
ON STABLE FIELDS IN POSITIVE CHARACTERISTIC1)

by

Wulf-Dieter Geyer and Moshe Jarden2)

Erlangen Universität Tel Aviv University

1) This work was partially supported by a grant from the G.I.F, the German Israeli

Foundation for Scientific Research and Development.
2) This work was partially done while the second author enjoyed the hospsitality of

the Institute for Advanced Study at Princeton, New Jersey.



Introduction

Recall that a field extension F/K is regular if F is linearly disjoint from K̃ over K (K̃

is the algebraic closure of K.) A regular field extension F/K is called stable if it has a

separating transcendence base T such that the Galois hull F̂ of F/K(T ) is regular over

K (or, alternatively, such that G(F̂ /K(T )) ∼= G(K̃F̂ /K̃(T )). In this case we shall also

say that F is stable over K and call T a stabilizing base of F/K.

A field K is stable in dimension r if every finitely generated regular extension

F/K of transcendence degree r is stable. If this holds for each r we say that K is

stable.

A field K is pseudo algebraically closed (PAC) if every absolutely irreducible

nonempty variety V defined over K has a K-rational point.

It is proved in [FJ1] that every PAC field is stable. This theorem yields a strong

approximation property for a large class of PAC fields:

Proposition A ([FJ1, Thm. 5.4]): Let K be a countable Hilbertian field and let v be a

valuation of K. Then for each positive integer e, for almost all (σ1, . . . , σe) ∈ G(K)e, for

every absolutely irreducible variety V defined over K̃(σ1, . . . , σe) and for every absolute

value w of K̃ that extends v the set V (K̃(σ1, . . . , σe)) is w-dense in V (K̃).

Here G(K) is the absolute Galois group of K and K̃(σ1, . . . , σe) is the fixed field

in K̃ of (σ1, . . . , σe).

For arbitrary fields [FJ2, Lemma 1.1] reduces the stability of an infinite field K

to stability in dimension 1:

Lemma B: A sufficient condition for an infinite field K to be stable is that every

extension L of K is stable in dimension 1.

Then [FJ2, Lemma 2.1] gives a geometrical criterion for a field K to be stable in di-

mension 1:

Lemma C: Let F be a function field of one variable over a field K. Suppose that F has

a projective plane model Γ of degree n and there exists a K-rational point O ∈ P2 − Γ

such that
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(1) every line that passes through O cuts Γ in at least n− 1 points.

Then F is stable over K.

If char(K) = 0, then [FJ2, Lemmas 3.2 and 3.3] shows how to construct a plane

model Γ with property (1). Then [FJ2] concludes from Lemma C that

Theorem D ([FJ2, Thm. 3.4]): Every field of characteristic 0 is stable.

If P1 is a model of F/K, then we may take Γ in Lemma C to be P1. In general [FJ2,

Lemma 3.2] proves that any node curve (i.e., a curve with only nodes as singularities)

satisfies (1). The proof of [FJ2, Lemma 3.2] depends upon three properties that each

irreducible plane curve in characteristic 0 which is not a line has:

(2a) Γ has only finitely many inflection points.

(2b) Γ has only finitely many double tangents (i.e., tangents in at least two distinct

points).

(2c) Only finitely many tangents to Γ pass through each point of P2 (i.e., Γ has no

strange points).

In arbitrary characteristic we say that a plane curve is common if it is a line or

it satisfies Condition (2). The following theorem supplies a plane node (not necessarily

common) model Γ over each infinite field.

Proposition E ([A, Appendix II]): Let ∆ be a smooth absolutely irreducible curve in

P3 defined over an infinite field K. Then the plane at infinity of P3 has a nonempty

K-open subset U such that for each o ∈ U the projection Γ of ∆ from o on P2 is a node

curve.

Although Abhyankar [A] also eliminates strange points from Γ, there seems to be

no reference in the literature for a construction that will also include (2a) and (2b). The

aim of the present work is to fill up this gap and to prove that if K is an infinite perfect

field, then each function field F/K of one variable has a plane common node model Γ.

This guaranties that the following theorem is true.

Theorem F: Every conservative function field F of one variable over an infinite field

K is stable.

2



As usual, F is conservative if its genus does not change under constant field

extensions. Theorem F implies the following generalization of [FJ2, Thm. 4.4]:

Theorem G: Let K be a countable perfect separably Hilbertian field. Then K has a

Galois extension N with the following properties:

(3a) G(N/K) is isomorphic to the direct product of infinitely many finite groups,

(3b) N is a Hilbertian field,

(3c) N is a PAC field, and

(3d) N contains no field of the form K̃(σ1, . . . , σe), with σ1, . . . , σe ∈ G(K)e.

We carry out the construction of a plane common node model Γ for a conservative

function field F/K in several steps:

(4a) If the genus of F/K is 0 distinguish between two cases: either F/K has a prime

divisor of degree 1 or it does not have one. In the first case F/K is rational and

therefore choose Γ to be P1. In the latter case F/K has a conic section as a model.

If char(K) 6= 2, choose Γ to be this conic section. If char(K) = 2 the conic section

has a strange point. Birationally transform it to a common node curve of degree

4 with the explicit defining equation (5) of Section 7. Assume from now on that

the genus of F/K is positive.

(4b) Choose x1, y1 ∈ F such that F = K(x1, y1) and F is separable over K(x1). If

char(K) 6= 2, choose u ∈ K such that the curve Γu generated by (x1, y1 + ux2
1)

has only finitely many inflection points (Lemma 3.3). Then Γu has only finitely

many double tangents (Proposition 4.5). If char(K) = 2 make sure that Γu has

only finitely many double tangents by choosing u more carefully (Lemma 6.1).

(4c) Let x0:x1:x2 be generic homogeneous point for the common model Γu of F/K.

Use an appropriate very ample divisor to construct a smooth projective model ∆

of F/K with generic point x0:x1:x2: · · · :xn and prove that it has only finitely many

“inflection points” (see below) and only finitely many double tangents (Proposition

8.3).

(4d) Choose a noninflection point a of ∆(K̃) such that the tangent through a is not

double and it intersects only finitely many tangents to ∆ (Lemma 10.1).

3



(4e) Choose a point o in Pn(K) not on ∆ such that the projection π from o into Pn−1

maps ∆ onto a model Λ of F/K in Pn−1 such that π(a) is a simple noninflection

point of Λ with a nondouble tangent (Lemma 10.1).

(4f) If n ≥ 4, then choose o such that in addition Λ is smooth and the tangent to Λ

at π(a) intersects only finitely many tangents of Λ. Then repeat step (4e).

(4g) If n = 3, then choose o such that in addition the only singular points of Λ are

nodes and the tangent at π(a) goes through no singular point. Apply Corollary

3.2 and Lemma 4.3 to conclude that Γ = Λ has only finitely many inflection points

and only finitely many double tangents. By Lemma 5.4, Γ has no strange points.

So Γ is the desired plane model for F/K.

We use F.K. Schmidt’s modified derivatives to define inflection points in higher

dimensional space (Section 2). Thus, if x = x0: · · · :xn is a generic point for ∆ with

xi ∈ F and P is a prime divisor of F/K with center b at ∆, then b is an inflection

point if rank(x(P ) x′(P ) x[2](P )) < 3. Here x[2] = x
[2]
0 : · · · :x[2]

n and x
[2]
i is the modified

derivative of F/K of order 2.

In analogy to the one dimensional case we call an algebraic function field F/K

of several variables conservative if it has a model V which is normal over K̃. The

intersection with a hyper plane technique reduces the stability question of F/K to the

one dimensional case, which is covered by Theorem F.

Theorem H: Let F be a finitely generated regular conservative extension of an infinite

field K. Then F/K is a stable extension.

Corollary I: Each infinite perfect field K is stable.
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1. Basic concepts of plane curves.

The main tool to analyze a plane curve is its intersection multiplicity with a line. So we

first fix our convention for curves and expose about intersection multiplicity and related

concepts.

We consider the affine plane Å2 as a subspace of the projective plane P2. A

point P of Å2 can be given either by its affine coordinates (x, y) or by its homogeneous

coordinates x0:x1:x2, where x = x1/x0, y = x2/x0 and x0 6= 0. All elements belong to

some universal extension Ω of a fixed basic field K. As usual Ω is an algebraically closed

extension of K of infinite transcendence degree. Refer to the points of Å2 as finite.

Each point of P2 − Å2 is infinite and has the form 0:x1:x2.

By a plane curve we always mean an absolutely irreducible projective curve Γ

defined over K. It is the set of all points x0:x1:x2 that satisfy f(x0, x1, x2) = 0 for some

absolutely irreducible homogeneous polynomial f ∈ K[X0, X1, X2]. The degree of Γ is

deg(f). The finite part of Γ is the set of all points (x, y) such that f(1, x, y) = 0.

Conversely let g ∈ K[X, Y ] be an absolutely irreducible polynomial of degree d.

Then the equation g(X, Y ) = 0 defines the finite part of a plane curve Γ of degree d.

The corresponding homogeneous polynomial is f(X0, X1, X2) = Xd
0 g(X1/X0, X2/X0).

A point (x, y) of Γ is generic if F = K(x, y) has transcendence degree 1 over

K. In this case F is the function field of Γ, and Γ is a plane model of F/K. In

homogeneous terms we write F = K(x0:x1:x2). A point (a, b) of Γ is algebraic if

a, b ∈ K̃. The local ring of Γ at (a, b) (over K̃) is

OΓ,(a,b) =
{p(x, y)

q(x, y)
| p, q ∈ K̃[X, Y ] and q(a, b) 6= 0

}
.

In general it is important to note that while the curves we consider and the bira-

tional transformations we perform are all defined over the basic field K, the geometrical

study of these objects is carried out over K̃.

The point (a, b) is simple if ∂g
∂X (a, b) 6= 0 or ∂g

∂Y (a, b) 6= 0. The corresponding

homogeneous condition is that at least one of the expressions ∂f
∂Xi

(a0, a1, a2), i = 0, 1, 2,

is nonzero. Thus Γ has only finitely many singular points. A necessary and sufficient

condition for (a, b) to be simple is that OΓ,(a,b) is integrally closed [FJ3, Lemma 4.3]. In
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this case OΓ,(a,b) is a discrete valuation ring. Let t be a prime element of OΓ,(a,b) (also

called a local parameter of Γ at (a, b)). Then the completion of OΓ,(a,b) is the ring of

power series K̃[[t]] over K̃. In particular x and y has unique expansions as power series

in t with coefficients in K̃:

x = a + α1t + α2t
2 + · · ·(1a)

y = b + β1t + β2t
2 + · · · .(1b)

The expansion in homogeneous coordinates takes the form

x0 = a0 + α0,1t + α0,2t
2 + · · ·(2a)

x1 = a1 + α1,1t + α1,2t
2 + · · ·(2b)

x2 = a2 + α2,1t + α2,2t
2 + · · · .(2c)

Here the expansion is unique up to a product with a common power series with nonzero

constant term. Denote the canonical valuation of K̃[[t]] by ordt.

A line L (in P2) is defined by an equation c0X0 + c1X1 + c2X2 = 0 where at least

one ci is not 0. The affine part of L is given by c0 + c1X + c2Y = 0. Thus X0 = 0

defines the line at infinity.

Suppose that a=a0:a1:a2 and b = b0:b1:b2 are two distinct points of a line L. An

arbitrary point of L has the form at0 + bt1. Expand f(a + bt) around a:

(3) f(a + bt) = f(a) +
2∑

i=0

∂f

∂Xi
(a)bit + f2(a,b)t2 + · · · ,

where f2 ∈ K[X,Y] is a form of degree 2 in Y and a form of degree deg(f) − 2 in X,

etc. The intersection multiplicity, i(Γ, L;a), is the highest power of t that divides

the right hand side of (3). It does not depend on b.

A convenient way to compute the intersection multiplicity at a simple point a is

to use the power series expansion. In the notation of (2) we have:

(4) i(Γ, L;a) = ordt(c0x0 + c1x1 + c2x2)

(e.g., [S, p. 93]).
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In affine coordinates a line L that goes through a simple point (a, b) of Γ has an

equation c1(X − a) + c2(Y − b) = 0. In the notation of (1) we have for (a, b) simple:

(5) i(Γ, L; (a, b)) = ordt(c1(x− a) + c2(y − b)).

If a is a simple point of Γ, then the line

2∑
i=0

∂f

∂Xi
(a)Xi = 0

intersects Γ at a with multiplicity at least 2. This is the tangent to Γ at a. We denote

it by TΓ,a. If TΓ,a = TΓ,a′ for another simple point a′ of Γ, then TΓ,a is a double

tangent. The affine equation for the tangent to Γ through (a, b) is

∂g

∂X
(a, b)(X − a) +

∂g

∂Y
(a, b)(Y − b) = 0.

The simple point a is an inflection point if i(Γ, TΓ,a;a) ≥ 3. Observe that if

Γ is a line, then Γ = TΓ,a and i(Γ, TΓ,a;a) = ∞. Thus each point of a line is an

inflection point. This is the usual convention in algebraic geometry (e.g., [S. p. 67]).

The standard criterion for a simple point to be an inflection point is usually proved only

in characteristic 0. However the proof is valid if char(K) 6= 2 (e.g., [S, pp. 67–68]):

(6) Suppose that char(K) 6= 2 and that deg(Γ) ≥ 2. Then a simple point a of Γ is a

point of inflection if and only if it lies on the Hessian curve of Γ:

det
(

∂2f

∂Xi∂Xj

)
= 0.

In particular if the Hessian is not identically zero then Γ has only finitely many

inflection points.

Lemma 1.1: Let (a, b) be a simple algebraic point of Γ. Then, in the notation of (1),

(a,b) is an inflection point if and only if

(7)
∣∣∣∣ α1 β1

α2 β2

∣∣∣∣ = 0.

Similarly, in homogeneous terms, a simple point a0:a1:a2 = α00:α01:α02 of Γ is an

inflection point if and only if

(8) det(αij)0≤i,j≤2 = 0.
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Proof: We prove only the affine version of the lemma. Suppose first that (a, b) is an

inflection point of Γ. Let c1 = ∂g
∂X (a, b) and c2 = ∂g

∂Y (a, b). By (5), c1(x−a)+c2(y−b) ∼=

0 mod t3. Hence, by (1)

c1α1 + c2β1 = 0(9a)

c1α2 + c2β2 = 0.(9b)

Since c1 6= 0 or c2 6= 0, (7) holds.

Conversely if (7) is true, then there exist c1 and c2, not both zero such that (9)

holds. Then the line L defined by c1(X − a) + c2(Y − b) = 0 is the tangent to Γ at

(a, b) and it intersects Γ at (a, b) with multiplicity at least 3. Conclude that (a, b) is an

inflection point of Γ.

Finally observe that if a is a singular point of Γ, then every line L through a

intersects Γ at a with multiplicity at least 2. If, in the notation of (3), f2 is not

identically zero, then the intersection multiplicity is exactly 2 except when L is defined

by one of the two linear factors of f2(X, Y ). In the latter case L is called a tangent to

Γ at a. If Γ has two distinct tangents at a, then a is a node of Γ.

André Weil [W] has established an alternative way to define intersection multi-

plicities. Let u0, u1, u2 be algebraically independent elements over K and denote the

line u1X +u2Y = u0 by Lu. Then Γ∩Lu consists of d distinct points p1, . . . ,pd, where

d = deg(Γ). These points are separably algebraic and are conjugate to each other over

K(u) [W, p. 118]. If w0, w1, w2 are algebraic elements over K, then the K-specialization

u → w extends to a K-specialization (u,p1, . . . ,pd) → (w,q1, . . . ,qd). Suppose that

the line Lw defined by w1X + w2Y = w0 does not coincide with Γ. Then, each point of

Γ ∩Lw is, in Weil’s terminology, a proper point of intersection of Γ and Lw. Therefore

theorem 2 on page 119 of [W] asserts that Γ ∩ Lw = {q1, . . . ,qd}. Moreover, for each

q ∈ {q1, . . . ,qd} the intersection multiplicity of Γ and Lw at q à la Weil is

j(Γ, Lw;q) = #{i| 1 ≤ i ≤ d, qi = q}.

Lemma 1.2: Let Γ be a plane curve and let L be a line which does not coincide with

Γ. Then j(Γ, L;q) = i(Γ, L;q) for each point q ∈ Γ ∩ L.
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Proof: After a linear projective transformation we may assume that q is the origin and

that L is the X-axis: Y = 0. In the above notation let v = u0/u2 and u = −u1/u2.

Suppose as above that Γ is defined by an absolutely irreducible equation g(X, Y ) = 0

of degree d. Consider the solutions x1, . . . , xd of the equation g(X, uX + v) = 0 in the

algebraic closure of K(u, v) and put yi = uxi + v, i = 1, . . . , d. Then pi above can

be taken to be (xi, yi), i = 1, . . . , d. As the pi’s are distinct, separable and conjugate

over K(u0, u1, u2), so are the xi’s over K(u, v). Hence g(X, uX + v) is an irreducible

polynomial over K(u, v). Let d′ be the degree of g(X, 0). Factor g(X, 0) as

(11) g(X, 0) = c
d′∏

i=1

(X − ai),

for some d′ ≤ d and c 6= 0. Any extension of (u, v) → (0, 0) to a specialization of

(u, v, x1, . . . , xd) can be renumerated to have the form (0, 0, a1, . . . , ad′ ,∞, . . . ,∞) [W,

p. 34, Proposition 9]. In particular j(Γ, L; (0, 0)) is the number of the i’s such that

ai = 0, i.e., the degree of the highest power of X that divides g(X, 0). But this is also

i(Γ, L; (0, 0)) [S, p. 33]. Conclude that j(Γ, L; (0, 0)) = i(Γ, L; (0, 0)).

2. Derivatives of higher order.

Consider a function field of one variable F/K (i.e., a finitely generated regular

extension of transcendence degree 1). Let t be a separating transcendental element for

F/K and embed F in the field of power series K̃((t)). The formal derivation of power

series (
∑∞

i=m αit
i)′ =

∑∞
i=m iαit

i−1 defines a unique derivation of F such that t′ = 1

and α′ = 0 for each α ∈ K. Iteration of derivation leads to derivatives of higher order:

x(n) =
(
x(n−1)

)′
. The efficiency of higer derivatives for the study of F/K and its models

in characteristic p > 0 is however limited by the vanishing of the derivative of order p.

For example, in characteristic 2 we have (t3)(2) = 2 · 3t = 0.

F.K. Schmidt modifies in [HS] the definition of the second derivative by “dividing”

2 out of the last relation: (t3)[2] = 3t. More generally he defines for each nonnegative

integer k a derivative of order k with respect to t. It is a function from F to F .

We denote its value at an element x of F by Dkx/Dtk or by x[k], if it is clear from the

context what t is. It satisfies the following rules:
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(1a) The zero and the first derivatives: x[0] = x, x[1] = x′.

(1b) Vanishing on K: a[k] = 0 for a ∈ K and k ≥ 1.

(1c) Linearity: (x + y)[k] = x[k] + y[k].

(1d) Rule for multiplication: (xy)[k] =
∑k

i=0 x[k−i]y[i]; in particular (ax)[k] = ax[k] for

a ∈ K.

(1e) Derivatives at t: t[0] = t, t[1] = 1 and t[k] = 0 for k ≥ 2.

(1f) Powers of t: (tm)[k] =
(
m
k

)
tm−k for k ≥ 0 and each integer m; in particular:

(t−1)[k] = (−1)kt−(k+1).

(1g) Extension to power series: The system of higher derivatives can be extended to

K̃((t)): (
∑∞

m=r αmtm)[k] =
∑∞

m=r

(
m
k

)
αmtm−k. In particular, if x =

∑∞
i=0 αit

i,

then x[k] ∼= αk mod t for each k ≥ 0.

(1h) The chain rule: If u is another separating transcendental element for F/K, then

Dkx

Duk
=

k∑
j=1

Djx

Dtj
gkj

(
Dt

Du
, · · · , Dk−j+1t

Duk−j+1

)
,

where gkj ∈ Z[X1, . . . , Xk−j+1] are universal polynomials. In particular

Dx

Du
=

Dx

Dt
· Dt

Du
and

D2x

Du2
=

Dx

Dt

(
D2t

Du2

)
+

D2x

Dt2

(
Dt

Du

)2

.

F.K. Schmidt approaches the higher derivatives in two ways. The second one which

starts on page 223 of [HS] is more elementary and more general. The map a 7→ a for

a ∈ K and t 7→ t+Y uniquely extends to a ring homomorphism δ = δt: K[t] → K[t][[Y ]].

In particular

(2) δx ∼= x mod Y

for each x ∈ K[t]. For x 6= 0 this implies that δx is a unit of K(t)[[Y ]]. Hence δ

uniquely extends to a ring homomorphism δ: K(t) → K(t)[[Y ]] such that (2) holds for

each x ∈ K((t)). Next choose a primitive element z for the extension F/K(t) and let

f = irr(z,K(t)). Then f(z) = 0 and f ′(z) 6= 0. By (2), (δf)(Z) ∼= f(Z) mod Y and

(δf ′)(Z) ∼= f ′(Z) mod Y . Hence (δf)(z) ∼= 0 mod Y and (δf ′)(z) 6∼= 0 mod Y . By

Hensel’s Lemma there exists δz ∈ F [[Y ]] such that (δf)(δz) = 0 and δz ∼= z mod Y . It
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follows that δ uniquely extends to a ring homomorphism δ: F → F [[Y ]] such that (2)

holds for each x ∈ F . Now define x[k] to be the coefficient of Y k in the expansion of δx:

(3) δx =
∞∑

k=0

x[k]Y k.

The additivity and multiplicativity of δ, respectively imply the rules (1c) and (1d). Rule

(1f) follows from (1d) by induction on m. Since t[1] = 1 = t′, the rule x[1] = x′ follows

from the uniqueness of the derivative of F over K under the condition t′ = 1 [L1, p.

184]. The rule x[0] = x is a reinterpretation of (2). Since the “kth derivative” on K̃((t))

given in (1g) satisfies (1a)-(1f) for all x ∈ K̃((t)) and since it coincides with the map

x 7→ x[k] on K[t] the uniqueness of the extension implies that it also coincides with the

map x 7→ x[k] on F .

Finally to prove the chain rule (1h) rewrite (3) for u:

(4) δux =
∞∑

k=0

Dkx

Duk
Y k.

Since u is a separating element for F/K, Du/Dt 6= 0 ([L1, p. 186] and (1a)). Therefore

(5) δu− u =
∞∑

k=1

Dku

Dtk
Y k = h(Y )

is an invertible power series. Let ε: F → F [[Y ]] be the homomorphism:

(6) εx =
∞∑

k=0

Dkx

Dtk
(h−1(Y ))k.

Obviously εa = a for each a ∈ K and εu = u + h(h−1(Y )) = u + Y . Since δu is the

unique homomorphism with these properties ε = δu. Now compute the coefficients of

h−1(Y ) in terms of Dku/Dtk from (5), substitute in (6) and compare the coefficients of

Y k on the right sides of (4) and (6) to obtain (1h).

Each element x of K̃F (and therefore each higher derivative of x) can be viewed

as a function from the space of all prime divisors of K̃F/K̃ into K̃ ∪ {∞}. We denote

the value of x at a prime divisor P by x(P ). Let v be the valuation of F associated

11



with P . For elements x0, . . . , xn ∈ K̃F , not all zero, choose u ∈ K̃F such that each

(uxi)(P ) is finite and at least one of them is nonzero. Then v(u−1) = min0≤i≤n{v(xi)}.

Hence, if w is another element of F such that each (wxi)(P ) is finite and at least one

of them is nonzero, then v(u) = v(w). It follows for x = x0: · · · :xn that (wx)(P ) =

(wu−1)(P )·(ux)(P ). Thus we may define x(P ) as the point of Pn(K̃) with homogeneous

coordinates (ux)(P ) for each u as above. This point is the center of P at Γ.

Now apply (1g) to a local parameter t at P to conclude that (uxi)[k](P ) is finite

(possibly 0) for each i. However the (n+1)-tuples (ux)[k](P ) for various u are in general

nonproportional to one another. Nevertheless in expressions involving (ux)[k](P ) which

do not depend on u, we write x[k](P ) for (ux)[k](P ). This is the case for (8) below.

Lemma 2.1: Let k1, . . . , kr be nonnegative integers. Let P1, . . . , Pr be prime divisors

of F/K. For each j consider x[kj ](Pj) as a column of height n + 1. Suppose that for

each j, 1 ≤ j ≤ r,

(7) {(0, Pj), . . . , (kj , Pj)} ⊆ {(k1, P1), . . . , (kr, Pr)}.

Then

(8) rank(x[k1](P1) x[k2](P2) · · · x[kr](Pr) )

does not depend on the homogeneous coordinates of x used to define x[kj ](Pj), j =

1, . . . , r, nor does it depend on t.

Proof: Suppose without loss that for each j every xi(Pj) is finite and at least one of

them is nonzero. Then (8) is the dimension of the subspace V of K̃n+1 spanned by the

columns of the matrix

(9) (x[k1](P ) x[k2](P2) · · · x[kr](Pr)).

By symmetry it suffices to consider u ∈ F such that (ux)(P1) is a homogeneous coor-

dinate system for the point x(P1) of Pn(K̃) and to prove that, as an element of K̃n+1,

(ux)[k1](P1) belongs to V .

12



Our assumption implies that both u(P1) and x(P1) are finite. By (1d)

(10) (ux)[k1](P1) =
k1∑

i=0

u[k1−i](P1)x[i](P1).

Conclude from (7) that the right hand side and therefore the left hand side of (10)

belongs to V .

To prove the independence of (8) from t let u be another separating transcendental

element for F/K and consider the matrix

(11)
(

D[k1]x
duk1

(P1)
D[k2]x
duk2

(P2) · · · D[k1]x
duk1

(P1)
)

.

Again, it suffices to show that each of the columns of this matrix belongs to V . This is

however a consequence of (1h).

Remark 2.2: Obviously the above proof works also for generic Pj ’s. So, if for each j,

(12) {0, . . . , kj} ⊆ {k1, . . . , kr},

then

(13) rank(x[k1] x[k2] · · · x[kr])

does not depend on the homogeneous coordinates of x, nor does it depends on t.
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3. Inflection points.

A plane curve defined over a field K of characteristic 0 has only finitely many inflection

points. In contrast, if char(K) = p and p 6= 0, 2, then the curve Γ defined over K by

Xp+1
0 +Xp+1

1 +Xp+1
2 = 0 has no singular points. However the Hessian of Γ is identically

0. Hence, by (6) of Section 1, every point of Γ is an inflection point. Fortunately it is

easy to find a birational transformation of Γ that maps Γ onto a curve with only finitely

many inflection points.

Lemma 3.1: Let Γ be a plane curve with function field F . Let x = x0:x1:x2 be a generic

point of Γ with coordinates xi in F . Suppose that P is a prime divisor of K̃F/K̃ whose

center a is a simple point of Γ. Then a is a noninflection point of Γ if and only if

rank(x(P ) x′(P ) x[2](P )) = 3.

Proof: By Lemma 2.1 we may compute the rank with respect to a local parameter t

of Γ at a. Apply (1g) of Section 2 on the power series expansions (2) of Section 1 to

conclude that

(x(P ) x′(P ) x[2](P )) =

 a0 α01 α02

a1 α11 α12

a2 α21 α22

 .

Thus, our assertion is just a reinterpretation of Lemma 1.1.

Corollary 3.2: In the notation of Lemma 3.1, if Γ has a simple noninflection point,

then Γ has only finitely many inflection points.

Proof: By Lemma 3.1, det(x(P ) x′(P ) x[2](P )) 6= 0, hence det(x x′ x[2]) 6= 0. There-

fore

det(x(Q) x′(Q) x[2](Q)) = 0

for only finitely many prime divisors Q of K̃F/K̃. Conclude from Lemma 3.1 that Γ

has only finitely many inflection points.

Lemma 3.3: Let Γ be a plane curve defined by the absolutely irreducible equation

g(X, Y ) = 0. Suppose that ∂g/∂Y 6= 0. Then there exists u0 ∈ K̃ such that for each

u 6= u0 the birational transformation

(1) x′ = x and y′ = y + ux2

14



maps Γ onto a plane curve Γu with only finitely many inflection points.

Proof: Let (x, y) be a generic point of Γ. Our assumptions imply that ∂g/∂Y does not

vanish on Γ. Choose a simple algebraic point (a, b) of Γ such that ∂g
∂Y (a, b) 6= 0. Let P

be a prime divisor of K̃F/K̃ with center (a, b) and choose a local parameter t for P .

Then x− a and y − b generate the unique maximal ideal of OΓ,(a,b). Since t lies in this

ideal ordt(x − a) = 1 or ordt(y − b) = 1. If ordt(x − a) > 1 and ordt(y − b) = 1, then,

x′(P ) = 0 and y′(P ) 6= 0 ((1g) of Section 2). Now take the derivative of g(x, y) = 0 at

P to contradict the choice of (a, b):

∂g

∂X
(a, b)x′(P ) +

∂g

∂Y
(a, b)y′(P ) = 0.

Thus we may take t to be x − a. In particular, in the expansion (1a) of Section 1 we

may assume that α1 = 1 and α2 = 0.

Let a′ = a and b′ = b + ua2. Obviously the transformation (1) is biregular at

(a, b), i.e., OΓ,(a,b) = OΓu,(a′,b′). In particular (a′, b′) is a simple point of Γu and t is also

a local parameter of Γu at (a′, b′).

Substitute (1) of Section 1 in (1) to obtain

x′ ∼= a′ + t mod t3

y′ ∼= b′ + β′1t + β′2t
2 mod t3

with β′1 = β1 + 2au and β′2 = β2 + u. The corresponding determinant is β2 + u. If

u 6= −β2, then the determinant does not vanish. By Lemma 1.1, (a′, b′) is a noninflection

point of Γu.

Conclude from Lemma 3.2 that Γu has only finitely many inflection points.

15



4. Double tangents.

In Section 3 we have shown how to transform a plane curve Γ onto a plane curve Γ′

with only finitely many inflection points. It turns out that if char(K) 6= 2, then Γ′ has

in addition only finitely many double tangents. The main tool to prove this statement

is the dual curve. It is however also useful in characteristic 2.

Let Γ be a plane curve defined over a field K by the homogeneous absolutely

irreducible equation f(X0, X1, X2) = 0 of degree d ≥ 2. Let x = x0:x1:x2 be a generic

point of Γ over K. Then xi 6= 0 for i = 0, 1, 2. At least one of the following expressions

is nonzero:

(1) x∗i =
∂f

∂Xi
(x), i = 0, 1, 2,

and K(x∗0:x
∗
1:x

∗
2) is a subfield of K(Γ) = K(x0:x1:x2).

Lemma 4.1: The transcendence degree of K(x∗0:x
∗
1:x

∗
2) over K is 1.

Proof: As in Section 1 let g(X, Y ) = f(1, X, Y ). Then

f(X0, X1, X2) = Xd
0 g(X1/X0, X2/X0)

and with x = x1/x0, y = x2/x0, ∂g
∂x = ∂g

∂X (x, y) and ∂g
∂y = ∂g

∂Y (x, y) we have

(2) x∗0 = −xd−1
0 (x

∂g

∂x
+ y

∂g

∂y
), x∗1 = xd−1

0

∂g

∂x
and x∗2 = xd−1

0

∂g

∂y
.

Assume without loss that ∂g
∂y 6= 0. Then

(3) x∗0 : x∗1 : x∗2 = −x
∂g/∂x

∂g/∂y
− y :

∂g/∂x

∂g/∂y
: 1 .

If both ∂g/∂x
∂g/∂y = a and ∂g/∂x

∂g/∂y x + y = c are algebraic, then ax + y = c and Γ is a line, a

contradiction. Conclude that the point (3) is transcendental over K.

The curve Γ∗ that x∗ = x∗0:x
∗
1:x

∗
2 generates over K is the dual curve of Γ. For

each a ∈ Γ let

a∗i =
∂f

∂Xi
(a), i = 0, 1, 2,

and a∗ = a∗0:a
∗
1:a

∗
2. The rational map τ : Γ → Γ∗ given by τ(a) = a∗ is defined at each

simple point of Γ. Another useful point of view is to consider Γ∗ as a subset of the dual

projective plane (P2)∗. Each point a∗ of Γ∗ bijectively corresponds to the tangent TΓ,a:

a∗0X0 + a∗1X1 + a∗2X2 = 0.
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Lemma 4.2: The following conditions on a plane curve Γ which is not a line are equiv-

alent:

(a) Γ has only finitely many double tangents,

(b) K(Γ)/K(Γ∗) is a purely inseparable extension, and

(c) no double tangent goes through a generic point of Γ.

Proof: Condition (a) means, in the above notation, that τ−1(τ(a)) = {a} for almost all

a ∈ Γ. Condition (c) means that τ−1(τ(x)) = {x} for a generic point x of Γ. By [L1,

p. 90], both conditions are equivalent to (b).

Lemma 4.3: If Γ has a simple noninflection point a such that TΓ,a is not a double

tangent nor does it go through a singular point of Γ, then Γ has only finitely many

double tangents.

Proof: Assume that Γ has infinitely many double tangents. Then, for x generic, TΓ,x is a

double tangent (Lemma 4.2). Let u0, u1, u2 be algebraically independent elements over

K. Denote the line u0X0 + u1X1 + u2X2 = 0 by Lu. Let Γ ∩Lu = {y1, . . . ,yd}, where

d = deg(Γ). Consider the specialization (u,y1, . . . ,yd) −→ (x∗,x1, . . . ,xd). By Lemma

1.2, there exist two pairs of integers between 1 and d, say (1, 2) and (3, 4), such that x =

x1 = x2 and x3 = x4 (here we use the above notation). Next extend (x∗,x) −→ (a∗,a)

to a specialization (x∗,x1, . . . ,xd) −→ (a∗,a1, . . . ,ad), where, necessarily a = a1 = a2

and a3 = a4. Hence (u,y1, . . . ,yd) −→ (a∗,a1, . . . ,ad) is also a specialization. Since

a is a noninflection point Lemma 1.2 implies that a 6= a4. As TΓ,a intersects Γ at a4

with multiplicity at least 2 and as a4 is simple (by assumption), TΓ,a tangents Γ at

a4. Conclude that TΓ,a is a double tangent. This contradiction proves that Γ has only

finitely many double tangents.

Here is a sufficient condition for a simple point of Γ to be an inflection points in

characteristic 6= 2.

Lemma 4.4: Suppose that char(K) = p 6= 2. Let t be a local parameter of Γ at a simple

point a. In the above notation and assumptions, if for p 6= 0 there exist u1, u2 ∈ K̃((t))

such that x∗i = x∗0u
p
i , i = 1, 2, (resp., for p = 0 there exist c1, c2 ∈ K̃ such that x∗i = x∗0ci,

i = 1, 2), then a is an inflection point of K.
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Proof: We carry out the proof only for p 6= 0. By (2), ∂g
∂y up

1 = ∂g
∂xup

2. Consider the

relation g(x, y) = 0 as an identity in t and take its derivative:

∂g

∂x
x′ +

∂g

∂y
y′ = 0.

Thus

(4) x′up
1 + y′up

2 = 0.

Take the derivative of (1) of Section 1:

x′ = α1 + 2α2t + 3α3t
2 + · · ·(5a)

y′ = β1 + 2β2t + 3β3t
2 + · · · .(5b)

Assume without loss that ordt(u2) ≥ ordt(u1). Then u = u2/u1 has nonnegative order,

which means

up = δ0 + δ1t
p + δ2t

2p + · · · ∼= δ0 mod t2,

with δi ∈ K̃. Also, (4) simplifies to x′ + y′up = 0. By (5)

α1 + 2α2t ∼= −(β1 + 2β2t)δ0 mod t2.

Since 2 6= 0 in K conclude that α1 = −β1δ0 and α2 = −β2δ0. Hence∣∣∣∣ α1 β1

α2 β2

∣∣∣∣ = 0 .

By Lemma 1.1, (a, b) is an inflection point of Γ.

In characteristic 0 each curve which is not a line is birationally equivalent to its

dual [Wa, p. 67]. A slight modification in v.d. Waerden’s proof shows that under a

certain restriction the same statement holds in each characteristic 6= 2.

Proposition 4.5: Let Γ be a plane curve defined over a field K of characteristic p 6= 2.

Suppose that Γ has only finitely many inflection points. Then Γ is birationally equivalent

to its dual curve Γ∗. In particular Γ has only finitely many double tangents.

Proof: The second statement follows from the first one and from Lemma 4.2. So in the

above notation it suffices to prove that K(Γ) = K(Γ∗).
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Let a0:a1:a2 be a simple noninflection point of Γ and let t be a local parameter of

Γ at a. Expand x0, x1 and x2 as power series in t. Then consider the equality

(6) f(x0, x1, x2) = 0

as an identity in t. Take the derivative of (6) with respect to t:

(7a) x∗0x
′
0 + x∗1x

′
1 + x∗2x

′
2 = 0.

Now write down the relation which expresses that x lies on TΓ,x:

(7b) x∗0x0 + x∗1x1 + x∗2x2 = 0.

Next use (1) to consider x∗0, x∗1 and x∗2 as power series in t. Take the derivative of (7b)

with respect to t and use (7a):

(8) (x∗0)
′x0 + (x∗1)

′x1 + (x∗2)
′x2 = 0.

Consider (7b) and (8) as a system of linear homogeneous equations in x0, x1 and

x2. The coefficients matrix of this system is

(9)
(

x∗0 x∗1 x∗2

(x∗0)
′ (x∗1)

′ (x∗2)
′

)
.

If the rank of (9) is 1, and, say x∗0 6= 0, then(
x∗i
x∗0

)′
=

(x∗i )
′x∗0 − (x∗0)

′x∗i
(x∗0)2

= 0, i = 1, 2.

Hence x∗i = x∗0u
p
i for some ui ∈ K̃((t)), i = 1, 2 if p 6= 0, or x∗i = x∗0ci for some ui ∈ K̃,

i = 1, 2, if p = 0. By Lemma 4.4, a is an inflection point. This contradiction to the

choice of a proves that the rank of (9) is 2.

Let h(X0, X1, X2) = 0 be an absolutely irreducible homogeneous equation for Γ∗

over K. In analogy to (1) let

x∗∗i =
∂h

∂Xi
(x∗), i = 0, 1, 2.
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Then write for x∗ the relations that correspond to (7):

x∗∗0 (x∗0)
′ + x∗∗1 (x∗1)

′ + x∗∗2 (x∗2)
′ = 0

x∗∗0 x∗0 + x∗∗1 x∗1 + x∗∗2 x∗2 = 0.

It follows that x∗∗0 :x∗∗1 :x∗∗2 coincides with the unique solution of the system (7b)&(8).

That is, x∗∗0 :x∗∗1 :x∗∗2 = x0:x1:x2. Thus Γ∗∗ is well defined and coincides with Γ. In par-

ticular K(Γ∗∗) = K(Γ). Finally, the inclusion K(Γ∗∗) ⊆ K(Γ∗) ⊆ K(Γ) implies that

K(Γ∗) = K(Γ).

Example 4.6: A plane curve with finitely many inflection points and infinitely many

double tangents in characteristic 2. Let K be a field of characteristic 2. Consider the

plane curve defined by the homogeneous polynomial

f(X0, X1, X2) = X2
0X2

1 + X2
0X2

2 + X0X
2
1X2 + X4

1 .

The corresponding nonhomogeneous polynomial is

g(X, Y ) = X2 + Y 2 + X2Y + X4.

Let (x, y) be a generic point of Γ over K. In the notation of (1)

x∗0 : x∗1 : x∗2 = x2y : 0 : x2.

Thus x∗0/x∗2 = y and x∗1/x∗2 = 0. Hence K(Γ) = K(x, y) and K(Γ∗) = K(y). Note that

K(x, y)/K(x2, y) is a purely inseparable quadratic extension while K(x2, y)/K(y) is a

separable quadratic extension. By Lemma 4.2, Γ has infinitely many double tangents.

We show that Γ has only finitely many inflection points. Let a = 1:a1:a2 be a

simple point of Γ such that a1 6= 0 and a2 6= 1. Then TΓ,a is the line X2 = a2X0.

Another point that lies on this tangent is b = 1:0:a2. Thus

f(a + bt) = (1 + t2)a2
1 + (1 + t4)a2

2 + (1 + t2)a2
1a2 + a4

1

= a2
1(1 + a2)t2 + a2

2t
4,

and the coefficient of t2 is nonzero. Hence i(Γ, TΓ,a;a) = 2. Conclude that a is a

noninflection point of Γ. By Lemma 3.1, Γ has only finitely many inflection points.
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5. Strange points.

A point p ∈ P2 is strange with respect to a curve Γ if infinitely many tangents to Γ go

through p (We also say that p is a strange point of Γ.) For example if char(K) = p 6= 0

and Γ is defined by

Xp−1
0 X2 + Xp

1 = 0

and a0:a1:a2 ∈ Γ with a0 6= 0, then a is simple and the equation for TΓ,a is a0X2 = a2X0.

Thus, all tangents to Γ at finite points go through (0, 1, 0). So (0, 1, 0) is a strange point

of Γ.

Lemma 5.1: Let Γ be a plane curve with homogeneous equation f(X0, X1, X2) = 0 and

generic point x0:x1:x2 (resp. nonhomogeneous equation g(X, Y ) = 0 and generic point

(x, y)) over K. Suppose that Γ is not a line. Then Γ has at most one strange point,

which must be K-rational. A necessary and sufficient condition for Γ to have a strange

point is that ∂f
∂X0

, ∂f
∂X1

and ∂f
∂X2

(resp., x∂f
∂x + y ∂f

∂y , ∂f
∂x and ∂f

∂y ) are linearly dependent

over K̃ (or, equivalently, over K). A point p0:p1:p2 is strange if and only if it satisfies

(2) or (3) below.

Proof: Suppose that p = p0:p1:p2 is a strange point with respect to Γ. Then infinitely

many points of Γ lie on the curve

∂f

∂X0
p0 +

∂f

∂X1
p1 +

∂f

∂X2
p2 = 0.

Since Γ is absolutely irreducible each point of Γ lies on this curve. In other words, each

tangent of Γ goes through p. In particular if x0:x1:x2 is a homogeneous generic point

for Γ, then

(1)
∂f

∂x0
p0 +

∂f

∂x1
p1 +

∂f

∂x2
p2 = 0.

Since f(X0, X1, X2) is irreducible over K̃ it divides ∂f
∂X0

p0 + ∂f
∂X1

p1 + ∂f
∂X2

p2. But the

degree of the latter polynomial is less than deg(f). Hence

(2)
∂f

∂X0
p0 +

∂f

∂X1
p1 +

∂f

∂X2
p2 = 0.
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By (2) of Section 4, condition (1) means in affine terms that

(3) −(x
∂f

∂x
+ y

∂f

∂y
)p0 +

∂f

∂x
p1 +

∂f

∂y
p2 = 0,

i.e., x∂f
∂x + y ∂f

∂y , ∂f
∂x and ∂f

∂y are linearly dependent over K̃.

Let T be a tangent to Γ and let a be a simple point of Γ that does not lie on

T . Then TΓ,a is different from T and goes through p. Hence p is uniquely determined.

Since K(x, y) is linearly disjoint from K̃ over K, the elements x∂f
∂x + y ∂f

∂y , ∂f
∂x and ∂f

∂y

are linearly dependent over K. Thus p must be K-rational.

Conversely, if Γ is not a line and x∂f
∂x + y ∂f

∂y , ∂f
∂x and ∂f

∂y are linearly dependent

over K̃, then they are linearly dependent over K and there exists a point p in P2(K)

such that (2) holds. This point is strange with respect to Γ.

Remark 5.2: Inflection points and strange points. The above proof shows that if Γ is

not a line, then a necessary and sufficient condition for Γ to have a strange point is that

the dual curve Γ∗ is a line. Proposition 4.5 therefore shows that if char(K) 6= 2, K(Γ) is

nonrational function field and Γ has only finitely many inflection points, then Γ has no

strange points. In particular strange points may appear only in positive characteristic.

Remark 5.3: Infinite strange points. Similar (but simpler) arguments to those given in

the proof of Lemma 5.1 give some details about the existence of infinite strange points:

(a) 0:0:1 is not a strange point of Γ ↔ ∂f
∂y 6= 0.

(b) 0:1:0 is not a strange point of Γ ↔ ∂f
∂x 6= 0.

(c) Γ has no infinite strange point ↔ ∂f
∂x and ∂f

∂y are linearly independent over K̃.

Lemma 5.4: Let Γ be a plane curve defined over a field K. Suppose that K(Γ)/K is

a conservative function field of one variable and of positive genus and that Γ has only

finitely many double tangents. Then Γ has no strange point.

Proof: Let Γ∗ be the dual curve to Γ. By Lemma 4.2, K(Γ)/K(Γ∗) is a purely in-

separable extension. If Γ had a strange point, then K(Γ∗) = K(t) for some tran-

scendental element t over K (Remark 5.2). Let q be a power of char(K) such that
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K̃(Γ)q ⊆ K̃(t). Then K̃(Γ) ⊆ K̃(t1/q). Therefore the genus of K̃(Γ)/K̃ would be 0

(e.g., by the Riemann-Hurwitz genus formula). Since K(Γ)/K is conservative its genus

would also be 0. This contradiction proves that Γ has no strange point.

6. Double tangents in characteristic 2.

Example 4.6 makes it necessary in characteristic 2 to give a substitute for Proposition

4.5. We show how to choose u such that the birational transformation (1) of Section 3

yields a curve with not only finitely many inflection points but also with only finitely

many double tangents.

Lemma 6.1: Let Γ be a plane curve which is defined over a field K of characteristic 2 by

the absolutely irreducible equation g(X, Y ) = 0. Suppose that Γ is not K-birationally

equivalent to a line, and that no infinite point of P2 is strange with respect to Γ. Then

K has a cofinite subset U such that for each u ∈ U the birational transformation

(1) ϕ: X ′ = X, Y ′ = Y + uX2

maps Γ onto a curve Γ′ with only finitely many double tangents.

Proof: The infinite points of Γ are algebraic. Hence the tangents to Γ at these points

are defined over K̃. Let (x, y) be a generic point of Γ over K. If one of these tangents

went through (x, y), then each point of Γ would lie on this tangent. This would imply

that Γ is a line, contrary to our assumption. Conclude that (x, y) lies on no tangent to

Γ through an infinite point.

Consider the tangent TΓ,(x,y) of Γ at (x, y):

∂g

∂x
(X − x) +

∂g

∂y
(Y − y) = 0.

Let S be the set of all simple points of Γ with tangents parallel to TΓ,(x,y). If S were

infinite, then the common point at infinity to all of these tangents would be strange

with respect to Γ. This contradiction to the assumption of the lemma shows that S is

a finite set.
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Let U the set of all u ∈ K such that

(2)
∂g

∂x
(a− x) +

∂g

∂y
(b− y + u(a2 − x2)) 6= 0

for each (a, b) in S − {(x, y)}. Since ∂g/∂y 6= 0 (Remark 5.3(a)), U is cofinite in K.

Let u ∈ U . Then ϕ maps Γ onto a plane curve Γ′. The defining polynomial of Γ′

is g′(X ′, Y ′) = g(X ′, Y ′ − uX ′2). Also, ϕ maps (x, y) onto a generic point (x′, y′) with

x′ = x and y′ = y + ux2. The partial derivatives satisfy the following relations:
∂g′

∂x′
=

∂g

∂X
(x′, y′ − ux′

2) =
∂g

∂x
and

∂g′

∂y′
=

∂g

∂y
.

Hence, the tangent TΓ′,(x′,y′) of Γ′ at (x′, y′) has the form:

(3)
∂g

∂x
(X ′ − x′) +

∂g

∂y
(Y ′ − y′) = 0.

By assumption Γ′ is not a line, and, as before, no tangent to Γ′ at an infinite point

goes through (x′, y′).

Assume that TΓ′,(x′,y′) is also a tangent to Γ′ at another simple point. Then this

point, say (a′, b′), is finite (and generic). Let (a, b) be the point of Γ which ϕ maps onto

(a′, b′). Then (x, y) 6= (a, b). We have

(4) TΓ′,(x′,y′) = TΓ′,(a′,b′).

In particular ∂g/∂b 6= 0 and TΓ′,(x′,y′) is also given by the equation

(5)
∂g

∂a
(X ′ − a′) +

∂g

∂b
(Y ′ − b′) = 0.

By (3), (4) and (5)
∂g

∂x
:

∂g

∂y
=

∂g

∂a
:

∂g

∂b
.

Hence TΓ,(x,y) is parallel to TΓ,(a,b) and therefore (2) holds for (a, b):

(6)
∂f

∂x
(a′ − x′) +

∂f

∂y
(b′ − y′) 6= 0.

On the other hand (4) implies that (a′, b′) ∈ TΓ′,(x′,y′). Substitute (a′, b′) in (3) to

obtain (6) with left hand side equals to 0. This contradiction shows that TΓ′,(x′,y′) is

not a double tangent.

Conclude from Lemma 4.2 that Γ′ has only finitely many double tangents.

Remark 6.2: The Proposition and its proof remain valid in arbitrary characteristic p

if the transformation (1) is replaced by X ′ = X, Y ′ = Y + uXp.
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7. Function fields of genus 0.

The combination of Remark 5.2 and Lemma 5.4 allows us not to worry about strange

points if the genus of F/K is positive. In the special case where the genus of F/K

is 0 this section gives an explicit plane node model for F/K with only finitely many

inflection points, with only finitely many double tangents and with no strange point.

We distinguish between two cases.

Case A: char(K) 6= 2. There are two subcases:

Case A1: F/K has a prime divisor of degree 1. Then F is a rational function field [D,

p. 50]. Any nonsingular conic section Γ with a rational point will be a model for F/K

with the desired properties. Define for example Γ by the equation Y 2 + X2 + X = 0. If

(x, y) is a generic point of Γ, then K(x, y) = K(y/x) is a rational function field. Since

deg(Γ) = 2, the curve Γ has no inflection point and no double tangent. The partial

derivatives of the homogeneous polynomial f(X0, X1, X2) = X2
2 + X2

1 + X1X0 for Γ

are ∂f/∂X0 = X1, ∂f/∂X1 = X0 + 2X1, and ∂f/∂X2 = 2X2. As they are linearly

independent Γ has no strange point (Lemma 5.1). Since their only common zero is

(0, 0, 0), Γ is nonsingular.

Case A2: F/K has no prime divisor of degree 1. Then F = K(x, y), where (x, y)

generates a conic section Γ over K with an absolutely irreducible defining polynomial

(1) g(X, Y ) = aX2 + bXY + cY 2 + dX + eY + f

with coefficients in K and without a K-zero [E, p. 139]. Use a linear transformation

on (X, Y ) to rewrite g in the form g(X, Y ) = aX2 + bY 2 + c with nonzero a, b, c ∈ K.

As in Case A1, Γ has no inflection point, no double tangent, no singular point, and no

strange point.

Case B: char(K) = 2. Again there are two subcases.

Case B1: F/K has a prime divisor of degree 1. Then F is a rational function field but

the conic sections of Case A1 will not work since they have strange point in characteristic

2. Therefore let Γ be the cubic: Y 2 + XY + X2 + X3 = 0. If (x, y) is a generic point of
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Γ over K, then K(x, y) = K(x/y). Hence Γ is a model for F/K. The tangent TΓ,(x,y) is

defined by (y +x2)X +xY = x3. It intersects Γ twice in (x, y) and once in (x2, y2). So,

(x, y) is a noninflection point of Γ. By Corollary 3.2, Γ has only finitely many inflection

points. Since the degree of Γ is 3 it can not have double tangents (e.g., by Bezout’s

theorem). Finally, the only singular point of Γ is (0, 0) and it is a node.

Case B2: F/K has no prime divisor of degree 1. In particular F is nonrational. As

in Case A2, F = K(x, y) where (x, y) generates a conic section Γ over K: g(X, Y ) = 0

with g given by (1).

Lemma 7.1: F = K(x, y) where

(2) y2 + y = ax2 + b,

with elements a and b of K such that a /∈ K2 and b 6= 0.

Proof: Compute from (1)

x
∂g

∂x
+ y

∂g

∂y
= dx + ey,

∂g

∂x
= by + d and

∂g

∂y
= bx + e.

These elements are linearly dependent over K:

(3) b(dx + ey) + e(by + d) + d(bx + e) = 0.

Indeed, since g is not a square in K̃[X, Y ] at least one of the elements b, e or d is

nonzero. The point b:e:d is strange with respect to Γ (Lemma 5.1). Apply an appropriate

projective transformation over K to transform Γ to a curve with 0:1:0 as its strange

point. This brings g to the form g(X, Y ) = aX2+cY 2+Y +f . If c = 0, then F = K(x),

a contradiction. Hence c 6= 0, and we can first multiply g by c and then replace cY by

Y to put g in the desired form.

Finally, if in (2) we had a = a2
1 with a1 ∈ K, then F = K(y + a1x). If b = 0,

then F = K(y/x). Both conclusions contradict the assumption. So, a /∈ K2 and b 6= 0.

A simple computation shows that the conic section (2) has no singular points. In

order to eliminate its strange point we apply the birational transformation

(4) x =
v

u(1 + v)
, y =

u + v

u(1 + v)
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whose inverse is

u =
1 + x + y

x
, v =

1 + x + y

x + y
.

So F/K has a a plane model Γ′ with generic point (u, v) that satisfies the following

absolutely irreducible equation of degree 4:

(5) bu2v2 + u2v + uv2 + bu2 + uv + sv2 = 0

with b 6= 0 and s = a + 1. The corresponding homogeneous polynomial is

f(U0, U1, U2) = bU2
1 U2

2 + U0U
2
1 U2 + U0U1U

2
2 + bU2

0 U2
1 + U2

0 U1U2 + sU2
0 U2

2 .

Lemma 7.2: The curve Γ′ has three singular points, 1:0:0, 0:1:0 and 0:0:1. All three of

them are nodes.

Proof: Compute the partial derivatives of f :

(6)
∂f

∂U0
= U1U2(U1 + U2),

∂f

∂U1
= U0U2(U0 + U2), and

∂f

∂U2
= U0U1(U0 + U1).

The partial derivatives have four common zeros, 1:1:1 and the above mentioned three.

However f(1, 1, 1) = a 6= 0. So Γ′ has only three singular points.

To show that 1:0:0 is a node take a generic point w0:w1:w2 of P2, a variable t and

compute the coefficient of t2 in f(1 + tw0, tw1, tw2) (by (3) of Section 1). The same

coefficient is obtained by substituting U0 = 1, U1 = w1 and U2 = w2 in f and computing

the quadratic term. The result is bw2
1 +w1w2 +sw2

2. This quadratic form is the product

of two distinct linear forms. Hence 1:0:0 is a node.

Similarly substitute U0 = w0, U1 = 1 and U2 = w2 to get the quadratic form

bw2
0 + w0w2 + bw2

2. Conclude that 0:1:0 is a node. Finally substitute U0 = w0, U1 = w1

and U2 = 1 to get sw2
0 + w0w1 + bw2

1. Again 0:0:1 is a node.

Lemma 7.3: The curve Γ′ has only finitely many inflection points and only finitely

many double tangents.

Proof: Use (6) to compute an equation for the tangent to Γ′ at a generic point (u, v) in

affine coordinates U, V :

(7) v(v + 1)U + u(u + 1)V + uv(u + v) = 0.
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Eliminate U from (7) and substitute U0 = 1, U1 = U and U2 = V in f(U0, U1, U2) and

multiply by v2(v + 1)2 to get a polynomial of degree 4 in V :

(8) bu2(u + 1)2V 4 + u(u + 1)(u + v)(u + v + 1)V 3 + w2V
2 + w1V + w0.

Since (5) is the minimal equation for (u, v) over K the coefficient of V 3 in (8) is nonzero.

Therefore (8) has in addition to the double zero v two more distinct zeros. By Bezout’s

theorem this means that TΓ′,(u,v) intersects Γ′ with multiplicity 2 at (u, v) and with

multiplicity 1 at two additional points. Hence (u, v) is a noninflection point and TΓ′,(u,v)

is not a double tangent. By Corollary 3.2 and by Lemma 4.2, Γ′ has only finitely many

inflection points and only finitely many double tangents.

To conclude the discussion of Case B2 note that the partial derivatives in (6) are

linearly independent over K̃. By Lemma 5.1, Γ′ has no strange point.

We summarize the results obtained so far in this section:

Proposition 7.4: Let F be a function field of genus 0 over a field K. Then F/K has

a projective plane node model with only finitely many inflection points, only finitely

many double tangents and without strange point.

Next we add Proposition 7.4 to the results of the previous sections to construct

an interim plane model for our function field.

Proposition 7.5: Let F be a conservative function field of one variable over an infinite

field K. Then F/K has a projective plane model with only finitely many inflection

points, only finitely many double tangents and without strange points.

Proof: By Proposition 7.4, it suffices to consider the case where the genus of F/K is

positive.

Let x be a separating transcendence element for F/K. Choose a primitive element

y for the extension F/K(x), integral over K[x], and let g(x, Y ) = irr(y, K(x)). The

equation g(X, Y ) = 0 defines a model Γ0 for F/K. If char(K) 6= 2 choose u ∈ K

such that g(X, Y + uX2) = 0 defines a model Γ with only finitely many inflection

points (Lemma 3.3). By Proposition 4.5, Γ has only finitely many double tangents. If
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char(K) = 2 use Lemma 6.1 to choose u such that in addition Γ has only finitely many

double tangents. In both cases Lemma 5.4 asserts that Γ has no strange point. It is

therefore the desired model for F/K.

Remark 7.6: (a) The conservation assumption is dispensable. Indeed we use this

assumption (via Lemma 5.4) only in characteristic 2. In this case however, it is possible

to use the transformation x′ = x and y′ = y + ux2 + xm + xq with u ∈ K, m > 2 odd,

and q even and sufficiently large to eliminate the strange point from Γ.

(b) Proposition 7.5 holds also for finite K. The only case in which the proof of Proposi-

tion 7.5 may break is when the genus is positive and char(K) = 2, since then there may

be no transformation (1) of Section 6 that satisfies (2) of Section 6. However, we may

replace (1) of Section 6 by the transformation: X ′ = X, Y ′ = Y +h(X2) and prove, as

in Lemma 3.3 and Lemma 6.1, that for all but finitely many h ∈ K[X], the transformed

curve Γ′ has only finitely many inflection points and only finitely many double tangents.

(c) The case of genus 0. If the genus of F is zero, then F/K has a separating transcen-

dence element x such that [F : K(x)] ≤ 2. Hence, F/K(x) is Galois and therefore x is a

stabilizing element for F/K. Thus, the models constructed for the proof of Proposition

7.4 are actually dispensable for the proof of Theorem F. Nevertheless, taken into account

(a) and (b), these models complete the proof of Proposition 7.5 with no restriction on

F nor on K.
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8. A smooth model in a higher dimensional projective space.

Let F be a conservative function field of one variable over an infinite field K. We lift the

plane model of F/K that Proposition 7.5 gives to a smooth model in a projective space

Pn with only finitely many inflection points and only finitely many double tangents.

Consider the projective space Pn of dimension n. Present each point y of Pn by

homogeneous coordinates y0:y1: · · · :yn. If y is a generic point of a curve ∆ defined over

a field K with function field F , we always choose the coordinates yi to lie in F . In

particular the higher derivatives of yi with respect to each separating transcendental

element t for K̃F/K̃ are well defined. As for plane curves denote the tangent to ∆ at

a simple point a by T∆,a.

Lemma 8.1: Let P be a prime divisor of K̃F/K̃ whose center is a simple point a of ∆.

Then rank(y(P ) y′(P )) = 2 and T∆,a = {u0y(P ) + u1y′(P )| u0:u1 ∈ P1}.

Proof: Let t be a local parameter at a. Then t generates the maximal ideal M of

the local ring O∆,a of ∆ at a. Without loss assume that y0 = 1. Then also yi − ai,

i = 1, . . . , n, generate M . As yi−ai
∼= y′i(P )t mod t2 (by (1g) of Section 2), there exists

i between 1 and n such that y′i(P ) 6= 0. Since y′0(P ) = 0 the (n + 1)-tuples y(P ) and

y′(P ) are not proportional. In projective terms, this means that the points y(P ) and

y′(P ) are distinct.

Let fi(Y), i = 1, . . . ,m be homogeneous generators of the ideal of K̃[Y0, . . . , Yn]

consisting of all polynomials that vanish on ∆. Then the system of linear equations∑n
j=0

∂fi

∂aj
Yj = 0, i = 1, . . . ,m defines T∆,a. Take the derivative of fi(y0, . . . , yn) = 0

with respect to t at P to conclude that
∑n

i=0
∂fi

∂aj
y′j(P ) = 0, i = 1, . . . ,m and that y′(P )

lies on T∆,a. Since y(P ) and y′(P ) are distinct T∆,a is the line that goes through them.

Corollary 8.2: Let P and Q be prime divisors of K̃F/K̃ with simple centers a and

b of ∆. Then

T∆,a = T∆,b ⇐⇒ rank(y(P ) y′(P ) y(Q) y′(Q)) = 2

T∆,a ∩ T∆,b 6= ∅ ⇐⇒ rank(y(P ) y′(P ) y(Q) y′(Q)) ≤ 3

T∆,a ∩ T∆,b = ∅ ⇐⇒ rank(y(P ) y′(P ) y(Q) y′(Q)) = 4.

30



Let P be a prime divisor of K̃F/K̃ whose center a at ∆ is a simple point. We say

that a is an inflection point if

(1) rank(y(P ) y′(P ) y[2](P )) = 2.

By Lemma 2.1, this concept is well defined. By Lemma 3.1, this definition agrees in the

case n = 2 with the old one made in Section 1.

Proposition 8.3: Each conservative function field of one variable F/K has a projective

smooth model ∆ with only finitely many inflection points and with only finitely many

double tangents.

Proof: Let Γ be a projective plane model for F/K with only finitely many inflection

points, only finitely many double tangents and without strange point (Proposition 7.5

and Remark 7.6(b)). Let x = x0:x1:x2 be a generic point of Γ with coordinates in

F . For i = 0, 1, 2 let yi = xi and choose y3, . . . , yn in F such that y = y0:y1: · · · :yn

generates a smooth curve ∆ in Pn.

To choose y3, . . . , yn let g be the genus of F/K and choose a positive divisor of

F/K such that (yi) + A ≥ 0 for i = 0, 1, 2 and deg(A) ≥ 2g + 1 (e.g., A = m(y0)∞ +

m(y1)∞+ m(y2)∞ for m sufficiently large; here (yi) is the divisor of yi and (yi)∞ is the

divisor of poles of yi in F .) As Γ is not a line y0, y1, y2 are linearly independent over K.

Extend y0, y1, y2 to a basis y0, . . . , yn of the linear space LK(A) = {z ∈ F | (z)+A ≥ 0}.

As F/K is conservative y0, . . . , yn is also a basis of L
K̃

(A) [D, p. 144]. Hence A is a

very ample divisor [H, p. 308] and the point y generates a smooth projective curve ∆

in Pn which is obviously defined over K.

By Lemma 3.1, rank(x x′ x[2]) = 3. Hence rank(y y′ y[2]) = 3. Therefore

rank(y(P ) y′(P ) y[2](P )) = 3 for all but finitely many prime divisors of K̃F/K̃. This

means that ∆ has only finitely many inflection points.

Let ϕ: ∆ → Γ be the birational morphism defined by ϕ(y) = x. Each c ∈ ∆

determines a unique prime divisor P of K̃F/K̃ such that y(P ) = c. Then a = ϕ(c) =

x(P ). If c0 6= 0 or c1 6= 0 or c2 6= 0 then a = c0:c1:c1. Let ∆0 be the set of all points c

of ∆ with c = 0:0:0:c3: · · · :cn. As y /∈ ∆0 this is a finite set. Take a cofinite subset ∆1

of ∆−∆0 on which ϕ is biregular.
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At this point assume without loss that n ≥ 3; otherwise take ∆ = Γ. By a theorem

of Samuel ∆ has no strange point [H, p. 312]. In particular ∆ has only finitely many

tangents that go through a point of ∆ − ∆1. Remove each c from ∆1 such that T∆,c

goes through a point of ∆−∆1. Denote the resulting cofinite subset of ∆1 by ∆2.

Consider Γ2 = ϕ(∆2). Let Γ3 be the set of all points a ∈ Γ2 such that TΓ,a is

neither a double tangent nor does it go through a singular point of Γ or through a point

of Γ−Γ2. Since Γ has no strange point Γ3 is a confinite subset of Γ2. Let ∆3 = ϕ−1(Γ3).

To conclude the proof we show that no tangent to ∆ at a point of ∆3 is double.

Indeed let c ∈ ∆3 and let P and a be as above. Since ϕ is biregular on ∆3 the

point a of Γ is simple. Assume that ∆ has another point d such that T∆,c = T∆,d. Let

Q be the prime divisor of FK̃/K̃ with center d. By Corollary 8.2,

(2) rank(y(P ) y′(P ) y(Q) y′(Q)) = 2.

As d ∈ T∆,c there exist α, β ∈ K̃ such that d = αy(P ) + βy′(P ) (Lemma 8.1). Also

d ∈ ∆1. In particular d0:d1:d2 6= 0:0:0. Hence, b = ϕ(d) = d0:d1:d2. Therefore

b = αx(P ) + βx′(P ); that is b ∈ TΓ,a. As a ∈ Γ3 the tangent TΓ,a is not double, b is

simple on Γ and belongs to Γ2. On the other hand a 6= b (since c ∈ ∆1 and c 6= d) and

by (2), rank(x(P ) x′(P ) x(Q) x′(Q)) = 2. Hence TΓ,a = TΓ,b; that is, TΓ,a is a double

tangent.

This contradiction proves that T∆,c is not a double tangent.
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9. Projection from a point.

Each point o of Pn defines a morphism π from Pn − o into Pn−1. To write π explicitly

present o as the intersection of n hyperplanes:

(1)
n∑

j=0

αijYi = 0, i = 0, . . . , n− 1.

with rank(αij) = n. If y 6= 0, then the coordinates of x = π(y) are

(2) xi =
n∑

j=0

αijyj , i = 0, . . . , n− 1.

Other presentation of o as an intersection of n hyperplanes results in multiplying the

matrix (αij) by a nonsingular n × n matrix. So π is determined by o only up to a

projective transformation of Pn−1. As all the geometrical concepts we consider are

invariant under such transformations, this presents no essential difficulty in the sequel.

If o is a K-rational point, choose αij in K. Thus π is defined over K.

Suppose that y generates a curve ∆ over K in Pn. If o does not lie on ∆, then

the restriction of π to ∆ is a morphism which maps ∆ onto a curve Γ in Pn−1 defined

over K with generic point x.

Lemma 9.1: In the above notation let P1, . . . , Pr be prime divisors of K̃F/K̃ and let

k1, . . . kr be nonnegative integers that satisfy condition (7) in Lemma 2.1. Let

(3) d = rank(x[kρ]
i (Pρ))i,ρ and e = rank(y[kρ]

j (Pρ))j,ρ.

If o belongs to the linear space L spanned in Pn by the points y[kρ](Pρ), ρ = 1, . . . , r,

then d = e− 1, otherwise d = e.

Proof: Lemma 2.1 asserts that the ranks in (3) are well defined. By (2)

(4) x
[kρ]
i (Pρ) =

n∑
j=0

αijy
[kρ]
j (Pρ) i = 0, . . . , n− 1; ρ = 1, . . . , r.

Rewrite (4) in terms of matrices:

(5) (x[kρ]
i (Pρ))i,ρ = (αij)i,j(y

[kρ]
j (Pρ))j,ρ .
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Let W (resp. V ) be the linear space in Ån+1 (resp. Ån) generated by the columns

y[kρ](Pρ) (resp. x[kρ](Pρ)), ρ = 1, . . . , r. Consider the matrix (αij) as a linear map

α: K̃n+1 → K̃n that operates on columns of length n + 1 by multiplication from the

left. Then α maps W onto V .

If o /∈ L, then α is injective on W . Hence e = dim(W ) = dim(V ) = d. Otherwise

the kernel of the restriction of α to W has dimension 1 and the rank decreases by 1.

The following lemma is a geometric reinterpretation of (1).

Lemma 9.2: Let b and c be two points of Pn different from o. Then π(b) = π(c) if

and only if o, b and c lie on the same line.

Lemma 9.3: Let D be a finitely generated integral domain over a field K. Let P be a

prime ideal of D. Then the integral closure of DP is a finitely generated DP -module.

Proof: Let D′ be the integral closure of D. By [L1, p. 120] D′ = Dz1 + · · · + Dzm for

some z1, . . . , zm ∈ D′. The local ring D′
P of D′ with respect to the multiplicative set

D − P is the integral closure of DP [L2, p. 8]. It satisfies D′
P = DP z1 + · · · + DP zm.

The following lemma establishes well known conditions under which π maps a

given simple point of ∆ onto a simple point of Γ.

Lemma 9.4: Let b be a simple point of ∆ such that the line through o and b neither

tangents ∆ nor bisects it. If o /∈ ∆, then the restriction of π to ∆ is a birational

morphism which is biregular at b, the point a = π(b) is simple on Γ and π(T∆,b) = TΓ,a.

If in addition o ∈ Pn(K), then Γ is a model of F/K.

Proof: Let S (resp., R) be the local ring of ∆ (resp., Γ) at b (resp., a). Then S is a

discrete valuation ring, R is a local ring and R ⊆ S. Denote the normalized valuation

of K̃F/K̃ that corresponds to S by w. Denote the maximal ideal of S (resp., R) by N

(resp., M). Let t be a generator of N .

By Lemma 9.2, b is the only point of ∆ that lies over a. Hence S is the only

valuation ring of K̃F that contains R. Therefore S is the integral closure of R in K̃F
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[L1, p. 14]. By Lemma 9.3, S is a finitely generated R-module.

Let P the prime divisor of K̃F/K̃ with center b. By (2), x′i(P ) =
∑n

j=0 αijy
′
j(P ),

i = 0, . . . , n− 1. If x′i(P ) = 0 for all i, then y′(P ) = o. By Lemma 8.1, o would lie on

T∆,b, a contradiction. Thus x′i(P ) 6= 0 for some i between 0 and n − 1. Deduce from

the expansion xi = ai + x′i(P )t + · · · ((1g) of Section 2) that w(xi − ai) = 1.

It follows that w is the unique valuation of K̃F/K̃ that lies over its restriction to

K̃(Γ) and that w is unramified. Conclude from the formula
∑

eifi = n that K̃(Γ) =

K̃F . Thus the restriction of π to ∆ is a birational morphism.

Also, N = MS and S/N = K̃ = R/M . Hence S = R + MS. By Nakayama’s

Lemma, S = R. Hence R is a discrete valuation ring, a is a simple point of Γ and the

restriction of π to ∆ is biregular at b. Finally, if o ∈ Pn(K), then K(Γ) ⊆ F . As F

is linearly disjoint from K̃ over K it is linearly disjoint from K̃(Γ) over K(Γ). Hence

[F : K(Γ)] = [K̃F : K̃(Γ)] = 1. Conclude that K(Γ) = F and Γ is a model of F/K.

10. A plane model.

Let F be a conservative function field of one variable over an infinite field K. We start

in this section with the smooth model ∆ for F/K in Pn of Proposition 8.3 and project it

from a suitable K-rational point onto a model Γ in Pn−1 having the same properties as

∆ except for n = 3 where Γ is allowed to have nodes as singularities. It is essential for

the induction process to keep track of one simple point with extra properties. Lemma

10.1 proves the existence of this point on ∆.

Lemma 10.1: Let ∆ be a smooth curve defined over K in Pn with only finitely many

inflection points and only finitely many double tangents. Suppose that n ≥ 3 and that

∆ is contained in no plane. Then ∆(K̃) has a noninflection point a such that T∆,a is

not a double tangent and T∆,a intersects only finitely many tangents to ∆.

Proof: Denote the set of all noninflection points a of ∆ such that T∆,a is not a double

tangent by ∆0. By assumption ∆0 is a cofinite subset of ∆. We first prove that ∆0

contains points a and b such that T∆,a ∩ T∆,b = ∅.
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Let x be a generic point of ∆ over K̃. Denote the set of all pairs (a,b) ∈ ∆×∆

such that T∆,a ∩ T∆,b 6= ∅ by Λ. By Corollary 8.2, Λ is also defined by the condition

(1) rank(x(P) x′(P) x(Q) x′(Q)) ≤ 3.

where P (resp., Q) is the prime divisor of K̃F/K̃ with center a (resp., b).

Assertion A: Λ is a closed subset of ∆ × ∆. It suffices to find for given a,b ∈ ∆

an open neighborhood U = U(a,b) of (a,b) and a closed subset C = C(a,b) of ∆ × ∆

such that Λ ∩ U = C ∩ U . Then ∆×∆−Λ =
⋃

(a,b)∈∆×∆(U(a,b) −C(a,b)) is open and

therefore Λ is closed.

Indeed let P and Q be as before. Take a homogeneous coordinate system x0: · · · :xn

for x such that x0(P ): · · · :xn(P ) is a homogeneous coordinate system for a. Then x′i(P )

is finite, i.e., x′i = fi(x)/g(x) where fi, g are homogeneous polynomials and g(a) 6= 0.

Similarly there exists homogeneous coordinate system ux0: · · · :uxn for x, with u ∈ K̃F

such that (ux0)(Q): · · · :(uxn)(Q) is a homogeneous coordinate system for b, and there

exist homogeneous polynomials p0, . . . , pn, q such that (uxi)′ = pi(x)/q(x) and q(b) 6= 0.

Condition (1) becomes

(2) rank(a f(a)/g(a) b p(a)/q(a)) ≤ 3,

which means that all 4× 4 subdeterminants of the (n + 1)× 4 matrix

(a f(a)/g(a) b p(a)/q(a))

vanish. Take U to be the open subset of ∆ ×∆ determined by the condition g(a) 6= 0

and q(b) 6= 0. Take C as the closed subset of ∆×∆ determined by the vanishing of all

the above 4× 4 determinants. Then Λ ∩ U = C ∩ U , as desired.

Remark: If we hold a ∈ ∆ fixed, the same argument shows that the set of all b ∈ ∆

such that T∆,a ∩ T∆,b 6= ∅ is closed.

Assertion B: Λ is a proper subset of ∆. Otherwise choose a,b ∈ ∆ such that T∆,a 6=

T∆,b. Let s be the intersection point of T∆,a and T∆,b and let E be the plane spanned
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by them. Choose a point c ∈ ∆− E. Denote the intersection points of T∆,c with T∆,a

and T∆,b, respectively, by s1 and s2. Since T∆,c is not contained in E the points s1 and

s2 coincide with s. This means that infinitely many tangents to ∆ go through s. In

other words, s is a strange point of ∆. This contradiction to Samuel’s theorem [H, p.

312] proves our assertion.

Since ∆ × ∆ is an irreducible variety dim(Λ) ≤ 1. In particular there exists

(a,b) ∈ ∆0×∆−Λ. Thus a×∆ 6⊆ Λ. Since a×∆ is an irreducible curve (in Pn×Pn)

the set (a×∆) ∩ Λ is finite. Conclude that T∆,a intersects only finitely many tangents

to ∆.

Corollary 10.2: Let ∆ be a smooth curve as in Lemma 10.1. Denote the union of

all lines that intersect ∆ at two distinct points whose tangents intersect by W . Then

W is contained in a K-closed set of dimension at most 2.

Proof: It suffices to prove that D = {(a,b) ∈ ∆ ×∆| T∆,a ∩ T∆,b 6= ∅} is a K-closed

set of dimension at most 1. Indeed, let f1, . . . , fm ∈ K[X0, . . . , Xn] be homogeneous

polynomials that generate the ideal of all polynomials which vanish on ∆. For (a,b) ∈

∆×∆ consider the 2m× (n+1) matrix M whose ith row is (∂fi/∂a0 · · · ∂fi/∂an) for

i = 1, . . . ,m and (∂fi/∂b0 · · · ∂fi/∂bn) for i = m + 1, . . . , 2m. Then (a,b) ∈ D if and

only if rank(M) ≤ n, i.e., all (n + 1)× (n + 1) subdeterminants of M vanish. Conclude

that D is K-closed.

Let a be a point of ∆ such that T∆,a intersects only finitely many tangents of ∆

(Lemma 10.1). In particular there exists b ∈ ∆ such that T∆,a ∩ T∆,b = ∅. Conclude

that D is a proper subset of ∆×∆ and therefore dim(D) ≤ 1.

Lemma 10.3: Let ∆ be a smooth curve in P3 defined over K. Suppose that ∆ is not

contained in a plane. Then, for each a ∈ ∆(K̃) the union of all secants of ∆ which

intersect T∆,a is contained in a closed set of dimension at most 2.

Proof: Let b be a point of T∆,a different from a. Choose c ∈ ∆(K̃)−T∆,a. Then choose

a point d ∈ ∆(K̃) which does not belong to the plane spanned by T∆,a and c. In other

words, det(a b c d) 6= 0. Conclude that dim{(c,d) ∈ ∆×∆| det(a b c d) = 0} ≤ 1.
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Hence

dim{u0c + u1d| c,d ∈ ∆, det(a b c d) = 0 and u0:u1 ∈ P1} ≤ 2,

which proves the Lemma.

We are now ready to project a smooth n-dimensional projective curve one dimen-

sion lower.

Lemma 10.4: Let ∆ be a smooth curve in Pn, n ≥ 3, defined over K with a function

field F . Suppose that a ∈ ∆(K̃) is a noninflection point such that

(a1) T∆,a is not a double tangent, and

(a2) T∆,a intersects only finitely many tangents of ∆.

Then Pn has a nonempty open set U such that for each o ∈ U(K) the projection

π: Pn → Pn−1 from o maps ∆ onto a curve ∆̄ such that

(b1) ∆̄ is birationally equivalent to ∆ over K and π(a) is a simple point of ∆̄,

(b2) π(a) is a noninflection point,

(b3) T∆̄,π(a) is not a double tangent,

(b4) if n ≥ 4, then ∆̄ is a smooth curve; if n = 3, then ∆̄ is a node curve,

(b5) T∆̄,π(a) goes through no singular point of ∆̄, and

(b6) if n ≥ 4, then T∆̄,π(a) intersects only finitely many tangents of ∆̄.

Proof: Let y = y0:y1: · · · :yn be a generic point of ∆ over K and let F = K(y) be its

function field. Let P be the prime divisor of K̃F/K̃ with y(P ) = a. After having chosen

o we let x = π(y). Then ā = π(a) = x(P ).

For each i between 1 and 6 we construct a proper closed subset Ci of Pn such

that if o ∈ Pn(K)− Ci, then condition (bi) is fulfilled. Assume without loss that ∆ is

contained in no plane.

Proof of (b1): Denote the set of all secants of ∆ that go through a by Sec(∆,a). Let

C1 = ∆ ∪ T∆,a ∪ Sec(∆,a). Then C1 is a proper closed subset of Pn of dimension 2. If

o ∈ Pn(K)− C1, then π is a birational morphism over K and ā is a simple point of ∆̄

(Lemma 9.4).
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Proof of (b2): By (1) of Section 8, rank(y(P ) y′(P ) y[2](P )) = 3. This means that

the points y(P ), y′(P ) and y[2](P ) span a plane E in Pn. If o /∈ C2 = C1 ∪ E, then

rank(x(P ) x′(P ) x[2](P )) = 3 (Lemma 9.1). Hence, ā is a noninflection point of ∆̄.

Proof of (b3): Let b1, . . . ,bm the only points of ∆ with tangents that intersect T∆,a.

Let Qi be the prime divisor of K̃F/K̃ such that y(Qi) = bi, i = 1, . . . ,m. By Corollary

8.2

(3) rank(y(P ) y′(P ) y(Qi) y′(Qi)) ≤ 3, i = 1, . . . ,m.

Thus, for each i between 1 and m the points y(P ), y′(P ), y(Qi) and y′(Qi) span a linear

variety Ei of dimension at most 2. Therefore the dimension of C3 = C2 ∪E1 ∪ · · · ∪Em

is 2.

Suppose that o /∈ C3. Assume that ∆̄ has a simple point b̄ different from ā such

that T∆̄,ā = T∆̄,b̄. Let Q be the prime divisor of K̃F/K̃ such that x(Q) = b̄. By

Corollary 8.2,

(4) rank(x(P ) x′(P ) x(Q) x′(Q)) = 2.

Let b be the unique point of ∆ such that π(b) = b̄. By Lemma 9.1

(5) rank(y(P ) y′(P ) y(Q) y′(Q)) ≤ 3.

As a 6= b condition (a1) asserts that T∆,a 6= T∆,b. Hence Corollary 8.2 strengthens (5)

to

(6) rank(y(P ) y′(P ) y(Q) y′(Q)) = 3.

By the choice of b1, . . . ,bm and by Corollary 8.2, Q = Qi for some i between 1 and

m. Since o /∈ Ei, Lemma 9.1 implies that the left hand side of (4) equals 3. This

contradiction proves that T∆̄,ā is not a double tangent.

Proof of (b4): The union Tan(∆) of all tangents to ∆ has dimension 2. The union

Sec(∆) of all secants of ∆ is contained in a closed set of dimension 3. The union
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Tri(∆) of all multisecants of ∆ (i.e., lines that intersect ∆ in at least three distinct

points) is contained in a closed set of dimension at most 2 [H, p. 314]. The union W

of lines that intersect ∆ at two distinct points such that the tangents at these points

intersect is contained in a closed set of dimension at most 2 (Lemma 10.2). If n ≥ 4 let

C4 = C3∪Tan(∆)∪Sec(∆). If n = 3 let C4 be the closure of C3∪Tan(∆)∪Tri(∆)∪W .

Its dimension is at most 2.

Suppose that o /∈ C4. If n ≥ 4, then by Lemma 9.4, each point of ∆̄ is simple. If

n = 3, then the only singular points of ∆̄ are nodes [H, p. 313].

Indeed, since o /∈ Tan(∆), a point c̄ ∈ ∆̄ is singular only if π(c1) = π(c2) = c̄ for

two distinct points c1, c2 ∈ ∆ (Lemma 9.4). By Lemma 9.2, the line L through c1 and

c2 goes through o. Since o /∈ Tri(∆), it goes through no other point of ∆. As o /∈ W

the tangents T∆,c1 and T∆,c do not intersect. So ∆̄ has exactly two distinct tangents

π(T∆,c1) and π(T∆,c2) at c̄. This means that c̄ is a node [H, p. 310].

Proof of (b5): As ∆̄ is smooth for n ≥ 4 we have to prove (b5) only for n = 3.

The union of all secants of ∆ which intersect T∆,a is contained in a closed set V of

dimension at most 2 (Lemma 10.3). Let C5 = C4∪V and suppose that o /∈ C5. Assume

that T∆̄,ā goes through a singular point c̄ of ∆̄. By Lemma 9.4 and since o /∈ Tan(∆)

there exist two distinct points c1 and c2 of ∆ such that π(c1) = π(c2) = c̄. In particular

o lies on the line L through c1 and c2 (Lemma 9.2). Since π(T∆,a) = T∆̄,ā (Lemma 9.4)

there exists c3 ∈ T∆,a such that π(c3) = c. By Lemma 9.2, c3 ∈ L. Thus T∆,a intersects

the secant L of ∆. It follows that L ⊆ V and therefore o /∈ L. This contradiction proves

that T∆̄,ā goes through no singular point of ∆̄, as desired.

Proof of (b6): Choose a point b0 ∈ ∆(K̃) − {b1, . . . ,bm} (we use the notation of the

proof of (b3)). Let Q0 be the prime divisor of K̃F/K̃ such that y(Q0) = b0. By the

coice of b1, . . . ,bm the tangents at a and b0 do not intersect:

(7) rank(y(P ) y′(P ) y(Q0) y′(Q0)) = 4

(Corollary 8.2). Therefore the tangents span a three dimensional space S in Pn. Con-

sider the three dimensional closed subset C6 = C5 ∪ S of Pn. Suppose that o /∈ C6. By
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Lemma 9.1 and by (7)

(8) rank(x(P ) x′(P ) x(Q0) x′(Q0)) = 4.

By the remark in the proof of Lemma 10.1 which proceeds Assertion A, the set ∆̄0 of

all b̄ ∈ ∆̄ such that T∆̄,b̄ intersects T∆̄,ā is closed. As π(b0) does not belong to ∆̄0 (by

(8) and Corollary 8.2) this set is finite.

Everything is now ready for the proof of Theorem F of the introduction.

Theorem 10.5: Let F be a conservative function field of one variable over an infinite

field K. Then F/K has a projective plane node model Γ with only finitely many

inflection points, only finitely many double tangents, and without strange point.

Proof: By Proposition 7.4 we may assume that the genus of F/K is positive. Let ∆ be a

smooth model in Pn for F/K with only finitely many inflection points and only finitely

many double tangents (Proposition 8.3). Assume without loss that ∆ is contained in

no plane. In particular n ≥ 3. Let a ∈ ∆(K̃) be a noninflection point such that T∆,a

is not a double tangent and it intersects only finitely many tangents to ∆ (Lemma

10.1). Choose a point o ∈ Pn(K) that satisfies condition (b) of Lemma 10.4. As in

that Lemma, let π: Pn → Pn−1 be the projection from o and let ∆̄ = π(∆). If n = 3,

take Γ = ∆̄. If n ≥ 4, then ∆̄ and ā satisfy the assumptions of Lemma 10.4. Now use

induction on n to conclude that F/K has a projective plane node model Γ with only

finitely many inflection points and only finitely many double tangents.

In each case, Lemma 5.4 assures that Γ has no strange point.

We have mentioned in the introduction that Theorem 10.5 implies our main result:

Theorem 10.6: Let F be a conservative function field of one variable over an infinite

field K. Then F/K is a stable extension.

Since every function field of one variable over a perfect field is conservative [D, p.

132] Theorem 10.6 can be reformulated for perfect fields:

Theorem 10.7: Every infinite perfect field K is stable in dimension 1.
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11. Function fields of higher transcendence degree.

Proposition 8.3 implies that each conservative function field F/K of one variable has a

model normal over K̃. Conversely, if a function field F/K has a normal model, then it

is conservative [R, Thm. 12].

In accordance with this equivalence we say that a finitely generated regular ex-

tension F/K is conservative if it has a normal model, i.e., there exists a projective

variety V defined over K whose function field is F such that each algebraic point of

V is normal (over K̃). As with curves, we use the term variety for V only when it

is absolutely irreducible. With this interpretation of conservation theorem 10.6 can be

generalized to function fields of several variables.

In the following Proposition we denote the hyperplane u0X0+u1X1+· · ·+unXn =

0 by Hu. A theorem of Bertini says that if V is a nonsingular variety, then for each

u in a certain nonempty open subset of Pn, V ∩Hu is also a nonsingular variety ([H,

p. 179] or [L1, p. 217]). To prove the analogous result for normal varieties let us first

recall some concepts and results from commutative algebra.

Consider a Noetherian local ring A with a maximal ideal P and let M be a nonzero

finitely generated A-module. The (Krull) dimension of A is the maximal length of a

descending sequence of prime ideals of A. The dimension of M is the dimension of the

quotient ring A/Ann(M), where Ann(M) = {a ∈ A| aM = 0}. A sequence a1, . . . , am

of elements of P is M-regular if ai is not a zero divisor of M/(a1M + · · · + ai−1M),

i = 1, . . . ,m. The depth of M is the length of the maximal regular sequence of elements

of P . It is known that depth(M) ≤ dim(M) ([G1, p. 33] or [M, p. 100]). Let therefore

codepth(M) = dim(M)− depth(M).

Lemma 11.1: With the above assumptions, we have:

(a) For each M -regular element a ∈ P , we have codepth(M) = codepth(M/aM) [G1,

p. 36].

(b) If B is another local Noetherian ring and ρ: B → A is a local homomorphism (i.e.,

ρ maps the maximal ideal of B into P ) and M is also finitely generated over B

(via ρ), then codepthA(M) = codepthB(M) [G1, p. 36].
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(c) If B is a local Noetherian domain and b is a nonzero element of the maximal ideal

of B, then for A = B/bB we have codepthB(B) = codepthA(A).

Proof of (c): Just notice that b is a B-regular element and use (a) and (b) to conclude

that codepthB(B) = codepthB(B/bB) = codepthA(A).

These notions apply in particular to local rings of varieties. If x is a point on a

variety V defined over K we denote its local ring (over K̃) by OV,x. The dimension of

OV,x is equal to dim(V ) minus dimK(x). The following criterion for V to be normal is

due to Krull ([G2, p. 108] or [M, p. 125]):

Lemma 11.2: A variety V of dimension r is normal if and only if for each x ∈ V we

have:

(a) V is nonsingular in codimension 1 (i.e., its singular locus, Vsing, has dimension at

most r − 2), and

(b) if dim(OV,x) ≥ 2, then depth(OV,x) ≥ 2.

Note that (a) replaces the equivalent condition of [G2] that if dim(OV,x) = 1, then

OV,x is regular.

Proposition 11.3: Let V be a normal variety in Ån (resp. Pn) of dimension r ≥ 2

defined over a field K. Then there exists a nonempty open subset U of Pn such that for

each u ∈ U the intersection V ∩Hu is a normal variety in Ån (resp. Pn) of dimension

r − 1 defined over K(u).

Proof: It suffices to to prove the Lemma only in the affine case. Let x be a generic

point of V over K. If u1, . . . , un are algebraically independent elements over K and

u0 = −
∑n

i=1 uixi, then, by [L1, p. 212], V ∩Hu is a variety of dimension r− 1 defined

over K(u) (Here we put X0 = 1 and consider Hu as a hyperplane in Ån.) Apply

Bertini’s principle to find a nonempty open subset U1 of Pn such that V ∩ Hu′ is a

variety of dimension r − 1 defined over K(u′) for each u′ ∈ U1 [FJ3, p.120].

Also, each point y ∈ V ∩Hu is simple on V if and only if it is simple on V ∩Hu

[L1, p. 217]. Let f1, . . . , fm be a system of generators for the ideal of all polynomials

in K[X1, . . . , Xn] that vanish on V . Then for y to be simple on V (resp., on V ∩Hu)
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means that the rank of the Jacobian matrix (∂fi/∂yj) (resp., the same matrix with the

extra line (uj)1≤j≤n) is n − r (resp., n − r + 1). Apply elimination of quantifiers over

algebraically closed fields to find an open subset U2 of U1 such that for each u′ ∈ U2

and for each y ∈ V ∩Hu′ the point y is simple on V if and only if it is simple on V ∩Hu′

[FJ3, p. 103].

If Vsing is empty, let U3 = U2, otherwise let Vsing,i, i = 1, . . . ,m be the K̃-

irreducible components of Vsing. By Lemma 11.2(a), dim(Vsing,i) ≤ r − 2. Choose a

K̃-rational point ai of Vsing,i. Let U3 be the set of all u ∈ U2 such that ai /∈ Hu,

i = 1, . . . ,m. Then U3 is a nonempty open set and for each u ∈ U3 the intersection

Vsing ∩Hu has dimension at most r− 3 [L1, p. 36]. Hence V ∩Hu satisfies condition (a)

of Lemma 11.2.

To deal with condition (b) of Lemma 11.2 consider for each s ≥ 0 the closed subset

Zs(V ) = {y ∈ V | codepth(OV,y) > s} of V (This is a special case of Theorem 12.1.1(v)

of [G3, p. 174] in which X is the variety V , Y = Spec(K), f is the constant map and

F = OV is the structure sheaf of V .) If s ≥ r − 1, then Zs(V ) is empty. Recall that

the codimension of a closed subset Z of V is given by codim(Z, V ) = dim(V )− dim(Z)

[Ha, p. 128]. By Proposition 5.7.4(i) of [G2, p. 104] (or directly from the definitions),

condition (b) of Lemma 11.2 is equivalent to the following one:

(1) codim(Zs(V ), V ) > s + 2 for each 0 ≤ s ≤ r − 2.

Let U4 be a nonempty open set consisting of all u ∈ U3 such that for each s between

0 and r − 2, if Zs(V ) is nonempty, then Hu contains no K̃-irreducible component of

Zs(V ).

To conclude the proof of the proposition we prove that if u ∈ U4, and W = V ∩Vu,

then W satisfies condition (1). Indeed, let s ≥ 0 such that Zs(V ) is nonempty. If y ∈ W ,

then OW,y = OV,y/(u0 + u1x1 + · · ·+ unxn)OV,y. By lemma 11.1(c), codepth(OW,y) =

codepth(OV,y). Hence Zs(W ) = Zs(V ) ∩ Hu. Conclude that codim(Zs(W ),W ) =

codim(Zs(V ), V ) > s + 2 [L1, p. 36], as desired.

Theorem 11.4: Let F be a finitely generated regular conservative extension of an

infinite field K. Then F/K is a stable extension.
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Proof: Do induction on r = trans.deg(F/K). Theorem 10.6 covers the case r = 1. So

suppose that r ≥ 2.

Let V be a normal model for F/K in Pn. Assume without loss that V is contained

in no hyperplane. Take a generic point x = 1:x1: · · · :xn of V over K such that F = K(x).

With U as in Proposition 11.3, choose u ∈ U such that u0 is transcendental over

K and u1, . . . , un ∈ K. Then V ∩ Hu is a normal variety of dimension r − 1 over

K(u0). If x′ is a generic point of V ∩ Hu over K(u0), then K(u0,x′) = K(x′) and

trans.deg(K(x′)/K) = r. So, we may identify x′ with x. In particular we identify

K(u0) as a subfield of F and find that F is a regular conservative extension of K(u0).

Now use induction on r to choose a stabilizing basis t1, . . . , tr for F/K(u0). The

elements u0, t1, . . . , tr−1 form a stabilizing basis for F/K. Conclude that F/K is stable.

12. A normal PAC extension of a Hilbertian field.

Recall that a field N is PAC if every nonvoid absolutely irreducible variety defined over

N has an N -rational point [FJ3, p. 129]. Section 4 of [FJ2] applies the stability of fields

of characteristic 0 to construct to each countable Hilbertian field K of characteristic

0 a normal PAC extension N which is itself Hilbertian. This section generalizes the

construction to the case where char(K) > 0.

Let f ∈ K[T,X] be an absolutely irreducible polynomial such that ∂f/∂X 6= 0.

Let F = K(t, x), with f(t, x) = 0, be the function field of the plane curve f(T,X) = 0.

We say that f is stable with respect to X if G(f(t,X),K(t)) = G(f(t, X), K̃(t))

[FJ3, p. 186]. This is equivalent to the condition that the Galois hull F̂ of the separable

extension F/K(t) is a regular extension of K, i.e., that t is a stabilizing element for the

extension F/K.

Lemma 12.1: Let N be an algebraic extension of a perfect infinite field K. A sufficient

condition for N to be PAC is that for every absolutely irreducible polynomial f ∈

K[T,X] which is stable with respect to X and for each finite subset A of K there exist

a, b ∈ N such that f(a, b) = 0 and a 6∈ A.
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Proof: It suffices to prove that each plane curve Γ defined over K has an N -rational point

[FJ3, Thm. 10.4]. So let F be the function field of a plane curve Γ over K. Choose

a stabilizing transcendental element t for F/K (Theorem 10.6). Choose a primitive

element x for the extension F/K(t) and let f(T,X) be an irreducible polynomial with

coefficients in K such that f(t, x) = 0. Then f is stable with respect to X. By

assumption f(T,X) has infinitely many N -rational zeros. As the curve f(T,X) = 0 is

K-birationally equivalent to Γ almost each of these points gives an N -rational point of

Γ.

Let f1, . . . , fm ∈ K[T,X] be irreducible polynomials separable with respect to X.

Let g ∈ K[T ] be a nonzero polynomial. The set H(f1, . . . , fm; g) of all a ∈ K such

that g(a) 6= 0 and f1(a,X), . . . , fm(a,X) are irreducible and separable in K[X] is a

separable Hilbert set. A field L is separably Hilbertian if each separable Hilbert

subset of L is nonempty [FJ3, p. 147]. It is not difficult to show that the maximal

purely inseparable extension of a Hilbertian field is separably Hilbertian [FJ3, p. 149].

In particular if K is a finitely generated transcendental extension of a field K0, then

the maximal purely inseparable extension of K is separably Hilbertian. Also if K ′ is a

finite separable extension of a separably Hilbertian field K, then each separable Hilbert

subset of K ′ contains a Hilbert subset of K (the proof of [FJ3, Lemma 11.7] is valid

with minor modifications also for separable Hilbert sets.)

We denote the absolute Galois group of a perfect field K by G(K). If σ1, . . . , σe ∈

G(K), then K̃(σ1, . . . , σe) denotes the fixed field of σ1, . . . , σe in K̃.

Theorem 12.2: Let K be a countable perfect separably Hilbertian field. Then K has

a Galois extension N with the following properties:

(a) G(N/K) is isomorphic to the direct product of infinitely many finite groups,

(b) N is a separably Hilbertian field,

(c) N contains no field of the form K̃(σ1, . . . , σe), with σ1, . . . , σe ∈ G(K)e, and

(d) N is PAC.

Proof: Order the countable set of all absolutely irreducible polynomials in K[T,X]

which are stable with respect to X in a sequence: f1(T,X), f2(T,X), f3(T,X), . . . such
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that each polynomial occurs infinitely many times. Take a sequence

g1(T,X), g2(T,X), g3(T,X), . . .

of absolutely irreducible polynomials with Galois groups over K(T ) isomorphic to Z/2Z.

Let t be transcendental over K. Let Gi = G(fi(t, X),K(t)), i = 1, 2, 3, . . . . Construct

by induction a linearly disjoint sequence K1, L1,K2, L2,K3, L3, . . . of Galois extensions

of K such that Ki contains a zero of fi, G(Ki/K) ∼= Gi, and G(Li/K) ∼= Z/2Z,

i = 1, 2, 3, . . . [FJ3, Lemma 15.8]. Let N be the compositum of all Ki. Then N is a

Galois extension of K and G(N/K) ∼=
∏∞

i=1 Gi.

To show that N is separably Hilbertian assume without loss that G1 is a nontrivial

group. Then N is a finite proper separable extension of N0 =
∏∞

i=2 Ki and N0/K is

Galois. The desired result is a special case of [FJ3, Cor. 12.15].

Denote the compositum of all Li by L. It is a Galois extension of K with Galois

group isomorphic to the direct product of countably many isomorphic copies of Z/2Z.

In particular its rank is infinite. If there were a positive integer e and σ1, . . . , σe ∈ G(K)

such that K̃(σ1, . . . , σe) ⊆ N , then K̃(σ1, . . . , σe) would be linearly disjoint from L over

K. Hence G(L/K) would be a quotient of the group G(K̃(σ1, . . . , σe)) and therefore its

rank would be at most e, a contradiction.

Finally Lemma 12.1 implies that N is PAC.

Remark 12.3: If we could strengthen Theorem 10.7 and prove that every infinite field

is stable in dimension 1, then we could take K in Theorem 12.2 to be Hilbertian.

Problem 12.4: Let L be a purely inseparable extension of a field K. Suppose that L

is PAC. Is K also PAC?

47



13. Concluding remarks.

The assumption in Theorem 10.5 that F/K is conservative is indispensable. Indeed,

it is known that if a function field F/K has a projective smooth model, then F/K is

conservative [R, Thm. 12]. Since the node model of F/K we construct is a projection of

a smooth space model, the assumption that F/K is conservative is vital to our proof.

Moreover, it is vital for the theorem itself. Indeed if F/K has a projective plane node

model Γ, then F/K is conservative. To prove this claim (without verifying each detail)

let a be a singular point of Γ. Denote the local ring of Γ at a by O and let O′ be the

integral closure of O in F . We have to prove that K̃O′ is integrally closed. This is so

because the integral closure R of K̃O′ in K̃F is the intersection of two distinct valuation

rings, R1 and R2, corresponding to the two tangents of Γ at a. Since the intersection

multiplicity of each of the tangents with Γ at a is 3 the semilocal ring K̃O′ contains

for each i a prime element of Ri. An application of Nakayama’s lemma implies that

K̃O′ = R.

The second case which our methods fail to cover is when K is finite. In this case

projections cannot avoid bad points.
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