongs to all the J#(1). This
e-tuple generates G and satisfies the condition 9(x)=(y). ||

As a result of 4.2 we get

Lemma 4.3. Let 8, and 8, be two epimorphisms of E, onto a pro-finite group G.
Then there exists a continuous automorphism ¢ of F, such that 309 =3;.

Proof. Let x,,...,x, be a system of generators for E. Write y;=9, x; for
i=1,...,e. Then y,,...,y, generate G. By Lemma4.2, there exists a system

H
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z,,..., z, of generators of F, such that 9, z;=x;, for i=1,..., e. The map x;— z,,
i=1,...,e, can now be extended to a continuous epimorphism ¢ of E, onto
itself, which obviously satisfies 9, ¢ =9,. It follows from Ribes [12, p. 69], that ¢
is indeed an automorphism. ||

A field F is said to be e-free if 4(F/F)~F; here F, is the separable closure
of F. If a field F of characteristic p is e-free then F'r” s a perfect e-free field,
since Y(F/F'""")=%(F,/F).

Theorem 4.4. Let E, F be e-free Ax fields which contain a common field K. If
KNEx~KNF,then E=F.

Proof. Write L=K nE, M=K n F and let &, be an automorphism of K such
that &,(L)=M. L and M are perfect fields and E/L, F/M are regular extensions,
since E, F are perfect. Let ¢, be the isomorphism of 4(K/M) onto 4(K/L) induced
by &, and let p: 9(E/E)— %(K/L), p': 4(F/F)— %(K/M) be the natural epi-
morphisms induced by restriction. Then, by Lemma 4.3, there exists an isomor-
phism ¢: 9(F/F)—%(E/E) such that pop=gop’, since 4(F/F)=9(E/E)>F,.
Theorem 3.2 asserts now that E=  F. ||

Corollary 4.5. Let E, F be e-free Ax fields such that E is contained in F. If
ENF=E, then F is an elementary extension of E.

Remark. Corollary 4.5 means that the theory of e-free Ax fields possesses a
weak form of model completeness.

5. Axiomatization of the Concept of an e-Free Field

The concept of an e-free field can, like the concept of an Ax field, be characterized
by ¥, elementary statements. In order to prove this claim, we first cite the following
lemma from [7, Thm. 2.4].

Lemma 5.1. Let G be a pro-finite group which is generated by e elements. Then
G is isomorphic to E if and only if every finite group with e generators is a homo-
morphic image of G.

Using a standard compactness argument one can see that the condition “G
is generated by e elements” is equivalent to “Every finite homomorphic image
of G is generated by e elements™. Lemma 5.1 therefore applies.

Lemma 5.2. A pro-finite group G is isomorphic to F, if and only if it satisfies
the following conditions:

a) Every finite group generated by e elements is a homomorphic image of G.

b) Every finite homomorphic image of G is generated by e elements.

If we translate Lemma 5.2 to the (non-formal) language of fields, we get the
following lemma.

Lemma 5.3. A field F is e-free if and only if it satisfies the following conditions:
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a) The Galois group, 4(f, F) over F of every monic polynomial fe F[ X] without
multiple roots is generated by e elements.

b) For every finite group H generated by e elements, there exists a monic
feF[ X, without multiple roots, such that 4(f, F)=H.

Our task now is to show that each of the conditions (a) and (b) can be re-
written as a conjunction of ¥, elementary statements. For this purpose, consider
a polynomial

SX)=X"+¢; X" '+ e,
with coefficients ¢; in F and with n distinct roots q,, ..., a, in E. Let U, ..., U,
be n variables and write W=a, U + --- +a, U,. Let S(U) be the full permutation
group of {U,, ..., U,}. For every neS(U) write

aW=a,nU+-+a,nU,.

Consider the polynomial
ga,U,2)= [] (Z—zW)

reS(U)

in the variables U, Z and with a,, ..., a, as parameters. Clearly g is invariant
under permutations of the a;; hence its coefficients are symmetric polynomials in
the a; with integral coefficients. Thus they are polynomials in the ¢; with integral
coefficients. We can therefore write
g, U, Z)=) g (c) U ... U Z™t. (%)
)

The degree of g is nl. Note that the g, depend only on n and we can effectively
calculate them. Their coefficients must always be interpreted modulo the charac-
teristic of F. We abbreviate the right hand side of (x) by hi¢c, U, Z). Let

e, U, Z)=h (U, 2) ... h{U, Z)

be a factorisation of k in F[U, Z] into irreducible factors. Every one of the h; has
in F(a) the form

hi(y’ Z): H (Z*n W)7

neS;

where S, is a subset of S(U). The elements of S(U) operate on the h; according to
the formula

thi(U, Z)=htU,Z)= ] (Z—1r W),

neS;

and the set {h,,..., h,} is permuted by this operation. Let now 7,€S,. Then S(U)
is isomorphic to S(r,¢), as a permutation group, by the map n+>n’, where 7' is
defined by

n'(a)=a;=n(t, U)=1, U,.

It is well known that the subgroup G={neSU)|nh, =h,} of S(U), is mapped
under this isomorphism onto %(f, F) (cf. Van der Waerden [ 13, §61]).
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Using this description of 4(f, F), we denote by A, (n) the following statement:
For every ¢y, ..., ¢, such that f(X)=X"+¢, X" '+ +¢, has no multiple
roots, there exist irreducible polynomials i (U, Z), ..., h(U, Z) such that

and such that for at least one of the e-tuples (ny, ..., n,)eS(U) the following

statement holds: A n;hy =h; and for all ne S(U), nh, =h, implies that A nU;=
j=1

i=1 =
wU; for at least one we{mny, ..., m.).

Note that for a given =,...,m, one can explicitely write the subgroup
{7y, ..., W, and this can be done in a finite number of steps, a bound for which
can be calculated in advance.

By the above reasoning F satisfies condition (a) of Lemma 5.3 if and only if
AL (n) holds over F for every nz 1.

Let G be a group of n elements. Then G can be identified with a subsgroup
of S(Uy, ..., U,). We denote by A;,(G) the following statement:

There exist ¢y, ..., ¢, such that f(X)=X"+c¢; X"~ '+ +¢, has no multiple
roots, and there exist irreducible polynomials h, (U, Z),..., h(U,Z) such that

hc, U, Z)=[]h(U, Z), nh,=h, for all neG, and nh, *h, for all reS(U)—G.
i-1
Again, F satisfies condition (b) of Lemma 5.3 if and only if 4,(G) holds over F
for every finite group G generated by ¢ elements.
It is not difficult to see that A,(n) and A,(G) are equivalent to sentences A,(n),
A,(G) in the formal language £. Altogether, there are N, sentences. Taking into
account Lemma 5.3, we have proved the following lemma.

Lemma 5.4. There is a sequence A;, Ay, A5, ... of sentences in &, which can be
explicitely written down, such that a field F is e-free, if and only if it satisfies A,
for every iz 1.

6. Regular Ultraproducts

If L is an e-free field, then 4(L,/L) is generated by e elements; any field L whose
Galois group, %(L/L), is generated be ¢ elements, is said to have corank=e
(cf. [7, §1]). In this section we consider a fixed field K and study, via measure
theory, the set of all fields of corank <e which are algebraic over K. It turns out
that, if K is denumerable and hilbertian, then “almost all” of these fields are
e-free Ax fields. The assumption that a field is hilbertian will, however, be made
only in Section 7. Here we shall study relations between these fields and their
“regular” ultraproducts which are valid without this assumption. We begin by
introducing the Haar measure.

It is well known that the Galois group %(K,/K) is compact with respect to
its Krull topology. There is, therefore, a unique way to define a Haar measure p
on the Borel field of 4(K/K) such that u(%(K/K))=1. If L is a finite separable
extension of K, then u(%(K,/L))=[L:K]™*; if L is an infinite extension then
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W@ (K/L)=0. We complete u by adjoining to the Borel field all the subsets of
zero sets and denote the completion also by . More generally, for a positive integer
¢, we consider the product space %(K,/K)° and again denote by p the appropriate
completion of the power measure. It coincides with the completion of the Haar
measure of %(K,/K)®. In particular, this implies that if L is a finite Galois extension
of K and C is a subset of #(L/K)°, then

ICl

ul{le)e % (K JKY| (el e C}) =7 - M)

An ultrafilter @ of (K /K) is said to be regular, if it contains all the subsets
of (K /K) of measure 1. It follows that if K /K is an infinite extension, then
every regular ultrafilter is non-principal. The following lemma shows how to
construct regular ultrafilters; it is analogous to the corresponding lemma for
non-principal ultrafilters.

Lemma 6.1. Let @, be a family of subsets of 9(K/K)" such that for every
Ayy ooy A€ Do, Ay Ay is not a zero set. Then there exists a regular ultrafilter

of 4(K ,/K)° which contains 9, .

Proof. Let @, be the family of all subsets of (K /K) of measure 1. Then
B, ---n B, is not empty for every By, ..., B,eZ, U9, 1t follows that there exists
an ultrafilter of Z(K/K)° which contains 2, U 9, . This ultrafilter is regular. |

For every (o)=(0y,...,0,)e9(K/K), let K (g) be the fixed field in K, of
4, ...,0,. If p=char(K), let K(g)=K,(g)'?”; it is the fixed field in K of the unique
extension of a5, ..., g, to K. To every regular ultrafilter 2 of 9(K,/KY there corre-
sponds an ultraproduct 11 R(0)/9, which will be referred to as a regular ultra-
product. This corresponds to the non-principal ultraproducts of the finite fields
in Ax theory (cf. [1, part II] and [6]). Analogously to Proposition 7 of [6], we
prove the following lemma.

Lemma 6.2. (a) If F is an ultraproduct of the fields K (o), then K N F is perfect
and of corank=e.

(b) For every perfect subfields L gfk of corank=e which contains K, there
exists a regular ultraproduct F of the K(a) such that Kn F=g L.

Proof. a) It was proved in Section 5 that the property of a field of having corank
<e is equivalent to a conjunction of sentences in €. Each one of them holds for
every K(g), hence also for F. It follows that corank(F)<e. Clearly F is also per-
fect, hence KN F is perfect. The group @(K/K n F) is a homomorphic image of
4(F/F), hence 4(K/K nF) is also generated by e elements.

b) We begin the proof of (b) by introducing some notations. For every perfect
extension E of K we denote by [E/K] the set of all polynomials fe K[X] which
have a root in E. Ax proved in [11, p. 172] that if E’ is another perfect extension of

K, then

[E/K]=[E/K]<KnE=yKnE. 2)
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For every fe K[ X] we define
A(f)={(g)e¥(K,/K)| f has a root in K(g)}.

We also write B(f)=%(K,/K)°— A(f). These notations will also be used in the

sequel.

By our assumption, there exist t,,...,7,69(K,/K)° such that K(z)=L. Let
SiseoisSonr 815> 8,€ K[ X] be separable polynomials such that f,...,f,e[L/K]
and g, ..., g,¢[L/K]. Let K" be a finite Galois extension of K which contains all
the roots of f;, ..., fo» &1» .-+, &y~ Then {(g)e G (K/K)|o|K'=1,|K  for i=1,..., e}
is a set of positive measure which is contained in A(f))n--- N A(f,) " B(g)n -
nB(g,). By Lemma 6.1, there exists a regular ultrafilter 9 of %(K,/K)* which
contains all the A(f) and B(g) such that fe[L/K], ge K[X]—[L/K] and f,g
are separable over K. Denote F=] | K(g)/2, then for every separable he K[ X],
hhasarootin K n Fifand only if it has a root in L. This implies that [F/K|=[L/K],
since F and L are perfect. Hence K n F~ L, by (2). |

7. Elementary Statements over Regular Ultraproducts

For a K-elementary statement @ we write

A(O)=44(0)={(0)e%(K/K)’| K(a)| = O}.
In particular, note that A(f)=AEX[f(X)=0]). Clearly, A®, v ©,)=A(O,)UA(O,)
and — A{(@)=A(~O).

Proposition 7.1. Let K be a denumerable field and let © be a K-elementary state-
ment. Then K(a)|=@ foralmost all (o)e%(K/K)°, if and only if F|=@ for every
regular ultraproduct F of the K(g).

P/‘()()_/.'~If wWA(®))=1, then A(O)e2, for every regular ultrafilter & of ¥(K /K);
hence nK(g)/,@l =@. If A(®)is not a set of measure 1, then, by Lemma 6.1, there
exists a regular ultrafilter 2 of ¥(K /K)* which contains A(~ ©), hence

[[R@/2|=~06. |

A field K is said to be hilbertian if for every irreducible polynomial fe K[ T, X]
there exist infinitely many te K such that f{¢, X) is irreducible in K{X']. We note
that every finite algebraic extension of a hilbertian field is hilbertian. If K, is any
field and x is a transcendental element over K then K,(x) is hilbertian. Moreover,
@ is hilbertian (cf. Lang [10, Chap. VIII}).

Lemma 7.2. Let K be a hilbertian field. Then

(a) K(g) is an e-free field for almost all (c)e%(K /K. If. in addition, K is
denumerable, then

(b) K(g) is an Ax field for almost all (¢)e 9(K /K¢, and

(c) every regular ultraproduct of the K(g) is an e-free Ax field.

Proof. Statement (a) is a part of Theorem 5.1 of [7]; statement (b) is Theorem 2.5
of [67; statement (c) follows from (a) and (b) by Lemmas 1.4, 54 and Proposition
7.1
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We are now in a position to prove

Theorem 7.3. Let K be a denumerable hilbertian field and let ® be a K-elemen-
tary statement. Then the following two statements are equivalent :

(a) K(a)|=0 for almost all (c)e %(K /K)°.
(b) Fl=0 forevery e-free Ax field F which contains K.

Proof. (b) = (a) follows from Lemma 7.2.

(a) = (b). Let F be an e-free Ax field which contains K. Then one shows, as
in the proof of Lemma 6.2 (a), that K n F is a perfect field of corank <e. By Lemma
6.2(b), there exists a regular ultraproduct E of the K(g) such that KnEx~ K F.
By Lemma 7.2 and Proposition 7.1, E is an e-free Ax field and E|=6. By Theorem
44 E=(F, hence F|=06. |

Let o = oy be the boolean algebra of (K /K)® generated by all of the A(f)
for which f'is separable, and all of the zero sets. Clearly, A(f)e.o for all fe K[ X].

Theorem 7.4. Let K be a denumerable hilbertian field and let @ be a K-elementary
statement. Then A(@)esd.

Proof. Assume that A(0)¢.o/. Consider the boolean algebra J of all subsets
of (K /K)* modulo zero sets. Let .o/, A(©) be the boolean subal Igebra and the
element of J which correspond to .« and A(®) respectively. Then A(©)¢.«Z, since
</ contains all the zero sets. By a proposition of Ax [6, p. 265], there exist two
ultrafilters D,, D, of J such that D, N/ =D, "o, A(®)eD, and A(®)¢D,. Note
that the ultrafilters of J are in a bljectlve correspondence with the regular ultra-
filters of 4(K,/K)°. It follows that there exist regular ultrafilters, 2,,2,, of
%(K/K)* such that

Dnd=D,nsd, AO)eP, and A(0)¢D,. (%)

Let E== H K(a)/2,. Then, by Lemma 7.2, the F, are e-free Ax fields. Moreover, if
SfeK[X], then f has a root in F, if and only 1ffhas arootin F,, since 9, .o/ =
9, . 1t follows, by Ax [1, p. 172], that K n F, =~ K n F,. Hence, by Theorem
4.4, F, = F,. This contradicts (x). ||

A K-elementary statement is said to be a one-variable statement, if it is equiv-
alent to a sentence of the form

P=P([3X f,(X)=0], ..., [3 X £,(X)=0]),

where &(Z,, ..., Z,) is a boolean polynomial in the variables Z,, ..., Z,; the union,
intersection and the complement operations are to be interpreted as disjunction,
conjunction.and negation, respectively, and f,, ..., f,, are separable polynomials,

Notation. If A, B are two subsets of (K /K)* which differ only by a zero set,
then we write A~ B.

Theorem 7.5. Let K be a denumerable hilbertian field and let © be a K-elemen-
tary statement. Then there exists a one-variable statement @ such that

(a) A(@)~ A(D).
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(b) K(g)| = O« for almost all (¢)e¥% (K /K)".

(c) Fl=0® for every e-free Ax field F which contains K.

(d) p(A(O@)=pu(A(P)) is a rational number.

Proof. Every element of &/ can be written in the form A(®)u @ where O is a
zero set. Hence (a) is a corollary of Theorem 7.4.

Statement (b) follows from (a).

Statement (c} follows from (b) and Theorem 7.3.

To prove (d) we first show that A(®) is measurable and u(A(P)) is a rational
number, where @ is as in (x). Indeed, let L be the splitting field of the polynomial
fis.oos [ Denote by C the set of all (¢")e %(L/K) such that L(¢")| = &. It is clear that

A(P)={(0)e¥(K/K)|(g/L)e C}
(cf. [6, Lemma 3.117]). Hence, by formula (1) of Section 6,

_ 1@
HA@)= e

The equality in (d) follows now from (a). ||

We conclude this section by considering a change in the basis field. Let K’
be a regular extension of K. Denote by p: ¥(K/K')*— %(K/K)° the epimorphism
induced by restriction. Then K n K'(¢)= K(p(g)) for every (g)e 4(K./K')*. Denote
by i the completion of the Haar measure of #(K;/K'). Then p is a measurable map,
ie. w(p~' A)=pu(A4) for every measurable subset 4 of ¥(K/K)* (cf. Halmos
[5, p.279).

Theorem 7.6. Let K, K' be denumerable hilbertian fields such that K' is a regular
extension of K. Then

(a) K'(g)=x K(p(o)) for almost all (¢)e 9(K./K')".

(b) A (@)= p~ ' A (O) for every K-clementary statement ©.

(c) uW(Ag(O)=p (A (O)) for every K-elementary statement €.

Proof. Denote by S (resp. §') the set of all (g)e 9(K/K) (resp. %(K;/K')) such
that K(g) (resp. K'(g)) is an e-free Ax field. Then pg(S)=1 and ug (S )=1, by
Lemma 7.2. It follows that g.(p ~*(S)nS")=1. By Theorem 44 K'(g) = K(p(g))
for every (g)ep ™ 1(S)N S".

This completes the proof of statement (a).

Statement (b) follows from (a); (c) follows from (b). ||

8. The Decision Procedure

In this section we restrict ourselves to the case where the ground field K is either
the field of the rational numbers @ or one of the ficlds IF, (t), where IF, is the field
with p elements and ¢ is transcendental over IF,. In each of these cases, one is able
to make an explicit list of the sentences of the language £ (K); from here on,
£(K) will be denoted by £,, where p=char(K). For every p we denote by T,
the theory (i.e. the set) of all the sentences of £, that hold in every e-free Ax K-
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field with characteristic p or, equivalently, that hold in K(g) for almost all
(0)e % (K /K)*, where p=char (K). Our aim is to give a scheme of instructions which
will enable us to decide in a finite number of steps, whether or not a given sentence
of €, belongs to T,. In other words, we are going to give a decision procedure for
T,. In doing so we use the fact that every given polynomial fe K[X,,..., X,]
can be effectively decomposed in a product of irreducible factors.

We follow Ax’ decision procedure for the theory of finite fields (cf. [2,889,11])
and begin with the procedure for one-variable statement. Let

P=d([3X £,(X)=0],...,[3X [.(X)=0D), (1)

be a one-variable statement. Then one can effectively transfer it into one in which
the f; are monic, are irreducible and have no common roots. Thus, let us suppose
that we begin such a statement. The f; have the form

SilX)=X"+c¢y Xt ey,

with given ¢;; in K. Let a;y, ..., Gy, be #; symbols which stand for the roots of f;;

let Uy,...,U, be n variables. Write W= i (a;; Uy + -+ +ag, Uy,) and let
gla, U, Z)= H‘(Z — 7 W), where Sis the cartesian ;;i)duct of the permutation groups
S(U;) and n";[;:i (a;; w U+ - +a;,,m Uy,,). The coefficients of g are symmetric
polynomials in e:d:ci'l of the sets of symbols (a;) with integral coefficients (which are
to be calculated modulo p). Therefore, we can effectively rewrite them as poly-

nomials in the given ¢;;. We do this, and rewrite g in the form
gla, U, Z)=Y g, 2" [ Us* ... Ui 2)
(v) i=1

We denote the right hand side of (2) by h(c, U, Z) and decompose it into a product
of irreducible polynomials over K

hce,U,Z)=h(U,Z)... h(U,Z).

Then we determine the subgroup G of S which fixes ;. As in Section 5, one can
prove that there exists a teS such that G is isomorphic to 9(f; ... fu, K) under the
map nr—1’, where 7" is defined by

' (a; )= a < n(tUy) =1 U,;.
It follows that if L is the splitting field of f; ... f,, over K, then an e-tuple (z;, ..., )

e G¢ satisfies

(VA mUs=UyenV A 7 U= Uug) G)

j=1k=1 j=lk=1
if and only if
Lx)|=®([3X £,(X)=0], ..., [3X f,.(X)=0]), )
where L(z) is the fixed field of (z') in L.
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We calculate the order of G and the number ¢ of the e-tuples (r)e G° satisfying
(3). Then, by an argument similar to that used in the proof of Theorem 7.5, we get
C
A(P)) =—.
1G]
We have therefore proved the following lemma:

Lemma 8.1. Let K be either Q or one of the IF,(t). Then for every given one-
variable statement @ we can effectively calculate p(A(P)). It is a rational number.

We come now to the main result of this work.

Theorem 8.2. Let K be either Q or one of the IE,(t). Then for every given K-
elementary statement @ we can find a one-variable statement @ such that A(®)~ A(P)
and we can compute p(A(@)). In particular, we can decide in a finite number of steps
whether or not O€X,,.

Proof. By Lemma 1.4 and Lemma 5.4 we can explicitly write down a list of
sentences ¥, , ¥,, ¥, ... in the language @ such that a K-field F is an e-free Ax
field if and only if F|=¥, for every n=1. Write W={¥,,¥V,, V5, ...}. Theorem 7.5
asserts that there exists a one-variable statement &' such that 9B|= @—d'. By
Godels completeness theorem there exists a formal proof of @« @' from W
(cf. Bell and Slomson, [3, p. 234]). Thus we proceed as follows. We order the formal
proofs from 2B in a sequence and check them one by one. After a finite number of
steps we must hit a proof of a sentence of the form @« ®, where @ is a one-variable
statement. Then F|= 0 «® for every e-free Ax K-field F, hence 4(@)=~ A(D), by
Theorem 7.3. Thus by Lemma 8.1 we can compute u(A4(®)). A(O) belongs to I,
if and only if u(4(@)=1. |

Remark. Technically speaking, our proofs imply that the set of Godel numbers
of T, is recursive, whereas the set of Godel numbers of the set of all one-variable
statements is primitive recursive. The difference is that, given a one-variable
statement @ one can give in advance a bound for the number of steps necessary for
computing u(A(P)) and deciding whether or not ®€I,, whereas this is not possible
with an arbitrary K-elementary statement ®. The only thing we know is that we have
to proceed with a certain sequence of operations and calculations with @ and that
we are ensured that after a finite number of steps we will arrive at the desired
conclusion. It would, therefore, be reasonable to look for another decision proce-
dure which cures this defect.

References

. Ax, J.: Solving diophantine problems modulo every prime. Annals of Math. 85, 161-183 (1967)

. Ax, J.: The elementary theory of finite fields. Annals of Math. 88, 239-271 (1968)

. Bell, J. L, Slomson, A. B.: Models and ultraproducts. Amsterdam: North-Holland 1969

. Gaschiitz, W.: Zu einem von B.H. und H. Neumann gestellten Problem. Math. Nachrichten 14,
249-252 (1956)

. Halmos, P.R.: Measure theory. Princeton: Van Nostrand 1950

. Jarden, M.: Elementary statements over large algebraic fields. Trans. of AM.S. 164, 67-91 (1972)

7. Jarden, M.: Algebraic extensions of hilbertian fields of finite corank. Israel J. of Math. 18, 279-307

(1974)

Ao b —

(e




294

M. Jarden and U. Kiehne

8. Kreisel, G., Krivine, J. L.: Elements of mathematical logic. Amsterdam: North-Holland 1967

9. Lang, S.: Introduction to algebraic geometry. New York: Interscience Publishers 1958

10. Lang, S.: Diophantine geometry. New York: Interscience Publishers 1962

11. Mendelson, E.: Introduction to mathematical logic. Princeton: Van Nostrand 1964

12. Ribes, L.; Introduction to profinite groups and Galois cohomology. Queen papers in pure and

applied Math. 24, Kingston 1970

13. Van der Waerden, B.L.: Moderne Algebra L. Berlin-Heidelberg-New York: Springer 1940

Moshe Jarden

Department of Math. Sciences
Tel Aviv University

Ramat Aviv, Tel Aviv

Israel

Received April 10,1975

Ursel Kiehne

Math. Institut der Univ. des Saarlandes
D-6600 Saarbriicken

Bau 27

Federal Republic of Germany




