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A field K is PAC if every nonempty absolutely irreducible variety V defined over K
has a K rational point. Similarly K is PRC if each such V has a K-rational point
provided it has a simple K-rational point for every real closure K of K.

The elementary theory of algebraic PAC fields determines the elementary theory
of all PAC fields. Thus a sentence θ is true in each PAC field of characteristic 0 if it is
true in each PAC field which is algebraic over Q [FJ, Corollary 20.25].

The goal of the present note is to use the methods that lead to this result and
the prove the analogous one for PRC fields and for maximal PRC fields. We also prove
that the absolute Galois group of a maximal PRC field is a free product of groups of
order 2 in the category of pro-2 groups. Conversely each such group is isomorphic to
the absolute Galois group of a maximal PRC field.

1. The elementary equivalence theorem for PRC fields.

Let K be a field. An integral domain R that contains K is regular (resp. totally real)

over K if the quotient field of R is regular over K (resp. totally real, i.e., every ordering

of K extends to the quotient field).

Lemma 1: Let K be an ℵ1-saturated PRC field. Let R = K[x1, x2, . . .] be an integral

domain, countably generated, regular and totally real over K. Then there exists a

homomorphism ϕ: R→ K.

Proof: Let F be the quotient field of R. Denote the ideal of all polynomials in

K[X1, . . . , Xn] that vanish at (x1, . . . , xn) by In. Let fn,1, . . . , fn,r(n) be a system of

genarators for In. Then I1 ⊆ I2 ⊆ I3 . . . . Since K[X1, . . . , Xn]/In ∼=K K[x1, . . . , xn]

and Fn = K(x1, . . . , xn) is regular over K, V (In) is a variety defined over K. Moreover

Fn/K is a totally real extension. Hence, V (In) has a simple K-rational point for each
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real closure K of K [La, p. 282]. Hence there exist elements a1, . . . , an ∈ K such that

(1)
n∧

i=1

r(i)∧
j=1

fij(a1, . . . , ai) = 0.

By the saturation property of K, there exists a sequence b1, b2, b3, . . . of elements of K

such that fnj(b1, . . . , bn) = 0 for each n and j. The map xi 7→ bi, i = 1, 2, 3, . . . extends

to a K-homomorphism of R into K.

The embedding lemma for PAC fields ([JK] or [FJ, Lemma 18.2]) and its proof

have been generalized to other “pseudo closed” fields in [J1, Lemma 3.1] and by Pop

[Po, 5.5]. Cherlin, v.d. Dries and Macintyre’s [CDM] modification of the proof of the

embedding lemma for PAC fields has been generalized by Ershov [E, Lemma 7] to PRC

fields. We repeat the proof of the lemma for PRC fields for the sake of completeness. It

is the induction step in the proof of the elementary equivalence theorem for PRC fields,

Proposition 3.

Denote the absolute Galois group of a field E by G(E). Denote the set of involu-

tions of a group G by Inv(G).

Lemma 2: Let E and F be field extensions of a common field L. Suppose that E is

countable and that F is PRC and ℵ1-saturated. Suppose further that there exists a

homomorphism ϕ: G(F ) → G(E) such that ResL̃ϕ(σ) = ResL̃σ for each σ ∈ G(F ).

Then there exists an L̃-embedding Φ: Ẽ → F̃ such that

(1) Φ(ϕ(σ)x) = σΦ(x), for each x ∈ Ẽ and each σ ∈ G(F ).

Proof: Assume without loss that Ẽ is free and therefore linearly disjoint from F̃ over

L̃. Then each σ ∈ G(F ) uniquely extends to an elment σ̃ ∈ G(ẼF̃ /EF ) such that

σ̃x =
{
σx if x ∈ F̃
ϕ(σ)x if x ∈ Ẽ.

The map σ 7→ σ̃ is an embedding of G(F ) into G(ẼF̃ /EF ) whose inverse is the re-

striction map. Denote the fixed field of the image of G(F ) in ẼF̃ by D. Then

res: G(ẼF̃ /D) → G(F ) is an isomorphism. That is, D ∩ F̃ = F and DF̃ = ẼF̃ .
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We show that D is a totally real extension of F . Indeed, let P be an ordering

of F . Take an involution ζ of G(F ) that induces P on F . Let ε = ϕ(ζ). Denote the

fixed field of ε (resp. ζ) in Ẽ (resp. F̃ ) by E (resp. F ). As ResL̃(ε) = ResL̃(ζ) is an

involution both fields are real closed. Hence EF (
√
−1) = ẼF̃ . Since ζ̃ fixes both E

and F it belongs to G(ẼF̃ /EF ). Since ζ̃ is an involution it generates G(ẼF̃ /EF ). So,

EF contains D. Since E ∩ L̃ = F ∩ L̃ a lemma of v.d. Dries [D, p. 75], amalgamates

the orderings of E and F to an ordering of EF . The restriction of this ordering to D

extends P .

Now observe that ẼF̃ is an algebraic extension of D. Hence Ẽ ⊆ ẼF̃ = D[F̃ ] =

F̃ [D]. Write each x ∈ Ẽ as

(2) x =
∑

fjdj , with fj ∈ F̃ and dj ∈ D.

As Ẽ is countable, the set D0 of all dj appearing in the expressions (2) (one expression

for each x ∈ Ẽ) is countable. The integral domain F [D0] is a regular, totally real, and

countably generated extension of F . By Lemma 1, there exists an F -homomorphism

Ψ: F [D0] → F . Use the linear disjointness of F [D0] from F̃ over F to extend Ψ to an

F̃ -homomorphism Ψ̃: F̃ [D0] → F̃ . It satisfies

(3) Ψ̃(σ̃z) = σΨ̃(z), for every σ ∈ G(F )

and for each z that belongs either to F̃ or toD0. Therefore (3) is true for each x ∈ F̃ [D0].

By definition Ẽ ⊆ F̃ [D0]. Hence (3) is true for each x ∈ Ẽ.

Let Φ = ResẼΨ̃. Then Φ is an L̃-embedding of Ẽ into F̃ that satisfies (1).

Denote the first order language of rings (resp., with a constant symbol for each

element of a field L) by L(ring) (resp. L(ring, L)).

Proposition 3: Let E and F be PRC fields that contain a common field L. Suppose

that there exists an isomorphism ϕ: G(F ) → G(E) such that ResL̃ϕ(σ) = ResL̃σ for

each σ ∈ G(F ). Then E is elementarily equivalent to F over L.

Proof: In each sentence of L(ring, L) there appear only finitely many elements of L.

We may therefore suppose that L is a countable field. Further, replace E and F by
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ultrapowers ∗E = EN/D and ∗F = FN/D. By [FJ, Lemma 18.4], ϕN/D induces an

isomorphism ∗ϕ: G(∗F ) → G(∗E) such that ResL̃ϕ(σ) = ResL̃σ for each σ ∈ G(∗F ). By

[P1, Thm. 4.1] both ∗E and ∗F are PRC. By [FJ, Lemma 6.14], they are ℵ1-saturated.

So, without loss assume that E and F are PRC and ℵ1-saturated.

Use the Skolem-Löwenheim theorem [FJ, Proposition 6.4] to construct a countable

elementary subfield E1 of E that contains L. Let ϕ be the map ϕ◦Res: G(F ) → G(E1).

By Lemma 2, there exists an L̃-embedding Φ1: Ẽ1 → F̃ such that Φ1(ϕ(σ)x) = σΦ1(x)

for each x ∈ Ẽ1 and σ ∈ G(F ). Let E′1 = Φ1(E1). If x ∈ E1 and σ ∈ G(F ), then

ϕ(σ) ∈ G(E1). Hence σΦ1(x) = Φ1(ϕ(σ)x) = Φ1(x). It follows that E′1 ⊆ F .

Let ϕ1: G(E′1) → G(E1) be the isomorphism induced by Φ1. It satisfies

Φ1(ϕ1(σ)x) = σΦ1(x)

for each σ ∈ G(E′1) and x ∈ Ẽ1. In particular, for σ ∈ G(F ), σ = Res
Ẽ′

1
σ and x ∈ Ẽ1

we have Φ1(ϕ(σ)x) = σΦ1(x) = Φ1(ϕ1(σ)x). Hence ResẼ1
ϕ(σ) = ϕ1(σ).

Use the Skolem-Löwenheim theorem once more to construct a countable elemen-

tary subfield F1 of F that contains E′1. Exchange the roles of E and F , use the pre-

ceding paragraph and identify Ẽ1 and Ẽ′1 via Φ1. Then apply Lemma 2 to extend

Φ−1
1 : Ẽ′1 → Ẽ1 to an embedding Ψ1: F̃ 1 → Ẽ such that Ψ1(ϕ−1(τ)y) = τΨ1(y) for each

y ∈ F̃ 1 and τ ∈ G(E).

Continue in this manner by induction to construct two towers of fields L ⊆ E1 ⊆

F ′1 ⊆ E2 ⊆ F ′2 ⊆ · · · ⊆ E and L ⊆ E′1 ⊆ F1 ⊆ E′2 ⊆ F2 ⊆ · · · ⊆ F , and to construct

for each i isomorhisms Φi: Ẽi → E′i and Ψi: F̃i → F̃ ′i such that Φi(Ei) = E′i, Ψi(Fi) =

F̃
′
i, Ei is a countable elementary subfield of E and Fi is a countable elementary subfield

of F . Moreover Ψi extends Φ−1
i and Φi+1 extend Ψ−1

i , i = 1, 2, 3, . . . . Let Eω =
⋃∞

i=1Ei

and Fω =
⋃∞

i=1 Fi. Then Eω (resp., Fω) is an elementary subfield of E (resp., F ) [FJ,

Lemma 6.3(b)]. Also, Eω
∼=L Fω. Conclude that E is elementarily equivalent to F over

L.

Corollary 4: Let K ⊆ L be PRC fields. If Res: G(L) → G(K) is an isomorpism,

then K is an elementary subfield of L.
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2. The elementary theory of algebraic PRC fields.

The main ingredient of the proof of the algebraic nature of the elementary theory of

PRC fields is the following existence theorem for algebraic PRC fields with a given

absolute Galois group. This is Theorem 5.1 of [HJ3].

Proposition 5: Let K be a countable formally real Hilbertian field and let K ′ be a

finite Galois extension of K. If G is a real projective group of rank ≤ ℵ0 and π: G →

G(K ′/K) is an epimorphism such that π(Inv(G)) ⊆ ResK′(Inv(G(K))), then there

exists a PRC algebraic extension E of K and an isomorphism γ: G(E) → G such that

ResẼ/K′ = π ◦ γ.

The following result generalizes [FJ, Prop. 20.23].

Proposition 6: Let K be a countable Hilbertian field. Let F be a countable PRC

extension of K. Then F is K-elementarily equivalent to an ultraproduct
∏∞

n=1En/D

of PRC fields, with En algebraic over K and G(En) ∼= G(F ), n = 1, 2, 3, . . . .

Proof: If F is not formally real, then it is PAC. In this case the proposition reduces to

Proposition 20.23 of [FJ]. So, assume that F is formally real.

Let L1 ⊆ L2 ⊆ L3 · · · be an ascending sequence of finite Galois extensions of K

whose union is K̃. For each n the intersection Kn = Ln ∩ F is a countable formally

real Hilbertian field. By Theorem 10.1 of [HJ1], G(F ) is a real projective group. Since

F is countable, rank(G(F )) ≤ ℵ0. Apply Proposition 5 with Ln/Kn replacing K ′/K

and G(F ) replacing G to find a PRC field En and an isomorphism ϕn which makes the

following diagram commutative:

G(En)
ϕn

yyssssssssss
Res

��
G(F )

Res
// G(Ln/Kn)

Let D be a nonprincipal ultraproduct of N and let ∗E =
∏
En/D and ∗F = FN/D.

By [FJ, Lemma 18.4] there exists an isomorpism ϕ that makes the following diagram



6 JARDEN

commutative:

G(∗E)
ϕ

zzuuuuuuuuu
Res

��
G(∗F )

Res
// G(K)

Since ∗E and ∗F are PRC fields [P1, Thm. 4.1], Proposition 3 asserts that ∗E ≡K
∗F .

Conclude that ∗E ≡K F .

Proposition 7: Let K be a countable Hilbertian field. Let P be a family of profinite

groups with this property: If E and F are two elementary equivalent PRC fields and if

G(F ) ∈ P, then G(E) ∈ P. Then a sentence θ of L(ring,K) is true in all PRC fields F

with K ⊆ F and G(F ) ∈ P if and only if θ is true in all PRC fields E algebraic over K,

with G(E) ∈ P.

Proof: Let F be a PRC field containing K such that G(F ) ∈ P. By the Skolem-

Löwenheim theorem, F has a contable elementary subfield F0 that contains K. By

Proposition 6, F0 ≡K

∏
Ei/D with Ei a perfect PRC field, algebraic over K, and

G(Ei) ∼= G(F0), for each i ∈ I. By assumption G(Ei) ∈ P. Hence θ is true in Ei for

each i, and therefore θ is true in F .

Apply Proposition 7 to the family of all profinite groups.

Theorem 8: A sentence θ of L(ring) is true in each PRC field of characteristic 0 if and

only if θ is true in each PRC field which is algebraic over Q.
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3. The elementary theory of maximal PRC fields.

A field extension L/K is totally real if each ordering of K extends to L. A field K is

maximal real if it has no proper algebraic totally real extensions [P2, p. 482]. Call a

profinite group G minimal real if for each proper closed subgroup H of G there exists

an involution ε of G which is conjugate to no involution of H.

Lemma 9: A PRC field K is maximal real if and only if G(K) is minimal real.

Proof: Suppose first that K is maximal real. Let L be a proper algebraic extension of

K. Then K has an ordering P which does not extend to L. Let ε be an involution of

G(K) which induces P on K. Then ε is conjugate to no involution of G(L). Conclude

that G(K) is minimal real. The other direction of the lemma follows similarly.

Theorem 10: A sentence θ of L(ring) is true in each maximal PRC field of charac-

teristic 0 if and only if θ is true in each maximal PRC field which is algebraic over

Q.

Proof: The class of maximal PRC fields has been axiomatized in L(ring) by Prestel [P2,

Lemma 1] (Note that axioms (ii) and (iii) of [P2] which express the maximality axiom

and the PRC axiom are actually expressed in L(ring) and not in the extended language

of preordered fields, as follows from [P1, Thm. 4.1].)

If E and F are elementarily equivalent PRC fields and G(E) is minimal real, then

E is maximal real (Lemma 10). Hence F is also maximal real and therefore G(F ) is

minimal real. Our theorem is therefore a special case of Proposition 7.
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4. The absolute Galois group of a maximal PRC field.

The absolute Galois group of a PRC field (resp. an algebraic PRC field) is characterized

in [HJ1] (resp. [HJ3]) as a real projective group (resp. of rank ≤ ℵ0). Here we charac-

terize the absolute Galois group of a maximal PRC field as a real projective group free

on a set of involutions in the category of pro-2-groups.

Let G be a profinite group. Recall that a finite real embedding problem for

G is a pair (ϕ: G → A,α: B → A) of epimorphisms with A and B finite groups such

that for each g ∈ Inv(G) with ϕ(g) 6= 1 there exists b ∈ Inv(B) such that α(b) = ϕ(g)

[HJ1, p. 468]. The problem is solvable if there exists a homomorphism γ: G→ B such

that α ◦ γ = ϕ. The group G is real projective if each finite real embedding problem

for G is solvable and Inv(G) is closed in G.

For each Boolean space X there exists a unique (up to an isomoprhism) pro-2

group D̂2(X) such that X ⊆ Inv(D̂2(X)) and such that the following holds: Each

continuous map ϕ of X into a pro-2 group G such that ϕ(x)2 = 1 for each x ∈ X

uniquely extends to a homomorphism of D̂2(X) into G. We call D̂2(X) real 2-free

group with basis X.

The construction and the proof of the properties of D̂2(X) is a verbatim repetition

of those made in [HJ2] except that we have to work in the category of pro-2 groups

instead of working in the category of all profinite groups.

Lemma 11: A profinite group G is minimal real if and only if it is a pro-2 group

generated by involutions.

Proof: Suppose first that G is a minimal real profinite group. Let G2 be a 2-Sylow

subgroup of G. Each involution of G is contained in a 2-Sylow subgroup of G and the

latter is conjugate to G2. Hence each involution of G is conjugate to some involution in

G2. Conclude that G = G2 is a pro-2 group.

Let H be the closed subgroup of G generated by Inv(G). If H 6= G, then H is

contained in an open normal subgroup N of index 2 (since this is the case for finite

2-groups). Hence Inv(G) ⊆ N . This contradiction to the minimality of G proves that

H = G.
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Conversely, suppose that G is a pro-2 group which is generated by Inv(G). Let

H be a proper closed subgroup of G. Let N be as in the preceding paragraph. Then

Inv(G) 6⊆ N . In particular there exists g ∈ Inv(G) which is conjugate to no element of

H. Conclude that G is minimal real.

Haran proves in [H2] that each pro-2 real projective group is real 2-free. We need

a special case of this theorem. It relies on the following result.

Lemma 12 ([HJ2, Lemma 3.5]): Let D and G be real projective groups.

(a) There exists a closed system of representatives of the conjugacy classes of Inv(G).

(b) Let ϕ: D → G be a continuous epimorphism and let X̂ be a system of representa-

tives of the conjugacy classes of Inv(D). If ϕ maps X̂ bijectively onto a system of

representatives of the conjugacy classes of Inv(G), then there exists a continuous

monomorphism ψ: G→ D such that ϕ ◦ ψ = id.

Proposition 13: A profinite group G is minimal real projective if and only if G =

D̂2(X) for some Boolean space X.

Proof: Suppose first that G = D̂2(X) for some subset X of involutions. Then G is

real projective (this is the pro-2 analogue of [HJ2, Corollary 2.2]). By Lemma 11, G is

minimal real.

Conversely suppose that G is minimal real projective. Then G is a pro-2 group

(Lemma 11). Let X be a closed system of representatives for the G-orbits of Inv(G)

(Lemma 12). The minimality of G implies that X generates G. Let X̂ be a home-

omorphic copy of X, with x̂ the element of X̂ that corresponds to x. Consider the

real free group D = D̂2(X̂). The set X̂ is a closed system of representatives for the

D-orbits of Inv(D) [HJ2, Cor. 3.2]. The bijective map x̂ 7→ x extends to an epimor-

phism ϕ: D → G. Let ψ: G → D be a monomorphism as in Lemma 12. In particular

ψ(x)2 = 1 and ψ(x) 6= 1 for each x ∈ X. Hence ψ(x) = ŷd for some y ∈ X and d ∈ D.

Hence x = yϕ(d) and therefore x = y. Conclude that ψ(x) = x̂d. If ψ(X) were con-

tained in a proper closed subgroup of D it would be contained in a normal open closed

subgroup N of index 2. This would imply that X̂ ⊆ N , and therefore that D ⊆ N , a
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contradiction. It follows that ψ(X) generates D. Conclude that ψ is an isomorphism

and that G ∼= D̂2(X).

The absolute Galois group of a maximal PRC field with exactly e orderings is

isomorphic to the free product of e copies of Z/2Z [J2, Corollary 5.2]. Part (a) of the

following theorem generalizes this result to arbitrary maximal PRC fields (see also [He,

Thm. 3.2]).

Theorem 14: (a) If K is a maximal PRC field, then G(K) = D̂2(X) for some Boolean

space X.

(b) For each Boolean space X there exists a maximal PRC field K such that G(K) ∼=

D̂2(X).

(c) For each separable Boolean space X there exists a maximal PRC field K, algebraic

over Q such that G(K) ∼= D̂2(X).

Proof of (a): The main result of [HJ1], namely Theorem 10.1, asserts that G(K) is real

projective. By Lemma 9 and Proposition 13, G(K) = D̂2(X), for some Boolean space

X.

Proof of (b) and (c): Let X be a Boolean space. Then G = D̂2(X) is real projective

and real minimal (Proposition 13). By [HJ1, Theorem 10.1], there exists a PRC field K

such that G(K) ∼= G. By Lemma 9, K is maximal real. If in addition X is separable,

then rank(G) ≤ ℵ0. The main theorem of [HJ3] asserts that K can be chosen to be

algebraic over Q.
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5. Two more theories of fields.

Not every theory of fields is determined by its algebraic models.

Remark 15 (Prestel): The Theory of fields. Unlike the theorey of PAC fields, the

theory of PRC fields and the theory of maximal PRC fields the theory of fields of char-

acteristic 0 is not determined by its algebraic models. Indeed consider the elementary

statement “if an element x is the sum of 5 squares, then x is the sum of 4 squares”.

We prove that this statement is true for each algebraic extension K of Q and for each

a ∈ K but is false for a certain element of Q(t).

Let K be an algebraic extension of Q. Let a ∈ K, a 6= 0, be a sum of 5 squares

in K. Without loss assume that K has a finite degree over Q. Then a is a positive and

therefore a square in each real closure of K. Hence the quadratic form

f(X1, X2, X3, X4, X5) = X2
1 +X2

2 +X2
3 +X2

4 − aX2
5

has a nontrivial zero in each real closure of K. By the Hasse-Minkowski principle ([L, p.

169]) or [CF, p. 259]) there exists x1, x2, x3, x4, x5 in K, not all 0, such that f(x) = 0. If

x5 6= 0, divide the last equality by x5 to get a representation of a as a sum of 4 squares

in K. Otherwise suppose without loss that x1 = 1. Then with t = (a − 1)/2 we have

(t+ 1)2 + (x2t)2 + (x3t)2 + (x4t)2 = a.

On the other hand 7 is not the sum of 3 squares in Q. Otherwise there exist

positive integers x, y, z and u such that u 6= 0 and 7u2 = x2 + y2 + z2. Without loss

assume that 2 does not divide all these integers. Now consider the above equation

modulo 8 to derive a contradiction (cf. [Le, p. 133]). A result of the Cassels-Pfister

theorem asserts that for t transcendental over Q the element 7 + t2 is not the sum of 4

squares in Q(t) [L, p. 261].

Likewise, the theory of fields of characteristic p is not determined by its algebraic

models. Indeed, for each a and b in a finite field K the Galois group of x3 + aX + b

has order at most 3. In contrast, since for t transcendental over Fp, the field Fp(t)

is Hilbertian and since for u, v algebraically independent over Fp(t) the Galois group

G(X3 +uX + v,F(t, u, v) is isomorphic to S3 there exist a, b ∈ Fp(t) such that the order
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of G(X3+aX+b,F(t, u, v)) is 6. Thus not every sentence true in all algebraic extensions

of Fp is also true in Fp(t).
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