Torsion-free profinite groups with open free subgroups

By

Moshe Jarden

1. Presentation of the problem. J.-P. Serre completes in [7] results of J. Tate and proves

Theorem 1.1. Let G be a profinite group without elements of order p and let U be an open subgroup of G. Then $cd_pG = cd_pU$. In particular if a torsion-free pro-p-group G contains an open free subgroup, then G is free.

In subsequent works Stallings [8] and Swan [9] prove the discrete analog of Theorem 1.1. Its profinite analog is not true. Indeed, in Section 5 of this note we give examples of torsion-free profinite groups G that contain free open subgroup U but such that G itself is not free. However, in these examples either U is procyclic or it has an infinite rank. Therefore we consider only the case where $2 \le \operatorname{rank} G < \infty$ and prove:

Theorem 1.2. Let G be a torsion-free profinite group that contains open free subgroup U of rank e and $2 \le e < \infty$. Then (G: U) divides e - 1. If in particular e = 2, then G = U.

Analogous results are achieved in [3] and [4] for finitely generated subgroups of the absolute Galois group G(K) of a global field K:

Theorem 1.3. Let K be a global field and let e be a positive integer. Then almost all e-tuples $(\sigma_1, \ldots, \sigma_e) \in G(K)^e$ satisfy:

- a) The closed subgroup $U = \langle \sigma_1, ..., \sigma_e \rangle$ generated by $\sigma_1, ..., \sigma_e$ is free of rank e.
- b) If G is a closed subgroup of G(K) that contains U as an open subgroup, then (G: U) | e 1. Moreover, if $1 \le e \le 5$, then G = U.

Remark: If one uses the proof of Theorem 6.1 and Corollary 6.2 of [4] as well as Theorem 1.2, one may generalize Theorem 1.3 to an arbitrary Hilbertian fielt K.

2. Projective groups. We recall that a profinite group G is said to be projective if for every homomorphism $\alpha \colon G \to A$ and every epimorphism $\beta \colon B \to A$, where A and B are profinite groups, there exists a homomorphism $\gamma \colon G \to B$ such that $\alpha = \beta \circ \gamma$. Indeed, C. Gruenberg, who introduces this concept in [2], proves that for G to be projective it suffices to prove the existence of γ only in the case where A and B are finite and $\operatorname{Ker} \beta \cong (\mathbb{Z}/p\mathbb{Z})^m$ for some prime p and a positive integer m.

In particular this result leads Gruenberg to the characterization of projective groups as profinite G with $\operatorname{cd} G \leq 1$. Using the inequality $\operatorname{cd} H \leq \operatorname{cd} G$ for closed subgroups H of G, one concludes that closed subgroups of projective groups are projective. Now, by a theorem of Tate, a pro-p-group is projective if and only if it is p-free, [6, p. 235]. It follows that a profinite group G is projective if and only if all its p-Sylow groups are p-free. Thus, Serre's Theorem 1.1 can be rewritten for projective groups as follows:

Lemma 2.1. If a torsion-free profinite group G contains an open projective group, then G is projective.

3. Pro- \mathscr{C} -groups. Let \mathscr{C} be a full family of finite groups, i.e. a family which is closed under the operation of taking quotient groups, subgroups and group extensions. Consider a profinite group G. If N_1 and N_2 are closed normal subgroups of G such that G/N_1 and G/N_2 are pro- \mathscr{C} -groups, then $G/N_1 \cap N_2$ is also a pro- \mathscr{C} -group. We may therefore denote by $O^{\mathscr{C}}(G)$ the intersection of all normal subgroups of G with pro- \mathscr{C} -quotients. The quotient $G(\mathscr{C}) = G/O^{\mathscr{C}}(G)$ is the maximal pro- \mathscr{C} -quotient of G. If \mathscr{C} is the family of all p-groups, then we use the notation $O^p(G)$ and G(p) for $O^{\mathscr{C}}(G)$ and $G(\mathscr{C})$, respectively. The free pro- \mathscr{C} -group and the free pro-p-group of rank e are denoted by $\widehat{F}_e(\mathscr{C})$ and $\widehat{F}_e(p)$, respectively.

Lemma 3.1. a) There exists no closed normal proper subgroup N of $O^{\mathscr{C}}(G)$ such that $O^{\mathscr{C}}(G)/N$ is a \mathscr{C} -group.

b) If $O^{\mathscr{C}}(G) \leq H \leq G$ is a closed subgroup of G, then $O^{\mathscr{C}}(G) = O^{\mathscr{C}}(H)$.

Proof. If there exists such an N, then $M = \bigcap_{g \in G} N^g$ is a closed normal subgroup of G with a pro- \mathcal{C} quotient. This contradicts the minimality of $O^{\mathcal{C}}(G)$. Assertion b) follows from a), since obviously $O^{\mathcal{C}}(H) \triangleleft O^{\mathcal{C}}(G)$.

A special case of Gruenberg's [2, Thm. 4] asserts: In order for a pro- \mathscr{C} -group G to be projective it suffices that for every two \mathscr{C} -groups A, B and every pair of epimorphisms $\alpha \colon G \to A$ and $\beta \colon B \to A$ there exists a homomorphism $\gamma \colon G \to B$ such that $\alpha = \beta \circ \gamma$. Thus we have:

Corollary 3.2. a) If G is a projective group, then $G(\mathcal{C})$ is also projective.

b) Every free pro-C-group is projective.

4. The main results.

Theorem 4.1. Let \mathcal{C} be a full family of finite groups and let G be a torsion-free profinite group. If G contains an open free pro- \mathcal{C} -group F of a finite rank e, then $(G:F)|_{e}-1$. Moreover, if a prime p divides (G:F), then every p-group is contained in \mathcal{C} .

Proof. Let N be an open normal subgroup of G which is contained in F and put m = (G:F), n = (F:N). Consider a prime divisor p of m and let p^i and p^j be the largest powers of p that divide m and n, respectively. By Sylow's theorem there exists a closed subgroup P containing N such that $(P:N) = p^{i+j}$. In particular P/N is a non-trivial p-group. By Lemma 3.1, $O^p(N) = O^p(P)$. Also, by Corollary 3.2, F is a projective group. Hence, by Lemma 2.1, G and therefore P are projective groups. It follows from Corollary 3.2 that $P(p) = P/O^p(P)$ is a projective group, hence it is a free pro-p-group. In particular P(p) is an infinite group. Therefore p divides the order of F (as a super natural number). It follows that \mathcal{C} contains all p-groups. By Nielsen-Schreier formula [1, p. 108], $N(p) = N/O^p(P)$ is also a free pro-p-group and

(1)
$$\operatorname{rank} N(p) = 1 + p^{i+j} (\operatorname{rank} P(p) - 1).$$

Using the same formula for F and N we have that N is a free pro- $\mathscr C$ -group and $\operatorname{rank} N = 1 + n \, (e-1)$.

The fact that every pro-p-group is a pro-C-group implies now that

(2)
$$\operatorname{rank} N(p) = 1 + n(e-1).$$

Comparing (1) and (2), we have

(3)
$$p^{i}(\operatorname{rank} P(p) - 1) = \frac{n}{p^{j}}(e - 1).$$

But p does not divide n/p^j . Hence (3) implies that $p^i | e - 1$. Since this relation holds for every p, we conclude that m | e - 1.

Corollary 4.2. If a torsion-free profinite group G contains an open subgroup F isomorphic to $\widehat{F}_2(\mathcal{C})$, then G = F. In particular G is pro- \mathcal{C} free.

Corollary 4.3. If a torsion-free profinite group G contains $\hat{F}_e(p)$ as an open subgroup, then G is a free pro-p-group.

Proof. By Theorem 4.1, $(G: \hat{F}_e(p))$ is a power of p. Hence G is a pro-p-group. Our result follows therefore from Corollary 1.2.

In general we would like to make the following

Conjecture 4.4. Let \mathscr{C} be a full family of finite groups and let $e \geq 2$ be an integer. If a torsion-free pro- \mathscr{C} -group G contains an open subgroup F which is isomorphic to $\widehat{F}_e(\mathscr{C})$, then G is a free pro- \mathscr{C} -group.

Our Conjecture is true beyond the case e=2 if we also suppose that the rank of G is "small":

Theorem 4.5. Let \mathscr{C} be a full family of finite groups and let G be a torsion-free pro- \mathscr{C} -group. Suppose that G contains an open subgroup F isomorphic to $\widehat{F}_e(\mathscr{C})$, where $e \geq 1$. Let m = (G:F) and d = 1 + (e-1)/m. If rank $G \leq d$, then $G \cong \widehat{F}_d(\mathscr{C})$.

Proof. By Theorem 4.1, d is an integer. Hence our assumption implies that there exists an epimorphism $\theta \colon \hat{F}_d(\mathscr{C}) \to G$. Therefore $(\hat{F}_d(\mathscr{C}) \colon \theta^{-1}F) = (G \colon F) = m$. By Nielsen-Schreier formula, rank $\theta^{-1}F = 1 + m(d-1) = e$. Hence $\theta^{-1}F \cong \hat{F}_e(\mathscr{C})$. It follows that $\operatorname{Res}_{\theta^{-1}F}\theta$ is an epimorphism of two isomorphic finitely generated groups. Therefore $\operatorname{Res}_{\theta^{-1}F}\theta$ is an isomorphism (cf. [8, p. 69]). But $\operatorname{Ker} \theta \subseteq \theta^{-1}F$. Hence θ is an isomorphism.

5. Examples. It is not possible to extend Conjecture 4.4 to e=1, as follows from

Example 5.1*) for a torsion-free non-free profinite group G that contains $\widehat{\mathbb{Z}}$ as an open proper subgroup:

Consider a prime p and define for every prime l an element $\alpha_l \in \mathbb{Z}_l$ in the following way. If $p \mid l-1$, then $\alpha_l \neq 1$ and $\alpha_l^p = 1$. If $p \nmid l-1$, take $\alpha_l = 1$. Then $\alpha = (\alpha_l)$ is an element of $\widehat{\mathbb{Z}}$ that satisfies $\alpha^p = 1$. Consider now a multiplicative copy of \mathbb{Z}_p generated by an element π and take a multiplicative copy of $\prod_{l \neq p} \mathbb{Z}_l$ generated by an element z. We define an action of $\langle \pi \rangle$ on $\langle z \rangle$ by the formula $z^{\pi} = z^{\alpha}$ and let G be the corresponding semi-direct product. We have $z^{\pi^p} = z^{\alpha^p} = z$, hence the open subgroup $\langle \pi^p \rangle$ of $\langle \pi \rangle$ (which is also isomorphic to \mathbb{Z}_p), acts trivially on $\langle z \rangle$. Therefore, the subgroup $\langle z \pi^p \rangle$ of index p of G is isomorphic to $\widehat{\mathbb{Z}}$. We show that G is torsion free. Indeed, every element $g \in G$ can be uniquely written as $g = \nu x$, where $x = \langle z \rangle$ and $\nu \in \langle \pi \rangle$. We have $y^n = \nu^n x^{\nu^{n-1}} x^{\nu^{n-2}} \dots x$. If $y^n = 1$, then $\nu^n = 1$, hence $\nu = 1$ and therefore p = 1. Finally, we note that p = 1, which has rank 2, cannot be free, e.g. by Nielsen-Schreier formula.

Likewise it is not possible to extend Conjecture 4.4 to $e = \omega$. Indeed, Melnikov's result [5, Theorem 3.2] shows that \hat{F}_{ω} has normal subgroups N which are not free, while every open normal proper subgroup of N is isomorphic to \hat{F}_{ω} (see [5, Theorem 3.4]).

6. Pro- Π -groups. The arguments of Theorem 4.1 actually supply a proof to

Lemma 6.1. Let \mathscr{C} be a full family of finite groups and let G be a projective group. Assume that G contains an open pro- \mathscr{C} -group U. If p is a prime divisor of (G:U), then \mathscr{C} contains every p-group.

Let Π be a set of primes. If the order of a finite group G is divisible only by primes belonging to Π , then G is said to be a Π -group. The set of all Π -groups is obviously full.

Corollary 6.2. If a projective group G contains an open pro- Π -group U, then G is a pro- Π -group.

^{*)} Found in collaboration with A. Brandis to whom the author wishes to express his sincere indebtedness.

Corollary 6.2 is not true anymore if \mathscr{C} is a full family of finite groups which is not a H-family. Indeed, in this case there exists a finite group H such that $\mathbb{Z}/p\mathbb{Z} \in \mathscr{C}$ for every prime divisor p of |H| but H does not belong to \mathscr{C} . Let F be a free profinite group having an open normal subgroup K such that $F/K \cong H$. Then K is free and therefore $K(\mathscr{C}) = K/O^{\mathscr{C}}(K)$ is a free pro- \mathscr{C} -group. The group $O^{\mathscr{C}}(K)$, as a characteristic subgroup of K is normal in F.

Claim: The group $G = F/O^{\mathscr{C}}(K)$ is torsion-free.

Otherwise there would exist an element $x \in F - O^{\mathscr{C}}(K)$ and a prime p such that $x^p \in O^{\mathscr{C}}(K)$. Then $x \notin K$ and therefore p divides the order of H. By assumption \mathscr{C} contains all p-groups. Hence $O^{\mathscr{C}}(K) \leq O^p(K)$. Let $L = \langle K, x \rangle$, then $O^p(K) = O^p(L)$ and the free pro-p-group $L(p) = L/O^p(L)$ contains an element $x \cdot O^p(L)$ of order p, a contradiction.

Thus the following completion to Corollary 4.3 has been proved.

Proposition 6.3*). If a full family \mathscr{C} of finite groups is a Π -family for not set of primes Π , then there exists a torsion-free proup G that contains an open free pro- \mathscr{C} -group of a finite rank, but such that G is not a pro- \mathscr{C} -group.

References

- [1] E. Binz, J. Neukirch and G. H. Wenzel, A subgroup theorem for free products of profinite groups. J. Algebra 19, 104—109 (1971).
- [2] K. GRUENBERG, Projective profinite groups. London Math. Soc. 42, 155-165 (1967).
- [3] M. Jarden, Algebraic extensions of finite corank of Hilbertian fields. Israel J. Math. 18, 279-307 (1974).
- [4] M. Jarden, An analogue of Artin-Schreier Theorem. Math. Ann. 242, 193-200 (1979).
- [5] O. V. Melnikov, Normal subgroups of free profinite groups. Mathematics USSR Izvestija 12, 1-20 (1978).
- [6] L. Ribes, Introduction to profinite groups and Galois cohomology. Queen's University, Kingston 1970.
- [7] J.-P. Serre, Sur la dimension cohomologique des groupes profinis. Topology 3, 413—420 (1965).
- [8] J. R. Stalling, On torsion-free groups with infinitely many ends. Ann. Math. 88, 312—334 (1968).
- [9] R. G. Swan, Groups of cohomological dimension one. J. Algebra 12, 585-610 (1969).

Eingegangen am 26. 9. 1981 **)

Anschrift des Autors:

Moshe Jarden School of Mathematical Sciences Tel-Aviv University Ramat-Aviv, Tel-Aviv 69878 Israel

^{*)} Found in collaboration with A. Lubotzky.

^{**)} Eine Neufassung ging am 3. 3. 1982 ein.