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Introduction

The inverse Galois problem asks whether every finite group G occurs as a Galois

group over the field Q of rational numbers. We then say that G is realizable over Q.

This problem goes back to Hilbert [Hil] who realized Sn and An over Q. Many more

groups have been realized over Q since 1892. For example, Shafarevich [Sha] finished

in 1958 the work started by Scholz 1936 [Slz] and Reichardt 1937 [Rei] and realized

all solvable groups over Q. The last ten years have seen intensified efforts toward a

positive solution of the problem. The area has become one of the frontiers of arithmetic

geometry (see surveys of Matzat [Mat] and Serre [Se1]).

Parallel to the effort of realizing groups over Q, people have generalized the inverse

Galois problem to other fields with good arithmetical properties. The most distinguished

field where the problem has an affirmative solution is C(t). This is a consequence of the

Riemann Existence Theorem from complex analysis.

Winfried Scharlau and Wulf-Dieter Geyer asked what is the absolute Galois group

of the field of formal power series F = K((X1, . . . , Xr)) in r ≥ 2 variables over an

arbitrary field K. The full answer to this question is still out of reach. However, a

theorem of Harbater (Proposition 1.1a) asserts that each Galois group is realizable over

the field of rational function F (T ). By a theorem of Weissauer (Proposition 3.1), F

is Hilbertian. So, G is realizable over F . Thus, the inverse Galois problem has an

affirmative solution over F .

The goal of this note is to prove the same result in a more general setting.

Theorem A: Let R be the valuation ring of a discrete Henselian field K, let r be a

positive integer, and let F be the quotient field of R[[X1, . . . , Xr]]. Then every finite

group G is realizable over F .
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Corollary B:

(a) Let K0 be an arbitrary field and let r ≥ 2. Then every finite group is realizable

over K0((X1, . . . , Xr)).

(b) Let r ≥ 1 and let F be the quotient field of Zp[[X1, . . . , Xr]] of Zp,alg[[X1, . . . , Xr]].

Then every finite group is realizable over F . Here Zp is the ring of p-adic numbers

and Zp,alg is the subring of all p-adic numbers which are algebraic over Q.

Proof: Apply Theorem A to R = K0[[X1]], to R = Zp, and to R = Zp,alg.

The proof of Theorem A is a combination of several known results which we bring

in this note.

Acknowledgement: The author is indebted to Wulf-Dieter Geyer and Dan Haran

for their help to improve older versions of this note.

1. The theorem of Harbater and Liu

Let K be a field and let G be a finite group. We say that G is regular over K if there

exists an absolutely irreducible polynomial f ∈ K[T,X] which is Galois over K(T )

whose Galois group, namely, G(f(T,X),K(T )) is isomorphic to G.

Alternatively, K(T ) has a Galois extension F which is regular over K such that

G(F/K(T )) ∼= G.

We say that G is regular over K with a rational point if there exists a

dominating Galois rational map of irreducible affine curves ϕ: C → A1 defined over K

such that C has a simple K-rational point and G(C/A1) ∼= G.

Remark 1.1: Base field extension. Note that if G is regular over a field K, then it is

regular over every extension L of K. Indeed, we may take F as free from L and therefore

as linearly disjoint from L over K [FrJ, Lemma 9.9].

Similarly, if G is regular over K with a rational point, then G is regular with a

rational point over each extension of K.

The condition on C to have a K-rational point implies that F is regular over K.

Thus, “G is regular over K with a rational point” implies that “G is regular over K”.
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Indeed, let E = K(T ) be the function field of A1 and let F be the function field

of C over K. By assumption, F/E is Galois with G(F/E) ∼= G. Also, there exists a

place ϕ: F → K ∪{∞} over K [JaR, Cor. A2]. It follows from the following well known

lemma that F/K is regular.

Lemma 1.2: Let F/K be an extension of fields. If there exists a K-place ϕ: F →

K ∪ {∞}, then F/K is regular.

Proof: Indeed, let w1, . . . , wn ∈ K̃ be linearly independent over K and let u1, . . . , un ∈

F such that
∑n

i=1 uiwi = 0 and not all ui are 0. Assume without loss that ϕ(ui/u1) ∈

K, i = 1, . . . , n and extend ϕ to a K̃-place ϕ̃: FK̃ → K̃ ∪ {∞}. Then apply ϕ̃ to∑n
i=1

ui

u1
wi = 0 to get the relation

∑n
i=1 ϕ

(
ui

u1

)
wi = 0. It follows that 1 = ϕ

(
u1
u1

)
= 0.

This contradiction proves that F is linearly disjoint from K̃ over K. In other words,

F/K is regular.

Suppose now that K is an infinite field and that ϕ: C → A1 is as above, with

C ⊆ An, n ≥ 2. Then we may project C from an appropriate point of An(K) onto

a curve C ′ ⊆ A2 such that C ′ is K-birationally equivalent to C and the K-rational

simple point of C is mapped on a simple K-rational point of C ′. Thus there exists an

absolutely irreducible polynomial f ∈ K[T,X] with G(f(T,X),K(T )) ∼= G and there

exists a, b ∈ K such that f(a, b) = 0 and ∂f
∂T (a, b) 6= 0 or ∂f

∂X (a, b) 6= 0.

Proposition 1.3: Let R be local integral domain with a quotient field K such that

R 6= K.

(a) (Harbater [Ha1, Thm. 2.3]) If R is complete, then each finite group is regular over

K with a rational point.

(b) (Liu [Liu]) If R is a complete discrete valuation ring, then each finite group G is

regular over K with a rational point.

Remark 1.4: About the proofs of Harbater and Liu.

(a) Harbater uses ‘mock covers’ and ‘Grothendieck’s existence theorem’ [GrD,

(5.1.6)] in his proof. The rationality of the group over K is not explicitly stated in

[Ha1, Thm. 2.3], but it can be deduced from the properties of the ‘mock covers’.
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(b) Liu [Liu] translates Harbater’s method into ‘rigid analytic geometry’ for the

case where R is a complete discrete valuation ring. We prove however, that this special

case of Harbater’s result implies the more general theorem.

Lemma 1.5: Each complete local integral domain R which is not a field contains a

complete discrete valuation ring.

Proof: Let m be the maximal ideal of R. Suppose first that char(R) = 0. Then Z ⊆ R

and there are two possibilities:

Case A: Z∩m 6= 0. Then Z∩m = pZ for some prime number p. Since R is complete,

Zp ⊆ R.

Case B: Z∩m = 0. Since R is not a field, there exists 0 6= x ∈ m. If x were algebraic

over Q, then anxn + · · · + a1x + a0 = 0 with a0, a1, . . . , an ∈ Z and a0 6= 0. But then

a0 ∈ Z ∩ m. This contradiction proves that x is transcendental over Q. It follows that

Q[x] ⊆ R and Q[x]∩m = xQ[x]. The completion of Q[x] with respect to x is a discrete

valuation ring which is contained in R.

Now suppose that char(R) = p. Then Fp ∩m = 0 and one continues as in Case B,

replacing Q by Fp.

Corollary 1.6: Proposition 1.3(b) implies Proposition 1.3(a).

Proof: Let R be as in Proposition 1.3. Lemma 1.5 gives a complete valuation subring

R0 of R. By Proposition 1.3(b), G is regular over the quotient field of R0 with a rational

point. Hence G is also regular over K with a rational point. So, Proposition 1.3(a) is

valid.

2. Henselian fields

A field K is defectless with respect to a valuation v if each finite extension L of K

satisfies

(1) [L : K] =
∑
w|v

e(w/v)f(w/v),
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where w ranges over all valuations of L that extend v, e(w/v) is the ramification index,

and f(w/v) is the relative residue degree of w/v. If (K, v) is Henselian, then v has

a unique extension w to L. In this case we write e(L/K) (resp., f(L/K)) instead of

e(w/v) (resp., f(w/v)). Then condition (1) simplifies to

(2) [L : K] = e(L/K)f(L/K)

For example, each complete discrete valued field (K, v) is defectless [Rbn, p. 236].

Lemma 2.1∗: Let (K, v) be a defectless Henselian discrete valued field, and let (K̂, v̂)

be its completion. Then K̂/K is a regular extension.

Proof: We have to prove that each finite extension L of K is linearly disjoint from K̂

over K.

Indeed, as K̂/K is an immediate extension e(K̂/K) = 1. Thus e(K̂L/K̂) =

e(K̂L/K) = e(K̂L/L)e(L/K) ≥ e(L/K). Similarly we have f(K̂L/K̂) ≥ f(L/K) for

the residue degrees. Hence, by (2)

[K̂L : K̂] ≤ [L : K] = e(L/K)f(L/K) ≤ e(K̂L/K̂)f(K̂L/K̂) = [K̂L : K̂].

Thus [K̂L : K̂] = [L : K]. Conclude that L is linearly disjoint from K̂ over K.

Suppose now that v is a discrete valuation of K (i.e., v(K) = Z). Let O be its

valuation ring, let L be a finite extension of K and let O′ be the integral closure of

K in L. If O′ is a finitely generated O-module, then (1) holds [Se2, p. 26]. This is in

particular the case if L/K is separable [Se2, p. 24]. Hence, if char(K) = 0, then K is

defectless with respect to v. If K is a function field of one variable over a field K0, and

v is a valuation of K which is trivial on K0, then there exists a finitely generated ring

R over K0 and a prime ideal p of R such that Rp is the valuation ring of v. Since the

integral closure of R in L is finitely generated as an R-module [La1, p. 120], the same

holds for Rp. It follows that (K, v) is defectless.

* Lemmas 2.1 and 2.2 overlap with Lemma 2.13 and Corollary 2.14 of [Kul].

5



Lemma 2.2: Let (K, v) be a discrete Henselian valued field and let (K̂, v̂) be the com-

pletion of (K, v). Then (K, v) is defectless in each of the following cases:

(a) char(K) = 0.

(b) (K, v) is the Henselization of a valued field (K1, v1), where K1 is a function field of

one variable over a field K0 and v1 is a valuation of K1 which is trivial on K0.

Hence, by Lemma 2.1, in each of these cases, K̂/K is a regular extension.

Proof: By the paragraph that precedes the lemma, it suffices to consider only Case

(b). Since (1) holds if L/K is separable, it suffices to prove (2) only in the case where

L/K is a purely inseparable extension of degree q. Then there exists a finite extension

K2 of K1 which is contained in K and a finite purely inseparable extension L2 of K2

of degree q such that K ∩ L2 = K2 and KL2 = L. Since K2 is a function field of one

variable over a finite extension of K0, K2 is defectless. Also v2 = v|K2 has a unique

extension w2 to L2. Hence, e(w2/v2)f(w2/v2) = q.

Denote now the unique extension of v to L by w. Then w|L2 = w2. Since (K, v) is

also the Henselization of (K2, v2), we have f(L/K) ≥ f(w2/v2) (actually both degrees

are 1) and e(L/K) ≥ e(w2/v2). So,

q = [L : K] ≥ e(L/K)f(L/K) ≥ e(w2/v2)f(w2/v2) = q

and therefore (2) holds, as desired.

Lemma 2.3: Let (K, v) be a Henselian valued field and let (K̂, v̂) be its completion.

Suppose that K̂/K is a regular extension. Then for each 0 6= g ∈ K[X1, . . . , Xn] each

point x ∈ (K̂)n with g(x) 6= 0 has a K-rational specialization a such that g(a) 6= 0.

Thus K is existentially closed in K̂.

Proof: Adding g(x)−1 to x1, . . . , xn if necessary, we may assume that g = 1. By

assumption, K(x) is a separable extension of K. Let u1, . . . , ur be a separating tran-

scendence base for K(x)/K and let z be a primitive element for the finite separable

extension K(x)/K(u) which is integral over K[u]. Then there exists an irreducible

polynomial f ∈ K[U1, . . . , Ur, Z] such that f(u, z) = 0 and f ′(u, z) 6= 0 (the prime

stands for derivative with respect to Z). Also, xi = hi(u, z)/h0(u), for hi ∈ K[U, Z]

and 0 6= h0 ∈ K[U].

6



Since (K, v) is dense in (K̂, v̂) we may approximate u1, . . . , ur, z by elements of

K to any desired degree. Since K is Henselian, there exist b1, . . . , br, c ∈ K such that

f(b, c) = 0 and h0(b) 6= 0. It follows that (b, c) is a K-specialization of (u, z).

Let now ai = hi(b, c)/h0(b), i = 1, . . . , n. Then a is a K-specialization of x.

Lemma 2.4: Let K be an existentially closed subfield of a field K̂. If a finite group G

is regular over K̂ (resp., with a rational point), then G is also regular over K (resp.,

with a rational point).

Proof: Suppose for example that G is regular over K̂ with a rational point. Then,

there exists an absolutely irreducible polynomial f ∈ K̂[T,X] which is Galois and

monic in X such that G(f(T,X), K̂(T )) ∼= G, and there exist t, x ∈ K̂ such that

f(t, x) = 0 and ∂f
∂T (t, x) 6= 0 or ∂f

∂X (t, x) 6= 0. Find u1, . . . , un ∈ K̂ and a poly-

nomial g ∈ K(U)[T,X] such that K[u] is integrally closed, g(u, T, X) = f(T,X),

G(g(u, T, X),K(u, T )) ∼= G, and there exist rational functions p, q ∈ K(U) such that

t = p(u) and x = q(u). By the Bertini-Noether theorem there exists 0 6= h ∈ K(U) such

that if a specialization a of u satisfies h(a) 6= 0, then g(a, T, X) is well defined, Galois

in X, and absolutely irreducible [FrJ, Prop. 9.29]. Also, p(a) and q(a) are well defined

and ∂f
∂T (p(a), q(a)) 6= 0 or ∂f

∂X (p(a), q(a)) 6= 0. Choosing h such that the discriminant

of g(a, T, X) with respect to X is nonzero, G(g(a, T, X),K(a)) becomes isomorphic to

a subgroup of G(g(u, T, X),K(u, T )) [La2, p. 248, Prop. 15]. Since

|G(g(a, T, X),K(a, T ))| = degX g(a, T, X)

= degX g(u, T, X) = |G(g(u, T, X),K(u, T ))|,

we have G(g(a, T, X),K(a)) ∼= G. Since K is existentially closed in K̂, we can choose a

in Kn. Hence G is regular over K with a rational point.

Similarly one proves that if G is regular over K̂, then it is also regular over K.

Theorem 2.5 (Florian Pop∗): Let (F,w) be a Henselian valued field. Then every finite

group G is regular over F with a rational point.

* Communicated to the author by Peter Roquette.
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Proof: It is implicit in our assumptions that w is a nontrivial valuation.

Claim: (F,w) is an extension of a discrete Henselian valued field (K, v) which satisfies

the conclusion of Lemma 2.3.

Suppose first that char(F ) = 0 and that w is nontrivial on Q. Then F0 = Q̃ ∩ F

is Henselian with respect to w0 = w|F0 [Jar, Cor. 11.2]. Hence, there exists p such that

(F0, w0) is an extension of the Henselization (Qp,alg, vp) of (Q, vp), where vp denotes the

p-adic valuation. Let K = Qp,alg and v = vp.

Next suppose that char(F ) = 0 and that w is trivial on Q. Then there exists

x ∈ F r Q such that w(x) 6= 0. This element is transcendental over Q. Thus w induces

a nontrivial valuation v0 on Q(x). Then F0 = Q̃(x) ∩ F contains the Henselization K

of Q(x) with respect to v0.

If char(F ) = p, then w is trivial on Fp. Hence, as in the preceding paragraph,

there exists x ∈ F which is transcendental over Fp such that F contains a Henselization

K of Fp(x).

In each case Lemma 2.2 asserts that (K, v) satisfies the conclusion of Lemma 2.3.

Let K̂ be the completion of K with respect to v. By Proposition 1.3b, G is regular

over K̂ with a rational point. Hence, by Lemma 2.4, G is regular over F with a rational

point.

Recall that a field K is PAC if each nonempty absolutely irreducible variety which

is defined over K has a K-rational point. Fried and Völklein [FV1] use complex analysis

to prove that if K is a PAC field of characteristic 0, then each finite group G is regular

over K. Völklein informed the author that the construction in [Voe] implies that G is

even regular over K with a rational point. Pop has observed that the methods of this

note imply the same result without any restriction on the characteristic:

Theorem 2.6: Let K be a PAC field and let G be a finite group. Then G is regular

over K with a rational point.

Proof: The field K̂ = K((X)) is regular over K, because the map X → 0 extends to a

place K̂ → K ∪ {∞} (Lemma 1.2). Since K is PAC this implies that K is existentially

closed in K̂ [FrJ, p. 139, Exer. 7]. By Proposition 1.3(b), G is regular over K̂ with a

8



rational point. Hence, by Lemma 2.4, G is regular also over K with a rational point.

3. Hilbertian fields

An integral domain S with a quotient field F is a Krull domain if F has a family

V of discrete valuations such that the intersection of their valuation rings is S and for

each 0 6= a ∈ K there are only finitely many v ∈ V such that v(a) 6= 0. For example,

each Dedekind domain is a Krull domain. Also, if S is a Krull domain with a quotient

field F , then the integral closure of S in any finite extension of F , the polynomial ring

S[X], and the ring of power series S[[X]] are again Krull domains [Bou, pp. 487, 489,

and 547].

The dimension of S is greater than 1, if S has a maximal ideal M which properly

contains a nonzero prime ideal.

Proposition 3.1 (Weissauer [FrJ, Thm. 14.7]): The quotient field of a Krull domain

of dimension exceeding 1 is separably Hilbertian.

Example 3.2: Ring of formal power series. Let R be either a field or a discrete valuation

ring with maximal ideal m. Then, S = R[[X1, . . . , Xr]] is a Krull domain. Indeed, it is

even a unique factorization domain [Bou, p. 511].

Consider the ideal M of S which consists of all power series
∑∞

i=0 fi, where fi ∈

R[X1, . . . , Xr] is a form of degree i, f0 = 0 if R is a field, and f0 ∈ m if R is a discrete

valuation ring. Since S/M ∼= R if R is a field and S/M ∼= R/m if R is a discrete

valuation ring, M is a maximal ideal. If R is a field (resp., discrete valuation ring) and

r ≥ 2 (resp., r ≥ 1), then M contains the prime ideals generated by X1 and by X2

(resp., m and by X1) and neither of them is contained in the other. Hence dim(S) ≥ 2.

It follows from Proposition 3.1 that the quotient field of S is separably Hilbertian.

Theorem A: Let R be the valuation ring of a discrete Henselian field K, let r be a

positive integer, and let F be the quotient field of R[[X1, . . . , Xr]]. Then every finite

group G is realizable over F .

Proof: Let G be a finite group. By Theorem 2.5, G is regular over the quotient field of
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R with a rational point. Hence, G is regular over F with a rational point. In particular,

G is realizable over F (T ). By Example 3.2, F is separably Hilbertian. Hence G is

realizable over F [FrJ, Lemma 12.12].

Remark 3.3: The case r = 1. By Puiseux’s theorem, G(C((X))) ∼= Ẑ. Hence, only

cyclic groups can be realized over C((X)). Thus, Corollary B(a) is false for r = 1.

Remark 3.4: Cohomological dimension. We have already mentioned that every finite

group is realizable over C(t). Moreover, the absolute Galois group, G(C(t)), of C(t)

is even a free profinite group of uncountable rank [Rib, p. 70]. In particular, G(C(t))

is projective, that is, of cohomological dimension 1. On the other hand, use the no-

tation of Theorem A and assume that there exists a prime p 6= char(K) such that

1 ≤ cdp(G(K)) < ∞. Then, as we explain in the next paragraph, cdp(G(F )) ≥ r + 1.

In particular, although every group is realizable over F , not every embedding problem

for G(F ) is solvable.

Indeed, let E be the quotient field of R[[X1, . . . , Xr−1]]. Induction on r gives,

cd(G(E)) ≥ r. Hence, cd(G(E((Xr))) ≥ r + 1 [Rib, p. 277]. Also, E ⊆ E(Xr) ⊆

F ⊆ E((Xr)). By Krasner’s lemma [Jar, Prop. 12.3] E(Xr)sE((Xr)) = E((Xr))s (Ls

is the separable closure of a field L.) Hence FsE((Xr)) = E((Xr))s, and therefore,

by Galois theory, G(E((Xr))) is isomorphic to the closed subgroup G(Fs ∩ E((Xr)) of

G(F ). Conclude that cd(G(F )) ≥ cdp(G(E((Xr))) ≥ r + 1 [Rib, p. 204], as was to be

shown.

Denote the free profinite group of countable rank by F̂ω.

Example 3.5: A field K over which every finite group is realizable but F̂ω is not realizable

over K.

Let G1, G2, G3, . . . be a listing of all finite groups. Consider the direct product

G =
∏∞

i=1 Gi. Then G is a profinite group of rank ℵ0. Let ϕ: G̃ → G be the universal

Frattini cover of G. Then G̃ is projective [FrJ, Prop. 20.33] of rank ℵ0 [FrJ, Cor. 20.26].

Hence, there exists an algebraic extension K of Q which is PAC with G(K) ∼= G̃. Then,

each finite group is a quotient of G̃ and therefore it is realizable over K.

10



Assume now that F̂ω is realizable over K. Then, F̂ω is a quotient of G̃. It follows

that there exists a Frattini cover ϕ of F̂ω onto a quotient Ḡ of G [FrJ, Lemma 20.35]. The

kernel of ϕ is contained in the Frattini subgroup of F̂ω which is trivial [FrJ, Cor. 24.8].

Hence, F̂ω
∼= Ḡ and therefore there exists an epimorphism α: G → F̂ω. But for each

i, α(Gi) is a finite subgroup of F̂ω. Since F̂ω is torsion free, α(Gi) = 1. Since the Gi

generate G, we obtain that F̂ω = α(G) = 1. This contradiction proves that F̂ω is not

realizable over K.

Note that as K is PAC, the latter conclusion implies, in view of a result of Fried

and Völklein [FV2, Thm. A], that K is not Hilbertian. So, our argement strengthen

the one given in [Fv2, Sect. , Example].

Proposition 3.6 (W.-D. Geyer): If K is an algebraically closed field of characteristic

0 and r ≥ 2, then F̂ω is realizable over K((X1, . . . , Xr)).

Proof: Observe that K
(

X1
X2

)
⊆ K((X1, . . . , Xr)). As t = X1

X2
is transcendental over K,

the absolute Galois group of K(t) is free of rank which is equal to the cardinality of K

[Rib, p. 70]. In particular F̂ω is a quotient of G(K(t)).∗ It follows from the next claim

tht F̂ω is realizable over K((X1, . . . , Xr)).

Claim: K(t) is algebraically closed in K((X1, . . . , Xr)). Indeed, consider an algebraic

element f ∈ K((X1, . . . , Xr)) over K(t). We prove that each prime divisor of K(t) is

unramified in K(t, f). It will follow that f ∈ K(t), [FrJ, Prop. 2.15], as desired.

To this end consider c ∈ K and let u = t− c. Then X1 = X2(u + c) and therefore

K(u) = K(t) ⊆ K((X1, X2, . . . , Xr)) ⊆ K((u, X2, . . . , Xr))

⊆ K((u))((X2, . . . , Xr)) = F.

The map Xi 7→ 0, i = 2, . . . , r, extends to a K((u))-place ϕ: F → K((u)) ∪ {∞} which

extends further to a place ϕ: F̃ → K̃((u)) ∪ {∞} which fixes each element of K̃((u)).

In particular, as f ∈ K̃(u) ∩ F , we have f = ϕ(f) ∈ K((u)). But K((u))/K(t) is

* Florian Pop has recently announced a ‘ 1
2

Riemann existence theorem’ from which the
same result follows also if char(K) 6= 0. If we use Pop’s theorem, then Proposition 3.6
will hold for an arbitrary algebraically closed field.
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unramified at the zero (t − c)0 of t − c. So, (t − c)0 is unramified in K(t, f). Finally,

replace t by X2
X1

to conclude that also (t)∞ is unramified in K(t, f), as desired.

Example 3.5 and Proposition 3.6 naturally raise the following question:

Problem 3.7: Let K be an arbitrary field and let r ≥ 2. Is F̂ω realizable over

K((X1, . . . , Xr))?

Remark 3.8: Harbater [Ha2, Prop. 2.3] proves that if O is the ring of integers of a

number field K and F is the quotient field of O[[X]], then every finite group G is

realizable over F . Moreover, F has a Galois extension F̂ which is regular over K such

that G(F̂ /F ) ∼= G. Note that as O is a Dedekind domain, O[[X]] is a Krull domain of

dimension at least 2. Hence, by Proposition 3.1, F is Hilbertian.

In view of Theorem A and Remarks 3.3 and 3.8 we may ask:

Problem 3.8: Let O be a domain of characteristic 0 which is not a field. Denote the

quotient field of O[[X]] by F . Is every finite group realizable over F?
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