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Introduction

We consider the field @ of rational numbers, its algebraic closure @, and for
every positive integer e, the cartesian power G, =% (@/@Q)° of the Galois group of
@ over Q. If (9)=(0y,...,0.)€G,, then we denote by O(0) the fixed field of
(6y,...,0,) in Q. It was proved in [7] that for a fixed positive integer e, the theory
T,(Q) of all elementary statements of field theory that are true in @ (g) for almost
all Q(0)eG,, is decidable. Here “almost all” is used in the sense of the Haar
measure , defined for G, with respect to the Krull topology. One of the main
steps in establishing the decision procedure was the reduction modulo T,(Q)
of an arbitrary elementary statement @ to a, so called, one variable statement.
A one variable statement is a statement that is equivalent to a boolean combination
(i.e. one that uses disjunction, conjunction and negation) of sentences of the form
(3X) f(x)=0, where fe Q[x]. It was proved that for a given elementary statement
® one can find, in a finite number of steps, a one variable statement ¢ such that
O« @ is true in Q (o) for almost all (g)eG,. A natural question which arises is
to what extent does @ depend on ¢? In order to understand the situation consider
a typical example in which @ is the statement “There exists a Galois extension
with H as « Galois group”, where H is a given finite group. Let e, =rank H.
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If e<e,, then @ is false for every (0)eG,, since the rank of every Galois group
over Q(o,, ..., 0,) is not greater then e. However, if e ¢, then @ is true in Q (o),
for almost all (¢)eG,, since for almost all (g)eG,, every finite group of order e is
realizable over Q(g) (see [7, Lemma 7.2]). This means that in the case e<e,, @
can be chosen as “(3X)1 =07 and in the case e>e. @ can be chosen as “(3 X)0=0".
For an arbitrary elementary statement & we prove the following Theorem.

If © is an elementary statement, then one can find, in a finite number of steps,
a one variable statement @ and a positive integer ¢, such that @ (g)i=© <& for
every e = e, and almost all (0)eG,.

In establishing this Theorem we develop methods and prove results similar
to those that appear in [7]. We consider the theory T, (@) of all elementary
statements © for which there exists an e, such that @ (¢)&= @ for every e Z e, and
almost all (¢)eG,. We prove that a field F is a model of T, (Q) if and only if it
satisfies the following conditions:

(a) char (F)=0,

(b) every non-void absolutely irreducible variety defined over F has an F-
rational point,

(c) every finite embedding problem over F is solvable.

We show that conditions (a), (b) and {(c) can be reformulated as a sequence,
I1(@), of sentences in the first order predicate calculus language of the theory of
fields; IT(Q) is therefore a set of axioms for the theory T,,(Q). Then we establish
a recursive decision procedure for T, (Q) based on the elementary statements to
one variable statements that was described above.

As in [7] we also develop an appropriate measure theory. Let G= | ] G,

e=1

be the disjoint union of all the measure spaces G,. Every subset 4 of G can be

[#3)

uniquely represented as a disjoint union, 4 = | ] A,, where 4,=4NG,. Let

e=1

fesl

wA)= 3 po(A,).
e=1
Then p is a measure of G which is invariant under the action of G,. A subset of G
is said to be a big set, if there exists an e, such that u,(4,)=1 for every ez=e,.
For an elementary statement & we denote

A,(0)= (12)6,10(0) =0,
1(0)= ) 4,(0)=10)=6I0(@)=0}.

Then A(@) is a big set if and only if & belongs to 1, (@). We prove that in any
case, either u(A4(@)=oo or u(A(®)) is a rational number. Moreover, we give a
recursive procedure to compute p(A(0)).
The proofs of the various decision proced ures rely on the following fundamental
algebraic-model theoretic result which is the analogue to Theorem 4.4 of [7].
Let E, F be fields that satisfy conditions (a), (b) and (c) above. f @ nEx® N F,
then E is elementarily equivalent to F.
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The crucial points in the proof of this theorem is Lemma 3.1 of [7] together
with the following result on an ultrapower of a field:

Let E be a perfect field such that 9(E/E) is a free pro-finite group on a set T.
Let @ be an ultrafilter of a set I and let *E=E'/@, *T=T'/%. Then there exists a
Galois extension N of *E that contains E, such that %(N/*E) is a free pro-finite
group on a set of the same cardinality as *T.

Finally we note that the decision procedures are actually proved for every
given infinite field which is finitely generated over its prime field. All other results
hold even under assumption that K is countable and Hilbertion.

1. Free Pro-Finite Groups

A subset S of a pro-finite group G is said to be a set of generators for G, if the
closed subgroup generated by S coincides with G. Every map ¢, of S into a pro-
finite group H has at most one extension to a continuous homomorphism
¢: G- H.

A subset § of a pro-finite group G is said to converge to 1, if every open normal
subgroup of G contains all but a finite number of elements of S.

Suppose that G has a set of generators S that converges to 1. The rank of G is
then the smallest cardinality of such an S.

The condition rank (G)<N, isequivalent to the condition that G contains a
decreasing sequence G G, > G, >+ of open normal subgroups that constitutes
a basis for the neighbourhoods of 1 (see Ribes [10, p. 84]). Such a basis satisfies

() G=1.
i=1

Let S be an infinite set of generators of G that converges to 1, let H={1, —1}
be the multiplicative group of two elements and let ¢p: G- H be a continuous
homomorphism. Then all but a finite number of elements of S are mapped to 1,
by ¢. Hence ¢ is fully characterized by that finite subset of S which is mapped
onto — 1. It follows that there exist at most |S| continuous homomorphisms of G
into H. Here |S| means the cardinality of S.

A free pro-finite group is a couple (F, X), where F is a pro-finite group and X
is a set of generators of F that converges to 1, such that every map ¢, of X into a
pro-finite group G for which ¢o(X) converges to 1 can be extended to a continuous
homomorphism ¢: F— G. X is said to be a free set of generators for F. We also
say that F is a free pro-finite group on X.

Note that our definition of a free pro-finite group is essentially that of Ribes
(cf. [10, p. 61]).

If F is free on an infinite set X, then every map ¢, of X into H={1, —1} that
maps all but a finite number of elements of X onto | can be extended to a contin-
uous homomorphism of X into H. This implies that there are exactly |X| contin-
uous homomorphisms of F into H. Hence F can not be generated by a set S that
converges to 1 and has a smaller cardinality than | X|. It follows that rank (F)=|X].
This conclusion holds also in the case where X is finite, as follows easily from
Proposition 7.6 on page 68 of [10].
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For each cardinal number « there exists exactly one (up to an isomorphism)
free pro-finite group F of rank « (see [10, p. 61]). We follow our notation in [5]
and denote by F, the pro-finite free group on e generators. E, will denote the pro-
finite group of rank ¥,.

An embedding problem for pro finite group F is a diagram

>y

S

=

G —4—

where G, H are pro-finite groups and ¢, 0 are continuous epimorphisms. The
rank of the embedding problem is defined to be the rank of G. The embedding
problem is said to be finite, if G is finite. We say that the embedding problem is
solvable, if there exists a continuous epimorphism ¥ : F— G such that 6 W =a.

For free pro-finite groups there is a large variety of embedding problems that
can be solved. We start with F,.

(1.1) Lemma. Every embedding problem of the form

o TP

¢

G > H

2]
in which G is generated by e elements is solvable.

Proof. Let {x,,...,x,} be a system of free generators for E. Write a;= ¢(x,),
i=1,...,e. Thena,,...,a, generate H, since ¢ is surjective. By a consequence of a
theorem of Gaschiitz there exist by, ..., b, that generate G such that 0(b;)=g, for
i=1,...,e (see [7, Lemma 4.2]). The map x;—b;, i=1,...,e can therefore be
extended to an epimorphism y of F onto G such that p=00y. //

The free pro-finite group on a denumerable number of generators, F, was
characterized by Iwasawa, via embedding problems, as follows:

(}.2) Lemma. Let F be a pro-finite group of rank <N,. Then F is isomorphic to
E, if and only if every finite embedding problem for F is solvable.

Proof. See Ribes [ 10, p. 84].

Problem. Ts it true that every embedding problem for E, of a countable rank is

solvable?
The method of proof of Iwasawa’s Theorem can be applied to free pro-finite

groups on non-countable sets.
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(1.3) Lemma. Let F be a free pro-finite group on a non-countable set X. Then
every embedding problem

F

.
o

G—2%— H
in which rank (G) £, is solvable.

Proof. Let N=Ker¢. Then rank F/N =rank H <rank G = x,, hence there exists
a decreasing sequence F2F, 2F,2---2N of open normal subgroups such that

() F;=N. Each one of the sets Xn(F —F) is finite (since X converges to 1), hence
i=1 o0
Xo=Xn(F—N)=|) Xn(F—F) is at most countable and it converges to 1. We
i=1

order X, in a sequence Xo={x,,x,,xs,...} and let a;=¢(x,) for i=1,2,3, ...
Then {a,,4a,,4a;, ...} is a set of generators for H which converges to 1, since ¢ is
continuous. Also, there exists a decreasing sequence G2G,2G,2-- of open
normal subgroups in G that constitutes a basis for the neighbourhoods of 1. Let
H,=0G, fori=1,2,3,.... Then each H; is open and normal in H (by compactness),
H=2H,2H,=, and the H; constitute a basis for the neighbourhoods of 1 in H.
It follows that for every i there exists an n; such that a,€H, for every n>n;. We
can therefore choose by, b,,b;, ... in G such that 0b,=a, and b,€G, for every i
and every n>n;. In particular we have that the sequence {b, b,, b3, ...} converges
to 1.

Let now J =Ker 6. Then the JNG, are open and normal in J and they constitute
a basis for the neighbourhoods of 1 in J. It follows that there exists a sequence
by, b}, b5, ... of generators of J that converges to 1.

The assumption that X is non-countable implies that X — X, contains an
infinite sequence X = {x}, x,, X5, ...}. The map

x;b b, for i=1,2,3, ...,
x> by for i=1,2,3,...,
xt+—1  for xeX—(X,uX,)

can now be extended to a continuous epimorphism i of F onto G (since
{by, by, ...,b}, b5, ...} converges to | and generates G) and we have 0o W=c¢. //

2. Free Pro-Finite Groups as Galois Groups

Let L be a perfect field and let L be its algebraic closure. Suppose that G(L/L) is
a free pro-finite group. Let @ be a non-principle ultra-filter of a denumerable
set I. Write *L=1!/9. If 9(L/L) is of a finite rank, then %(*L/*L) can shown to
be isomorphic to %(L/L); in particular~g(*L/*L) is free. We do not know whether
or not ¥(*L/L) remains free when ¢(L/L) is of an infinite rank. Fortunately, for
our purposes it suffices to prove a weaker theorem, namely that there exists a
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Galois extension N of *L that contains L such that ¥(N/*L) is free. This is what
we are going to do in this section. Furthermore we prove that, if rank G(L/L)=%,,
then rank %(N/*L)=2%°. Thus we shall be in a position to apply the strong
embedding property of free pro-finite groups of a non-countable rank which was
proved in Lemma 1.3.

Let M be a Galois extension of a field L and let N be an extension of M. If S
is a set of automorphisms of N over L, then by M(S) we denote the fixed field of §
in M, i.e. M(S)={xeM|ox=x for every geS}.

(2.1) Lemma. Let L be a Galois extension of a fleld L such that 9(L/L) is a free
pro-finite group on a set T. Let S be a subset of T and denote by N the maximal
Galois extension of L which is contained in L(—S). Then 4(N/L) isa free pro-finite
group on SIN and the restriction map S+ S|N is bijective.

Proof. 9(L/N) is the smallest normal closed subgroup of %(L/L) that contains
T—S. The restriction map %(I)/L)— %(N/L) maps S onto S|N and T—S onto 1.
%(L/N) is its kernel. Our Lemma follows now from Ribes [10, p.66]. //

(2.2) Lemma. Let L be a field and let I be a set. Let m be a positive integer and
suppose that for every iel we have a Galois extension N; of L such that %(N/L) is
the free pro-finite group on a set S; of m elements. Let @ be an ultra-filter of I. Write
*L=1'/2, N =[] NJ2, N=*LAN and S=[]S;/D. Then N is a Galois extension
of *L, S|N is a set of m elements and G(N/*L) is the free pro-finite group on S|N.

Proof. Let H be a finite group generated by m elements. Then for every iel there
exists a Galois extension M, that is contained in N; such that ¥(M,/L)= H. Then
M =[] M,/2 is a Galois extensionof *L contained in N’, hence in N and we have
GM/[*L)=[]9(M,/L)/P=H.

Conversely, let M be a finite Galois extensionof *L contained in N. Then one
can write M in the form M =[] M,;/% where M, is a finite Galois extension of L
of degree [M: *L] for almost all iel (modulo 2). The group ¥(M,/L) is generated
by S/M;, whence S/M generates ¢(M/*L).

1t follows that ¥(N/*L) is generated by S|N, which is a set of not more than m
elements, since S clearly contains exactly m elements. Furthermore, every finite
group of rank<m is an epimorphic image of %(N/*L). By [5, Thm. 2.4]
@(N/*L)=F,. This also implies that S|N contains exactly m elements (see Ribes

— m-’

[10, p.68]). //

(2.3) Lemma. Let L be a perfect field and suppose that G(L/L) is a free pro-finite
group on a set T. Let @ be an ultrafilter of a set I and let *L=1/9, *T=T'/9.
Then there exists a Galois extension N of *L that contains L such that G(N/*L)
is a free pro-finite group of rank |*T)|.

Proof. Let *L=I!/@ and embed *T in the obvious way in Aut (*L/*L). Let
S={o,,...,0,) be a finite subset of *T. Every ¢; can be represented modulo @
by a set {o;liel} where o;€T For every iel let S;={0,;,..., 0. Then for
almost all ieI (modulo 9), S, contains exactly m elements and we have S = []S/2.

Assertion. *I:(*T—SN):H L(T—S)/%. Let x={x|liel}, be an clement of *L.
Suppose that xe[ [ L(T—S,;)/2. Then {iellx;eL(T—S)}e2. Let 1={t}]iel}, be
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an element of *T'—S. Then {iellr,eT—S}e%. Hence {iellt;x;=x;}€9, hence
tx=x. It follows that xe*L(*T-S).
Suppose now that x¢ [ | L(T—S,)/2. Then

J={iel|x;¢ L(T—5)}eP.

For every icj there exists a 7,6 T—S; such that vx;+x;. Let t={r]iel},. Then
te*T—S and 7 x + x, hence x¢*L(*T—S).

For every il let N, be the maximal Galois extension of L which is contained in
L(T—S)). By Lemma 2.1, S{N; is a set of m elements on which ¥(N/L) is free.
Hence, if we let Ny= *lmﬂ N,/9, then we have, by Lemma 2.2, that Ny is a Galois
extension of *L, S|Ny is a set of m elements and 9(Ng/*L) is a free pro-finite group
on S|Ns.

Certainly N, is contained in *L(*T—S). Furthermore, Ny is the maximal
Galois extension of *L having this property. Indeed, let M =%*L(x) be a finite
Galois extension of *L which is contained in *L(*T—S) and let x=x, ..., x, be all
the conjugates of x over *L.. Present x, in the form x,={x,liel},, v=1,...,n
Then, for almost all iel{x,,, ..., x,;) is contained in L(T—S,) and consists of a
complete set of conjugates over L. Hence {x;, ..., x,;} € N,. It follows that xe Ny
and hence M < Ny.

If §’ is a finite subset of *T that contains S, then Ng € Ny, and the restriction map
G (Ng/*¥L) — %G(Ng/*L) is obtained by mapping the elements of (S'— S)|Ny. onto 1
and the elements of S|N,. onto S|Ng respectively.

Let N be the Galois extension of *L generated by all the Ny’s. Then %(N/*L)
is a free pro-finite group on *T/N (see Ribes [10, p. 67]). Furthermore, the map
*T- *T|N is bijective. Indeed, if 7,,7, are two distinct elements of *T and
S=1{t,,1,}, then t,|Ng#1,|Ny, hence 7,|N = 1,|N. It follows that the cardinality
of #T|N is equal to that of *T.

Finally we prove that L& N. Let L(x) be a finite Galois extension of L. Then
there exists a finite subset S of T such that © x=x for every te T— S, since T con-
verges to 1. If we identify T with its image in *T by the natural embedding, then
it follows that 7x=x for every te*T—S, hence xe*L(*T—S). Moreover, *L(x)
is a Galois extension of *L, hence xe Ng, hence xeN. //

3. w-Free Ax Fields

An embedding problem over a field L is a diagram of the form

4(M/L)

¢ (l )
G—L s H

in which M is a Galois extension of L, G and H are pro-finite groups, 0 is a contin-
uous epimorphism and ¢ is a continuous isomorphism. The problem is said to
be finite, of rank «, if G is finite, of rank «, respectively. The problem is said to be
solvable (res. solvable in a given extension L of L), if there exists a Galois extension
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N of L that contains M (res. and is contained in L) and there exists a continuous
isomorphism i of ¥(N/L) onto G such that the diagram is commutative:

G(N/L) ———— G(M/L)

|
‘Uf ¢ 2)

G—~*~"——H

where the upper arrow is the natural restriction map.

It is not difficult to see that for a given G, H and 6, every embedding problem
of the form (1) is solvable if and only if every embedding problem for %(L,/L)
(L, is the separable closure of L) of the form

9(L,/L)
3

G—%—>H
is solvable.

A field L is said to be w-free if every finite embedding problem over L is
solvable. This is equivalent to saying that every finite embedding problem for
@ (L,/L) is solvable, if we assume further that rank 9(L /L) <¥N,, then Y(LJL)=F,,
by Lemma 1.2. The condition rank ¥(L /L) <N, is always satisfied, il L is countable,
since in this case %(L /L) has a countable basis for its topology. We formulate
this results as a Lemma.

(3.1) Lemma. If L is a countable w-free field, then G(LJL)~F,.

Note that the concept of an w-free field is not the proper analogue to the con-
cept of an e-free field which was defined in [7, Section 4] for every positive integer e.
We recall that a field L is said to be an e-free field if %(Ly/L)= F,. This condition is
preserved by ultra-product, whereas the condition %L /L)~E, is not. Since the
use of ultra-products is essential in our method we had to abandon the rank
condition and remain only with the finite embedding problem condition.

We recall that for every positive integer ¢ there exist e-free Ax subfields of
@. Indeed, the Q(a)’s are e-free Ax fields for almost all (0)e % (@Q/Q) (see [7,
Lemma 7.2]). We therefore pose the following

Problem. Does there exist an w-free Ax subfield of @ ?

We proceed now to express the concept of an w-free field by a sequence of
sentences in the first order predicate calculus language £ of the theory of fields.
In order to do it we add to £ a one variable predicate symbol P and denote the
new language by (£, P). Models for this language are to be denoted by (L, L),
where [ is the domain of the nodel and L is the subset of I that corresponds to P.

(3.2) Lemma. For a given epimorphism 0: G — H of finite groups we can write a
sentence A’ (0, G, H) in (8, P) such that for every pair of fields L= L we have:
(L, L) =A4'(0, G, H)

if and only every embedding problem of the form (1) is solvable in L.
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Proof. Let H={l=mn,n,,...,n,}, G={l=1,,1,,...,7,} and let (&)= (o, ..., 0,),
(B =(B,, ..., B) be two sets of symbols. We let H and G operate on (%) and (f)

respectively by

mou=a =, for i jk=1,...,m,
1= tnty=1y  forijk=1,...,n

Thus we have embedded H and G in the symmetric groups S(«) and S(f) of all
permutations of () and (ff), respectively. One can now write down a sentence
A'(o, G, H) m (£, P) which is equivalenl to the following statement:

Foreverya,,...,a,eL and o, ..., o, €L that satisfy:
@ f(X)=X"+a, X" '+ +am is irreducible over L;
(b) oo fori,j=1,...,m;

(©) S(X)=(X —t,) .. (X —01,);
(d) there exist polynomials p;e L[ X] of degree <m~—1 such that a;=p;(«,)
for j=1,...,mand
(e) mya;=p;(m; o) fori,j=1,...,mand
() moy+p;(moy) for j=1,...,m and all neS(x)—-H,
there exist by, ..., b,e . and f,, ..., i, L’ that satisfy
(8) g(X)=X"+b, X"*l-i— -+b, is irreducible over L,

(h) B:+p; forlj—l

(i) g(X)=(X=B)).. [3)

(j) there exist polynomrals g;eL[X] of degree =n—1 such that §;=q,(8)
for j=1,. and

k) 7, ,8 T, By) fori, j=1,...,nand

(1) rﬂj#quﬁl)forz—l , andteS(ﬁ)—G;
(m) there exist ;e L[ X] of degree <n—1 such that a;=h;(#,) and 0(r) o=
(t; py) for j=1,...,mand i=1,...,n
Suppose therefore that (L, L)=4'(0, G, H) and consider the embedding
problem (1). Let of be an element of M for which M =L{a)). Let f(X)=X"+
ay X" '+ +a, be an irreducible polynomial over L such that f(x})=0. If we
denote

di=¢ 'm)ay  for j=1,...,m,

then ¢ is an 1somorphrsm of permutation groups and we can identify a;, a; and
¢~ " (m;) with d, o} and n;, respectively, for j=1,...,m. Then a;, ..., ay, %, ... , &,
satisfy (a)—(f). In particular (e) and (f) are satisfied, since an element neS(x) belongs
to Hifand only mo;=p;(nay) for j=1, ..., m. It follows that there exist b, ... ,b,eL
and f,, ..., B, L that satisfy (g)-(m). If we let N =L(f},) and define y: 4(N/L)- G
appropriately we obtain a solution to the embedding problem (1) in L.

A similar argument shows that if for the given 0, G, H every embedding
problem (1) is solvable in L, then (L, L)=4'(0, G, H). [/

By Theorem 2 of [6] one can find, in a finite number of steps, a sentence
A4(0, G, H) in the language £ such that for every field L and every infinite algebra-
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ically closed extension L of L.
(L, LY=4'(0,G,H)y< L= 40, G, H).

Denote by I1, the set of all sentences of the form 4(0, G, H), and the sentence in
{ that asserts that there exists an irreducible polynomial of degree 3 over the
field L in question (if this sentence is valid, then, by Artin-Schreier Theorem,
[L:L]=o0). Clearly I1; is countable and it follows from Lemma 3.2 that a field
L is w-free if and only if Le=11,.

We recall that a field Lis said to be an Ax field if it is perfect and if every
absolutely irreducible variety defined over L hasan L-rational point. The condition
that L is perfect is clearly equivalent to the conditions: The derivatives of all
irreducible polynomials feL[X] of degree n are not zero, for n=1,2,3,....
These conditions can be explicitely written down as sentences in £. Thus it follows
from [7, Section 1], that there exists a sequence I1, of sentences in £, which one
can explicitely write down, such that L is an Ax field if and only if L=1T,.

We consider now a field K and extend the language € to a language £(K) by
adding new constants, one for every element of K. We take as models of £(K)
only fields L that contain K and then we interpret the new constants as the
corresponding elements of K. These fields are called K-fields. A mathematical
statement on K-fields is said to be K-elementary, if it is equivalent to a sentence
of &(K). Two K-fields L,, L, are said to be K-equivalent, if L, =60 < L,= @, for
every K-elementary statement ©; we denote this by L =¢L,.

Let 11, be a set of axioms in € for the theory of fields and let IT;(K) be the
diagram of K, ie. the set of all sentences of the form.

a+b=c, ab=c¢, a,b,c,ek,
a+b'Ed, ab+c, d,b, ek,
that are valid in K. Then IT, U I1,(K) is a set of axioms for the theory of K-fields.
This is not an explicit set of axioms, unless K is “explicitly given”. We shall
define this concept later on.
We sum up this section with the following Lemma:

(3.3) Lemma. A model L of £(K)is an w-free Ax K-field if and only if L= 11(K).
Here TTH(K)=11,0Il, 0T, Ull,(K), where Il,, I, IT, are explicitly given
sequences of sentences in £ and I1,(K) is the diagram of K.

4. The Elementary Equivalence Theorem

We prove in the section the fundamental result about w-free Ax K-fields, namely
that an w-free Ax K-field F is characterized by its K-algebraic part, K~ F, up
to a K-elementary equivalence.

We recall that a commutative algebra A over a field F is said to be absolutely
entire, if F®p A is an integral domain. A perfect field F is hyper-Ax if for every
countably generated absolutely entire F-algebra A there exists an F-algebra
homomorphism of A into F. Every hyper-Ax field is an Ax field. Conversely,
every non-principal ultra-power of an Ax field with a countable exponent is a
hyper-Ax field (see, [7, Thm. 1.51).
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(4.1) Lemma. Let F be an w-free Ax K-field and let F' be a countable K -elementary
subfield of F. Then there exists an w-free hyper-Ax K-field Fy such that: (a) Fy is
an elementary extension of F, (b) F; has a Galois extension B that contains F such
that (B /F,)is a free pro-finite group of non-countable rank.

Proof. By a lemma of Scott there exists an ultra-filter @, of a set I; such that
F/=F1/9, is an elementary extension of F (see Bell and Slomson [3, p.163]).
By Lemma 3.3 F| is an w-free K field, by [7, Thm. 1.5], F, is an hyper-Ax field
and by [3, p. 92], F, isan elementary extension of Fy, hence also of . The cardinality
of F' is N, hence, by [3, p. 116, Lemma 1.16 and p. 132, Thm. 3.21]

|| = Y 2 N =2 (+)

As every ultra-power of an ultra-power, F, can be expressed in the form F, = F''/9,
where @ is an ultra-filter of a set I (see [3, p. 1257). Again, by Lemma 3.3, F’ is a
w-free and perfect, hence, by Lemma 3.1 4 (F'/F’) is a free pro-finite group on a
set T of cardinality ¥,. By [3, p. 1257 and by (x), |T'/2|=|F*/2|= 2™, hence,
by Lemma 2.3, there exist a Galois extension B of F; that contains F’ such that
4 (P/F,) is a free pro-finite group on a set of cardinality |T'/2], i.e. on a non-
countable set. -//

(4.2) Theorem. If E and F are two w-free Ax K-fields such that RnEx~ KnF,
then E=¢ I

Proof. Assume first that |[K|<¥,. Let L=KnE and M=K nF, then there
exists an automorphism ¢, of K over K such that ¢(L)=M. Let &, be the
isomorphism of % (M/M) onto %(L/L) induced by ¢,,.

By Skolem-Lowenheim Theorem there exist countable elementary subfields
L, of E and F’ of F that contain L and M respectively (see [3, p. 80]). Let F, and
P be as in Lemma 4.1. The rank of ¥(L,/L,) is £¥,, hence, by Lemma 1.3, there
exists a continuous epimorphism @, such that the following diagram is commu-
tative, B

f&’(l’i/ﬂ)
by

G(Ly/Ly) " G(BJF)

| |
G(LIL) P g(h/M)

here r is the restriction map. Then ¢, =ro®| is a continuous epimorphism of
9 (F/F,) onto %(L,/L,). L is algebraically closed in L, since L is algebraically
closed in E, hence, by [7, Lemma 2.17, there exists a monomorphism ¢, of L,
into F, that extends ¢, such that L;=¢ (L,) is algebraically closed in F;.

Note that L, is also algebraically closed in E, since it is an elementary subfield.
Hence, if we replace E, F, ¢y, L and M by F,E, ¢ ', L; and L, we obtain a
situation that is similar to the initial one. The same argument implies therefore
that F, contains a countable elementary subfield M, that contains L;, E has an
elementary extension E, which is necessarily an w-free Ax K-field, and there
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exists a monomorphism i, of M, into £, that extends ¢; ' such that M|=y, (M)
is algebraically closed in E;.

E, o F

S
|

Ll —t, L, !

bl

Continuing inductively one can construct four towers of fields

E=E,<E,<E, <,
L=L,cL,cL,& -,
M=M,ceM,cM,<--,
F=F<F<F,< -

and monomorphisms

¢ L, — M, i=0,1,2,....
YoM, —L,,, i=1,23 ...

such that L,<E, |, M,<F,, ¢, extends ;! and v, extends ¢; ' for i=1,2,3, ...
(“L, <E, ,” means that L, is an elementary subfield of E,_,). Let E,,= | ) E; and

i=0

F = U F,. Then E;<E_ and F,<F,, by [3, p. 79]. In particular

i=0

E,=4E and F, =,F. (1)
Moreover we get that L,<E_, and M;<FE, for i=1,2,3,..., hence, il we let
U L;and M, U M,;, we get that L < E_ and M_<F, as one can easily

=1
deduce by applying, f01 example, Vaught’s Test for elementary extensions (see

[3, p. 76, Cor. 1.9]). In particular

L, =yxE, and M_=yFE_. (2)

5} [e4}

Further, the ¢; and ¥, can be combined to give a K-isomorphism ¢, of L, onto
M, and , of M, onto L, which are inverse to each other. If we combine this
fact with (1) and (2) we get that E=, F.

Consider now the general case. Let © be a sentence of £(K) that is true in E.
There are only finitely many elements of K, say x,, ..., x,, that occur in &. Let
K, be a countable subfield of K that contains x,, ..., x,,. Then © is also a sentence
of £(K,) and K()mE;K“ K,nF. 1t follows, by the first part of the proof, that
E= 4 F.Hence F=0. //
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5. The Measure Space G

Let K be a field. For every positive integer e let G,=%(K/K)® and let p, be the
completed Haar measure of G, with respect to its Krull topology (see [[7, Section 6).

Let G= | ) G,. Every subset A of G can be uniquely represented as a disjoint union,
e=1
A=} A,, where 4,=ANG,. We topologize G by defining a subset A4 as open, if

e=1
A, is open in G, for all e. Then a subset B of G is colsed if and only if B, is colsed

fm all e. The topologlcal space G thus obtained is HausdorfT, ocally compact
and totally disconnected. A colsed subset C is compact if and only if it is bounded,
i.e. if C, is empty for all ¢ greater than some e,. The group G, acts continuously
on G from left and from right.

A subset 4 is said to be measurable if A, is measurable for all e. The collection
of all the measurable subsets of G form a o-field of sets. For every measurable
subset 4 we define

=) nf4,)
e=1

Then p is a complete regular Borel measure of G and it is invariant under the action
of G,. The restriction of u to G, coincides with p, and we clearly have

u(A)< co=>1im u(4,)=0.

A subset 4 of G is said to be big, if u(A,)=1 for all but finitely many e. The
intersection of finitely many big sets is clearly also a big set. A subset A4 is said to
be very big, if u(A4,)=1 for all e. A countable intersection of very big sets is also a
very big set. A subset B is said to be small, if G— B is big, i.e. if w(B,)=0 for all but
finitely many e. A subset B of G is a zero set if and only if G—B is a very big set.

An ultra-filter @ of G is said to be p-regular, if it contains all the big sets of G
(cf. {7, Section 6]).

(5.1) Lemma. Let 9, be a family of subsets of G. If for every Dy, ..., D, €%, the
set D,---n\D, is not a small set, then there exists a p-regular ultra-filter & of G
that contains % .

Proof. Clearly, the intersection of every big set with finitely many elements of
9, is not empty. Hence, there exists an ultrafilter 2 of G that contains %, and all
the big sets. 2 is a u-regular ultra-filter. //

6. Regular Ultraproducts

We consider, for every positive integer e and for every (g)=(0,,...,0,)€G,, the
field K(g), which is, by definition, the fixed field in K of the unique extension of
oy, 0, t0 K. K (o) is a perfect field. A p-regular ultraproduct of the K(a)s is

an ult mproduct of the form [] K(0)/2, where @ is a p-regular ultrafilter of G.
(g)el
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Note the analogy with non-principal ultraproducts HFP/Q of the finite prime
fields. In these ultraproducts one ignores what happens in finitely many F’s,
whereas in the p-regular ultrafilters, [ | K(0)/2, one ignores families of K(a) in
which the (g)’s belong to a small set.

If E is an extension of K, then we denote by [E/KT the set of all polynomials
feK[X] having a root in E.

For every fe K[ X] and every positive integer e we denote

A (f)={(g)eG,| fhas aroot in K(g)}
B(f)=G.—A.(f)

A= U adn. 8= B

The analogue of Lemma 6.2 of [7] is the following Lemma. Note that this
Lemma makes it possible to “dig” arbitrary deep holes in K via the p-regular
ultraproducts of the K(g).

(6.1) Lemma. If L is an algebraic extension of K and if L is perfect, then there
exists a p-regular ultraproduct F of the K(a)'s such that KnF= L.

Proof. Let fi,...,[u> &>, 2,€K[X] be separable polynomials such that
fis s fuelL/K] and gy, ..., g,¢[L/K]. Let K' be a finite Galois extension of K
that contains all the roots of f;, ..., £, €15 ..» & 16t Lo =K'nL and let

¢o=rank ¥4(K'/L,).

Forevery ez e, choose o, ..., o, that generate ¥(K'/Ly). If g, ..., 6, are extensions
of o, ..., o, respectively to K,, then K'nK(g)=L,; hence each one of the poly-

nomials f;, ..., f,, has a root in K(g), and no one of the polynomials g, , ..., g, has
a root in K(o). Let

D, ={(0)eG,|o|K =0} for i=1, ..., ¢}.

Then u(D,)>0 (see [7, Section 6, (1)]). Hence D= { ] D, is not a small set and we

e= e

have

DEA(f)n AL )NBg )N B(g,).

m

By Lemma 5.1 there exists a p-regular ultrafilter 2 of G that contains all the A(f)’s
and the B(g)'s for which fe[L/K], ge K[ X]—[L/K]and f, g are separable over K.
Then every separable polynomial he K[ X has a root in L if and only if it has a
root in F=]] K(g)/%. 1t follows that [L/K]=[F/K], since L and F are both
perfect. Hence, by a Lemma of Ax [1,p. 172], KnF=, L. //

For every sentence @ in £(K) and every positive integer ¢ we let

A4,(0)={(g)e G IK(g)= O},

A@)=1{) 4,0).
e=1
(6.2) Lemma. Let @ be a sentence in (K). Then K (o) = © Jor a big set of (¢)'s in
G if and only if F=0 for every regular ultraproduct F of the K{g)'s.
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Proof. I A(©) is a big set and Z is a regular ultrafilter of G, then A(@)e D, hence
[1K(c)/2=6.

If A(@)is not a big set, then its complement A(~ @) is not a small set; hence,
by Lemma 5.1, there exists a regular ultrafilter & that contains A(~®). Hence

[1K(@/7%0.

We assume that the reader is familier with the concept of a hilbertian field
(see [7, Section 7]).

(6.3) Lemma. If K is a countable Hilbertian field, then every p-regular ultraproduct
F of the K(g)'s is an w-free Ax K-field.

Proof. By Lemma 3.3 we must prove that the set of axioms [1(K) holds in F.
Clearly Fi=II,w11,(K). Also, Lemma 6.2 1mphes that Fi=I1,, since K(g) is an
Ax field for every ¢ and almost all (g)eG, (see [7, Lemma 7.2]). Every sentence
of 11, has the form A4(0, G, H), where 0: G — H is an epimorphism of finite groups.
We know that %(K/K(0))=F,, for every e and almost all (g)eG, (see [7, Lemma
7.2]). Hence, if e Zrank G, then by Lemma 1.1, the embedding problem

9(R/K(0)
F
jv(/)
S &

is solvable for every continuous epimorphism ¢ and for almost all (g)e G,. Hence
by Lemma 3.2 and the discussion that follows the Lemma, K(g)e=4 for almost
all (0)eG,. It follows that A(4(0, G, H)) is a big set in G and hence F = 4( 0,G,H). [/

G

7. Elementary Statements over o-Free Ax Fields

The following theorem says that il K is a countable Hilbertian field, then J/I(K) is a
set of axioms for the theory of all sentences @ of £(K) that hold in K(g) for a big
set of (g) in G.
(7.1)  Theorem. For a countable Hilbertian field K and a sentence © of Y(K) the
Jollowing two statements are equivalent.

(a) K(g)E= O for a big set of (o) in G.

(b} Fi=@ for every w-free Ax K-field.
Proof. (a) = (b): Let F be an w-free Ax K-field. Then KnF is a perfect field. By
Lemma 6.1 there exists a regular ultraproduct E of the K (o) such that

RNE = KnF.

By Lemma 6.3 E is an o-free Ax K-field and @ holds in E(by (a)). By Theorem 4.2
E=,F, hence F=6.
(b) = (a): Follows from Lemmas 6.2 and 6.3. //
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A one variable statement is a K-elementary statement which is equivalent to a
sentence of the form

=0([3X) f1(X)=0], ... [BX) £,(X)=0]), (1)

where &(Z,, ..., Z,)isa boolean polynomial in the variables Z,, ..., Z,,, the union,
intersection and complement operations are to be interpreted as disjunction,
conjunction and negation respectively, and f,, ..., f,, are separable polynomials.

The following Lemma gives us the complete information about A(®). Note
that no assumption is made here on the field K.

(7.2) Lemma. Let & be a K-elementary statement of one variable
(a) There exist positive integers n,r and integers n, ..., n, of absolute values
<n such that

pa@)= Y (%)
i=1 \P
for every positive integer e.
(b) If K& @, then |nj|<n for i=1,...,r; hence lim p(A(@))=0 and pu(A(P))
is a rational number. o
(€) If K=, then lim pu(A,(P))=1 and p(A(P))= 0.

e~

Proof. We suppose that @ is given by (1). Let L be the splitting field of f;, ..., f,
and let n=[L:K7 Then, for every positive integer ¢ and every (g)eG,,

K(o) &= ® < Lig) = @

(see [4, Lemma 3.11]). There are only finitely many fields between K and L
(cf. [9, p.185]). It suffices therefore to prove that for every intermediate field
K< K'¢L there exists a positive integer » and integers ni, ..., n,. of absolute
value <n that depend only on K" and & but not on e, such that

r n

p{@eG Lo =K} = T (%), o)
i=1
u(A (@) is then the sum of all the right hand sides of the (2), where K’ runs over all
the fields between K and L in which & holds.
Let K=K,,K,,...,K, =L be all the intermediate fields between K’ and L.
Then

¥

{(o)eG |L(g)=K'} =% (K /K') U G(K/K) 3)

Furthermore, for an intermediate field K € K" < L we have

» ey _[L:K”]
MO K )= =
and [L:K"]<n. Hence
L:K. 1¢ v L:K. ...K. ]¢
w(@)eGLig) = k) = Kol 5 Ly LK KT @)

n r=1 (i) n
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where (i)=(i, ..., i, runs over all the t-tuples of positive integers between 1 and r'.
The proof of (a) is thus completed.

(b) If K =@, then all the K, appearing on the right hand side of (3) (including
K,) are proper extensions of K 1t follows that the corresponding degrees

[L:K ...]
on the right hand side of (4) are smaller than n. This means that |n,|<n, hence
lim p(A,(P))=0. Also

r

=2,

1 n—n;

MS

HA(®) =

e

is a rational number.

() If K=, then {(0)eG |L(g)= K} < A,(P). Arguing as in (b) on can prove
that

lim 1t{(0)€ G IL(c) + K} =0.

e— W

Also
1{(e)eG lL@)=K}=1-pu{(0)eC IL)+ K],
hence li_m (A (@)= 1. It follows that y(A(P))=0. [/

Denote by .7 the boolean algebra of subsets of G generated by all the sets of
the form A(f),where fis a separable polynomial, and all the small sets. By definition
A(f)=A(3X) f(X)=0), hence every set Ae.o/ differs from some A(®), where @
is a one variable statement, only by a small set.

If A and B are two subsets of G that differ only by a zero set, then we write
A=B.

The following Theorem shows that every K-elementary statement is equivalent
modulo small sets to a one variable statement.

(7.3) Theorem. If K is a Hilbertian countable field and © is a K-elementary
statement then:
(a) A(@)ed, i.e. there exists a one variable statement @ such that:
() A(@)=A(D),
(i) K(g)=0«d, forabigsetof (a)sin G,
(iii) Fl=O@ @, for ever w-free Ax K-field F,
(iv) I(K)= O @ (ie. © «» @ holds in every nodel of I1(K)),
(v) I(K)-0O«d (ie. there is a formal proof of @ « @ from I1(K));
(b)

b

Remark. Note that (a), (ii) means that there exists an e, such that foralle 2 ¢, A,(O)
differs from A,(®) only by a zero set. This was exactly the initial problem of this
work.

W(A(@)) is either infinity or a rational number.

Proof. (a) Assume that 4(@)¢.«/. Then, by considering the boolean algebra o
modulo the small sets, one can prove that there exist two regular ultrafilters &,
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and 2, of G such that

DA =Dy (5)
A(©)eD, ~ 2, ©)
(see Ax [2, p. 265]. Let F=[]K(a)/%;, i=1,2. Then [F,/K]= [Fy/K], by (5) and

since F|, F, are perfect flelds Hence, by a lcmmd of Ax[1,p. 112, KnF, =K mF
By Lemma 6.3 F; and F, are w-free Ax-fields. Hence, by Theorem 4.2 F, = F
This contradicts (6).
It follows that A(®)e.«/. Hence there exists a one variable statement @ such

that A(@)~ A(P). This is (i) by the definitions. Statement (iii) follows from (ii) by
Theorem 7.1. Statement (iv) follows from (iii) by Lemma 3.3. Statement (v) follows
from (iv) by Godel’s completeness Theorem (see [ 3, p. 102].

(b) By (a), (i) there exists an ¢, such that u(4.(0))= u(4.(P)) for every e=e,.
If u(A(@)) < o0, then, by Lemma 7.2 and in the notations of this Lemma [n]<n
fori=1,...,r. Hence

=Y wA(0)+ Z (A (D))

= 2 'u @))+ Z (() 1 e
eseq /’l,-)

By [7, Thm. 7.5], each one of the numbers p(A,(®) is rational; hence u(A(O)) is

a rational number too. //

8. The Decision Procedure

In this section we establish a decision procedure for the theory of w-free Ax
K-fields provided K is “given” in a sense which is to be defined here. We also prove
the possibility of deciding other relevant questions and in particular determining
for a given sentence ® of L(K), a one variable sentence @ such that A(P « @) is
a big set.

A field K is said to be of a finite type, if it is finitely generated over its prime
field K,. Every such field can be obtained from K, in two steps: first by a purley
transcendental extension, K, = K,(t,, ..., t,), and then by a finite separable exten-
sion, K=K, (x). K, is said to be given, if its characteristic is given; K, is said to
be given, if K, and r are given; finally K is said to be given, if K, K, and a separable
irreducible polynomial, a root of which generates K over K, are given. The ele-
ments of a given field K can be explicitely written down and one can calculate
the sum and the product of any two elements of K. It follows that for a given
field K the set of axioms I1(K) that was defined in Section 3 can be explicitely
written down. Moreover one can factor any given polynomial ge K[ X, ..., X,]
into irreducible factors (see van der Waerden [ {1, §42, p. 135]). Finally we note
that every infinite field of a finite type is Hilbertian {see Lang [8, p. 155]).

{8.1) Theorem. Let K be a given infinite field, of a finite type. Then there exists
a recursive decision procedure such that if © is a given sentence of (K), then
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(a) one can find a one variable statement ® and a positive integer e, such that
Jor every ez e, the set A, () differs from A,(®) only by a zero set;

(b) one can decide whether or not A(0)is a big set (i.e. whether or not © belongs
to the theory of w-free Ax K-fields);

{c) one can decide whether or not A(®) is a very big set;

(d) one can calculate u(A(©)).

Proof. One orders all the formal proofs from JT(K) in a sequence and checks them
one by one. After a finite number of steps one arrives at a formal proofof a sentence
of the form @ « @, where @ is a one variable sentence (by Thm. 7.3). Let

A(()l H Gl ’Hl)’ rees A(Omi Gm’ I‘Im)

be all the axioms of the form A(0, G, H) appearing in this proof and let
e, = max rank G;. Then for every ez ¢, and for almost all (g)eG, we have that

12ism

K(a)|=4(0;,G,, H), i=1, ..., r (by Lemma 7.2 of [7], Lemma 1.1 and Lemma 3.2
along with the proceeding discussion). All the other axioms that appear in the
proof are satisfied by K (g) for every e = 1 and almost all (o)eG, (by [7, Lemma 7.2
and Section 3]). It follows that K(g) =@« ¢ for every e=e¢, and almost all
(o)eC,.

Denote by L the splitting ficld of the set of polynomials appearing in @. Let
K=K,,K,,...,K,=L be all the fields between K and L. One computes, by the
method of [7, Section 8] the numbers r and n=[L: K] and checks whether or not
K= for every 0<i<r. If this is the case, then K(g) =, for every e>1 and all
(0)€G, (see the proof of Lemma 7.2); hence K(g) =@, for every ez e, and almost
all (g)eG,, ie. A(®)is a big set. Otherwise 4(0) is not a big set. If A4(®) is found
to be a big set, then one decides, by the decision procedure of [7, Section 9],
seperately for each 1 S e<e,, whether or not u(4,(0))=1.If w(4,(O))=1 for every
[<e<e,, then A(@) is a very big set, otherwise it is not. Finally one computes
the integers ny, ..., n, of Lemma 7.2 relating to @, by following the proof of this
Lemma. Then one has,

HALP) =Y (%) for e=1,2, ...

i=1
If K=, then w(A(@))=u(A(P))=0oo (by Lemma 7.2). Otherwise |n|<|n| for
i=1,...,rand then
WAO)= 3. wA[ON+ Y, ——pr
e <ep i=1 i

Each one of the measures u(A4,(0)), | Se<e,, can be computed by [7, Thm. 8.2].
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