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The Absolute Galois Group of a Pseudo Real Closed Field.

DAN HARAN (*) - MOSHE JARDEN (**)

Introduction.

The main problem in Galois theory is to describe the absolute Galois
group G(K) of a field K. The most interesting case, namely that of the field
of rational numbers, is still very far from being accessible. Nevertheless,
a Tew other interesting cases have been resolved. Among them there are the
finite fields, with Z as the absolute Galois groups, real closed fields B with
G(R) = Z/27, the p-adic fields Q,, with a description of G(Q,) by generators
and relations (Jakovlev [12], Jansen-Winberg [13] and Winberg [25]) and
the field C(¢) with G(C(t)) being free. Finally we mention PAC fields with
projective groups as their absolute Galois groups. The last example moti-
vates the present work, we therefore explain it in more detail.

Recall that a field K is said to be pseudo algebraically closed (PAC) if
every absolutely irreducible variety defined over K has a K-rational point.
On the other hand, a profinite group & is said to be projective if every finite
embedding problem for @& is solvable; in other words, given a diagram

1) l(p

B — A4
o

where « is an epimorphism of finite groups and ¢ a homomorphism, there
exists a homomorphism y: ¢ — B such that «oy = ¢ (Gruenberg [9]).

(*) This work constitutes a part of the Ph. D. dissertation of the first author
done at Tel-Aviv University under the supervision of the second author.
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It is now well known that if A is a PAC field, then G(K) is projective
(Ax [1, p. 269]). Conversely, if ¢ is a projective group, then there exists a
PAC field K such that G(K) =~ ¢ (Lubotzky-v.d. Dries [20, p. 447).

An attempt to enrich the structure of the PAC fields has led to the de-
finition of PRC fields:

A field K is said to be pseudo real closed, if every absolutely irre-
ducible variety V defined over K, which has a K-rational point in every real
closed field K containing I, has a K-rational point (Prestel [22]).

In particular, if K has no orderings, then K is a PAC field. The study of
PRC fields hag already attracted a lot of attention ([16], [17], Prestel [22],
Ershov [7] and others). In order to extend these investigations it has be-
come necessary to give a group theoretic characterization of the absolute
Galois group of a PRC field, in other words, one has to find the «right »
definition for «real projective group ». Here is our suggestion: We consider
the embedding problem (1) and call it real if for every involution g € @ such
that @(g) 51 there exists an involution b € B such that a(b) = ¢(g). A pro-
finite group @ is said to be real projective if the subset I(G) of all involutions
of @ is closed and for every finite real embedding problem (1) there exists
a homomorphism y: ¢ — B such that aoy = ¢. We prove:

THEOREM. If K is a PRC field, then G(K) is real projective. Conversely,
if G is a real projective group, then there exisis a PRC field K such that
G(K) ~ @.

Unfortunately we have to go a long way in order to prove the Theorem.
Nevertheless there is a bonus for the effort, namely the intreduction of
Artin-Schreier structures. In the same way that PRC fields generalize PAC
fields, Artin-Schreier structures enrich Galois groups by taking into account
the orderings. Indeed, to every Galois extension L/K with v/—=1eL we
attach the space of orderings X(L/K), consisting of all pairs (L(e), P) where ¢
is an involution of S§(L/K), L(¢) is its fixed field in L and P is an ordering
of L(g). The corresponding Artin-Schreier structure is &(L/K)= (S(L/K),
S(Z/K(v=T1)), X(L/K)-% S(L/K)>, where d(L(e), P) =e. In particular
the absolute Artin-Schreier structure of K is G(K) = G(K,/K).

In the category of Artin-Schreier structures there are projective objects
(Section 7), the underlying groups of which are exactly the real projective
groups (Proposition 7.7). If K is a PRC field, then G(K) is a projective Artin-
Schreier gtructure (Theorem 10.1). Conversely, for every Artin-Schreier
structure & there exists a PRC field K such that @(K) ~ & (Theorem 10.2).
This completes the main result, Theorem 10.4, mentioned above.
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Notation.

X(K) = the set of orderings of a field K.

K, = the geparable closure of a field K.

If LIK is a Galois extension, ¥ is an extension of L and ¢ is an auto-
morphism of F over L, then L(o) = {we L: o(@) = 2} is the fixed field
of ¢ in L.

1. — Profinite topological transformation groups.

Sets of orderings of fields, profinite groups, ete. are projective limits of
finite sets. The next Definition-Theorem characterizes these objects as
topological spaces.

DEFINITION 1.1. A topological space X is said to be a Boolean space, if it
satisfies one of the following equivalent conditions:

(i) X is a totally disconnected compact Hausdorff space.

(i1) X is compact and every x € X has a basis of closed-open neighborur-
hoods, whose intersection is {x}.

(iii) X 4s an inverse limit of finite discrete spaces.

(iv) X is homeomorphic to a closed subset of {— 1,1}, for some set I.
The conditions are indeed equivalent:
(ii) = (ii): Hewitt and Ross [11, p. 12].

(if) = (iiii): Clearly X is Hausdorff. Since the required proof is a special
case of a part of the proof of Proposition 1.5, we shall not bring it here.

(i1i) = (iv): Assume X = ]g:__%lX,-, with X, finite. Then X is a closed
subset of [] X,: Also, we mz,bg; assume that X, C {+ 1}% for some finite
set I,. T}iifn X is closed in {4 1}1 where I is the disjoint union of the
sets I,.

(iv) = (i): Clear. /]

Examples of Boolean spaces: profinite groups, sets of orderings of fields
(Prestel [21, § 6]).
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Throughout this paper we tacitly use the fact that a continuous map
between compact Hausdorff spaces is closed; in particular, a continuous
bijection is a homeomorphism.

LeMma 1.2, Let p: X — Y be a continuous closed and open map from a
Boolean space X onto a topological space Y. Then Y is also a Boolean space.
Proor. It suffices to show that Y is Hausdorff, since the image of a
compact set is compact, hence by 1.1 (i), Y is also a Boolean space. Thus
our Lemma follows, e.g., by [6, Ch. 2, § 4, Theorem 4 and Theorem 5].  //

Let us consider the category of (topological) transformation groups, i.e.
pairs (X, @), where X is a topological space and @ is a topological group
acting continuously on X (the action X x& — X denoted henceforth by
(@, o) > @°) (cf. Bredon [2, Chapter 1]). A morphism in this category, say
(Y, H) - (X, ), is a pair (f, p) consisting of a continuous map f: ¥ — X
and a continuous homomorphism ¢: H — @, such that

)™M= f(y*)  for every ye Y and he H .
Y Y y Yy

If f(Y)= X and @(H) =G, we call [f, ) en epimorphism.
A transformation group (X, &) is called finite, if both X and @ are finite
and discrete. A transformation group is profinite, it is an inverse limit of
finite transformation groups.
Our first aim is to characterize the profinite transformation groups.
Let (X, &) be a transformation group. A partition Y = Vig ooy Vak
of X is & finite collection of disjoint non-empty closed-open subsets of X,
n

such that X = (o] V;. ‘We say that Y is a G-partition, if for every ¢ € ¢ and
i=1

every 1<4<n there is a 1<j<n such that V{ =7V,

For two partitions ¥, ¥’ of X we write ¥Y'>Y, if Y’ is finer than Y,
i.e.,for every V'e Y’ thereis (a unique) V € ¥ such that V' C V. The family
of partitions (resp. G-partitions) is thus partially ordered.

REMARK 1.3. Let Y be a finite collection of closed-open subsets of X.
Then there is a partition Y’ of X such that for every Ve Y and Ve Y
either V'CV or V"NV = .

In particular, every two partitions of X have a common refinement.

If Y is a G-partition of X, there is an obvious way to congider (Y, G)
as a transformation group and, furthermore, to define an empimorphism
(Pr,ide): (X, &) — (Y, G) (i.e., by py(x) = V if we V). If ¥'> Y is another
G-partition of X, there is an obvious epimorphism (ppy,ide): (Y, G)
— (Y, &), such that (pyy,ide)o(py, ide) = (py, ide).
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LeMwmA 1.4, Let (X, @) be a transformation group. Assume that X is a
LBoolean space and G is a profinite group, and let ¥ be a pariition of X.

(1) There exists an open normal subgroup N of G such that Vo=V
for every Ve Y and every o€ N.

(i) There exists a G-partition Y’ of X finer than Y.

Proor. (i) It suffices to find for a closed-open subset V of X an open
normal subgroup N of G such that Vo=V for every o N. Let ze V.
By the continuity of the action X X@& — X there is a closed-open neigh-
bourhood U, of » and an open normal subgroup N, of ¢ such that U°CV
for every o€ N,. Since V is compact, there are a,,...,2,€ V such that

k k
V=U U,. Put N =) N, ; then N has the required property.

§==] =1

(ii) Assume Y = {Vi,..., V,} and choose N which satisfies (i). It
o=0¢' (mod N), then V¢ = V7 for every o, o' ¢ and 1<i<n. Leto,,..., o,
be representatives of G/N. For every function «: {1,...,m} — {1,...,n}
denote V = Vi, Nn..nVir, . It is casily checked that ¥'= {V_:V 50}

is a (-partition, finer than ¥. [/

Proprosition 1.5. A transformation group (X, &) is profinite if and only
if X is a Boolean space and G is a profinite group.

ProoF. The necessity is obvious. To show the sufficiency, assume that X
is & Boolean space and ¢ is a profinite group. Let § be the family of

G-partitions of X. The maps {(pr,idg)} yep define an enimorphism (p, idg):

(X, &) — lim (Y, &) (Ribes [23, Lemma 2.5]). But p is also injective: if
Yel

@, 2" e X are distinet, there is a closed-open set U C X, such that ze U,

x'¢ U; by Lemma 1.4 (ii) there exists a G-partition Y of X finer than
{U, X — U}. Thus pe(x) #py(x’), whence p(x)s<p(a’). Therefore (X, &)
=~ lim (Y, ¢) (1), since both X and lim Y are Hausgdorff and compact spaces

Yed vel
Thus we may assume that X is finite.

By the continuity of the action X x @ — X, there is an open subgroup N,
of & such that x9= « for every ze X and o€ N,. Let N be the family
of open normal subgroups of G contained in N,. Then, clearly, (X, @)
= lim (X, G/N¥). ||

NeN’

As an application of the material accumulated in this Section we con-

struct a quotient of a profinite transformation group.

(1) If G =1, this part proves (ii) ~ (iii) in Definition 1.1.
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Let (X, G) be a profinite transformation group, and let N be a closed
normal subgroup of ¢. Define an equivalence relation ~ on X by: z;~wx,
if there is a o€ N, such that @] = a,, and let X/N be the quotient space.
The quotient map p: X — X/N is open (if. U CX is open, then P~ p(1))

= UG) and closed (if I C X is closed, then p—(p(I)) = U Fe is the image
ceN’ geN
of the compact set XN under the action X x@ — X, hence compa]ct-)..

By Lemma 1.2, X/N is a Boolean space.

Let n: @ — @/N be the natural epimorphism. Tt is easily verified that
the action of ¢ on X induces a continuous action of G/N on X|N (p(cc)’”(")"
= p(a°) for ze X and oe G).

Thus we have shown:

CrAm™ 1.6. (X/N, G/N) is a profinite transformation group and (p, n):
(X, @) - (X/N, G/N) is an epimorphism. Moreover, p: X — X/N is an
open map.

2. — The space of orderings of a Galois extension.

Every Galois extension L/K is naturally accompanied by its Galois group
S(L/K). Another natural structure associated with L|K is the set X(L/K)
of the maximal ordered subfields of I containing K. In this section we in-
vestigate this set and its relations to S(L/K). To ensure a good behaviour
we assume that v/—1e L. It turns out that X(L/K) is a Boolean space
and §(L/K) acts on it. To attain full generality we do not require that K
be of characteristic zero and formally real. Nevertheless, the interesting:
case arises when K can be ordered.

We begin by summing up some relevant facts from the Artin-Schreier
theory. Recall that an ordered field is a pair (K, P), where K is a field and
PCK, the ordering, satisfies P-4 PCP, P-PcC P, PN—P=¢ and
PU—P=K*

ProrosirION 2.1. Let LIK be a Galois extension such that v/— 1 e L.

(i) Let 6 e G(K) = G(K,/K) be an involution (t.e., O*=1, §£1).
Then K,(0) is real closed, hence has a unique ordering.
(ii) Let P be an ordering of K, and let (L', Q) be a maximal ordered ex-

tension of (K, P) such that L' C L. Then there exists an involution eeG(L/K)
such that L' = L(¢).

(iii) Let P be an ordering of K and let (L&), Q1) and (L(ey), Q,) be two:
maximal ordered extension of (K, P) contained in L. Then there exists a untque
oE Q(L/K(\/:i)) such that (L(e,), Q) = (L(e,), Q,); in particular & =eg,.
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Proo¥r. (i) This follows from the fact that [K,: K,(J)] = 2 by Lang
[18, Cor. 2 on p. 223 and Prop. 3 on p. 274].

(ii) There exists ([18, Theorem 1 on p. 274]) and involution § € G(L')
such that @ extends to the real closed field K (). Let ¢ = Res; d; then
£ =1. By the maximality of L', L'= K,(0) N L = L(e).

(iii) By (ii), there are involutions &, d, € G(K) such that (L(e,), @)
C (Ks(ﬁi),@i), where @, is the (unique) ordering of K,(d,), 1 = 1,2. Thus
Resy, 6, = &, Res, 0, = &,. By [18, Theorem 3 on p. 277] there is a unique
K-isomorphism (Ks(él),él) — (K,(8,), @s). Its restriction to L(e,), 6: (L(ey),
Q) — (L(s,y), @:), is a unique K-isomorphism between (L(g),@,) and

(L(ey), @s), by Prestel [21, p. 42]. Now L =~ L(e) & K(v/—1), hence & can
K
be extended to a unique element GEQ(L/K(\/:I)). /]

Let L/K be a Galois extension, v/— 1€ L. An involution ¢€ §(L[K)
is real, if L(e)is a formally real field. The set X(L/K) of the maximal ordered
fields in I containing K is called the space of orderings of L/K. Proposition 2.1
implies that these fields are of the form (L(e), @), where ¢ € G(L/K) is a real
involution. The map d: X(L/K) — S(L/K), defined by d(L(¢), Q) = &, is
called the forgetful map.

It I,/K is another Galois extension, such that K(v/— 1) C L, C L, then
the restriction map Res: X(L/K) - X(L,/K), given by (L(e), @) > (Lo(e),
Q N Ly(e)), is surjective, by Zorn’s Lemma. Note that the forgetful map
commutes with the restriction of the spaces of orderings and the restriction
of the Galois groups.

Consider the Harrison topology on X(L/K) defined via the subbase
(Hy(a): a e L*}, where H(a)= {(L(¢),Q)| @€ @Q}. The sets Hy(a) are
closed-open. Indeed, let L,/K be a finite Galois extension such that a,
V= T1eL,C L, and pick up by, ..., b, € L such that K(b,),..., K(b,) are all
maximal formally real extensions of K in I, which do not contain a. Then
clearly

n n
X(LIK) — Hy(a) = Hy(— a) W ) Hi (b)) W o Hi(—bs),
i=1 i=1
whence H,(a) is closed.

From this one may prove as an exercise that if L/K is finite, then X(L/K)
is a Boolean space (see Prestel [21, Theorem 6.5] for a similar proof). For
an arbitrary Galois extension L/K such that v/—=1 e L it may be verified
that X(L/K) = lim X(L;/K), where {L,: ¢ I} is the family of finite Galois

tel
extensions of K contained in L and containing v/— 1. Thus X(L/K) is a
Boolean space.
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The restriction map Res: X(L/K) - X(L,/K) defined above and the
forgetful map d: X(L/K) — G(L/K) are clearly continuous in the Harrison

topology.
The group §(L/K) acts on X(L/K) in an obvious (and continuoug) way.
By Proposition 2.1 (iiii) we have that

10 € S(LIEW=1)| (L(e), Q) = (Le), )} = 1,

for every (L(e),Q) € X(L/K).

Finally note that X (K(\/ — 1) /K) = X(K), the space of orderings of K
(see [21, p. 88]). ‘

3. — Artin-Schreier structures.
The discussion in Section 2 motivates (see Example 3.2 below) the fol-
lowing abstract definition.

DEFINITION 3.1. An Avrtin-Schreier structure G is a system

(1) @5:<G7G,7-X£>'G>7
where

(i) (X, G) 4s a profinite topological tramsformation group (the case
X = ¢ is not excluded) ;

(i) G is an open subgroup of G of indew =2;

(iii) @ is a continuous map such that d(z) is an involution in @, d(x) ¢,
2% =z and d(xo) = (d(x))e for every xe X and o€ @; and

(iv) we have for all we X: {oe G: o°=a} = {1, d(x)}.

If a system & satisfies only (i)-(iii), we call it a weak Artin-Schreier
structure.

The Boolean space X is called the space of orderings of G; the map d is
called the forgetful map; its image d(X) is called the set of real involutions.

Note that (iv) is equivalent to the condition

(iv') {o€ G': 0=} = {1} for all z e X.

Also note that & = @' implies X = g,
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S (LK) = <S(LJK), §(L/K (vV=1)), X(LK) %> §(L/K))

is, according to Section 2, an Artin-Schreier structure.
Let I(L/K) be the set of real involutions in §(L/K), and let i: I(L/K)
—G(L/K) be the inclusion. Then

(S(LIK), $(L/E (V—T)), (LK) % §(L/K))

is a weak Artin-Schreier structure.

If not explicitely stated otherwise, the underlying group, the underlying
subgroup, the space of orderings and the forgetful map of an Artin-Schreier
structure & will be henceforth denoted by @, G', X(®) and d, respectively.
Analogously for $, 20, B, ete.

DEFINITION 3.3. Let ©, & be (weak) Artin-Schreier structures. A morphism
of (weak) Artin-Schreier structures @: § —> G is a pair of continuous maps
(both denoted by abuse of notation by @) ¢: H — G, ¢: X($H) — X(&) such that

(1) d(p(2)) = @(d(x)) for every xe X(D);
(i) (@, @): (X(9), H) —(X(&), G) is a morphism of profinite transfor-
mation groups, i.e., p(x°) = @) for all xe X(H) and oceH;

(iii) o~ (@') = H'.
A morphism @:  — & is called an epimorphism if p(H) = G and p(X(D))
= X(@®) (hence also p(H') = G').

An epimorphism of Aartin-Schreier structures @:$ — @ is said 1o be a
cover, if

(iv) for all »,,x,e X($) such that p(x,) = @(x,) there ewists a o€ G
such that ®7 = w,. (Then o can be chosen to be an element of Ker @.)

Note that if (i) holds, then (ii) is equivalent to
(ii") @(27) = @(®)™ for all e X($) and e H'

Indeed, if ze X(9) and oce H— H', then there is a 7eH’' such that
o=d(®)r, since (H:H')<2 and d@)¢H'. But 2D =g and gz)4r®)
= g(x), hence @(a°) = @(a%) = @(x)?® = (p(w)d(sv(w))w(r) — (p(x)¢(d(w))¢(r) = ()7,
Also observe that (iii) is equivalent to

(iii") ¢"(H)C G and ¢(H — H')C G — &,

in particular we have Ker ¢ CH'.
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Finally, let @: $ — & be a morphism of Artin-Schreier structures, Th
the map spaces of orderings ¢: X(D) — X(®) induces a continuous m
@: X(9)/H' — X(&)]G". Note that ¢ ig a cover if and only if

(iv') @ is a bijection, i.e., a homeomorphism, and ¢(H) = G.

ExXAMPKE 3.4. (a) Let L,C L be two Galois extensions of K such tk
vVZ=1e L, Then the restriction map Res: G(L/K) — G(L,/K) is a co
(see Prop. 2.1 (iii)).

(b) The restriction map of the corresponding weak Artin- Achreler
structures (Example 3.2) is an epimorphism, but need not satisfy con—v
dition (iv) of Definition 3.1. Indeed, there may exist two real mvolutlons
g, ¢’ € §(L/K) such that Res, ¢= Res,, ¢’y but no ordering of L,(e) ext
both to L(e) and L(g'). Thus ¢ and &' are not conjugate.

(¢) Let t be transcendental over Q. Then the map Res: @( (t \/:—w)
/Q(t)) ( QW—1) /Q) is an epimorphism of Artin-Schreier structures but
not a cover.

Examples 3.4 (a) and (¢) may be generalized as follows:

LEMMA 3.5. Let L/K and F|E be Galois ewtensions such that K Ch
V=1 e LCF. Thenthe restriction map Res: G(F|E) — S(LIK) s a morpms
of Artin-Schreier structures. It is am epimorphism if and only if E[K is
totally real extension, linearly disjoint from L[K. Here DK is smd to b
totally real if every ordering of K extends to an ordering of .

Proor. By Example 3.4 (a) we may assume that ¥ = LE. The Lemn
follows from v.d. Dries [4, Chapter IT, Lemma 2.5]. [/

4. — More about Artin-Schreier structures.

In this Section we develop come concepts and properties of (wea,k)/
Artin-Schreier structures needed later on.
First a few remarks:

4.1. Let ® be a (weak) Artin-Schreier structure and let N ¢ G' be a Cléséd
normal subgroup of ¢. Define

®/N = (G/N, G'|N, X(&)/N = GIN)

where (X (®)/N, G/N) is the quotient profinite transformation group (see 1.6)
and d is the map induced by d: X(®) — G.
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We leave to the reader the straightforward check that G/N is a weak
Artin-Schreier structure and that if & is an Artin-Schreier structure, then
so is G/N. In the latter case the quotient maps X(®) — X (@)/N and
G — G[/N define a cover. Moreover, every cover may be obtained this way.

4.2. An inverse limit of (weak) Artin-Schreier structures is a (weak)
Artin-Schreier structure.

4.3. Let & be a weak Artin-Schreier structure. Then @ — lim G/N,
where N runs through the family of open normal subgroups of @ con-
tained in G'.

In particular, if L/K is a Galois extension and v/— 1 €L, then G(L/K)
= lim &(L,/K), where {L},., is the family of finite Galois extensions of K

i€l
containing v— 1 and contained in I,

LeEMMA 4.4. BEvery (weak) Artin-Schreier structure G is an mverse limit
of finite (weak) Artin-Schreier structures, which are epimorphic images of &.

Proor. By 4.3 we may agsume that the group @ is finite. Let T be the
family of G-partitions ¥ of X(G) which

(i) are finer than {d-(e): e€d(X(®))}, ie.,, a map dy: ¥ — @ may
be defined by dy(U) = d(x) for all ze U with U e Y;

(i) U'NU=g¢ for all UeY and vc @ — {1}, if & is an Artin-
Schreier structure.

Bvery Ye & defines a finite (weak) Artin-Schreier structure &, — (G, q,
Y% @. Now to show that ¢ ~ lg_r_nGy, we proceed exactly as in the
first part of the proof of Prop. 1.5, but instead of using Lemma 1.4 (ii) we
apply the following :

- Cram. Let Y’ be a partition of X = X(&). Then thereis a Y e 7 finer
than Y’.

PRrROOF oF THE CratM. Tf @ is a weak Artin-Schreier structure, this
follows from Lemma 1.4 (ii). Assume, therefore, that & is an Artin-Schreier
structure. Let v € X and let Ve Y’ such that x € V. There is a closed-open
neighbourhood U, of # such that a7 ¢ U, for all 7€ ' — {1}. We may as-
sume that U,CV N d-Y(d(x)) and Uz N U,= 6 for all 7 e G — {1} (other—
wise take (d“l(d(m))ﬂ n Ux)—~ U U; instead of Uw). Since X is com-
bact, finitely many of these neiéfbo%i“hoods cover X. By remark 1.3 there

Is a partition ¥, of X such that every Ve Y, is contained in U, for some
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@ e X, henee Y, satisfies (i) and (if) above. Our elaim therefore follows
Lemma 1.4 (ii). /]

Finite weak Artin-Schreier structures appear naturally, but undesira
in the course of proofsin Section 7, Nevertheless we show in the next Lem
that such a structure N is an epimorphie image of a minimal Artin-Sch
structure 9'1, which eventually replaces 9 mthe above mentioned pr

LEMMA 4.5. Let A be a finite weak Artin-Sehreier structure.  Then
exists a fintte Artin-Schreier structure § and om epzmorphzsm p: 9l -9
that for every Artin-Schreier structure B and fmﬂ every (epi-)morphism of
Artin-Schreier structures o: B — A there emsts an (epi-)morphism &: B
such that pod — . B

ProOOF. Let w,...,x, be representatives of all the A-orbits in.
and denote e, = d(z;) (recall that a/'= g,), ¢ ::”‘1,"...} n. Let Z be t
of formal expressions Z7, where 1<i<n, 7 ésA’ ' The group A acts
of the subsets Z,= {&%: v ¢ A’} by ( l’)" )

map p: Z — X(A) deﬁned by p(2f) =
It is easily wverified let ﬂ = <A Ay Z

@7 18 (,ompamble Wlth

We may assume that B is ﬁmte, ofhermse replace B by a suitable ep
image, using Lemma 4.4, For every 1<i<n let {y
mal subset of a”Y(w,) such that y,,, .. y Yin, LEDPTO esent distine
Then X(B) = {y5|1<j<n,, 1 /@<n, T€ B'}. Define &y,
& together mth a: B — A is the desired morphism’ Q: % >
o(X(B)) = X(A) if and only if 4(X(B)) = XQ). ||

Recall that if @,;: ¥, — Y, ¢ =1,2 are two contmuous m&PS of
logical spaces, we denote by ¥, x,¥, the (closed) subspascié Of
consisting of pairs (¥, ¥,) such tha,t T (Yy) == 70,(1s). TER

Let m;: B, — A and m,: B, U be two morphisms of . (Wea,k
Schreier structures. Define

2‘3 X By = (B; X 4By, B, X4 By, X(3B,) XX(QDX(Q}Z)%B@XAB

and let B, % 4B, act on X(By) X xeyX(B,) componentwise. It s . ;
structive exercise to check that the fibred prodyct B, Xy B, 18 a (Weak)
Artin-Schrejer structure, and that the coordingte projections pi: 5131 ) g;%
=By, ¢ =1, 2, are morphism (cf. also Bredon [2, chapter I, 6 (B)]). :
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To use fibred products we need the following characterization :

LEMMA 4.6.: Consider a commutative diagram of (weak) Artin-Schreier
structures

B L, @,

(1) ﬁll lﬁz

%1‘“"“‘"““:"@{.
3

The following statements are equivalent:

(@) B is isomorphic to the fibred product By Xy By, 1.6., there is an iso-
morphism 0: B — B, Xy B,, such that p,ob-1 and P20071 are the coordinate
projections.

(b) B with p,, p,is a pullback of the Pair (75, 7,), 5.¢., given a weak Artin-
Schreier structure € with morphisms vy: € — B, and Yy: € — B, such that
T 01 == 7,09y, there is a unique morphism y: € — B such that Doy = 1,
and pyoyp = yp,.

(¢) 1. If C is a profinite group and P1: C — B, and v,: C — B, are
continuous homomorphisms, then there ewists a unique continuous homomor-
phism y: C — B such that pyoyp = vy, and Dyoyp == .

2. If X is atopological space and y,: X — X(B,) and p,: X — X(B,)
are continuous maps, there exists a unique continuous map w: X — X(B)
such that pyoy = y, and pyoyp = vy,.

(d) 1. If b e B,, b€ B, and m,(b,) = 705(Dy), then there is a unmique be B
such that p,(b) = by, p,(b) = b, (if p, and p, are surjective this is equivalent
to Ker (m,0p,) = Ker (p,) x Ker (p,)); and:

2. If v, € X(%B,), w,€ X(B,) and mx,(x,) = 71,(®%,), then there is o
unique @ € X(B) such that p,(z) = ,, Do() = ,.

Proor. An analogue of [10, Lemma 1.1]. See also Bredon [2, Chap-
ter I, 6 (BY]. [/

We call a diagram (1) a cartesian square, if it satisfies one of the equi-
valent conditions of Lemma 4.6.
The following Lemma gives a very useful example of a cartesian square.

LEMMA 4.7, Let py: B — B, be an epimorphism of Artin-Schreier struc-
tures, KX CB' a closed normal subgroup of B such that K N Ker (py) = 1.
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Let py: B — BIK and my: By — Byfp(K) be the quotient maps. Then there
ewists a unique epimorphism gy BIK — B, [p,(K) such that

B L2 gk

(2) Pll lﬂz

By ——> %1/ (K
45

commutes. 'Moreover, (2) 18 a cartesian square.

Proor. The map x, is defined by the universal property of the quotient
B/K. To show that (2) is a cartesian square we have to verify conditions 1.
(which is trivial) and 2. of Lemma 4.6 (d).

Indeed, let o, € X(%B,) and @, € X(B)/K with m,(v,) = my(x,). Then there
exists an @ € X(B) such that p,(x) = @,. We have m,(2,) = 7,(p4()), since (2)
commutes, hence there exists a oe K such that py(a°) = p(2)" = g,
Finally, the element woe X(9B) satisfies also p,(29) = p,(2) = @,.

If ‘an element 2’ € X(B) also satisfies p, (&) = ;= p,(®), for i =1,2
then there is a 7€ K such that @' = a%. Therefore z;, = p,(a7) = o,
hence  py(v) = 1. This implies 7 =1, since K N Ker (p,) = 1; hence

r' =, ' /]

5. - On PRCe fields.

A system &= (B, Q,,...,Q,) ) consisting of a field K and e orderings
Q1y iy Qo 0f H is called an e-ordered field. If E is PRC and @, ..., @, are all
its distinet orderings, then § is said to be a PRCe field. An equivalent ([14,
TLemmag 2.2 and 2.3] and Prestel [22, Theorems 2.1, 1.2 and Proposition 1. 6])
deﬁmtlon is the following:

An e ordered field § = (&, Q,,...,Q,) is PRCe, if it satisfies;

; (1) Let f€ BTy, ... y T,, X] be an absolutely irreducible polynomial,
let @, € B such that f(a,, X) changes sign on F with respect to each of the
Q' 5 ?md leﬁ Ui be a g, -neighbourhood of a, for ¢=1,...,e. Then there
,exlt b)GE'“” such that ac U, N...N U, and fa, b) = 0.

‘) The ’ordermgs Q1y...,Q, induce distinet topologies on .

K be ja, countable Hilbertian field and let X = (K, P,,..., P,) Dbe
kf&d‘;ﬁeld fixed for thig Section. For integers 0 <e<m we denote
free product (in the category of profinite groups) of e copies of
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Z)27 and m — e copies of Z. Generalizing results of [16] and of Geyer [8]
we show that there is an abundance of PRCe fields § that extend K such
that £ is algebraic over K and G(E) o~ f)e,m.

To do this, fix involutions §,,..., §, € G(K) such that the real closed
lields K, = K,(0,), i =1, ..., ¢, induce P,, ..., P, on K, respectively. For
eVery o = (oy, ..., 0y,) € G(K)™ let

K,=K%n .. mK"‘-’mK(GH)m N K(o,)

and denote by P_,...., P  the orderings of K, induced by Ko, ...,ng,
respectively. Then X = (K, P,q,..., P,,) extends X and G(K,) = O%,..., 00,
Opp1y +eey O

Lemma 5.1 (cf. [16, Lemma 6.4]): Let £ = (L, Q,,...,Q,) be a finite
extension of J. Let fe L[T,, ..., T,, X] be an absolutely irreducible polynomial
and let 0 #ge L[T,, ..., T,). Suppose that there exists an a,€ L™ such that
f(ay, X) changes sign on L with respect to each of the Q.s. Let U; be a Q,-
netghbourhood of a, in Lr. Then for almost all o e G(K)™ for which £ CX,
there exists an (a,b) € K™ such that acU, N ..NTU,, fla,b)=0 and

g(a) #0.

PrROOF. Let 1<i<e, and let Ei be a real closure of L that induces @;;
then there exists a 7,€ G(K) such that L = K% If o,e G(K) is an ad-
ditional element such that Kg‘ induces @, on L, then there exists a A e G(L)
such that Kj'= K, ie., LW %" =L, Thus v;'0;A*e &(L,), since L,
has no L- a;utomorphlsms besides the identity ([21, Cor. 3.11]), hence
0;€ 7,G(L). Conversely K;*induces the ordering @, on L for every 1€ G(L).
Put 7oy = .. =7,=1, and v = (1y,..., 7,); it follows that vG(L)™ is the
set of all m-tuples ¢ in G(K)» for which £CJ_.

Withoug loss of generality we may assume that f( (e, X) changes sign on I
with respect to @, for every ac U, for ¢ = 1,...,e. By Lemma 8.4 of
Geyer [8], and since L is Hilbertian, the set H N U, N ... N U, is not empty
for every Hilbertian set H in L. Using the fact that fis absolutely irreducible,
one can find a sequence a,, a,, ... of elements in L7, and a sequence by, b, ...
of elements in I, such that:

a) a;e Uyn...N U, and f(a;, X) is an irreducible polynomial over L
of degree n = deotf and changes sign on L with respect to Q; for every
1 <4<e and every j;

b) f(a;, b;) = 0 and g(a;) #0 for every j;

¢) denoting L,= L(b,), we have that I,, Ly, ... is a linearly disjoint
sequence of extensions of L of degree n (cf. the proof of Lemma 2.2 of [14]).
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Condition a) implies that each of the ,’s can be extended to an ordering
Qi of L,. Tet L= (L, Quy ..., Q). As in the first paragraph of this proof
there is a e G(K)™ such that t(“G(L ym ig the set of all m- -tuples ¢ in
G(IK) for which £,C X, . If oetW@(L,)m, then (a;, b, )eI{H ! hence ¢ has
the required property. Thus it suffices to show that vG(L U 796G (L,)m

is a zero set, or, equivalently, that G(L U rlr(’)G(L )y» is a zero set.

Now observe that £C{; for every j, hence 7(’)(}(1} ymC rG(L)™; in parti-
cular, v—'t¥e G(L)™. Hence our 1esu1t follow,s by Lemmw 6.3 of [16]. /]

COROLLARY 5.2, Almost all O‘EG(K) howe ‘the followmg property: If
fe K[T,,...,T,, X] is an absolutely wredumble polynomml for which there
exists an a, eI( " such that fla,, X) ohanges szg% 0% K with respect to each of
the porderings P, if U, is a P ne@ghbowhood of ao, for i=1,...,¢ and if
0£geK[T,,.. 1’ )y then thme ewists. (m[(a b, éK’“ such thcct aclU,
m...nUe,fa, ) =0 and g(a) 0. BV

Proor. Use the countability of K and Tfact tha,t an intersection of
countably many sets of measure 1 has also me&sure 1. Also observe, that
if f, Uy, ..., U, are as above, there exists’a ﬁmte extension I of K, over
which they are defined. Compare the proof ’01‘. Theorem 2, 5 of [14]. [/

Lemma 5.3. The orderings P,
for almost all o € G(IK)™,

PROOI‘ It suffices to prove that for e

almost all o e G(K_) such tlmt £C X, th

With no loss let & = 1, 1 =2.

Let {(T, X) = X>— 1T, g(T) =1, =1,
t=1,2, Um( 2), for ¢ = 3,. eWith”th
proof of Lemma 5 1 and note (&t the 1nstan'
the /s can be extended in exactly
Assume, therefore, that we have chosen Qs
Then b; clearly satisfies (1), since by = &€ U
Now continue in the proof of Lemma 5.1 ant

for

to L=1, ”L(\/“)
_S’_h ‘Uhat b >1o b, \20

O AD et
5 A | mﬁtuple Oty iy Gy o
o,m == {01, vy Oy, and 0’? =




THE ABSOLUTE GALOIS GROUP OF A PSEUDO REAL CLOSED FIELD 465

By its definition, f)m bas a basis oy,..., 0, With the following exten-
sion property: if G is a profinite group, &, ..., 5, € @, and 5 = ... = § = 1,
then the map o, — &, ¢ =1,..., m, can be extended to a homomorphism
f)e’m — (. In particular, if a;, U;n is another basis of Dm, then the map
o; — U; can be extended to an epimorphism f)z,m — f)e,m. By {23, Cor. 7.7]
this is an isomorphism. Therefore every basis of ﬁ,,’m has the extension
property.

The following Lemma gives a useful characterization of ﬁe,m.

LumyA 5.4, Let G be a profinite group generated by m elements, e of which
are involutions. Then G is isomorphic to D, ,, if and only if every finite group
generated by m elements, e of which are involutions, is « homomorphic image of G

Proor. The isomorphism class of a finitely generated group is deter-

mined by its finite homomorphic images. Moreover, if G = {0y, ..., 0,
is a finite group such that o} = ... ¢® = 1, one may easily construct another
L / ! / ! . | . - -
finite group ' = {(oy,..., 0,> such that o,,...,0, are involutions, and

is a homomorphic image of /. /|

Op
e

LEMMA 5.5, For almost all o€ GQRH)m, 07, ...,0
for D,,,.

) Ogiqy ooy Oy 18 @ Dasts

Proor. By the preceding Lemma it suffices to show that if =<7, ..., 7,,>
is & finite group and 7, ..., 7, are involutions, then & is a homomorhic image
of (07 ..., 00 0,,15...,0,>, for almost all ¢.

With no loss m>1. Also, we may assume that ¢ is of even order (other-
wise ¢ = 0, and, moreover, G may be replaced by the group ¢ X 4|27, which
i3 also generated by m generators), say |G| = 2n.

Let 1<<¢<2. The polynomial ¢,(X) = (X% 12) ... (X2 -+ n?) has no roots
in the real closed field K,(§,). By Sturm,s Theorem (cf. [8, Lemma 8.2]),
if ge K[X] is close enough to g,, with respect to P,, then g also has no
roots in K (9;). Therefore by Lemma 8.4 of [8] we can construct a sequence
of polynomials ¢y, ¢,, ... in K[X] that satisfy:

a) deg g, = 2n, and S(g;, K), as the group of permutations on the roots

of g;, is the full symmetric group Syu;
b) g; is close enough to g, with repsect to Py, ..., P,, in particular ¢,

has no roots in K (d,),..., K,(d,);

¢) denoting by L, the splitting field of g, over K we have that L,, L,, ..
is a linearly disjoint sequence of extensions of K of degree (2m)!.
Fix j=1 and denote §,= Res; , for i=1,...,e. Condition b) im-
plies that g; factors over each of the fields K,(d,),...., I (J,) into a product




466 DAN HARAN - MOSHE JARDEN

of n irreducible quadratic factors. Hence the representations of ¢,;,..., &,
as permutations (in 8,,) of the roots of g, are products of n disjoint 2-cycles.

We may embed @ in 8,,= §(L,/K) by letting it act on itself by multi-
plication from the right. In this representation all involutions of @, in
in particular 7,..., v,, are products of n disjoint 2-cycles.

It ig a well known fact that all products of n disjoint 2-cycles in 8,, are
conjugate to each other. Thus there ave G,,..., 6 € §(L,/K) such that 6= 7,
for ¢ =1,...,e Choose oy,...,0, € G(K) such that Res; o;,=05;fori=1,...,¢
and Resg, 0;,= 7; for ¢ = ¢ --1,...,m. Then

o - a [« N
G = Resy, (07 .ory 0% Opiyy ooy O

Condition ¢) implies (cf. Lemma 6.3 of [16]) that almost all ¢ = (01, ..., 0n)
e G(K)™ have this property. [/

REMARK. The case m = ¢ is Theorem 4.3 of Geyer [8]. The case ¢ =
is proved by Mckenna. The case e==0 is contained in Theorem 5.1 of [15].

The results proved in this section yield (ef., Lemma 2.3 and Lemma 2.6
of [16]).

PROPOSITION 5.6. For almost all o€ G(K)™ the field 3, is PRCe and

o~

G) = D,,.

6. — The Artin-Schreier structures associated with 0, .
There i an interesting group-theoretic corollary of Proposition 5.6:

PrOPOSITION 6.1. There are exactly e conjugacy classes of involutions
in D, . If 01y...,0,18 a basis for D,,,, then oy, ..., 0, represent these classes.
Moreover, the subgroups (o>, ...,<o,> are their own normalizers in Degy.

Proor. There exists an epimorphism ¢: f)e,m —> (Z/2Z)° such that ¢(oy),
..., p(o,) are distinet, hence not conjugate to each other. Thus oy,..., 0, aT€
not conjugate. On the other hand there exists a PRCe field M with
G(M) =~ ﬁe,m. Thus our assertion follows by Proposition 2.1. [/

COROLLARY 6.2. Let A be a finite group and let I C A be a set of involu-
tions closed under conjugation. Then there ewists a finite group B and an epi-
morphism 0: B — A, which maps the involutions of B-Ker 0 onio I.

Proor. Let G,,...,5, be representatives of the conjugacy classes of I
and let Goiyy..., 0, 6.4 such that A = {(Giy...; Gey..ry Onmy. Let oy .,y On

Py -

be a basis for D =1D,,. Define an epimorphism g: De’m-»A. by o;+> 6;.
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By Proposition 6.1 there are no involutions in the eclosed subset
S = 99"1(A —({y {1})) of D, hence §2= {z2| 7€ 8} is closed, and 1 ¢ 8% Thus
there exists an open normal subgroup U of D such that 2N U = @. With
no loss U« Kerg. Let B = D/U and let §: B — A be the epimorphism in-
duced by ¢.

Now if o D and ¢U is an involution in B, then o¢*e U, hence o ¢ 8.
Therefore ¢@(o)el U {1}, whence 6O(cU)el or 0(cU)=1. Conversely,
0(0.U) = ¢(0,) = &;, and the Corollary follows. [/

We now apply the results of this Section to Artin-Schreier structures.
Let D = f),,,m, and denote by I(D) the set of involutions in D. Tet

D = {D’<D] D' is open in D, (D:D')<2 and D' N I(D) = 0} .

Note that D' ¢. Indeed, if oy,...,0, is a basis of D, then every map
Po: {01505 0} — {4 1} such that @y0,) = ... = @y(0,) = — 1 extends to
a unique homomorphism ¢: D — {4-1} and Ker ¢ € D’ Convergely, every
D' e D’ defines a map @o: {0y, ..., 0,,) — {==1} by: @u(o;) = 1 if and only
if o, D’. The bijective correspondence ¢,<» D' shows, in fact, that 9’
has precisely 2m¢ elements.

PRrROPOSITION 6.3. Let D' € D'. Then
(i) D = <D, D', 1(D) fng. D> is an Artin-Schreier structure.

(i) Let oy, ...,0, be a basis of D= D,,,m. Let & be a weak Artin-
Schreier structure, let @y, ..., x,€ X(&) and ¢,, ..., g, € G such that d(x;) = G5
for i =1,...,e. Assume that g, € G' if and only if o,€ D', for i =1, ..., m.
Then there exist unigue maps @,: D — @ and @ 1(D) - X(®) such that
(}20(0‘,-) =i forit =1,..., mand @,(0;) = @, fori =1,..., ¢, and ¢ = (@,, @,):
D — & is a morphism of weak Artin-Schreier structures.

Moreover, if & is an Artin-Schreier structure, x,, ..., x, are representatives
of the distinet orbits in X(&) and G = (g, ..., gu>, then @ is a cover.

Proor. (i) follows from Proposition 6.1.

(ii) The homomorphism g, is uniquely defined by the extension prop-
erty of D. Define @1 by @y(07) = 2% for i =1,...,¢ and v e D'. This is
a well-defined continuous map, since the mayp (z, o) — ¢* from D’ X {o1,..., 0,

into I(D) is, by Proposition 6.1, a bijective continuous closed map, hence
a homeomorphism and thus has a continuous inverse.

Finally note that ¢y *(G’) belongs to D’ and contains the same o¢,’s as D,
hence @y (G") = D’. The map (p,, ¢,) defined above is clearly a morphism. //
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7. — Projective Artin-Schreier structures.

In a complete analogy to the cateaory of profinite groups we introduce
embedding problems and define the notion of projectivity for Artin-Schreier
struetures.

Let & be a weak Artin-Schreier gtructure. A diagram

&
(1) l(P
B —Z 59

where @ is a morphism and e an epimorphism of weak Artin-Schreier strue-
tures, is called a weak embedding problem for G. If both B and A are Artin-
Schreier structures, and o is a cover, we call (1) an embedding problem. The
problem ig said to be finite if both B and A are finite.

A morphism y: & — B is called a solution of the problem, if ooy = @.

DEFINITION 7.1. An Artin-Schreier structure & is projective, if every embed-
ding problem for & has a solution.

EXAMPLE 7.2. Let D = f)e,m, let I(D) be the set of involutions in b
and D' an open subgroup of D of index <2 which does not meet I (D). Then
D = <D, D', I(f)) ary Dy is a projective Artin-Schreier structure. Indeed,
let ¢y,...., 0, be a basis of D. Consider an embedding problem (1) with
@ = D, and choose #,,...,2, € X(B) and by, ..., b, € B such that b, = d(z,)
and o) = @(oy), for ¢ =1, ..., ¢ and a(b;) = @(o,), for i =1, ..., m. Note
that for every 1<i<m we have: 0,6 D' <« ¢lo;)e A" <« b, e B'. By Pro-
position 6.3 the problem (1) has a solution. ’

Agin the case of profinite groups (Gruenberg [9, Proposition 1]), we have
the following test for the projectivity of Artin-Schreier structures:

LeMMA 7.3. An Artin-Schreier structure & is projective if and only tf every
finite embedding problem for & has a solution.

Proor. Assume that every finite embedding problem for & is solvable
and let (1) be an embedding problem for &. Let K be the kernel of the empi-
morphism «: B — A. Then K< B’ and ¥ ~ B/K, since o: B — W is a cover.
Thus, with no loss, « is the quotient map B — B/K (see 4.1).
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We claim that (1) has a solution. The proof of this assertion is divided
into two parts.

Part I. The kernel K ig finite.

Assume that K is finite. Then {1} is open in K, hence there is an open
subgroup M in B such that M N K = {1}. By Lemma 4.4 there exists a
finite Artin-Schreier structure B, and an epimorphism p: B — B, such that
Kerp< M, whence Ker (p)n K = {1}. Let A= B,y/p(K), and let a,: B,
— Wy be the quotient map. By Lemma 4.7 there exists a cartesian diagram
of epimorphisms of Artin-Schreier structures

B -———qc—-»a-%

(2) pl l?z

%0 o 82(0
Olp

By assumption, there is a morphism y,: & — B, such that ooy, = mop. |
By 4.6 (b) there exists a morphism y: & — B such that oy = ¢ (and il
poy = y,), i.e., y is a solution of the embedding problem (1).

Part II. The general case.

Let " be the family of pairs (L, 1), where L is a closed normal subgroup
of B contained in K and A: & — B/L is a morphism such that

e

commutes (¢ 1s the cover induced by L < K). Partially order I' by letting
(L'y )= (L, ) mean that L'« L and
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commutes. Then ['is inductive and by Zorn’s Lemma it has a maximal
element (L, A). If L1, there is an open normal subgroup N in B such
that L £ N; hence L'= N N L is a proper open normal subgroup of L.
By part I of this proof there is a morphism A": & — B/L" such that (3)
commutes. Then (L', A') el and (L', A') > (L, 1), which is a contradition.
Thus L = 1, as required. [/

Projective Artin-Schreier structures have some interesting properties:

PROPOSITION 7.4. Let & be a projective Artin-Schreier structure. Then
its forgetful map d: X (&) — G is injective and d(X(®)) is the set of all involu-
tions in G.

Proor. Let o, 2,6 X(&) such that o,5%2,. By Lemma 4.4 there i8
a finite Artin-Schreier structure 9 and an epimorphism ¢: & — A such
that @(x,) # @(®,). By Prop. 6.3 (ii) there exists an Artin-Schreier structure
D and a cover a: D — A such that d: X(D) — D is injective and d(X(@))
is the set of all involutions in D. Now & is projective, hence there ig a mor-
phism y: & —D such that oy = ¢. The condition @(x,) 7 @(x,) implies
y(®) #p(®,), hence d(y(m,)) # d(p(®,)), i.e., p(d(®) =y(d(x,)), whence d(x,)
S A(T).

Suppose that there is an involution &€ G and ¢ ¢ d(X(®)). With no loss
@(¢) is an involution in .4 and () ¢ d(X(2)), again, by 4.4. Then also y(&)
is an involution in D and v(e) ¢ d(X(@)), a contradiction. [/

REMARK. a) We have the following corollary to Prop. 7.4:

Let @ be a projective Artin-Schreier structure and let L/K be a Galois
extensin with v/— Le L. Assume that there exists an isomorphism
¢: G — G(L/K) such that ¢(G¢') = §(L/K (v~ 1)). Then ¢ = G(L/K) if and
only if L(¢) has a unique ordering for every involution & e §(L/K).

b) Observe that the absolute Artin-Schreier structure & (K) of a field K
satisfies the two assertions in the Proposition. Proposition 7.4 is therefore
the first step in an effort to find for a projective Artin-Schreier structure®
a field K such that & = @(K).

TEMMA 7.5. Let & be a weak Artin-Schreier structure. The following con-
ditions are equivalent:

(i) & is a projective Artin-Schreier structure;

(ii) every finite weak embedding problem for & has a solution;
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(iii) the forgetful map of & is injective and every finite wealk embedding
problem (1) for &, in which the forgetful maps of A and B are in-
clusions, has a solution.

Proor. (i) = (ii). Let (1) be a finite weak embedding problem for .
Applying twice 4.5, we obtain Artin-Schreier structures 9, B a and a com-
mutative diagram

in which &is an epimorphism. If X( B) is replaced by a minimal subset X' (B)
of X(B), closed under the action of B and satisfying o:(X’(%)) = X ()
then & will be a cover (though p, need not be surjective any more). By (i),
there exists a P: & — B such that @of = @. Clearly pyof solves (1).

(ii) = (i): We show that & satisfies condition (iv’) of Definition 3.1;
the rest follows from Lemma 7.3.

Let ve X(®) and o€ such that 2°= 2z, and assume that o=£1.
By Lemma 4.4 there is a finite weak Artin-Schreier structure 9 and an epi-
morphismg: & — A such that ¢(o) 1. Let p,: 9 —A be an epimorphism
which satisfies the conditions of Lemma 4.5. By (ii) there is a y: @ -9
such that p,oy = @. Now p(@)"?= y(@) and y(s)e A’, hence y(o)=1,
since 9 is an Artin-Schreier structure. This implies @(0) = p,(y(0)) =1, a
contraditetion

(1) and (ii) = (iii): The forgetful map of & ig injective by Prop. 7.4.

(iii) =~ (i1): It is easily seen that & is an inverse limit of finite weak Artin-
Schreier structures 9, which are epimorphic images of & and whose for-
getful maps are inclusions. Thus there exists such an ¥, and a commutative
diagram

Qo
(4) 1 ¥
A
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Let By= B xuqW,. Then we have a commutative diagram

We may therefore agsume that the forgetful map of A is an inclusion
and ¢ is an epimorphism.

By Prop. 6.3, there exists an epimorphism 1/):@ — B such that the
forgetful map of D is an inclusion. Exactly as for @ in (4) there esists a finite
weak Artin-Schreier structure 9B,, whose forgetful map is an inclusion and
a commutative diagram

D

Yo
11/)

By — B
[B!

Replacing B -3 A by B,2%A we may agsume that the forgetful map
of B is an inclusion, and then apply (iii). [/

Lemmas 7.4 and 7.5 indicate that the projectivity of Artin-Schreier
structures might be expressed by pure group-theoretic terms. To this end
we need some definitions.

Let G be a profinite group. A diagram

G

(5) l‘?

Be— A
o

in which «: B — 4 is an epimorphism of groups, and ¢ is a homomorphism,
is called a real embedding problem for @, if for every involution x € G such
that @(x) s£1 there exists an involution b € B such that «(b) = ().

A homomorphism y: ¢ — B is called a solution of (5), if xoy = ¢.

A group @ is said to be real projective if the set I(G) of involutions in ¢
is closed in @ and every finite real embedding problem for @ is solvable.




THE ABSOLUTE GALOIS GROUP OF A PSEUDO REAL CLOSED TIELD 473

Note that if ¢ is real projective, then @ is a projective group if and
only if there are no involutions in G.

REMARK 7.6. Let G be a profinite group and I(G) the set of involutions
in G¢. If ge ¢ belongs to the closure of I(G), then g2= 1, hence g e I(G)
or g = 1. Therefore I(G) is closed if and only if there exists an open normal
subgroup U of ¢ such that U N I(G) = 0.

PROPOSITION 7.7. Let G be a profinite group and I(G) the set of involu-
tions in G. Denote

G = {'AG| G is open, (G: G")<2 and G N I(G) = 0}

Then the following two conditions are equivalent:
(i) G 18 real projective;

(ii) G £ 0 and for every (or, equivalently, for some) G' e &’
& =G, ¢, 12 e

18 @ projective Artin-Schreter structure.

Proor. (i) == (ii):

Part I. We show that G 4.

By remark 7.6, there is an open U<1@ such that U N I(G) = 0. Let
@: G = G|U be the quotient map. Let Ay= {41} xG|U, I = {(—1, p(e))]
ceI(@)} and let m: A, — G|U be the coordinate projection. By Cor. 6.2,
there exists a finite group B, and an epimorphism o: B, — 4, such that
a(I(By)) = I, where I(B,) is the set of involutions in B,— Ker«. By (i)
there is a homomorphism y: ¢— B, such that (mox)oy = ¢. Let A, = {(1, a)|
ae@|U} and let G' = (ocoy)_l(A(l)); then G’ is an open subgroup of index 2
in G. Clearly y(I(G))CI(B,), hence (xoy)(I(G)CI; on the other hand
(ccop)(G') QA('). But A’ I = 0, hence G'N I(G) = 0, whence G'e G,

Part II. Projectivity.

Let G'eG. We prove that the weak Artin-Schreier structure
& =, &, I(G)in—ci' G> is o projective Artin-Schreier gtructure. By Lemma
7.5, it suffices to show that every finite weak embedding problem (1),
in which the forgetful maps of 9 and B are inclugions, has a solution.
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The corresponding problem (5) for groups defined by (1) is real. Hence,
by (i), there exists a homomorphism y: @ — B such that oy = ¢. However,
v is not necessarily 2 morphism of weak Artin-Schreier structure, since it
may happen that y(I(G))¢EX(B).

Nevertheless, by Corollary 6.2, there exists a finite group B, and an
epimorphism 0: B, — B such that 0(I(B,)) = X(B), where I(B,) is the set
of all involutions in B, — Ker 0. We may replace 5 by B,= (B, 0-(B’),
I(By) Ingl. B>, and thus assume that X(B) is the set of all involutions in
B—DB'. Then «(y(e)) = g(e) € X(A) for every eel(G), hence y(e) ¢ B,
whence p(e) € X(B). It follows that y may be also regarded as a morphism
y: & — B, and thus Problem (1) has a solution.

(ii) = (i): By Remark 7.6, I(@) is closed. Let (5) be a finite real embed-
ding problem for &. There is an open U<1@ such that U N I(G) =9 and
U<@' N Ker (@). Let ¢p: ¢ — G/U be the quotient map. Then 1 ¢ ¢, (I(&))-

We obtain a commutative diagram of groups with a cartesian square

and it is eagily seen that o, and g, define a finite real embedding problem for G.

Thus with no loss ¢(I(@)) is a set of involutions, ¢ is an epimorphism and
Ker (p)<@. Let A" = @(G'), I(A) = (p(I(G)), B' = a(4’) and I(B) = {EEBI
e'=1, a(s)el(A)}. Then A= (A, A", I(4)2% A}, B =B, B, I(B)™B)
are weak Artin-Schreier structures, and o: 8 — 2 and ¢: & — U arve epimor-
phisms. By (ii) and by Lemma 7.5, there is a y:® — B such that

woy =g@. |/

8. — Restrictions of orderings of fields.

We extend results of Elman, Lam and Wadsworth [5] and show that the
restriction maps of orderings under finitely generated extensions have con-
tinnous sections. We also show that for every closed subset C of a space
of orderings X (K) of a field K there exists a regular extension E/K such that
Resgx maps X(F) injectively onto C.




THE ABSOLUTE GALOIS GROUP OF A PSEUDO REAL CLOSED FIELD 475

LevmMA 8.1. Let HIK be a finite extension. Then Resyyx: X(H) — X(K)
is locally a homeomorphism, i.e., there is a closed-open covering {V.},.; of X(H)
such that the restriction of Resg g to V, is injective for every ¢ € I.

Proor. Let L/K be a finite Galois extension such that ECL and
v/ — 1 e L. By the proof of Lemma 4.4, there exists a partition Y of X(L/K)
such that <Q(L/K), Q(L/I((\/:i)), Y 2% Q(L/K)> is an Artin-Schreier struc-
ture (with dy as in the proof of 4.4), in particular

(1)  V°n C=0 for every oe G(L/K(V—1))— {1} and VeX.
We have a commutative diagram

X(L/E) XK

lResE \[Res i

X(B) g ()

in which ¢ is the natural inclusion, and Resy, Resy are the obvious restric-
tion maps. Note that X(I) = X(E(V—=1)/B) = X(L[E) [8(Z/B(vV=1)),
hence by 1.6, Resy is an open map. Therefore Y'= {V’: Resg (-4(V))|
Ve Y} is a closed open covering of X(¥). By (1) and by Proposition 2.1 (iii),
Resg: V — X(K) is injective for every V e Y; our diagram implies that
Resg: V' — X(K) is also injective, for every V'eY'. [/

PRroPOSITION 8.2. Let E|K be a finitely generated extension. Let Hy be
a closed-open subset in X(FH) and denote Hy= Resyy (Hgz). Then Resgrg:
Hy— Hy has a continuous section.

Proor. There is a finite tower of simple extensions K = E,C B, C...C K, .
The set H,= Resyy (Hz) is closed-open in X(H,), for every 0<i<mn, by
[3, Theorem 4.9]. Note that Hy= Hy, H,= Hy and Resg,_ (H,) = H,_,,
for 4 =1,...,n. If we can find a section 0, of Resyy_: H;,— H,_,, for
i=1,...,m, then 0 o...00; is a section of Resgyx: Hy— Hy. Thus we may
assume that B/K is simple. Moreover, it is enough to find for every P € Hy
a closed-open neighbourhood V € Hy and a continuous map 0: V — Hy
such that O(P') extends P’, for every P'e V.

Let P e Hy: If B/K is finite our assertion follows easily from 8.1. Assume,
therefore, that I = K(t) is transcendental over K. With no loss
Hy= Hyfr, ..., fu) = {Q e X(E)| }1, ..., fu€Q}, Where fi, ..., [, € K[t]— {0}.
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Suppose first that there is an a€ K such that fi(«),..., f.(0) € P. Let
V = Hg N Hg(fi(x), ..., fu(x)), and define 0: X(K) — X(F) in such a way
that 6(P’) is the unique extension of P’ in which % = 1/(t — &) is infinitely
large over K (cf. [18, p. 272]). Then 0 is continuous: if g,(u),..., g.(u)
e K[u]— {O} have ay,..., a4, € K as their leading coefficients, respectively,
then 0*1(HE(g1(u), e g,c(u))) = Hy(ay, ..., a;). Moreover, O(V)C H,. Hence
the restriction of 0 to V ig the desired map.

If there is no o € K such that fi(a), ..., f.(x) € P, we can %1]1 find a finite
extengion (L, P,) of (K,P) and an ael Such that fi(et), ..., fm(a) € Py.
Indeed, let Q € Hy such that Resyx Q@ = P. If (B, Q) is a Ieal Glosed field
which extends (F,Q), then f,(1),...,f.(t)€@Q. By Tarski’s principle ([21,
Cor. B.3]), there is an o in a real closure (K, P) of (K, P) such that f,(«),

o fm(@) € P. Let I = K(x) and P,= Resy,, P.

Now let F'= L(1), Hp= Reszy (Hg) = Hulfry ..., fn)y Hp= Respy, (Hp).
Then Hyx2 Resyx (H;). By the finite extengion case, there is a closed-open
neighbourhood V,C .Hy of P and a map 0,: Vi — H, such that 6,(P') ex-
tends P’ for every P'e V, and 0,(P) = P,. By the previous case, there is
a closed-open neighbourhood V,CH, of P, and a map 0,: V,— H, such
that 0,(P;) extends P; for every P;eV,. Now let V = V, 07" V;) and
let 0: V — Hy be Respyol,ol; then 0 is the desired map. [/

ExAmpLE 8.3. The preceding Lemma might lead one to a conjecture that
if H/K is an arbitrary totally real extension, then Resyy: X(H) — X(K)
has a continunous section. However, this is false. Indeed, let X be the
Boolean space {4 1/n|n e N} U {0}, with the topology inherited from the
real line. Let 4,= {wre X|2x>0} and 4,= {we X|x<0}. Craven [3, The
orem 5] has shown that there exists a field K with X(K) o~ X. Identify
X(K) with X. Let ¢ be transcendental over K and let

A; = {Q € X(K(1)) | Resgyyr @ €4; and (—1)'teQ}, i=0,1.

Then 4’ and A; are cloged in X (K (t)). By [5, Theorem 4.18], there exists
an extension K of K(t) such that Resp . X () = A(') U A;.

Assume that there is a continuous section 0 of Resgy: X(F) - X(K),
and let 0'= Resyo0. Then 0'(1/n)eH,(t) and 0'(—1/n)e Hg(—1), for
every ne N. But 0’ is continuous Jim A/n) = JHim (—1/n) =0, hence 6'(0)
€ Hy(t) N Hg(—1) = 0, a contradiction.

LEMMA 8.4 (cf. [6, Theorem 4.18]). Let K be a field and let C be a closed
subset of X(K). Then there exists a regular ecctensz'on B of K, such thai
Resgx X () = C’ and a continuous section 0: C — X(H) of Resgx.
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Proor. The proof consists of two parts.

Part I. Assume first that ¢ = X(K)— H, where H is a bagic closed-
open subset of X(K), i.e., H = Hgla,...,a,) for some ay,...,a,¢ec K*
With no less m > 1. The Pfister form in 27 variables

----- 2 alrdy ... am X7

7) 2

18 clearly an absolutely irreducible polynomial. This its function field K,

. the quotient field of K[X]/(f), is a finitely generated regular extension
01 IL. A simple check shows that Resyx X(H) = C; alternatively note that
the form f is definite with respect to every Pe H and indefinite with respect
to every P e C, and then use [b, Theorem 3.3]. The section 0 exists by Lem-
ma 38.2.

Part 1I. The general case.

There iy a family {H,},., of basic closed-open gets in X(XK) such that

O = X(K)—JH,. We may assume that A is well-ordered, i.e., A is the
Aed
set of ordinals smaller than a fixed ordinal w. For every ordinal y<w let

Cp= X(K)—{JH;. Thus 0= X(K) and C = (. Furthermore, if 1 << 1’
A<p
<w, then €, CC, and we denote the inclusion map ¢, — 0, by 1y,
Finally denote Fy= I and let §, be the identity of X(X).
Let p<w. Suppose, by trangfinite induetion, that we have constructed
tor every A < pu:

(i) & regular extension X, of I guch that Re 8Bl X)) = C,;

(ii) a continuous sectien 0,: C; — X(#,) of Resy ., such that for
every A<<A' << u we have:

<iil) E/’LQEA’7 éllld RGSE).’/E)OO;»/: 0;10},’,),'

If the ordinal x has no immediate predecessor, let B, =) #i. Then

A<p
X(Ly) = lim X(k,), hence Resp,x X(#,) = (10;=C,, and the maps {0,
A<u Al
oby 1y 1<, define a section 0,: €, — X(B,) of Resy, ; such that Resy, gz o0,

= 0,01, ,, for every 1< pu.

If w has an immediate predecessor 4, let OL = Resy, -1 Ou. Note that
C,= 0,N (X(K)— H,) and Resy, X(H,) = (,, hence C, = Resy i, (X(K)
— H;), which is easily seen to be a complement of a basic closed-open subset
of X(F,). By Part I, there exists a regular extension E, of K, such that
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Resyp, A(,) = O;, and there is a section 0;: O; — X(#,) of Resy -
Let 0, = 0;0(‘)107?%3; then Resp o0, = 0,01, ,. Thus B, and 0, satisfy the
induction hypthesis.

Let B =K, and 6 =0,. Then Resy,  X(K)=C = Cand 0: ¢ — X (L)
is a section of Resy . [/

LEMMA 8.5. Let K be a field and let O be a closed subset of X(K). Then
there exists a regular extension E|K such that Resg, maps X (1) homeomor-
phically onto C.

Proor. By Lemma 8.4, we can construct a tower X = K, CH, C K, C...
of regular extensions and closed subsets C,C X(F;) such that 0,= ( and
for every ¢>1, Resy p X(H;) = C;,_, and Resy,,_ maps ¢; homeomorphic-
ally onto O, (i.e., 0;=0,(0C,~), for some section 0,: X(H,_,) — X(#,) of

[ee]
ResEi/Ei_l). This is eagily done by induection. Now let B =[] F,. Then
i=1
X(H) = 12210@'7 hence Resy,; maps X(F) homeomorphically onto C;, for
every ¢>0. /|

We apply the preceding results to PRC fields. Recall that a field K is
PRC if and only if K is existentially closed (in the language of fields with
parameters from K) is every regular totally real extension ([22, Section 1J).
Let us call an extension K/K exactly real if Resyy: Xz— X is a homeo-
morphism,

PROPOSITION 8.6: A field K is PRC if and only if K is existentially closed
i every reqular exactly real extension.

Proor. The necessity is clear. To show the sufficiency it is enough to
construct for every finitely generated regular totally real extension FH/K
a regular extension I'/H such that I'/K is exactly real. But this is now
easy: by Lemma 8.2, there is a section 0: X(K) — X(F) of Resgyx, and
by 8.5, there exists a regular extension F'/E such that Resp maps X(F)
homeomorphically onto 0(X(K)). Thus F/K is exactly real. [/

We use this result to strengthen Theorem 1.1 of Prestel [22].

PROPOSITION 8.7. Let K be a field and C a closed subset of X(K). Then
there exists a regular PRC extension F of K such that Resy x maps X (H) homeo-
morphically onto C.

Proor. With no loss 0 = X(K), otherwise, by Lemma 8.5, K may be
replaced by a regular extension K' such that Resg,, maps X(K') homeo-
morphically onto C. Denote by Al the class of regular exactly real extension
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of K. Clearly, A is closed under unionsg of chains. Thus there exists an
I e A which is M-existentially closed (v.d. Dries [4, p. 28]). To show that B
is PRC, let I be a regular exactly real extension of B. Then F € A, hence
every existential sentence with parameters from F which holds in F, also
holds in H. [/

9, — A transcendental comstruction.

A well known trangcendental construction provides every profinite
group ¢ with a Galois extension F/E such that ¢ =~ §(F/E). If G is the
underlying group of an Artin-Schreier structure @&, then & o @(F/G), in
general. Nevertheless, we show that the isomorphism of groups extends
to a morphism & — G(L/F) of Artin-Schreier structures.

First we need some lemmas.

LeEMMA 9.1, Let oc: B — W be a cover of Artin-Schreier structures. Then
the map o: X(B) — X(A) has a continuous section.

Proor. We follow the proof of Lemma 7.3. Let K = Ker«. With no
loss A = B/K.

Part I. The kernel K is finite.

If K ig finite, we obtain, as in 7.3, a cover oy: B,— A, of finite Artin-
Schreier structures 9, and B, and a cartesian square

B AN A

| b

EB() ““"‘““—9‘9[0
&g

of epimorphisms of Artin-Schreier structures. There exists a map y,: X(Uy)
— X(By) such that ooy, = idyy,), since X(B,) is finite. Thus oyo(ysom)
= moidyqy, whence by Lemma 4.6 (¢), there exists a continuous map
v X(U) — X(B) such that aoy = idgy, (and poy = y,om).

Part IT. The general cage.

Let I" be the family of pairs (L, y), where L igs a closed normal subgroup

of B contained in K and y: X () — X(B)/L is a continunous section of the
quotient map oy: X(B)/L — X(B)/K (= X(AN)). Partially order I" by let-
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ting (L', y")= (L, y) mean that L' <L and

X(B)/ L > X(B)/L

commutes. By Zorn’s Lemma there exists a maximal element (L, y) el
If L 1, there is a proper open subgroup L’ of L, normalin B. By Part. I,
the map X(B)/L' — X(B)/L has a continuous section, say y,. Let

= yop. Then (L',y)el' and (L',y') > (L,y), a contradiction. Thus
L =1, as required. //

COROLLARY 9.2. Let & be an Artin-Schreier structure.

(i) There exists a closed complete system X of representatives of the
G-orbits in X(©).

(ii) Let X C X(®) be a closed complete system of 7"0p7"esmtatifoes of the
G-orbits in X(®&). Then the map X xG' - X(65), defined by (z, T)
&%, 48 a homeomorphism.

Proor. (i) Let y: X(®)/G¢ — X(®) be a continuous section of the quo-
~tient map X(®) - X(®&)/G'. Put X = »(X(®)/G"). Then X ig closed, since
it is an image of a compact set. The required property of X follows from
the fact that G = @' U d(z)G" and 27 = x for every x € X(G); hence the
G’-orbit of X is the G-orbit of X. ’

(ii) The map X xXG' — X(®) is clearly a continuous surjection. By
condition (iv') of Definition 3.1, it is injective. Finally the map is closed,
since X x @' and X(®) are compact Hausdorff spaces. [/

LemMA 9.3, Let B, be Artin-Schreier structures and let X € X (B) be
a closed complete system of representatives of the G-orbits in X (B). Let0y: B — A
be a continuous homomorphism and 0;: X — X () a continuous map such
that 07Y(A") =B’ and d(0;(x)) = 0,(d(»)), for every we X. Then §; can be
extended to o unique map 0,: X(B) — X (W), such that the pair 0 = (0,, 0;)
is a morphism of Artin-Schreier structures.

Moreover, 0 is a cover if and only if 0, is an epimorphism and 0,(X) is a
complete system of representatives of the A-orbits in X ().

Proor. We define 0, by

0,(x%) = (0;(#)%™,  for xeX and €@,
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This is a good definition, by Corollary 9.2 (ii). One can eagily check that
(04, 0,) satisfies the conditions (i) and (ii’) of Definition 3.3, hence 0, is
a morphism. The uniqueness of 0, iz obvious.

The last assertion of the Lemma follows from condition (iv’) of Defini-
tion 3.3. //

LEMMA 9.4, Let LIK be a Galois ewtension such that /— 1 e L. Let &
by an Artin-Schreier structure and m: & — & (L/K) o morphism such that:

(i) m: G — G(L[K) is an epimorphism of groups;

(i1) for every real involution & of S(L/K) there exists an involution 6 € G
with w(d) = &.

Then there exists a totally real reqular extension F of K, a Galois extension F'
of B containing L and a commutative diagram

0
& > G(F/R) |
(1) : )
7T Res,,
G(L/K)

in which 0 is a morphism of Artin-Shreier structures such that 6: G — G(F[E)
s an isomorphism of groups.
Moreover, E can be taken to be finitely generated over K, if G is a finite

group.

RemMArRK. Conditions (1) and (ii) are satisfied, if w: & — G(L/K) is an
epimorphism.

Proor. We divide the proof into five parts.

Part I. The construction of I'/F.

Denote by N the family of open normal subgroups of G contained in ¢,
and by A the family of right cosets of groups in N in Q. Let T = {ty,l
Ng e A} be a set of algebraically independent elements over L. The group ¢
acts on I = L(T) in the following way:

2’ = ™0 for ze L, and ge @,

(tyy ) =tyy, for NeN and g,9'€@

as a group of automorphisms of F over K. Let H be the fixed field of ¢ in F.
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The action of ¢ on F ig faithful and clearly the stabilizer of every element
of F'is open in @. Therefore ([24, Theorem 1]), there exists an isomorphism
0: @ —G(F|E) compatible with the action on F. In particular, the fol-
lowing diagram of groups commutes

¢ i , S(F/E)

) \n\ A‘es,,

8(L/K)

Note that L N B = K and EL/L is regular extengion, since F/L is tran-
scendental. Hence H/K is regular. If G is finite, then 7' is finite, hence F'[K
is finitely generated; By [19, p. 64], F/K is also finitely generated.

Finally observe that, by (2)

0-2(8(F/B(v=T))) = 61oRes;* (3(L/E(V—1))) = a (§(L/H (= 1)) = @'

Part II. The map Res,: X(F|FB) — X(L[/K) is surjective.

Let (L(£), P) e X(L/K). By condition (ii), there exists an involution
0 €@ with n(d) = & Let &= 0(5) € S(F[B); then L(&) = L(e). We show
that the extension F(e)/L(e) is purely transcendental, hence P can be ex-
tended to an ordering of L(e).

For every Nge A denote

" . {tNg + Tags for ge G’
SN0\ =T (ty, — tyes)  for g @ .

The elements of Ug= {u; y,|Nge A} are algebraically independent over
Lfe), since for every Nge A the elements us y,, %s y,5 are linear combina-
tions of ty,, iy,s With coefficients in L, and vice versa.

Clearly L(e)(U,) C F(e), but L(e)(U,,vV—1) = L(e)(V—1, T)) = L(T)
= I, hence [F: L(e)(Us)]= 2 =[F: F(¢e)], which implies that L(¢)(U,) = F(e).

Note that Res,: §(F[H) — §(L/K) is an epimorphism of groups, since (2)
commutes. Therefore Res,: §(F/E) — @ (L/K) is an epimorphism of Artin-
Schreier structures. By Lemma 3.5, the extension E/K is totally real.

Part TII. The definition of 0: X(&) — X(I'/F).

Let x € X(®), § = d(x) and &= 0,(8). Let P be the ordering of L(e)
for which n(x) = (L(¢), P). Recall that F(e) = L(e)(U,). We choose below
an ordering @ of F(e) which extends P, and then define 6(x) = (F(e), Q).
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We may assume that A is totally ordered. This order defines the lexico-
graphical order on the seb of monomials in elements of U,: if M = u, 2, Us, h

v U g, AN M == 1ty 0k g0 s g0y Where 4> A>3 A, and Li>A>..> A,
are elements of A, we define M > M, if there exists an integer ¢ such that
A=Ay ery hy_y=A_y,and A > A or m<i < n. Finally we define an orde
ing @ on the ring of polynomials L(e)[ U,]: we let a polynomial to be positive,
if the coefficient of its largest monomial (which has a non-zero coefficient)
is positive in P. This is easily seen to be an ordering of L(¢)[U,], and hence
has a unique extension to an ordering @ of the quotient field F(e) (cf. [18,
p. 272]). Clearly @ extends P. In fact, @ is the unique extension of P
to F(e) in which every w,, is infinitely large with respect to the field
L&) ({us | X' < 2}).

Part IV. The map 0: X(&) - X(F/E) is continuous.

Indeed, let f,, ..., f, € F'* such that (F(e), Q) € Hulfyy vy fm)y 1-€5 fryevvy fm
€¢). Then there are 1, < 1, <...< 1,e4 such that f,,..., f,., are rational
functions in Us g,y Wo,a,9 o9 Ws 2, With (non-zero) coefficients in L(e). With
no loss they are polynomials: if f,= g/h, replace f; by gh. For every
1<i<m let a,€ L(e) be the coefficient of the largest monomial in f;.

There are groups Ni,...,N,e N and ¢, ..., g, € @ such that 1, = N,g,
for j=1,...,n Let N=N,N...NN,.

Congsider the closed-open neighbourhood V of @ consisting of y e X(®)
such that

(1) =(y) € Hy(ay, ..., a,) and
(ii) d(y) = 6(mod N).

We show that 0(V)C H(f,, ..., fu), which proves the continuity of 0.
Let ye V, and let (F(¢'), Q') = 0(y), (L(e'), P") = n(y) and &' = d(y). By
(ii), we have that N,9,0’ = N,q, for j =1,...,n, hence U,z = Uy 3,y TOT
j=1,...,m. By (i), a,...,a,€ P'. Hence, by the definition of @' from
Part 111, f,, ..., f, €Q'. Thus 0(y) € Hy(f,, ..., fu).

Part V. End of the proof.

It follows directly from the definition of 6 that the following two dia-
grams commute:

X(®) _____._, X(F|E 6
() X(®) > X(F|E
dl 1d \\ /
g (1B 7 Res,
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Unfortunately, it need not be true that 0(x)%? = 0(x°) for all z e X ()
and ¢ € @, but we have a remedy. By cor. 9.2 (i) there exists a closed com-
plete system X of representatives of the G-orbits in X(®). Denote by 0;
and yzi the restrictions of 0: X(®) - X(F|E) and n: X(&) - X(L/K) to X,
respectively; then Res,o0; = z,. Therefore, by Lemma 9.3, 0; can be ex-
tended to a map X(®&) — X (F/E) which together with the group isomorphism
0: G —G(F|E) constitutes a morphism 0: & — G(F/H). Moreover this
morphism satisfies Reg ol = x, since both Resyol and = consist of an epi-
morphism of groups n: ¢ — G(L/K) and of a map X(®) - X(L/K) which
extends m;, hence they are equal by Lemma 9.3. /]

10. — The main results.

In this Section we characterize the absolute Galois groups of PRC fields
and the associated Artin-Schreier structures.

TEREOREM 10.1. Let K be a PRC field. Then
(a) G(K) is a real projective group, and
(b) G(K) is a projective Artin-Schreier structure.

Proor. Assertion (b) follows from (a) by Prop. 7.7. In order to prove (a),
observe that there are no involutions in G(K (\/ :'i)), hence the set I(G(K))
of involutions is closed in G(K), by Remark 7.6.

Let L/K be a finite Galois extension and let o: B — G(L/K) be an epi-
morphism of finite groups such that for every e I(G(K)) that satisfies
Res, 6 1, there exists an involution ¢ e B for which «(g) = Res, d. We
have to find a homomorphism y: G(K) - B such that ooy = Res,. With
no loss assume that +/— 1 e L, otherwise replace L by L(v—1) and B by
B X qumS(L(V=T1)/K).

Let B = <B, w(8(L/K (vV=1))), I(B) =* B‘>, where I(B) = {s€ Ble* =1,
o(e) e I(L/K)}. Then « gives rise to a morphism of Artin-Schreier structures
o: B —>@(L/K). By Lemma 9.4 there exists a finitely generated totally
real regular extengion H/K, a Galois extension F/E and an isomorphism
of groups 0: B — §(F/E) such that the diagram
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commutes. Thus with no loss we may assume that B = §(F[F) and
O == I\’J@SF/L.

Let  be a primitive element for F/H, let f = irr (z, &) and d = diser (f)
€B. Let RCE be an integrally closed domain finitely generated over K,
which containg d-* and the coefficients of f and such that I is its quotient
field. By the definition of PRC fields ([22, Theorem 1.2]), there exists a
K-homomorphism y: R — K. Let S be the integral closure of I in I (note
that LCS) and extend v to an L-homomorphism ¢: § — K . Denote by &,
the decomposition group of v in G(F/H) and let M be the splitting field of
the polynomial y(f) over K. Then L C M and y(f) has no multiple roots,
since p(d) 540. By [18, Prop. 15 on p. 248], M/K is a Galois extension
and y induces an isomorphism py: G: — S(M/K) such that (ypy) ¥ = p(y°)
for every oe @, and yeS. The homomorphism y; *oRes,: G(K) — S(F[E)
solves our real embedding problem. [/

By the way of converse we have:
THEOREM 10.2. Let G be a projective Artin-Schreier structure. Let LK
be a Galois extension such that V— 1€ L and let m: & — G(L/K) be an epi-

morphism. Then there exists o PRC extension K of K and a commutativ-
diagram

(1) Vx, Aes[,

an which 0 is an isomorphism.

Proor. Part 1. Epimorphisms of structures.

By Lemma 9.4, therve exists a regular extension X, of A, a Galois ex-
tension ¥, of H, containing L and a commutative diagram

0o
¢ s ®(FO/EO)
(2) \ /
7T Res,
S (L/K)

in which 0,: @ — S(¥,/B,) is an isomorphism of groups. If &(F/H,) is
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replaced in (2) by the Artin-Schreier structure

where C = 0,(X(®)) € X (F,/E,), then 0,: & — &'(F,/E,) is an epimorphism.

Let O = Resy O C X(H). By Proposition 8.7, there exists a regular |-
PRC extension FH, of F, such that Resy x, maps X(F;) homeomorphically
onto C. Let F,= B,F,. The set C is closed under the action of S(I,[E,),
hence, by Lemma 2.1, 0= {we X(F,/E,)| Resy, = € @}. Thus the map
Resp : X(F,/B,) — C is well defined. By [4, Chapter II, Lemma 2.5] it is |
onto C. In fact, this map is also injective. Indeed, if x, &’ € X(F,/H,) and
Respo T = Respo a', then ResEl,Eo (Resg, #) = Resg p, (Resg, ') hence Resy @
= Resy, #'. Thus there is a unique GEQ(Fl/El(\/:i)) such that o' = a°.
Let ¢ = Respo o; then ResFo X == ResFo r' = (Resp 2)°, whence ¢ =1. But
Resp : S(Fy/B,) — S(Fo[E,) is an isomorphism, hence ¢ = 1, and therefore
=

Thus Resp : G(F,/E,) — @' (Fo/l,) is an isomorphism, and we obtain
a commutative diagram

G(B,)

1 Respx
01

(3) & > $(F,/B,)

\‘ /R/OSL

&(L/K)

in which GlzRes}'olo@O is an epimorphism such that 6,: @ —SG(F,/E,) is
an isomorphism of groups.

Part I1I. The use of projectivity.

The forgetful map of & is injective, by Prop. 7.4, hence 0,: X(®)
~— X (F,/B,) is also injective, Therefore 0,: & — &(F,/E,) is an isomorphism.

The restriction map Resy : G(¥,) — G(F,/H,) is a cover and & is pro-
jective, hence there exists a morphism 0: & — ®&(H,) such that Resyol = 0;.
Let B be the fixed field of 6(G) in K,. Then, clearly, & = {0(&),0(G"),
0(X(&)) 2% 6(F)> = G(H). Moreover, 0: & — &(F) is an isomorphism which
makes (1) commute. Finally, F iz a PRC field ([22, Theorem 1.2]), which
ends the proof. //
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COROLLARY 10.3. Let & be an Artin-Schreier structure. Then there exvists
a Galois ewtension T[T such that vV— 1€ F and & ~ G(I'|EH).

ProoF. We first show that there exists a field K and a cover m: &
— G(E(/—1)/K). If X(®) =6, this is trivial. If X(&) 0, there exists
a field K such that X(®)/G" ~ X(K) (Craven [3, Theorem 5]). Thus
and the quotient map ¢ — @/G".

Now denote L = K(\/ﬁ). By Part I of the proof of Theorem 10.2,
there exists a commutative diagram (3), in which F, is a PRC field,
0,: G — G(F,/I,) is an isomorphism of groups and 0,: & — G(F,/E,) is an
epimorphism of Artin-Schreier structures.

We show that 0,: X (@) — X (F,/H,) is injective. If z, 2" € X(&) such that
0,() = 0,(x'), then sm(x) = m(x'), hence there is a o€ G’ such that o' = a°,
Thus 0,(x) = 0,(2') == 0,(2)"?, and 0,(c) € Q(Fl/El(\/:——f)). By condition
(iv') of Definition 3.1, 60,(¢) = 1, hence ¢ ==1, whence z=2'. Thus
© =~ G, /B,). ]

Combining Theorems 10.1, 10.2 with Prop. 7.7, we obtain the main resunlt
of this work:

TEHEOREM 10.4. If K is a PRC field, then G(K) is real projective.
Conversely, if G is a real projective group, then there ewists a PRC field K
such that G ~ G(IK).

We use again the fact that algebraic extensions of PRC fields are PRC
(Prestel [22, Theorem 3.1]):

COROLLARY 10.5. A closed subgroup H of a real projective group G is real
projective. Moreover, H is a projective group if and only if H contains no
involutions of G. In particular, if o is an element of finite order in G, then
%=1, \

11. - Concluding remarks.

The notions developed in this work and the results achieved open up
new paths in the research of PRC fields. Results achieved for PAC fields
may now be approached for PRC fields. For example, it has already been
observed, using a simple logical principle, that the undecidability of the
elementary theory of PAC fields implies the undecidability of the elementary
theory of PRC fields (Ershov [7]). Therefore, the genuine question to be
asked in this connection is about the undecidability of the theory of formally
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real PROC fields. We settle this question in a subsequent work by developing
the appropriate analogue of Frattini covers. This may in turn help to prove
the decidability of the theory of PRC fields with bounded corank. As a
third topic in this list it should be of interest to set up real Frobenius fields
and prove decidability results both model theoretically and by Galois
stratification.

In the model theory of PAC fields an emphasis has been put upon
algebraic models. To achieve analogous results for PRC fields one should
complete Theorem 10.4:

PROBLEM. Given a real projective group G of rank <, and given a
countable, formally real Hilbertian field K, does there exist a PRC field F,
algebraic over K such that G(F) ~ G?
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