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Torsion in linear algebraic groups over large algebraic fields

By

Mosunr JarbexN

Infroduction. Let K be a finitely generated field (over its prime field). Let @ (Ks/K)
be the absolute Galois group of K. Every element o € & (K,/K) is extended in the
obvious way to an automorphism of the algebraic closure R of K. 1If

(01, ..., 00) € G (K K)e,

then K (¢) denotes the fixed field of o1, ..., g, in K. The following result was proved

A. For almost all o e G (K JK), the field K (o) contains infinitely many roots of
unity of prime order. Here “almost all” is used in the sense of the normalized Haar
measure defined on the compact group ¥ (K /K).

Note that roots of unity are the points of finite order of the multiplicative group
G of the field. For e = 2 the following more comprehensive result was proved.

B. For almost all (6) € G (K/K)e and for every linear algebraic group G defined over
R (6) the order of the torsion of G (K (0)) is bounded. Here @ (K (0)) denotes group of
the K (¢)-rational points of (.

In particular, if G has only finitely many points of order m, for every m, then the
torsion part Gy (K (0)) of G(K (o)) is finite.

Note that the last condition is satisfied in the case where ¢ = T'is a torus. Indeed,
recall that an algebraic group 7' defined over a field L is said to be a torus, if it is
isomorphic over I to D, where n = dim 7 = 1. Here D, (which is sometimes
denoted by G7) is the group of all n-tuples (21, ..., xs) of non-zero elements of
the field, and the product is defined component-wise. Then the subgroup 1y of
all m division points of 7' is isomorphic to (Z/mZ)?, provided m is not divisible by
the characteristic of p of L. In the latter case 7', is even smaller.

The aim of this note is first to complete the abave results for tori by proving

Theorem €. For almost all o€ G(Ks/K) and for every torus T defined over K (o),
there exist infinilely many primes U such that TyK (0) + 1.

Note that (' has been proved in [3] for elliptic curves  rather than for tori 7'.
Indeed, the proof of ¢ for tori uses methods developed both in [4] and in [3]. We
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first prove a stronger theorem for D, that involves the action of o on the points
of finite order D,. Then we deduce ¢ for arbitrary tori from the stronger theorem
for Dy,.

Finally we use structure theorems for linear algebraic groups and apply C to
prove

Theorem D. For almost all ¢ € @ (Ks/K) and jor all connected linear algebraic groups
G defined over K (o), the group G (K (0)) contains infinitely many points of finite order,
provided G (K) does.

Another variant of Theorem D is

Theorem E. Almost all o0 € @ (Ks/K) have the following property: If G 18 a linear
algebraic group defined over R (0) and if the order of the torsion of G (K) is not bounded,
then there ewists infinitely many primes 1 such that (K (0)) =+ 1.

Acknowledgement. The author is indebted to Wulf-Dieter Geyer and to Gerhard
Frey for discussions that led to the inclusion of Theorems D and ¥ in the paper.

1. Tields of characteristic zero. We start with a description of the group Aut (D)
of all (algebraic) automorphisms of Dy.

Lemma 1.1. Aut (D) =~ GL (n, Z)

Proof. Let & € Aut(D,) and let & be the projection of & on the i-th coordinate.
Then ¢ is an algebraic character of Dy and hence there exist a1, ..., @i € Z such
that & (x1,...,%n) = ¥, ..., xp» for every non-zero elements 21, ..., 2, of the field
over which D, is defined (c.f. Borel [1, p. 208]). It follows that

n n
(1 E(xl;---:xn)=<ﬂx“",...,Hx;.‘"’>
j=1 j=1
and (ay) is a matrix in GL(n, Z). In particular det(ay) = £ 1. The Lemma follows.

Proposition 1.2. Let K be a finitely generated field over Q. Then for almost all
o€ % (R|K) and for every ¢ € Aut(Dy) there ewist infinitely many primes U for which
there exists a point P e K*" of order 1, such that e P = gP.

Proof. The group Aut(D,) is countable. Hence it suffices to prove that given an
¢ € Aut(Dy), then for almost all o€ @ (R|K) there exist infinitely many primes [
for which there exists a point P € K*" of order I such that ¢ P = ¢ .

Indeed let (ai;) be the matrix corresponding to & by (1). Let f(z) be the charac-
teristic polynomial of (ay). By (ebotarev Density Theorem there exists a set A of
primes having a positive density such that the congruence f(z) = 0mod [ is solv-
able for every | € A. The assumption that K is finitely generated over Q implies
that there exists a lo such that (K (())/K) = (Z/iZ) for every | > lg, and that
the set of fields {K ({1)|! > lo} is linearly disjoint over K. Here {; denotes the root
of unity of order I. Without loss of generality we can assume that I > lp for every

le A
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Let le A and choose a positive integer z such that f(z) = 0 mod I. The integer z

is a characteristic root of {ay) module I. Hence there exists integers o, ceey O,
not all of them are divisable by I, such that i @ijoy = zoymod [ for § == 1,... n,
Let { = ;. Then the order of P — (&, ..., g“f’:)l is l and

(2) e(P) = ((Raw, | ¢Bawe) — (rem) ey GPOR)

The product of all the characteristic roots module [ of (ay) is equal to-- det, (o) = -1,
Hence z is relatively prime to I. Tt follows that there exists an element ¢, ¢ & (K()|K)
such that ¢;(f) = 2. This element satisfies g(P) = ¢ P, by (2).
Denote by § the set of all g ¢ @ (K/K) for which there exist infinitely many I e A
such that G[K(é‘l) = 07. We know that zl“l = oo. Hence, by the Borel-Cantelli
iea

€

lemma (c.f. [4, Lemma 1.4]) and by construction, S has measure 1. Moreover, for
every o € S there exist infinitely many primes { for which there exists a point Pe K*"
of order I such that ¢P — ¢ P. m

Let K be a field and let I be a normal extension of K of degree d. Let @ and ¢
be algebraic groups defined over K and L respectively. Suppose that there exists
an isomorphism ¢: ¢ — @, of algebraic groups, defined over . Let o be an element
of ¥(Ks/K). Then g4 — (op) o ¢~1 belongs to Aut(G') and it is defined over L.
Here o¢ is the isomorphism of & onto G’ obtained from @ by applying ¢ on the
coefficients of ¢, If o|L = 1, then g4 is the identity map of . If 7 is an additional
element of Y (Ks/K), then ey — Té&g 0 &r. Using induction we obtain

E= 0% Leso0h~2g50-4. o GEz0 &g

for every positive integer k. If g, is already defined over K, then ce5 = ¢; and
hence &%= 1,

The possibility of reducing Theorem C to Proposition 1.2 is based on the following
observation :

Let P be a point in G(K), let P’ = P and let 0 € ¥(K,/K). Then

(3) 0P =P wgP =g P,

Lemma 1.3. Let K be a finitely generated field over Q and let T be a torus which is
defined over K. Then for almost all o e G (K|K) there exist infinitely many primes 1
such that Ty(K () == 1.

Proof. There exists a finite normal extension I of K and there exists an isomor-
phism ¢: T — D,, which is defined over I, where 7 — dim 7.

Let o be an element of 9 (K|K) that satisfies the conclusion of Proposition 1.2.
Then ¢ = g o ¢~ is an automorphism of D,,. Using the observation (3) we con-
clude that there exist infinitely many primes I for which there exists a point
PeT(K(0)) of order . m

Remark. The above method of proof implies the stronger

e
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Theorem. Let K be a finitely generated field over Q, let T' be a torus defined over K
and let 8 € Aut(T). Then for almostall o € G (R|K) there exists infinitely many primes 1
for which there exists a point P e T (K) of order 1 such that o P = 0 P.

Indeed, one has only to define es in the last proof as gp-do @ 1.

However, our methods fail to prove the analogous theorem in characteristic p.
Therefore, for the sake of completeness, we have decided to prove the theorem only
in the case of § = 1.

2. Fields of characteristic p.

Lemma 2.1, Let 4 € GL(n, Z) be a matriz of a finite order. Then for every Ly there
exists a qo such that if ¢ > qo is a power of p, then there evists a prime 1> lo such
that q is a characteristic root of A module .

Proof. Let A be a characteristic root of 4. Then 1 is a root of unity of order,
say, m. Hence 1 is on one gide a root of the m-th cyclotomic polynomial D (X),
which is irreducible and on the other side a root of the characteristic polynomial
f(X) of 4. It follows that @y, (X) divides /(X) in Z[X].

By a theorem of Carmichael [2, Thm. XXIII], there exists a ko such that for
every k > ko the positive integer p*™ —1 has a primitive divisor, i.e. a prime / that
divides p*m — 1 but does not divide ps—1 for every s << km. By taking ko large
enough one can ensure that I > max(lo, m). It follows for q = p* that ord;q = m,
j.e. ¢ is an m-th primitive of unity modulo I. Hence Pp(g) = 0 mod [, hence
f(g) =0 modl, i.e. ¢ is a characteristic root of A module I. W

Consider now the group D, in characteristic p and let & be an automorphism of
D, given by a matrix 4 = (ay), as in Lemma 1.1. For every power ¢ of p let 74
denote the Frobenius automorphism defined by 7, (%) = 2.

Lemma 2.2. If ¢ has a finite order, then for every lo there exists a qo such that for
every p-power q > qo there exists a prime 1 >l and a point P e Dy(Fp) of order 1
such that e P = mq P.

Proof. The matrix A corresponding to has a finite order. Let lo > p be an
integer and let go be an integer as in Lemma 2.1. Consider a p-power ¢ > go. Then
there exists a prime [ > lp such that ¢ is a characteristic root of A module I. Let
(@1, ..., xy,) be a characteristic vector of A module I that belongs to ¢, i.e.

n
(1) >ayay =qeymodl for i=1,..,n.
j=1

Let & = &;. Then (£, ..., {*) is a point of order I and »
e(C™, ..., %) = mg(£™, ..., 0™, by (1). ®

Proposition 2.3. For almost all o € G (Fp/Fp) and for every & € Aut(Dy) of a finite
order, there evists infinitely many primes | for which there exists a point Pe Dyu(Fp)
of order | such that o P = e P.
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Proof. Let ¢ be an automorphism of D,, of order d. For every prime 7 denote by
Fy’ the maximal r-extension of Fp. It is an infinite Galois extension with

-(‘7(”:27)/%) ~Z,.

In particular every infinite extension of F, which is contained in F” coincides
with F. Let o be an element of 9 (Fy/Fp) that does not belong to U G (Fp/FD)
d

"
and such that M = [, (o) is an infinite extension of Fp. By [4, Lemma 2.1] almost
all o€ @(Fp/Fp) satisfy these conditions.
Suppose that we have already proved the existence of & primes [y << -++ < I for
which there exist points P;,..., P, in Dy (Fp) of orders Iy, ..., 1, respectively,
such that o Py = e Py for ¢ == 1, ..+, k. Our assumptions on ¢ imply that M N lF;,’)
is a finite field for every prime r that divides d. Hence by Lemma 2.2, there exists
a p-power ¢ such that
@) [[MAFPCF,cM
rid

and such that for every 1 =7 < d there exists a prime I, > I} and a point
Pie Du(Fp)

of order I; such that

(3) &P =m, P}, for i=1,...,d

The relation (3) together with the simple observation that &g == mge imply that
7ga Pi = ng P; = ¢id P} = P} for i — 1, ...,d. Hence Pje Dy (F,q). The restriction
of ¢ to Fy generates the cyclic group G (Fya[Fy), since [M : F,] is relatively prime
to d and hence M N F« = F,. The restriction of 7tq to [Fya also generates this group.
Hence there exists a 1 < j << d which is relatively prime to d such that

0| Fpa =) | Fpa.

Let 1 <7< d be an integer such that ij = 1 mod d. Then we have, by (3), that
o P} = nfl Pl = gl Pl = ePLf.

Define therefore I, = I; and Pyyq = P; and the induction is completed. m

We apply Proposition 2.3 to obtain the analogue to Proposition 1.3 for tori in
characteristic p.

Lemma 2.4. Let K be a finitely generated field over Fp and let 1" be a torus which
is defined over K. Then for almost all ¢ € 9 (K s/K) there exist infinitely many primes |
such that Ty (K (o)) == 1.

Proof. The field Ky = E?p N K is a finite extension of Fp. Hence, the set S of all
o € ¥(K,/K) whose restriction to [, satisfy the result of Proposition 2.3 is of mea-
sure 1.

Let L be a finite normal extension of K over which there exists an isomorphism
¢+ T — Dy, where n = dim(7'). (Actually one can choose L even as a Galois ex-
tension of K; c.f. Borel [1, p.211].) Let ¢ eS. Then g5 — opoplis an auto-
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morphism of D,,, hence it is defined over K, by Lemma 1.1. It follows that ord(es)
is finite, by the arguments preceding Lemma 1.3. Using Proposition 2.3 for ¢ = &
and (3) of Section 1, we conclude that there exist infinitely many primes [ for which
there exists a point P € D, (K) of order I such that ¢P = P. m

3. End of the proof of Theorem C. Relying on Lemma 1.3 and Lemma 2.4 we con-
clude the proof of Theorem C for a finitely generated field K of an arbitrary charac-
teristic.

Let L be a finite extension of K and let 7' be a torus defined over L. Denote by
Ly the maximal separable extension of K which is contained in L. Define S(L, T)
to be the set of all o € ¥ (K /K) such that 7 (K (o)) = 1 for infinitely many primes /.
Observe that Lg(¢) = L(o) = K (c). Hence ¥ (Ks/K) — S(L, T) is a zero set in
G (K /K) by Lemmas 1.3 and 2.4.

The set of all 0 € ¥(K,/K) that do not satisfy the conclusion of Theorem C is
contained in the union of all the sets ¥ (K/K) — S(L, T). Hence it is a zero set,
since there are only countably many pairs (L, 7') as above. ®

4. Linear algebraie groups. We recall that a quadratic matrix 4 with entries in
a field L is said to be unipotent if all of its characteristic roots are equal to 1. In this
case A is conjugate (over L) to an upper triangular matrix with 1’s in the main
diagonal. If 4 == 1 and if char(L) = 0, then ord(A4) = oo. If char(L) = p, then
ord(4) is a finite power of p.

A linear algebraic group is said to be unipotent if all of its elements are unipotent.

Lemma 4.1. Let G be a connected linear algebraic group defined over a field L. Then G
contains a torus T which is also defined over L or G is unipotent.

Proof. If G contains a torus, then @ contains a maximal torus 7' which is defined
over K (c.f. Borel [1, p. 382]). The dimension of 7' is >0, since all the maximal
tori of @ are conjugate (c.f. [1, p. 263]). If G does not contain a torus, then @ is
unipotent (c.f. [1, p. 264]). ®

Proof of Theorem D. Let ¢ be an element of @ (K,/K) that satisfles the con-
clusion of Theorem C and such that K (o) is a infinite field. By Theorem C and by
[4, Lemma 7.1] almost all ¢ have these properties.

Let L = K (o) and consider a connected linear algebraic group @ defined over L
such that Gior (K) is an infinite set. If @ contains a torus which is defined over L,
then Gior(L) is infinite, by choice of ¢. Otherwise G is unipotent, by Lemma 4.1,
The assumption that Gyor(K) is infinite implies now that char(L) = p and that
dim (@) > 0. The field L is infinite and perfect, hence there is an embedding of the
additive group of L into G(L) (c.f. [1, p. 362]). In particular G(L) is an infinite
torsion group. ®

Proof of Theorem E. Let ¢ be an element of 4 (K,/K) that satisfies the con-

clusion of Theorem C and let L = K (o). Consider a linear algebraic group G de-
fined over L such that the order of the torsion of G(K) is not bounded. Then the




Vol. 32,1979 Torsion in linear algebraic groups 451

connected component G0 of the unit element of G is also defined over (c.f. [1, p. 86]).
We claim that (0 contains a torus defined over I, and hence there exist infinitely
many primes [ such that Gy(L) == 1.

Indeed, otherwise G0 is an unipotent group and there exists an n such that G9
can be embedded in the subgroup U, of all upper triangular matrices of GL,, with
U's in the main diagonal (c.f. [1, p. 158]). If char(K) = 0, then G® is torsion-free;
if char (K) = p, then every element of G® has an order which is a power of p not
bigger then p2-1, (¢.f. [4, Lemma 9.3]). Since G0 has a finite index in @ (c.f. [1, p. 86]),
it follows that the order of the torsion of G (K) is bounded, a contradiction to our
assumption. ®
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