MODEL-COMPLETE THEORIES OF ¢-FREE AX FIELDS
MOSHE JARDEN AND WILLIAM H. WHEELER

This paper’s goal is to determine which complete theories of perfect, e-free Ax
fields are model-complete. A field K is e-free for a positive integer e if the Galois
group Z(Kg|K), where K is the separable closure of K, is an e-free, profinite
group. A perfect field K is pseudo-algebraically closed if each nonvoid, absolutely
irreducible variety defined over K has a K-rational point. A perfect, pseudo-
algebraically closed field is called an Ax field. The main theorem is

A complete theory of e-free Ax fields is model-complete if and only if its field of
absolute numbers is e-free.

The sufficiency of the latter condition is an easy consequence of a result of Moshe
Jarden and Ursel Kiehne [10] and has been noted independently by A. Macintyre
and K. McKenna and undoubtedly by others as well. Consequently the necessity
of the latter condition is the interesting part of this paper.

James Ax [3] initiated the investigation of 1-free Ax fields. He proved that these
fields, which he called pseudo-finite fields, are precisely the infinite models of the
theory of finite fields. He [3] also presented examples of perfect, 1-free fields which
are not pseudo-algebraically closed and an example of a I-free Ax field whose
complete theory is not model-complete. Moshe Jarden [5] showed that the first
examples are isolated cases in that almost all, perfect, 1-free, algebraic extensions of
a denumerable, Hilbertian field are pseudo-algebraically closed. The results in
this paper show that the second example is also an isolated case in that almost all
complete theories of 1-free Ax fields are model-complete.

All theories will be first order theories in the usual language of fields with symbols
0, 1, +, —, -. Consequently, the results in this paper seem to be independent of
Theorem 1 of [1], since that theorem used an expanded language.

Several lemmas on regular field extensions are collected in §1. The e-regularity
bases are introduced in §2 and shown to be precisely the e-free fields. The main
theorem is proved in §3.

§1. Regular extensions. An extension field L of a field K is a regular extension if
L is linearly disjoint from K over K, where K denotes the algebraic closure of K.
The reader is referred to [11] for standard results on regular extensions.

A field K will be called an algebraic field or an absolute number field if X is an
algebraic extension of its prime subfield.
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A field K has corank < ¢ for a positive integer e if the Galois group #(Ks|K)
is topologically generated by e elements.

LEMMA 1.1. If K has corank < e and L is a regular extension of K, then there is a
separable algebraic extension E of L such that E has corank < e and E is a regular
extension of K.

PrOOF. Consider the composition KsL < Lg. Then G(KsLIL) =~ 9(K,|K), since
G(KsL|L) = 9(Kg|Ks ) L) and Ks () L = K. Consequently, (K L|L) can be
generated topologically by elements 0y, ..., §,. Extend 0, ..., 0, to elements
01, ..., 0, of (Lg|L). The fixed field E of 6, .. ., O, has corank < e, is separable
over K, and K 1 E = K; | E = K. Hence, E is regular over XK.

LemMA 1.2. If a perfect field K has corank < e, then K has a regular extension
which is an e-free Ax field.

PROOF. This lemma follows readily from Lemma 6.2(b) and 7.2(c) of [10] together
with: (1) if K'is an algebraic field of finite characteristic then first apply Lemma 1.1
to L = (K(¢))?""; and (2) if K is uncountable, then use Lowenheim-Skolem and an
ultraproduct construction (see [1] for example).

A. Adler and C. Kiefe [1] proved Lemma 1.2 for the case e = 1.

§2. e-regularity bases. A perfect field K of corank < ¢ will be called an e-
regularity base if whenever L is an e-free, regular extension of K, thenno proper,
separable, algebraic extension of L is a regular extension of K.

A proper algebraic extension L of a field K will be called a minimal extension if
whenever a field L’ satisfies K < L' = L, theneither L' = Kor L' = L.

For each pair of positive integers ¢ and n let s(e, n) be the number of closed,
maximal subgroups of F, (the free profinite group generated topologically by e
elements, see [15]) of index . The finiteness of s(e, n) follows from Lemma 1.3 of
[6].

LEMMA 2.1.Suppose that G is a profinite group generated topologically by e elements
where e = 2, such that for each positive integer n the group G contains exactly s(e, n)
closed, maximal subgroups of index n. Then G ~ F’e.

PrOOF. There is an epimorphism §: F, —» G. Let g be an element of the kernel
of 0, let n be a positive integer, and let s = s(e, n). Denote by Gy, ..., G, the closed,
maximal subgroups of index n of G. Then §-1Gy, ..., §-1G, are distinct, closed,
maximal subgroups of index n of F.. Since F, has only s(e, n) such subgroups,
071Gy, ... 071G, are all of the closed, maximal subgroups of index n of ﬁe.
Clearly ge 0-1G, for i = 1, ..., 5. Hence g is an element of the Frattini subgroup
of F,. But this Frattini subgroup is trivial [16, Corollary 3.12], so g = 1. Thus,
0 is an isomorphism.

THEOREM 2.2. An absolute number field K is e-free if and only if K is an e-regularity
base.

PROOF. Assume that K is e-free and suppose that L is an e-free, regular extension
of K. Suppose further that L’ is a proper, separable, algebraic extension of L.
One may assume that L' is a minimal extension of L. Let n be the degree of L’
over L and let K3, ..., K,(, ,, be the distinct minimal extensions of X of degree ».
Then KiL, ..., K, L are distinct, minimal, separable extensions of L of degree
n, because L is a regular extension of K. Since L has only s(e, n) distinct separable,
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minimal extensions of degree n, L' = KL for some i, 1 < i < s(e, n). Conse-
quently, L’ is not a regular extension of K.

Conversely, assume that X is an e-regularity base. According to Lemma 1.2, K
has a perfect, e-free, regular extension L. Let Ly, ..., Ly, ,be the minimal al-
gebraic extensions of L of degree n, and let K; = L; K. By assumption, K; # K.
Since L is a regular extension of K and each L; is a minimal extension of L, L, =
KL and [K;: K] =[L;: L] =nfori=1, ..., s(e, n). Thus K3, ..., K., are
distinct, minimal extensions of K of degree n, so ¥ = ¥(K|K) has s(e, n) closed,
maximal subgroups of index n. If e > 2, then @ is e-free by Lemma 2.1. Suppose
then that e = 1. If K has nonzero characteristic, then @ ~ [ 2259 where Z, is the
free pro-p-cyclic group (that is, the additive group of the p-adic integers), e(p) = 0
or 1, and p varies over all rational primes. If X has characteristic 0, then according
to a theorem of W. D. Geyer [15, Theorem 9.1],  ~ Z/(2) or I1,Z5'» where
e(p) = 0 or 1 and p varies over all rational primes. Since ¥ must have a subgroup
of index p for each rational prime (s(1, p) = 1), @ must be the 1-free profinite
group [] ,Z, where p varies over all rational primes. Thus X is e-free.

COROLLARY 2.3. Assume K is an e-free algebraic field. A regular extension L of
K'is e-free and perfect if and only if no algebraic extension of L is a regular extension
of K.

Proor. The sufficiency of the first condition follows from Theorem 2.2. Con-
versely, assume that no algebraic extension of L is a regular extension of K. Then L
must be perfect since K is perfect. Lemma 1.1 entails that  has corank < e. Now
since @(L|L) is topologically generated by e or fewer elements and can be mapped
by a continuous homomorphism onto “(KIK), #(L|L) ~ F, and L is e-free.

REMARK. In the definition of e-regularity base, one could have restricted at-
tention to fields L which are e-free Ax fields. To verify this, suppose that M is an
e-free, regular extension of K and M(b) is a proper, separable, algebraic extension
of M which is a regular extension of K. Let M 1 be the maximal, purely inseparable
algebraic extension of M. Applying Lemma 1.2 to M, yields an e-free Ax field L
which is a regular extension of M and hence of K. Then L(b) is a proper, separable,
algebraic extension of L and a regular extension of X,

§3. Model-complete theories of e-free Ax fields. Suppose that 7' is a consistent,
complete theory of fields. Let L be a model of 7, and let K be the subfield of ab-
solute numbers of L, that is, all elements algebraic over the prime subfield of L.
The field X is uniquely determined up to isomorphism by 7 [2, Lemma 5]. The
field K will be called the field of absolute numbers of T.

The models of a consistent, complete theory T of e-free Ax fields are just the
e-free Ax fields whose subfield of absolute numbers is isomorphic to the field of
absolute numbers of 7' (Lemma 5 of [2] and Theorem 4.4 of [10]).

THEOREM 3.1. 4 consistent, complete theory T of e-free Ax fields is model-complete
if and only if its field K of absolute numbers is e-free, in which case T is the model-
completion of the theory T whose models are the perfect, e-free fields whose subfield
of absolute numbers is isomorphic to K.

PROOF. The field K has corank < e, because %(K|K) is a continuous homomor-
phic image of @(L|L) for any model L of T. Consequently, every regular extension
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of K can be embedded in a model of T (Lemmas 1.1 and 1.2). Hence T is model-
complete if and only if each model of 7 has no algebraic extensions which are
regular extensions of K [17, Theorem 2.3]. Therefore, T is model-complete if and
only if Kis e-free (Theorem 2.2, the remark at the end of §2, and Corollary 2.3).

The assertion about model-completions follows from Theorem 4.4 of [10], Lem-
ma 1.2, and Theorem 2.2.

COROLLARY 3.2. In the language of fields, there is no consistent, complete, model-
complete theory of perfect, e-free, pseudo-algebraically closed fields of nonzero
characteristic for e > 1.

COROLLARY 3.3. The set of consistent, complete, model-complete theories of perfect,
e-free, pseudo-algebraically closed fields of characteristic p has cardinality 2% if
p >0ande =1 (well known)orifp = 0ande > 1.

PROOF. In characteristic O this is a consequence of Corollary 2.2, Theorem 3.1,
Corollary 7.2 of [6], and Hilbert’s Irreducibility Theorem.

Let S, , be the set of e-tuples (sy, ..., g,) of automorphisms from ?(Fple)
(where F, is the prime field of characteristic p; Fy is the field of rational numbers)
such that the fixed field of the closed subgroup of g(ﬁple) generated by gy, . . ., 0,
is the field of absolute numbers of a consistent, complete, model-complete theory
of perfect, e-free, pseudo-algebraically closed fields of characteristic p.

COROLLARY 3.4. The set S, , for p >0 and e = 1 or for p = 0 and e > 1 has
measure 1 in the normalized Haar measure on %(F pEFp) X - X @(F o Fp) (where
there are e factors).

PROOF. For characteristic 0 this is a consequence of Theorem 2.5 of [5] and
Theorem 5.1 of [6]. For characteristic p > 0, this corollary is a consequence of
Lemma 7.1, part b, of [7].

One should note that there do indeed exist consistent, complete, model-complete
theories of perfect, e-free, pseudo-algebraically closed fields whose field of absolute
numbers is not itself a model of the theory. For example, if p is a rational prime,
L is a maximal purely unramified algebraic extension of the field O, of p-adic
numbers, and K is the subfield of absolute numbers of L, then J. Ax [3] showed
that K is 1-free but not pseudo-algebraically closed. However, according to Corol-
lary 3.2, K is the field of absolute numbers of a complete, model-complete theory
of perfect, I-free, pseudo-algebraically closed fields.

One may also note that, in contrast to the results in this paper, there are no
model-complete theories of w-free Ax fields (for definition, see [9]). This can be
deduced from Theorem 4.2 of [9] and the fact that a finite, separable extension of
an w-free Ax field is itself an @-free Ax field.

Finally, it may be worthwhile to note that Theorem | of [1] can be generalized
as follows. Augment the language of fields by adjoining an (n + 1)-ary predicate
symbol R, for each n = 0.

THEOREM. Let X, be the theory of perfect fields of characteristic p of corank e
which satisfy the axioms

(%) Vixg - Vx (R (xp ..y X,) & Tp(xgy® + - + x,10 + x, = 0)).

Let 3, be the theory of e-free Ax fields of characteristic p which satisfy the axioms
(*). Then 2, is the model-completion of .
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