THE ELEMENTARY THEORY
OF NORMAL FROBENIUS FIELDS

Moshe Jarden

Introduction. The Galois stratification is introduced by Fried and Sacerdote
[3] in order to establish an explicit primitive recursive decision procedure for the
elementary theory of finite fields. This method is further developed in [2] and
leads to a primitive recursive decision method for Frobenius fields. In order to be
more explicit we consider a given Hilbertian field K with an elimination theory,
in the sense of [2], and let M be a Frobenius field that contains K. If Gis a
profinite group, then we denote by Im G the set of all finite quotient groups of
G. In particular, if we denote by G(M) the absolute Galois group of M, then
Im G(M) is the set of all finite groups that can be realized over M. It is proved in
[2] that if Im G(M) is a primitive recursive set of groups, then the Galois stratifi-
cation method leads to a primitive recursive decision procedure for the theory of
perfect Frobenius fields M’ that contain K and satisfy Im G(M)=Im G(M').

This result is generalized in Section 1 of this work. We consider a class I1
of profinite groups each of which appears as the absolute Galois group of a
Frobenius field M. This class is supposed to be equipped with a primitive recur-
sive algorithm to determine for given m+ n finite groups Gy, ..., Gy, Hy, .. . H,
whether or not there exists a P €Isuch that Gy, ...,G, €Im Pand H,,...,H, &
Im P. We denote by 9 the class of all perfect Frobenius fields M that contain K
and satisfy G(M) €11, and show how to modify the arguments in [2] in order to
establish a primitive recursive procedure for the theory of JN.

This procedure is applied in Section 2 to the set II of all normal closed sub-
groups of the free profinite group F on R, generators. It follows from the results
of Melnikov [11] that each of these groups is indeed isomorphic to an absolute
Galois group of a perfect Frobenius field. These fields are therefore called
normal Frobenius fields. Moreover, Melnikov’s characterization of these groups
leads to an explicit algorithm for IT as in the preceding paragraph. It follows that
the theory of normal Frobenius fields that contain K is primitive recursive via
Galois stratification.

The decidability of the theory of all perfect Frobenius fields that contain K is
hereby reduced to the above group theoretic decision problem for the class IT of
all absolute Galois groups of Frobenius fields. An affirmative solution to this
problem has been recently given by Haran and Lubotzky [6].

1. Galois stratification for a class of strongly projective groups. A profinite
group P is said to be projective if for every epimorphism «: G — H of pro-
finite groups and every homomorphism y: P — H there exists a homomorphism
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B: P — G such that a8 =+. This is equivalent to saying that the cohomological
dimension of Pis <1 (see Gruenberg [5: p. 164]). The profinite group G is said to
have the embedding property if for every epimorphism « : G — H of finite groups
with G€Im P and every epimorphism v: P — H there exists an epimorphism
B: P — G such that e =+. It is pointed out in Section 4 of [2] that Z,x 17, has
the embedding property but is not projective. On the other hand there exist pro-
jective profinite groups that do not have the embedding property (see Er§ov and
Fried [1]). Therefore we call a profinite group strongly projective if it is projec-
tive and has the embedding property.
A field M is said to be PAC if every non-void absolutely irreducible variety V
defined over M has an M-rational point. It is proved in [10: Proposition 4.8] that
a profinite group P is projective if and only if there exists a PAC field M such
that G(M)=P. Likewise a field M is said to be a Frobenius-field if M is PAC
and G(M) is a strongly projective group (see [2: Theorem 1.2]).
Consider now a class IT of strongly projective groups and let G be a finite col-
lection of finite groups. For every subcollection 3¢ of G we denote: g 5 =
(PEI|JC=CNIm P).
Let K be a countable Hilbertian field. We speak about the explicit case if
(a) the field K is given with an elimination theory (in the sense of [2: Section 2])
and

(b) given m+n finite groups Gy,...,G,,, H,,...,H, we can determine (in a
primitive recursive way) whether or not there exists a group P €I1 such that
G,....Gy,€ImPand H,,...,H,¢Im P.

The language of the theory of fields augmented by constants for the elements of

K is denoted by £(K).

Next we consider the class O of all perfect Frobenius-fields M that contain K
and satisfy G(M) €I1. For every subcollection JC of § we denote by Mg, g the
subclass of all M €N that satisfy G(M)€Ilg 5. We denote by Th(9N) the
theory of all sentences 6§ of £(K) that are true in all M € 9. Our aim is this sec-
tion is to prove that in the explicit case Th(9) is a primitive recursive theory. By
the Skolem-Lowenheim Theorem, every M € 9N contains a countable elemen-
tary subfield M, that contains K. In particular the profinite group G(M,) is
countably generated (i.e. it is generated by a countable set converging to 1 (cf.
Ribes [12: p. 84])), the field M is perfect and Frobenius and Im G(M)=
Im G(M,). If we add the group G(M,) to IT and augment M accordingly, we do
not change Th(910) but achieve that each of the classes IT, contains countably
generated groups. Therefore we may assume that this is the case from the very
beginning.

LEMMA 1.1. Let 0 be a sentence of £(K). Then there exists a finite collection
G of finite groups and there exists a finite Galois extension L of K such that G
contains all subgroups of G(L/K) and such that for every subcollection 3C of
G there exists a conjugacy domain Cony of subgroups of Q(L/K) which is
contained in 3C such that for every M€ Mg 5 we have: M=6 if and only if
S(L/LNM) € Cong. In the explicit case, G, L and the Consy. can be effectively
computed if 0 is presented.




THE ELEMENTARY THEORY OF NORMAL FROBENIUS FIELDS 157

Proof. Let M be a Frobenius field that contains K and let C=1Im G(M). It is
shown in [2] how to construct a sequence of Galois stratifications

@, =(A4;, Cy = Ajj, Cone (A ey, i=1,2,...,n,

which finally yields a finite Galois extension L/K and a conjugacy domain Cone
of subgroups of G(L/K) which is contained in © such that for every Frobenius
field M’ containing K that satisfies Im G(M’) =C we have:

M’EfeGQ(L/LNM) € Cone.

The construction of the Galois covers C;; = A4;; and hence that of L does not
depend on C. We may therefore take G as the ccllection of all subgroups of
G(Cij/A;), fori=1,...,nand j€J;. A careful examination of the algorithm in
[2] shows that the construction of the domains Cone A;; and hence that of Cone
depends only on GN € but not on € itself. Therefore, given a subcollection JC of
G we define Congye in the following way: We check whether or not there exists a
P €Il such that 3=G N Im P. In the negative case we put Conz = &. In the pos-
itive case we may assume that P is countably generated and therefore we know,
[2: Lemma 4.3], that there exists a Frobenius field M containing K such that
P=G(M). Then we define € =Im P, construct Cone as mentioned above and
take Cong = Cone. If M'€NMg 5 and C’=Im G(M’), then JC=GNC’; there-
fore Cone = Cone = Conyg and we have: M'=0 G(L/LNM’) € Cony. O

If L/K is a Galois extension, we denote by S(L/K) the collection of all sub-
groups of G(L/K).

THEOREM 1.2. (a) Suppose that we are in the explicit case and that 0 is a given
sentence of £(K). Then we can primitive-recursively decide whether or not
6€Th(IMN).

(b) If 0 is true in all the fields M € N which are algebraic over K, then 0 €
Th{dM).

Proof. Using the notation of Lemma 1.1 we claim that the following state-
ments are equivalent:

(i) The sentence 6 belongs to Th(9N).

(i) If 3¢=G and I1g 5 is not empty, then Conse=3JCNS(L/K).

Indeed, assume that (ii) is true and let M€ M. Taking =GN Im G(M) we
have MeMg 5 and G(L/LNM)€S(L/K)NIm G(M)=3C=Cony. There-
fore, by Lemma 1.1, M=6.

Conversely, assume that there exists a group P €11 such that for =GN Im P
there exists a group HE€JCNS(L/K)—Cons. By assumption ITg 5 contains a
countably generated group P’. Then JC=G N Im P’ and in particular H € Im P".
By Lemma 4.3 of [2] there exists a perfect Frobenius field M, algebraic over X,
such that G(M)=P and H=G(L/LNM). Lemma 1.1 implies that M.

The validity of Statement (ii) can be checked, since we are in the explicit case.
Hence, we may decide whether or not § € Th(9). O
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REMARK. Suppose that the group theoretic decision problem (b) for II on
page 156 can be solved in a recursive way. Then one can still use the methods of
[9] and prove the ‘recursive analogue’ of Theorem 1.2.

2. Normal Frobenius fields. Let G=Gy> G,> --- > G, _ > G, =1 be a normal
sequence of a finite group G such that the factor groups G;/G;, are simple for
i=0,...,n—1. These factor groups are called the composition factors of G. By
the theorem of Jordan-H®élder [7: p. 63] they depend only on G. We denote by
the set of all finite simple groups and consider a subset A of L. A finite group G is
said to be a A-group if all its composition factors belong to A. An inverse limit of
A-groups is said to be a pro-A-group. For example, if A={Z/pZ}, then a pro-A-
group is a pro-p-group; for A={Z/pZ|p is a prime}, we get the pro-solvable
groups and A =X provides all pro-finite groups. Note that a closed normal sub-
group and a factor group of a pro-A-group are again pro-A-groups. However an
arbitrary closed subgroup of a pro-A-group is not necessarily a pro-A-group.

We denote by Fw(A) the free pro-A-group on &, generators. It can be obtained
by starting from a free discrete group F,, having X, free generators x, x;, X3, ....
Then F,(N) = lim F,/N, where N runs over all normal subgroups of F, that con-
tain all but finitely many x;’s and such that F,/N is a A-group. In particular, if
A=EX, then F,=F, (A) is the free profinite group on ¥, generators.

If Pis a profinite group and S€X, then we denote by vp(S) the number of
normal open subgroups N of P that satisfy P/N=S. Thus, »p is a function from
T to the set of cardinal numbers <|P|. For primes p we write vp(p) instead of

A function g: L —{0,1,2,..., 8]} is said to be A-admissible if g(S)=0 for
every SEL—A and if g(p) €0, 8y} for every prime p. Melnikov proved the
following in Theorems 3.1, 3.2, 3.5 and in Proposition 3.1 of [11].

LEMMA 2.1. Let A be a set of finite simple groups.

(a) If N is a closed normal subgroup of Fw(A), then vy is a A-admissible func-
tion.

(b) For every A-admissible function g there exists a closed normal subgroup N
ofﬁw(A) such that g=vy.

(¢) If N and M are two closed normal subgroups of ﬁw(A) such that vy=vyy,
then N=M.

(d) If N is a closed normal subgroup of Fw(A) and if G, H are A-groups
such that v (S) <vn(S) for every SEZL, then for every pair a: N —> H and
B: G — H of epimorphisms there exists an epimorphism y: N — G such that
a=fey. In particular we have:

(e) If Gis a A-group and if vs(S) <vn(S) for every SEL, then G €Im N.

(f) Every proper open normal subgroup of N is isomorphic to Fw(A).

COROLLARY 2.2. Every closed normal subgroup N of F,(A) has the embed-
ding property.

Proof. Let G be a finite quotient of N and let «: N— H and §: G — H be epi-
morphisms. Then H and G are A-groups and v5(S) <vyn(S) for every SEL. It
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follows from Lemma 2.1(d) that there exists an epimorphism v: N — G such that
o= [3eory. t

LEMMA 2.3. The following conditions on a subset A of L are equivalent:
(@) The profinite group F,,(A) is projective.
(b) If a prime p divides the order of a group S€ A, then Z/pZ € A.

Proof. (a)=(b)
Let S be a group belonging to A and let p be a prime divisor of |S|. By a theorem
of Gaschiitz ([4: p. 275 and also Satz 6 p. 284]) there exists a short exact sequence

1-A->H5S5-1

where A is a non-trivial elementary abelian p-group which is contained in the
Frattini group ¢ (H) of H. Also, there exists an epimorphism ¢: ﬁw(A) — S. By
the projectivity of Fw(A) there exists a homomorphism 5 : ﬁw(A) - H such that
wen=g0. Then A-r(ﬁw(A)) = H and from the assumption 4 < ¢(H) we deduce
that w(ﬁw(A)):H. Thus Z/pZ is a composition factor of the A-group H and
therefore Z/pZ € A.

(b)=(a)
It suffices to consider for every prime p the diagraim
F,(4)
(1) La

l1>A->G—->H—1

where « is an epimorphism, the short exact sequence of finite groups is exact and
A Is an elementary abelian p-group, and to show that there exists an epimor-
phism 3: ﬁw(A) — G that makes the diagram commutative (cf. Gruenberg [5:
p. 157] or Ribes [12: p. 211]). If p does not divide |H]|, then the short exact
sequence splits, by Schur-Zassenhaus’ Theorem and the existence of (8 is guar-
anteed. If p divides |H|, then p divides the order of one of the composition
factors of H. This factor belongs to A, since H, being a quotient group of ﬁw(A),
is a A-group. It follows that Z/pZ € A. But this implies that all the composition
factors of G belong to A, hence G is a A-group. Therefore, by Lemma 2.1(d),
there exists an epimorphism 3 Fw(A) — ( that makes the diagram (1) commuta-
tive. ]

Combining Corollary 2.2 and Lemma 2.3 we have:

LEMMA 2.4. If a subset A of L satisfies the conditions of Lemma 2.3, then
every closed normal subgroup of F,,(A) is strongly projective.

REMARK. The converse of Lemma 2.4 is not true. Indeed, Z is obviously a
strongly projective profinite group. On the other hand, vs,(2) =1 and vs,(S) =0
for every S€X different from Z/2Z. In addition there exist epimorphisms
o:Z—Z/27 and 3: Sy — Z./2Z but there exists no epimorphism v : YA S5, since
S; 1s not cyclic. It follows from Lemma 2.1(d) that there exists no subset A of £
such that Z is isomorphic to a closed normal subgroup of £,(A).
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We return now to a fixed subset A of L and take II to be the class of all pro-
finite groups which are isomorphic to closed normal subgroups of £, (A). A
Frobenius field M is said to be A-normal if G(M) €11.

LEMMA 2.5. The following two conditions on m+n A-groups Gy,...,Gy,
H,,..., H, are equivalent:
(@) There exists a group P€Il such that Gy,...,G,,€Im P and H,,...,H,€
Im P.
(b) For every 1< j < n there exists a non-abelian group S € A such that
(2) max vg,(S) <vy,(S)
I<ism

or there exists a prime p such that

3) max vg,(p)=0<vg,(p).

I<i<m

Proof. (a)=(b)

The assumption Gy, ..., G, € Im P implies that for every S€ A we have
“4) max vg,(S) <vp(S).
1€i<m

Let 1< j<n and assume that (2) is false for every non-abelian S € L and that (3)
1s false for every prime p. Then by (4)

(5) v, (S) <vp(S)
for every non-abelian S €L, and for every prime p either vy, (p) =0 or

0<wp,(p) < max vg,(p).
Igism
In either case we conclude that (5) is valid also for S=Z/pZ. By Lemma 2.1(¢)
the group H; belongs to Im P, a contradiction.

(b)=(a)

By Lemma 2.1(b) there exists a group P €Il such that vp(S) =max;¢;<m ¥G,(S)
for every non-abelian S€E€X, and vp(p)=0 if max;¢; <, v6,(p) =0 and vp(p) =
Ry if max|¢;<m vG,(p)>0, for every prime p. In particular vg,(S) <vp(S) for
every SE€X, hence G, €Im P, by Lemma 2.1(¢e), for i=1,...,m. If 1 <j <n, then
there exists a non-abelian group S € L such that (2) is satisfied and hence vp(S) <
vi;(S), or there exists a prime p such that (3) is satisfied; but then vp(p)=0<
ve;(p). In both cases we conclude that H; ¢ Im P. Thus (a) has been completely

verified. O

THEOREM 2.6. Let K be a given countable Hilbertian field with an elimination
theory. Let A be a primitive recursive set of finite groups that satisfies the follow-
ing condition:

(x) If SEA and if p is a prime divisor of |S|, then Z/pZ € A.

Then the theory T(K,A) of all sentences in £(K) that are true in every perfect
A-normal Frobenius field that contains K is primitive recursive via Galois strati-
fication. Moreover, a sentence 6 of £(K) belongs to T(K,A) if and only if it is
true in all models of T(K, A) which are algebraic over K.
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Proof. By Corollary 2.4 every group in IT is strongly projective. Moreover,
given m + n finite groups G,, ..., G,,, H,, ..., H, we can effectively check whether
they are A-groups and whether they satisfy condition (b) of Lemma 2.5. We are
therefore in the explicit case. Our theorem is a special case of Theorem 1.  [J

As a complement to Theorem 2.6 we point out an explicit system of axioms for
the theory T(K, A).

LEMMA 2.7. Let E be a perfect countable field and let A be a subset of ¥ that
satisfies condition (*) of Theorem 2.6. Then E is a A-normal Frobenius field that
contains K if and only if the following conditions are satisfied.:

(a) Eisan Ax (= perfect PAC) field that contains K.

(b) The group G(E) has the embedding property; in other words, if E' and F are
Galois extensions of E, and ©: G(E'/E) — G(F/E) is an epimorphism, then
there exists a Galois extension F’ of E that contains F and there exists an iso-
morphism ¢: G(F'/E) = Q(E/E) such that wo¢=res.

(c) For every positive integer m and a prime p we have: if Z/pZ is realizable
over E, then (Z/pZ)" is realizable over E.

(d) For every A-group H we have: H is realizable over E if and only if every
quotient of H of the form S™, where S € A is not abelian, is realizable over E.

(e) A finite group H which is not a A-group is not realizable over E.

Proof. Lemma 2.1 and Corollary 2.2 imply that every perfect A-normal Fro-
benius field that contains K satisfies conditions (a)-(e).

Conversely, suppose that E satisfies these conditions. Then (a) and (b) imply
that £ is a perfect Frobenius field that contains K. Conditions (c) and (e) imply
that the function vg(g is A-admissible. Hence, by Lemma 2.1(b) there exists a
closed normal subgroup N of ﬁw(A) such that vy =»g ). Therefore, conditions
(c) and (d) imply that Im G(E)=Im N. In addition, G(E) and N are countably
generated profinite groups with the embedding property. Using compactness
arguments we are able to deduce that G(E) = N. This means that E is a A-normal
field. O

Conditions (a)-(e) on the field £ can be explicitly written as a sequence of sen-
tences A(K, A) in the language £ (K). In particular we can use Lemma 1.4 of [9]
for condition (a) and we can use Lemma 3.2 of [8] for condition (b). It is proved
in this last lemma that every embedding problem over F is equivalent to an ele-
mentary statement on the pair (£, E), where E is the algebraic closure of E. If
one examines the elementary statement that appears there, one sees that it is not
difficult to eliminate the quantifiers on elements of E. For example, if f€ E[X]
is a polynomial of degree m and one speaks about the existence of elements

ay,...,a,, of E such that J(X)=(X—-q): - (X—«,,), then one can speak in-
stead about the existence of an irreducible polynomial p € E[ X ] of degree m!
and about the existence of polynomials ¢,,...,q,, of degree (m!)—1 such that

S(X)=(X-q(Z))--- (X—qn(Z)) mod p(Z).

THEOREM 2.8. If K and A are as in Theorem 2.6, then A(K,A) is a system of
axioms for the theory T(K,A).
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Proof. Let F be a field satisfying the axioms A(K,A) and let E be a count-
able elementary subfield of F that contains K. Lemma 2.7 implies that E is a
perfect A-normal Frobenius field. It follows that £ and therefore also F satisfy

T(K,E). O

Conditions (b)-(e) of Lemma 2.7 can be written in terms of groups and thus
provide an internal characterization of normal subgroups of F,(A). This is a
completion to Melnikov’s results:

PROPOSITION 2.9. Let A be a set of simple groups and let G be a countably
generated pro-A-group. Then G is isomorphic to a closed normal subgroup of
E,(A) if and only if the following conditions are satisfied:

(@) The group G has the embedding property.

(b) For every positive integer m and every prime p we have: ZL/ple€
ImG=(Z/pZ)" €Im G.

(c) Forevery A-group H we have: H €1m G if and only if every quotient of H of
the form S™, where S € A is non-abelian, belongs to Im G.

As a peculiarity we note the following:

COROLLARY 2.10. If a countably generated pro-A-group G satisfies condi-
tions (a), (b) and (c) of Proposition 2.9, then every proper open normal sub-
group of G is isomorphic to F,(A).
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