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Introduction

There are three main types of “pseudo closed fields”. They are the “pseudo algebraically

closed fields” (PAC), “pseudo real closed fields” (PRC), and “pseudo p–adically closed

fields”. Recall that a field K is said to be PAC (resp., PRC, PpC) if every absolutely

irreducible variety V has a K-rational point provided it has a simple K-rational point

for each algebraic (resp., real, p–adic) closure K of K. It is known that a PAC field K

carries no interesting arithmetical structure:

Proposition A: Let K be a PAC field.

(a) K admits no ordering [FJ, Thm. 10.12].

(b) (Frey – Prestel) The Henselian closure of each valuation of K is separably closed

[FJ, Thm. 10.14].

It is not difficult to see that the only arithmetical structure of a PRC field emerges

from its orderings:

Theorem B: Let K be a PRC field and let v be a valuation of K. Then the Henselian

closure K of K with respect to v is either real closed or separably closed.

Proof: If char(K) 6= 0, then K is PAC and the theorem reduces to Proposition A(b).

So, assume that char(K) = 0.

By Prestel’s extension theorem [P, Thm. 3.1], K(
√
−1) is a PRC field. Since it

has no orderings it is PAC. On the other hand K(
√
−1) is Henselian. By Proposition

A(b), K(
√
−1) is algebraically closed. Conclude from a theorem of Artin [L, p. 223]

that K is either real closed or algebraically closed.

The goal of this note is to establish the analogue of Theorem B for PpC fields

and to show that the only arithmetic of such a field essentially comes from its p–adic

valuations:

Theorem C: A PpC field K admits no orderings. The Henselian closure of K with

respect to any valuation is either p–adically closed or algebraically closed.

Except from manipulations with Henselian fields and in particular a theorem of

F.K. Schmidt and Engler the proof of Theorem C is based on the following result:

1



Proposition D (Algebraic extension theorem for PpC fields [J, Prop. 8.3]): Let L be

an algebraic extension of a PpC field K. Then L is PpC if and only if for each p–adic

closure K of K we have L ⊆ K or KL is algebraically closed.

An important ingredient in the proof of this Proposition is the following property

of each PpC field K: The compositum of every two p–adic closures of K is the algebraic

closure K̃ of K [HJ, Lemma 4.5(b)]. In Section 2 we point out that this statement fails

to be true over an arbitrary field.

1. Reduction of p–adic valuations.

For a valuation w of a field K denote the valuation ring, its maximal ideal and the

residue field respectively by Ow, Pw and Kw. Let also Uw and Γw be the group of

w–units and the value group of w, respectively. Consider now an additional valuation

v of K such that Ov ⊆ Ow (v is finer than w and w is coarser than v). Then

Pw ⊆ Pv and Ov̄ = Ov/Pw is a valuation ring of Kw = Ow/Pw with the maximal ideal

Pv̄ = Pv/Pw. The corresponding valuation v̄ is defined by v̄(x̄) = v(x) for x ∈ Uw (the

bar denotes reduction modulo Pw). In particular the residue fields of v̄ and v coincide.

Also, Γv̄
∼= K

×
ω /Uv̄

∼= Uω/Uv is a convex subgroup of Γv
∼= K×/Uv. Thus

(1) Kv
∼= Ov̄/Pv̄

∼= Ov/Pv and Γω
∼= Γv/Γv̄.

Lemma 1.1: The valued field (K, v) is Henselian if and only if (K, w) and (Kw, v̄) are

Henselian.

Proof: See [R, pp. 210 and 211].

Lemma 1.2: Suppose that an algebraic extension M of a field K is Henselian with

respect to valuations v and w such that Ov ⊆ Ow. Denote the unique extensions of v

and w, respectively, to K̃ by ṽ and w̃. Then

(a) Oṽ ⊆ Ow̃,

(b) the decomposition group of ṽ over K is contained in the decomposition group of

w̃, and
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(c) the deomposition field of w̃ over K is contained in the decomposition field of ṽ.

Proof of (a): Each element x ∈ Oṽ satisfies an equation of the form xn =
∑n−1

i=0 aix
i

with ai ∈ Ov. Then ai ∈ Ow, x is integral over Ow, and therefore belongs to Ow̃.

Proof of (b): Suppose that an automorphism σ ∈ G(K) belongs to the decomposition

group of ṽ, that is σOṽ = Oṽ. Then Oṽ ⊆ σOw̃. It is known that the set of all valuation

rings of K̃ that contain Oṽ is linearly ordered [R, p. 58]. In particular σOw̃ ⊆ Ow̃ or

Ow̃ ⊆ σOw̃. Replace σ by σ−1 if necessary to assume that σOw̃ ⊆ Ow̃. Then, for each

positive integer n we have σnOw̃ ⊆ σn−1Ow̃ ⊆ · · · ⊆ σOw̃. Now, for each x ∈ Ow̃

there exists a positive integer n such that σnx = x. Hence x ∈ σOw̃. Conclude that

σOw̃ = Ow̃ and σ belongs to the decomposition group of w̃.

Proof of (c): Assertion (c) is a reinterpretation of (b).

Two valuations v and v′ of a field K are comparable if one of them is finer than

the other.

The following result was proved by F.K. Schmidt [S] for valuations of rank 1 and

then generalized by Engler [E] for higher rank valuations.

Proposition 1.3 (F.K. Schmidt – Engler): If a field K which is not separably closed

is Henselian with respect to incomparable valuations v and v′, then these valuations

are finer than a common valuation w which has a separably closed residue field. In

particular, K can not be Henselian with respect to two distinct valuations of rank 1.

Thus, if L/K is a Galois extension, L is Henselian with respect to a valuation v of

rank 1, but L is not separably closed, then K is Henselian with respect to the restriction

of v to K.

Recall that a valuation v of a field K is called p–adic if v(p) is the smallest

positive element of v(K×) and Kv
∼= Fp. In particular char(K) = 0. A p–adic valued

field (K, v) is p–adically closed if it has no proper algebraic extension to a p–adic field.

An ordered abelian group Γ is a Z-group if it contains Z as a convex subgroup and for

each γ ∈ Γ and each positive integer n there exists δ ∈ Γ such that γ ∼= nδ mod Z.
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Lemma 1.4 (Prestel – Roquette [PR, p. 34]): A p–adic field (K, v) is p–adically closed

if and only if it is Henselian and v(K×) is a Z-group.

We denote the algebraic closure of a field K by K̃ and its absolute Galois group

by G(K).

Lemma 1.5: Let (K, v) be a p–adically closed field and let w be a strictly coarser

valuation of K than v. Then w is unramified in K̃. Moreover, G(K) is the decomposition

group of the unique extension of w to K̃ (which we also denote by w) and the map

G(K) → G(Kw) that w induces is an isomorphism. In particular, for each algebraic

extension M of K we have an isomorphism G(M) ∼= G(Mw).

Proof: By assumption 1 = v(p) belongs to the convex subgroup Γv̄ of Γv. By Lemma

1.4, Γv is a Z-group. Hence, for each γ̄ ∈ Γw there exists δ̄ ∈ Γw
∼= Γv/Γv̄ such that

γ̄ = nδ̄. In other words Γw is a divisible group.

As (K, w) is a Henselian field (Lemma 1.1) with residue field Kw of characteristic

0 the formula [L : K] = e(L/K)f(L/K) holds for each finite extension L of K [R, p.

236]. By the preceding paragraph e(L/K) = 1. Hence [L : K] = [Lw : Kw] and w is

unramified in L.

If in addition L is Galois over K, then G(L/K) is the decomposition group of

w (since (K, w) is Henselian). By the preceding paragraph G(L/K) is isomorphic to

G(Lw/Kw).

On the other hand, each finite extension of Kw is the residue field L of a finite

extension of L with respect to the unique extension of w to K. Indeed, as char(Kw) = 0,

L has a primitve element z̄ over Kw. Let f̄ = irr(z̄, Kw) and lift f̄ to a monic polynomial

f ∈ K[Z] of the same degree. Then take L as K(z), where z is any root of f .

Thus let L range over all finite Galois extensions of K to conclude that w induces

an ismorphism of G(K) onto G(Kw).

Lemma 1.6: Let (K, vp) be a p–adically closed field. Let M be an algebraic extension

of K which is not algebraically closed. If M is Henselian with respect to a valuation v,

then v is coarser than the unique extension of vp to M (which we also denote by vp).
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Proof: The residue field of M with respect to vp is algebraic over Fp and therefore has

no nontrivial valuations. Hence v is not strictly finer than vp.

Assume that v is not coarser than vp. Then v and vp are incomparable. By

Lemma 1.3, M has a valuation w which is coarser than both v and vp. Moreover Mw

is algebraically closed. By Lemma 1.5, G(M) = G(Mw) = 1.

Conclude from this contradiction that v is coarser than vp.

Lemma 1.7: Let L be a Henselian PpC field of characteristic 0. If an algebraic extension

F of L satisfies LF = L̃ for each p–adic closure L of L, then F = L̃. In particular

Q̃L = L̃.

Proof: By Proposition D, F is PpC. Since F has no p–adic closures, it is PAC. As an

algebraic extension of a Henselian field, F is Henselian. Conclude from Proposition A

that F = L̃.

Finally note that Q̃L = L̃ for each p–adic closure L of L [HJ, Cor. 6.6]. So, Q̃L

satisfies the above condition on F and is therefore algebraically closed.

The following Lemma is well known for finite groups [FJ, Lemma 12.4].

Lemma 1.8: Let H be a proper closed subgroup of a profinite group G. Then
⋃

x∈G Hx

is a proper subset of G.

Proof: Choose an epimorphism ϕ of G on a finite group G such that H = ϕ(H) is a

proper subgroup of G. For x ∈ G let x̄ = ϕ(x). Then there exists g ∈ G such that

ḡ /∈
⋃

x̄∈G H
x̄
. Hence g /∈

⋃
x∈G Hx.

The following result is proved in a different way by Haran and Lubotzky [HL,

Lemma 5].

Lemma 1.9: Let E be a p–adic closure of Q and let F be a q–adic closure of Q. If

E 6= F , then EF = Q̃.

Proof: The field EF is Henselian with respect to the unique extension of the p–adic

valuation of E and also with respect to the unique extension of the q-adic valuation of

F . If EF 6= Q̃, then, by Proposition 1.3, the two valuations are equivalent. Denote the
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unique topology of EF which they define by T . As both E and F are the closures of Q

in EF with respect to T they must coincide.

Conclude from this contradiction that EF = Q̃.

We refer to a field K of characteristic 0 as algebraic if it is algebraic over Q.

Lemma 1.10: Let K be an algebraic field with a unique p–adic valuation v which is

not p–adically closed. Then K has an algebraic extension F which is not algebraically

closed such that KF = Q̃ for each p–adic closure K of K.

Proof: Choose a p–adic closure E of K. By assumption E 6= K. Since K is algebraic

and v is unique, each p–adic closure K of K is isomorphic to E over K. Hence, by

Lemma 1.8, there exists σ ∈ G(K) such that σ /∈ G(K) for each p–adic closure K of

K. Let F = Q̃(σ). As an algebraic extension of K, the field KF is Henselian. On the

other hand KF is a Galois extension of F , since G(F ) is abelian. If KF 6= Q̃, then, by

Proposition 1.3, F would be Henselian. Hence F would contain a q–adic closure L of Q̃

for some prime number q. The choice of σ would imply that L 6= K. Hence KL = Q̃

(Lemma 1.9). Conclude that KF = Q̃, a contradiction.

For a positive integer n we denote a primitive root of 1 of order n by ζn.

Lemma 1.11: Let K be an algebraic field with distinct p–adic valuations v1 and v2.

Then K has an algebraic extension F which is not algebraically closed such that KF = Q̃

for each p–adic closure K of K.

Proof: Let Ki be a p–adic closure of K with respect to vi, i = 1, 2. Choose a prime

q 6= p. Then Li = Ki(ζq) satisfies (L
×
i : (L

×
i )q) = q2 [N, p. 41]. Choose a system of

generators Ai for L
×
i modulo (L

×
i )q of q2 elements.

Extend the valuation vi to a valuation v′i of L = K(ζq). Then L is v′i–dense in Li.

Moreover, the valuations v′1 and v′2 are distinct, of rank 1, and therefore independent.

Hence, for each (a1, a2) ∈ A1 ×A2 there exists x = x(a1, a2) in L such that

(1) v′i(x− ai) > 2v′i(ai) i = 1, 2

[R, p. 135]. It follows from Netwon’s Lemma that the equation aiZ
q − x = 0 is solvable

in Li. Thus ai(L
×
i )q = x(L

×
i )q. If (a′1, a

′
2) ∈ A1 × A2, x′ = x(a′1, a

′
2) and x′ ∈ x(L×)q,
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then a′i ∈ ai(L
×
i )q, and therefore a′i = ai for i = 1, 2. It follows that the elements

x(a1, a2) represent q4 distinct congruence classes of L× modulo (L×)q.

The field E = L(ζqn , qn√p | n = 1, 2, 3, . . .) is a procyclic extension of L′ =

L(ζqn | n = 1, 2, 3, . . .) whose order is a q–power (possibly infinite). Also L′/L is a

procyclic group whose order is a q–power (possibly infinite). Also E/L is a Galois ex-

tension. Hence G(E/L) is a pro–q group whose rank is at most 2. In particular L has

at most q + 1 extensions of rank q which are contained in E.

Since ζq ∈ L we can, by Kummer’s theory and by the preceeding paragraph,

choose c ∈ L such that M = L( q
√

c) is a cyclic extension of L of degree q which is not

contained in E, and which therefore satisfies M ∩ E = L.

By Zorn’s Lemma, E has a maximal extension F such that M ∩F = L. In terms

of Galois theory, G(F ) is a minimal closed subgroup of G(L) which the restriction map

maps onto G(M/L). Hence G(F ) is the universal Frattini cover of G(M/L), which is Zq

[FJ, Example 20.39].

Let now K be a p–adic closure of K and let w be the unique valuation of KF . For

each finite extension N of KF we have [N : KF ] = ef where e is the ramification index

and f is the residue degree of the extension [R, p. 136]. By the preceeding paragraph,

these two numbers are q–powers. On the other hand, KF contains all the elements qn√p.

Hence w((KF )×), as a subgroup of Q, is q–divisible. Thus e = 1. Also, the residue

field of KF contains all the roots of unity ζqn and hence also the maximal q–extension

of Fp. Hence q does not divide f . Thus f = 1 and N = KF . Conclude that KF = Q̃.

We combine Lemmas 1.10 and 1.11 together:

Proposition 1.12: Let K be a proper subfield of the p–adic closure Qp,alg of Q. Then

K has an algebraic extension, different from Q̃ such that KF = Q̃ for each p–adic

closure K of K.

Proof: Qp,alg induces a p–adic valuation v on K. If v is the unique p–adic valuation of

K use Lemma 1.10, otherwise use Lemma 1.11.

We are now ready to prove the main result of this note.
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Theorem 1.13: Let L an algebraic extension of a PpC field K. Suppose that L is

Henselian with respect to a valuation v. Then L is separably closed or it contains a

p–adic closure K of K and v is coarser than the unique extension of the p–adic valuation

of K to L.

Proof: Let ṽ be the unique extension of v to K̃. Then the decomposition field, L0, of ṽ

is contained in L. Hence, it suffices to prove that L0 is separably closed or p–adically

closed. So, we replace L by L0 if necessary to assume that (L, v) is the Henselization

of (K, resKv) and prove that L is separably closed or p–adically closed.

To that end, consider a p–adic closure K of K and let vp be the p–adic valuation

of K. Then (K, vp) is the Henselization of (K, resKvp) [J, Thm. 10.8]. In other words,

K is the decomposition field of the unique extension ṽp of vp to K̃.

Claim: L ⊆ K or LK = K̃.

Indeed, suppose that M = LK 6= K̃. Let vM (resp., vp,M ) be the unique extension

of v (resp., vp) to M . Then (M,vM ) is Henselian. By Lemma 1.6, vM is coarser than

vp,M . Hence, by Lemma 1.2, L ⊆ K, and the claim has been proved.

It follows from the claim by Proposition D that L is PpC. If L has no p–adic

closure, then L is PAC and Henselian. By Proposition A, L is separably closed and our

theorem holds. Otherwise L has a p–adic closure L. Hence L0 = Q̃ ∩ L is contained in

the p–adically closed field L0 = Q̃ ∩ L. By Lemma 1.7, Q̃L = L̃. Hence, the restriction

map res: G(L) → G(L0) is an isomorphism. If L 6= L, then L0 6= L0. Hence, by

Proposition 1.12, L0 has an algebraic extension F0 such that F0 6= Q̃ and L′0F0 = Q̃

for each p–adic closure L′0 of L0. The field F = LF0 is an algebraic extension of L and

F 6= L̃. If L′ is a p–adic closure of L, then L′0 = Q̃ ∩ L is a p–adic closure of L0 and

L′0L = L′. Hence L′F = L̃. By Lemma 1.7, F = L̃. This contradiction proves that

L = L is p–adically closed.

The proof of Theorem 1.13 actually gives:

Theorem 1.14: Let K be a PpC field and let v be a valuation of K. Then the

Henselization of K with respect to v is either algebraically closed or p–adically closed

and v is coarser than a p–adic valuation of K.
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Corollary 1.15: If K is PpC but neither algebraically closed nor p–adically closed,

then K is not Henselian.

2. Compositum of p-adically closed fields.

One of the distinguished properties of PpC fields is that the compositum of any distinct

p–adic closures is algebraically closed. This is a consequence of [HJ, Lemma 4.5(b)].

We have noticed (Lemma 1.9) that the same statement also holds for algebraic fields.

In this section we give an example which proves that this fails to be true for p–adic

closures of an arbitrary field.

We start with a result which is a special case of Pop’s theorem [Po, Thm. E9].

However, since its proof is elementary, in particular, unlike Pop’s proof, it does not use

cohomology, we include it here.

Proposition 2.1: Let K be Henselian field with respect to a p-adic valuation v. Sup-

pose that L is an algebraic extension of K such that Q̃∩L = Qp,alg and Q̃L = K̃. Then

L is p-adically closed.

Proof: We use results of Prestel and Roquette [PR]. However, to avoid conflict in ter-

minology we use “p-valuation” for what they call “p-adic valuation”.

First note that Q̃∩K is Henselian and contained in Qp,alg. Hence Q̃∩K = Qp,alg.

Now let L0 be a finite extension of K contained in L. Then L0 is a Henselian p-valued

field with respect to the unique extension of v to L0. Since Qp,alg is algebraically

closed in L0, both fields have the same residue fields [PR, p. 39, Lemma 3.5(i)] and

Qp,alg contains a prime element of L0. Thus Qp,alg and L0 have the same p-rank, and

therefore L0 is p–adic.

Now let L0 range over all finite extensions of K in L to conclude that the unique

extension of v to L is p-adic.

Each finite proper extension of L is of the form L(a), where a ∈ Q̃ − Qp,alg and

therefore of p-rank greater than 1. This means that L is p-adically closed.

Example 2.2: Distinct p-adic closures of a field whose compositum is not algebraically

closed. Consider the field K = Qp((t)) of formal power series in t over Qp. It is Henselian
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with respect to the valuation w having Qp[[t]] as its valuation ring. A finer valuation v

of K has

Op = {
∞∑

i=0

ait
i| ai ∈ Qp, a0 ∈ Zp}

as its valuation ring. It is a p-adic valuation. In the notation of Section 1, Ov̄ = Zp. In

particular v is Henselian (Lemma 1.2).

Choose two sequences, α1, α2, α3, . . . and β1, β2, β3, . . ., of elements of K̃ such

that αn
n = βn

n = t, αm
mn = αn, βm

mn = βn, and αn 6= βn for every n > 1. Let

K1 =
⋃∞

n=1 K(αn), K2 =
⋃∞

n=1 K(βn), Kcycl = K(ζn| n = 1, 2, 3, . . .) (ζn is a primitive

root of 1 of order n), and N = Q̃K. Then Q̃ ∩Ki = Qp,alg and Q̃Ki = K̃ [GJ, Prop.

4.1]. By Proposition 2.2, Ki is p-adically closed, i = 1, 2.

Also, as G(N) ∼= Ẑ, K(αn) is the unique extension of K of degree n which is

contained in K1 and K(βn) is the unique extension of K of degree n which is contained

in K2. If K(αq) = K(βq) for some prime number q, then ζq ∈ Kcycl∩K(αq) = K. Since

Qp is algebraically closed in K, we have ζq ∈ Qp. Hence q|p− 1. We may therefore take

q > p− 1 and conclude that K(αq) 6= K(βq) and therefore K1 6= K2.

In addition,

K(αn, βn) ⊆ K(αn, ζn) ⊆ Kcycl(αn).

Since Qp,cycl ⊂ Q̃p, we have

K1K2 ⊆ KcyclK1 = Qp,cyclK1 ⊂ K̃.

Hence K1K2 is not algebraically closed.
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