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Abstract

Let K be a local field, T the maximal tamely ramified extension of K, F the fixed field

in Ks of the Frattini subgroup of G(K), and J the compositum of all minimal Galois

extensions of K containing T . The main result of the paper is that F = J . If K is

a global field and Ksolv is the maximal prosolvable extension of K, then the Frattini

group of G(Ksolv/K) is trivial.
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Introduction

The Frattini group of a profinite group H is the intersection of all maximal open

subgroups of H. It is a characteristic subgroup of H which we denote by Φ(H). The

significance of Φ(H) arises from its second characterization: “If S is a subset of H

which together with Φ(H) generates H, then S generates H by itself”. Thus if N is a

closed normal subgroup of H which is contained in Φ(H), a subset S of H generates

H precisely when its image in H/N generates H/N . Also, if U is an arbitrary closed

normal subgroup of H, then Φ(U) ≤ Φ(H) [FJ, Lemma 20.4(c)].

In particular, let K be a local field, i.e., K is a finite extension of Qp or of Fp((t)).

Let T be the maximal tamely ramified extension of K. Denote the absolute Galois

group of K (resp., T ) by G(K) (resp., P = G(T )). Then P is a closed normal pro-p

subgroup of G(K) and therefore Φ(P ) ≤ Φ(G(K))). Moreover, P/Φ(P ) is the maximal

p-elementary abelian quotient of P [FJ, Lemma 20.36]. In particular, the commutator

subgroup [P, P ] is contained in Φ(P ) and therefore in Φ(G(K)). Hence, G(K) has as

many generators as G(K)/[P, P ].

Jannsen [J, Section 3] has implicitly used this observation to determine the number

of generators of G(K). Indeed, if char(K) = 0, then, by results of Iwasawa [I] (which are

represented in a sharper form by Jannsen [J]) and by local class field theory, G(K)/[P, P ]

has [K:Qp] + 3 generators. So, G(K) is also generated by [K:Qp] + 3 elements. If

char(K) = p, then the rank of G(K)/[P, P ] and therefore also of G(K) is infinite.

Denote the fixed field of Φ(G(K)) in the separable closure Ks of K by F . We call

it the Frattini field of K. By the preceding paragraph F is contained in the fixed field

of Φ(P ). The latter field is the compositum of all Galois extensions of T of degree p.

We denote it by T
(p)
ab .

The goal of this note is to identify F with another distinguished subfield of T
(p)
ab .

To this end we say that a field N is a minimal Galois extension of K containing

T if N is a Galois extension of K which properly contains T such that no proper

intermediate field between T and N is Galois over K; we let J be the compositum of

all such N .

1



Theorem A: F = J .

The field J has an interesting module theoretic interpretation. Let G = G(T/K)

and consider the profinite group ring Fp[[G]] = lim←−Fp[G(L/K)], where L ranges over

all finite tamely ramified extensions of K. As V = G(T (p)
ab /T ) is a p-elementary abelian

closed normal subgroup of G(T (p)
ab /K), the group ring Fp[[G]] acts on V . The Jacobson

radical J of the Fp[[G]]-module V is, by definition, the intersection of all maximal

submodules of V (cf. [H, p. 462]). The fixed field of J in T
(p)
ab is J . We call J the

Jacobson field of K.

The proof of Theorem A makes extensive use of the prosolvability of G(K) and of

the local nature of K. Global prosolvable Galois groups, on the other hand, do not seem

to have interesting Frattini groups. Thus, for the maximal solvable extension Qsolv of

Q we prove:

Theorem B: The Frattini group of G(Qsolv/Q) is trivial.

Acknowledgement: This work was done during a visit of the first author in Augsburg

University in winter 1990. He would like to thank the Albert Leimer Foundation for its

support and the Institute for Mathematics of the University for its kind hospitality.
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1. Identification of the Frattini field of K with its Jacobson field.

We retain the following notation of the introduction and fix them for the whole section:

K is a finite extension of Qp or of Fp((t)) with residue field Fq,

T is the maximal tamely ramified extension of K,

F is the Frattini field of K, and

J is the Jacobson field of K,

Also, for a field L we denote the maximal p-elementary abelian extension of L by L
(p)
ab .

If L is a finite separable extension of K, we write U1,L for the group of 1-units of L. The

field theoretic interpretation of the definition of the Frattini group identifies F with the

compositum of all minimal separable extensions M of K. Our first result puts sharp

restrictions on the Galois closure of such M .

The nontrivial case occurs where M/K is non-Galois. In this case, F contains,

together with M , the compositum N of all K-conjugates of M . Thus N is the Galois

closure of M/K.

Note that if L and N are Galois extensions of K such that N/L is abelian, then

each extension of an element σ ∈ G(L/K) to N acts on G(N/L) by conjugation. This

action is independent of the extension and therefore makes G(N/L) a G(L/K)-module.

Proposition 1.1: Let M be a minimal separable non-Galois extension of K. Denote

the Galois closure of M/K by N . Then either [M :K] = l is prime, l 6= p, and N/K is

tamely ramified, or [M :K] = pi and the maximal tamely ramified extension L of K in

N satisfies:

(a) M ∩ L = K, ML = N , M/K is totally ramified,

(b) N/L is a p-elementary abelian extension which is totally ramified,

(c) G = G(L/K) acts faithfully on V = G(N/L),

(d) V is an irreducible Fp[G]-module,

(e) if M ′ is a minimal separable extension of K with the same Galois closure N , then

M ′ is K-conjugate to M , and

(f) G(T/L) acts trivially on G(NT/T ).

Proof: Let x1 be a primitive element for M/K and let x1, . . . , xm be its conjugates over
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K. The action of H = G(N/K) on {x1, . . . , xm} represents it as a transitive permutation

group of degree m. The stabilizer of x1, i.e. G(N/M), is a maximal subgroup. Hence

H is primitive [H, p. 147, Satz 1.4]. As H is solvable, we may therefore exploit Galois’

theorem [H, p. 159, Satz 3.2]. In field theoretic terms this theorem is concerned with a

maximal Galois extension L of K which is properly contained in N . For this field the

theorem states that

(1a) V = G(N/L) is an elementary abelian group,

(1b) L ∩M = K, LM = N , in particular G(N/M) ∼= G(L/K) and |V | = [M : K] is an

l-power for some prime l,

(1c) V is its own centralizer in H,

(1d) L is the only maximal Galois extension of K which is properly contained in N ,

and

(1e) G(N/M) contains no normal nontrivial subgroup of l-power order.

(1f) If another minimal separable extension M ′ of K has the same Galois closure N

as M , then M ′ is K-isomorphic to M .

As M is a minimal non-Galois extension of K, it is totally ramified. If l 6= p, then

M/K is tamely ramified. Hence M = K(a1/lr ) for some a ∈ K and a positive integer r

[L2, p. 52]. The minimality of M implies that [M :K] = l. Each of the conjugates of M

over K is tamely ramified over K. Hence their compositum N is also tamely ramified

over K.

So, we consider the case where l = p. By (1b), condition (1e) holds also for

G(L/K). Consider therefore the maximal tamely ramified extension L1 of K in L.

As G(L/L1) is a normal p-subgroup of G(L/K), it must be trivial. So, L is a tamely

ramified extension of K. Since [M :K] is a p-power, N/L is a totally and wildly ramified

extension. It follows that L is the maximal tamely ramified extension of K contained

in N .

The group G = G(L/K) acts on V through G(N/M) by conjugation. Condition

(1c) means that this action is faithful. The minimality of V as a normal subgroup of H

(Condition (1d)) means that V contains no proper nontrivial Fp[G]-submodule. This

means that V is an irreducible Fp[G]-module.
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Finally observe that G(NT/L) = G(NT/T ) × G(NT/N). Hence G(T/L) acts

trivially on G(NT/T ).

Proposition 1.1 supplies a new proof to the assertion, which has already been men-

tioned in the introduction, that F ⊆ T
(p)
ab . The next corollary is already an improvement

of this.

Corollary 1.2: F ⊆ J .

Proof: Let M be a minimal separable extension of K. If M/K is Galois, then, since

G(M/K) is solvable, it is isomorphic to Z/lZ for some prime l. Hence, M ⊆ J . If M/K

is non-Galois, then, by Proposition 1.1, either M ⊆ T , or M is linearly disjoint from T

over K. In the latter case, Proposition 1.1, implies that the Galois closure N of M/K is

a minimal Galois extension of K containing L, and N is linearly disjoint from T over L.

Hence, NT is a minimal Galois extension of K containing T . So, NT ⊆ J . Conclude

that F ⊆ J .

To get a lower bound for F consider positive integers e, f which satisfy

(1) qf ∼= 1 mod e.

Denote the unique unramified extension of K of degree f by Uf . Let π be a prime

element of K, and let Te,f = Uf ( e
√

π) = Uf · K( e
√

π). Then Te,f is a split tamely

ramified Galois extension of K. The Galois group G = G(Te,f/K) is generated by two

elements σ, τ with the following relations [Ha, Section 16, p. 252 with r = 0 or I p. 458

for the number field case].

(2) σf = 1, τe = 1, στσ−1 = τ q.

We say that Te,f is faithful if in addition to (1)

(3) qj 6∼= 1 mod e for each 1 ≤ j < f.

The reason for this name becomes clear in the following lemma:
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Lemma 1.3: Let Te,f be a split tamely ramified faithful Galois extension of K. Then

there exists an irreducible Fp[G]-module V on which G acts faithfully.

Proof: Let ζ = ζe be a primitive root of 1 of order e in F̃p. Consider the field U = Fqf

as a vector space over Fq. By (1), ζ ∈ U . So, G acts on U by the following rule:

(4) σ(x) = xq, τ(x) = ζx,

(Check that relations (2) are satisfied.)

Thus U is an Fq[G]-module. We prove that U is irreducible by proving that the

Fq[G]-module generated by each nonzero u ∈ U is equal to U .

Indeed, let [Fq(ζ):Fq] = j. Then ζqj

= ζ. Hence qj ∼= 1 mod e, and, by (3),

j = f . So, U = Fq(ζ). Now consider the trace function Tr from U to Fq. As U/Fq is

separable, the function x 7→ Tr(xu) from U to Fq is nonzero [L1, p. 211]. Therefore,

since the powers of ζ generate U as a vector space over Fq, there exists k such that

c = Tr(ζku) 6= 0. But Tr(ζku) =
∑f−1

i=0 σiτk(u) belongs to Fq[G](u). Hence, 1 = c−1c

belongs to Fq[G](u) and therefore Fq[G](u) = Fq[G], as asserted.

Next we observe that G acts faithfully on U . Indeed, suppose that τ iσj , with

0 ≤ i < e and 0 ≤ j < f , acts trivially on U . In particular ζi = τ iσj(1) = 1. Hence,

i = 0 and therefore τ i = 1. So, u = σju for every u ∈ U . Conclude that σj = 1, as

claimed.

Finally, we may consider U also as an Fp[G]-module. As such it is isomorphic

to the direct sum V ⊕ · · · ⊕ V for some irreducible Fp[G]-module V [HB, p. 18, Thm.

1.16(d)]. Obviously, G acts faithfully on V . So, V is the Fp[G]-module we are looking

for.

Lemma 1.4: Each split tamely ramified faithful Galois extension Te,f of K is contained

in F .

Proof: Factor the multiplicative group T×e,f of Te,f as T×e,f = 〈 e
√

π〉 ×W × U1, where

W is the finite group of all roots of unity whose order is relatively prime to p, and

U1 is the group of 1-units of Te,f . For each ρ ∈ G there exists i such that ρ( e
√

π) =

6



ζi
e

e
√

π. Obviously, W and U1 are G-invariant. Hence, the factor group U1/Up
1 is a direct

summand of the Fp[G]-module T×e,f/(T×e,f )p.

Iwasawa proves for char(K) = 0 that Fp[G] is a direct Fp[G]-summand of U1/Up
1

(This is implicit in [I, Thm. 1]. It is reproved by Pieper [P, Axiom 2 on p. 176 and

Hilfatz 13 on p. 199]). For char(K) = p, Koch [K, Satz 1] proves that U1
∼= Zp[G]N, as

Zp[G]-modules. So, the assertion holds also in this case. In particular, Fp[G] is an Fp[G]-

quotient of T×e,f/(T×e,f )p. By Lemma 1.3, Fp[G] has an irreducible module V on which G

faithfully acts. Choose a nonzero v ∈ V and extend the map 1 7→ v to a homomorphism

Fp[G]→ V of Fp[G]-modules. As V is irreducible, this map is surjective.

On the other hand, G(T (p)
e,f,ab/Te,f ) is a p-elementary abelian group on which

G acts. The reciprocity map of local class field theory induces an isomorphism of

T×e,f/(T×e,f )p onto G(T (p)
e,f,ab/Te,f ) as Fp[G]-modules [CF, p. 142]. Hence, by the preced-

ing paragraph V is an Fp[G]-quotient of G(T (p)
e,f,ab/Te,f ).

In Galois theoretic terms this means that there is a finite Galois extension N of

K containing Te,f such that G(N/Te,f ) ∼= V , and V is its own centralizer in G(N/K).

As G(N/K) is solvable, a field theoretic interpretation of [H, p. 160, Satz 3.3] gives a

minimal extension M of K whose Galois closure is N . Conclude that N and therefore

also Te,f are contained in F .

Lemma 1.5: Each tamely ramified extension L of K is contained in the compositum of

two faithful split tamely ramified extensions of K.

Proof: Let Te,f be a split tamely ramified extension of K that contains L. Consider

the sequence Dn = (qn − 1)/(q − 1), n = 1, 2, 3, . . . . Like the Fibonacci sequence, Dn

is a second order recurring sequence. Carmichael [C, Thm. XXIII] proves that for each

n > 12, Dn has a primitive factor e1. That is e1 6= 1, e1 divides Dn, but is relatively

prime to Dm for each m < n. Also, each prime factor l of q − 1 divides Dn(l) for some

positive integer n(l). Hence, if f1 is a multiple of f which is larger than 12 and than

n(l) for each l that divides q − 1, then Df1 has a primitive divisor e1 which will satisfy

qf1 ∼= 1 mod e1 but qj 6∼= 1 mod e1, for 1 ≤ j < f1. Thus Te1,f1 is faithful and split.

Now, let f2 = ordeq. Then qf2 ∼= 1 mod e and qj 6∼= 1 mod e for each 1 ≤ j < f2.
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Hence Te,f2 is also faithful and split. Conclude the proof by observing that Te,f ⊆

Te1,f1Te,f2 .

Combine Lemmas 1.4 and 1.5:

Corollary 1.6: T ⊆ F .

Lemma 1.7: Let N be a minimal Galois extension of K containing T . Then N/T is a

finite p-elementary abelian extension and N ⊆ F .

Proof: Choose x ∈ N − T and let N0 be the Galois closure of K(x)/K. Then TN0 is

contained in N and normal over K. So, the minimality of N implies that TN0 = N .

In particular N/T is finite. As an extension of T , N is totally and wildly ramified.

Thus V = G(N/T ) is a p-group, which because of the minimality, must be elementary

abelian.

Embed V in a p-Sylow group P of G(N/K). Observe that P/V is a p-Sylow group

of G = G(T/K). The latter is isomorphic to Zp. As Zp is projective, the short exact

sequence 1→ V → P → Zp → 0 splits. In other words, V has a complement in P . As

gcd(|V |, (G(N/K):P )) = 1, a theorem of Gaschütz [FJ, Lemma 20.46] states that V has

a complement in G(N/K).

Alternatively, follow Jannsen [J, Satz 3.1] to observe that cdpG = 1. As V is a

p-group, this implies that the short exact sequence 1→ V → G(N/K)→ G→ 1 splits

[R, p. 211].

Thus, K has an extension M such that T ∩M = K and TM = N . As T/K is

Galois, M is linearly disjoint from T over K. Let M0 be a minimal extension of K which

is contained in M . By Proposition 1.1, there exists a tamely ramified extension L0 of

K such that M̂0 = L0M0 is the Galois closure of M0/K. As TM̂0 ⊆ N is Galois over

K, the minimality of N implies that TM̂0 = N . Hence [M0 : K] = [N : T ] = [M : K]

and therefore M = M0 is a minimal extension of K. Thus M ⊆ F . Conclude from

Corollary 1.6 that N = TM ⊆ F , as desired.

Combine Corollary 1.2 with Lemma 1.7 to obtain our main result:

Theorem 1.8: F = J .
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Remark 1.9: The field F is properly contained in T
(p)
ab . Let L be an unramified

extension of K of degree pm, for m ≥ 2. Then G = G(L/K) is a cyclic group of order

pm. We have already mentioned in the proof of Lemma 1.4 that Fp[G] is an Fp[G]-

quotient of L×/(L×)p. So, by the local reciprocity law, L has an extension N which

is Galois over K such that G(N/L) is isomorphic to Fp[G] as Fp[G]-modules. As G is

a p-group, the Jacobson radical of Fp[G] is a vector space of dimension pm − 1 over

Fp [H, p. 484]. In particular it is nontrivial. It follows that N is not contained in J

and therefore, by Theorem 1.8, also not in F . On the other hand, N ⊆ T
(p)
ab . Hence

F 6= T
(p)
ab , as claimed.

Remark 1.10: The structure of G(F/T ) as a G(T/K)-module. For each large in-

teger f , Carmichael’s theorem mentioned in the proof of Lemma 1.5 and Lemma 1.3

gives a minimal Galois extension Ne,f of K containing Te,f such that Ne,f/Te,f is a

totally ramified extension of degree qf . Then TNe,f is a minimal Galois extension of

K containing T and [TNe,f : T ] = qf . As each TNe,f is contained in J = F , we have

[F : T ] =∞.

We may now construct a sequence N1, N2, N3, . . . of minimal Galois extensions

of K containing T which is linearly disjoint over T such that F = N1N2N3 · · · . In-

deed, choose a sequence x1, x2, x3, . . . of generators for F/T . Suppose that N1, . . . , Nk

have already been defined. Let n(k) be the least integer such that xn(k) /∈ N1 · · ·Nk.

By definition of J , there exists a minimal Galois extension Nk+1 of K containing T

which contains xn(k). The minimality of Nk+1 implies that N1 · · ·Nk ∩Nk+1 = T . So,

N1, . . . , Nk+1 are linearly disjoint over T . Conclude by induction that the sequence

N1, N2, N3, . . . satisfies the above requirements.

Note, that this sequence presents the G(T/K)-module G(F/T ) as a direct sum:

G(F/T ) ∼=
⊕∞

i=1 G(Ni/T ).

For each i, the proof of Lemma 1.7 provides a minimal separable extension Mi

of K which is totally and wildly ramified such that TMi = Ni. As each Mi is linearly

disjoint from T over K and as N1, N2, N3, . . . are linearly disjoint over T , the sequence

M1,M2,M3, . . . is linearly disjoint over K.
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Remark 1.11: The Fitting group of a profinite group. The product of two closed

normal pronilpotent subgroups M and N of a profinite group G is pronilpotent. Indeed,

for each p, the p-Sylow subgroups Mp and Np of M and N , respectively, are normal and

therefore so is the p-Sylow subgroup MpNp of MN . It follows that G has a unique closed

normal pronilpotnet subgroup F(G), called the Fitting group of G, which contains all

closed normal pronilpotent subgroups of G. As Φ(G) is pronilpotent [FJ, Lemma 20.2],

it is contained in the Fitting group of G.

Pop [P, Satz 1.4] proves that for the case that K is a finite extension of Qp that

if H is a closed normal subgroup of G(K), then H ∩ G(T ) is nontrivial. As G(T ) is a

pro-p-group, this implies that F(G(K)) is a pro-p-group that contains G(T ). Let L′ be

the fixed field of F(G(K)). Then L′ is contained in T and contains the fixed field L

of the p-Sylow group of G(T/K) in T . As the maximal unramified p-extension U of K

has Galois group isomorphic to Zp, and since p does not divide the order of G(T/U),

the extension T/L is unramified and G(T/L) ∼= Zp. So, for the residue fields, we get

G(L) = G(T/L) ∼= G(T/L) ∼= Zp.

Let now π be a prime element of K. For each integer m prime to p the polynomial

Xm − π is, by Eisenstein criterion, irreducible over K. Hence Xm − π has a root in L,

and therefore also in L′. Since L′ is normal over K, all roots of Xm − π belong to L′.

Hence, the mth root of unity ζm belongs to L′. It follows that ζm ∈ L′, and therefore

L′ = F̃p. Conclude that L′ = T and that therefore G(T ) is the Fitting group of G(K).

This gives an alternative proof for Corollary 1.6.
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2. The Frattini group of global Galois groups.

In contrast to the local case the Frattini group of G(K) for a global field K is trivial.

The same holds even if we replace G(K) by its maximal solvable quotient. In view of

Remark 1.11, we show that this is already true for the Fitting group. As our arguments

are based on Hilbert Irreducibility theorem, which global fields satisfy, we state and

prove the results of this section for arbitrary Hilbertian fields.

Lemma 2.1: Let N be a Galois extension of a Hilbertian field K with Galois group G.

If the order of F(G) is divisible by at least two distinct primes, then N is Hilbertian.

Proof: Let F be the fixed field in N of F(G). Then F is a Galois extension of K. Choose

a prime divisor p of [N :F ]. Denote the maximal p-extension of F in N by Fp. Let F ′p

be the compositum of all Galois extensions of F whose orders are relatively prime to

p. Since G(N/F ) is pronilpotent, both fields Fp and F ′p are Galois over K and they are

proper extensions of F . Also, Fp ∩ F ′p = F and FpF
′
p = N .

If Fp is a finite extension of F , then N is a finite proper extension of F ′p. By a

theorem of Weissauer [FJ, Cor. 12.15], N is Hilbertian.

If [Fp:F ] = ∞ choose a finite extension F ′ of F which is contained in Fp. By

Weissauer’s theorem, F ′ is Hilbertian. Also, G(N/F ′) ∼= G(Fp/F ′) × G(F ′F ′p/F ′p) is a

pronilpotent group whose order is divisible by two distinct primes. By a theorem of

Kuyk ([Ku, an immediate corollary of Thm. 1] or [U, Thm. 3]), N is Hilbertian.

Theorem 2.2: Let K be a Hilbertian field. Then the Fitting and the Frattini groups

of both G(K) and G(Ksolv/K) are trivial.

Proof: Theorem 15.10 of [FJ] states that if N is a Galois extension of K and N is not

separably closed, then G(N) is not prosolvable. Since F(G(K)) is pronilpotent and

normal, this implies that F(G(K)) = 1.

Now consider the fixed field F of F(G(Ksolv/K)) in Ksolv. Assume that F 6= Ksolv.

If [Ksolv : F ] < ∞, then, by Weissauer’s theorem, Ksolv were Hilbertrian. This would

imply that Ksolv has a quadratic extension, which is impossible. Hence [Ksolv : F ] =∞.

So, choose a finite extension F ′ of F contained in Ksolv. Again, F ′ is Hilbertian.

Hence, F ′ has a quadratic extension and a cubic Galois extension [FJ, Thm. 24.48].
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Both extensions are contained in Ksolv. Hence, the order of [Ksolv : F ] is divisible by

2 and 3. By Lemma 2.1, Ksolv is Hilbertian. Conclude from this contradiction that

F(G(Ksolv/K)) = 1.

Example 2.3: The maximal p-extension. Let K be a Hilbertian field. Then K has

a Galois extension L such that G(L/K) ∼= Z/pZ [FJ, Thm. 24.48]. Hence, by [FJ, Prop.

24.47], K has a Galois extension N such that G(N/K) ∼= Z/pZ wr Z/pZ. The latter

group is a nonabelian p-group. It follows that K
(p)
ab 6= K(p). Hence, Φ(G(K(p)/K)) =

G(K(p)/K
(p)
ab ) is nontrivial.

12



References

[C] R.D. Carmichael, On the numerical factors of the arithmetic forms αn±βn, Annals
of Mathematics 15 (1913–1914), 30–70.
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