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Introduction

Let C be an algebraically closed field, consider a transcendental element t over C, and let

K = C(t). Douady [Dou] applies Riemann Existence theorem and a descent lemma of

Grothendieck to prove that if char(C) = 0, then G(K) is the free profinite group F̂m, of

rank m = card(C). In the case char(C) = p > 0, results of Grothendieck imply that the

maximal prime-to-p quotient of G(K) is isomorphic to the maximal prime to p quotient

of the free profinite group of F̂m. SinceK is Hilbertian and G(K) is projective each finite

embedding problem over K with an abelian kernel is solvable [FrJ, Thm. 24.50]. Hence,

if in addition K is countable, and we denote the compositum of all solvable extensions

of K by Ksolv, then G(Ksolv/K) is isomorphic to the free prosolvable group of rank ℵ0.

Harbater [Ha1, Cor. 1.5] proves that each finite group occurs as a Galois group over K.

Finally, Harbater [Ha2] and Pop [Po2] prove that each finite embedding problem over

K is solvable (we then say that both K and G(K) are ω-free). By Iwasawa’s criterion,

this implies that G(K) ∼= F̂ω.

If m is uncountable, then the solvability of each embedding problem over K does

not suffice for G(K) to be free. Indeed, by Corollary 3.6, there exists a projective

nonfree ω-free group G ∗. In order to prove that G(K) ∼= F̂m one can either solve each

finite embedding problem m times (Lemma 2.1) or to solve each embedding problem

once in a regular way (Proposition 2.3). Harbater [Ha2, Thm. 3.6] verifies the former

condition and concludes that G(K) ∼= F̂m [Ha2, Thm. 4.4].

A theorem of Fried, Völklein [FrV] and Pop [Po1], says that if M is PAC and

Hilbertian, then M is ω-free. Example 3.2 translates Example 3.1 into fields and con-

structs a Hilbertian PAC field M such that G(M) is not free. So, we may say that the

theorem is in a certain sense sharp.

One knows that if M is PAC, then G(M) is projective. So, Fried and Völklein

[FrV] conjecture that if M is a countable Hilbertian field with G(M) projective, then

M is ω-free. Thus would mean that if M is an arbitrary Hilbertian field with G(M)

projective, then M is ω-free (Observation 4.1).

The most prominent field to which this conjecture applies is the maximal cyclo-

* This answers a question of Harbater in a private communication.
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tomic extension of Q. This special case of the conjecture is due to Shafarevich. We

pay attention to another case, namely to an algebraic extension M of C(t) which is

Hilbertian. In this case G(M) is automatically projective. We prove that if M is Galois

over C(t) and Hilbertian, then M is ω-free.

Acknowledgement: The author is indebted to Dan Haran, Katherine Stevenson,

and to Helmut Völklein for useful comments to previous versions of this note.

1. The absolute Galois group of C(T )

1.1 Rank of a profinite group. A subset X of a profinite group G is said to

converge to 1 if each open subgroup of X contains all but finitely many elements of

X. We say that X generates G if G is the smallest closed subgroup of itself which

contains X. A theorem of Douady [FrJ, Prop. 15.11] states that each profinite group G

has a set of generators that converges to 1. The smallest cardinality of such a set is the

rank of G. If rank(G) is infinite, then it is equal to the cardinality of the set of all open

normal subgroups of G [FrJ, Suppl. 15.12]. In the latter case, if H is an open subgroup

of G, then each open normal subgroup of H contains an open normal subgroup of G

and vice versa. Hence rank(H) = rank(G).

1.2 Free profinite groups. A profinite group F is free if it has a subset X with

the following two properties:

(1a) X converges to 1;

(1b) Every map α0 of X into a profinite group G such that α0(X) converges to 1

uniquely extends to a homomorphism (by which we also mean continuous) α: F →

G.

The set X is a basis of F . Its cardinality is equal to rank(F ) [FrJ, Lemma 15.18].

For each cardinal number m there exists a unique (up to an isomorphism) free profinite

group of rank m [FrJ, Prop. 15.17]. We denote it by F̂m. For example, F̂ω is the free

profinite group on countably many generators.

1.3 Projective groups. An embedding problem for a profinite group G is a pair

(2) (ϕ: G→ A, α: B → A)
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of epimorphisms of profinite groups. It is finite if B is finite. A solution (weak

solution) to the embedding problem is an epimorphism (homomorphism) γ: G → B

such that α ◦ γ = ϕ. The group G is projective if each finite embedding problem is

weakly solvable. In this case each embedding problem is weakly solvable (Gruenberg

[FrJ, Lemma 20.8]). It follows that a profinite group G is projective if and only if

it is isomorphic to a closed subgroup of a free profinite group [FrJ, Cor. 20.14]. An-

other necessary and sufficient condition for G to be projective is that its cohomological

dimension, cd(G), is at most 1.

1.4 ω-free groups. We say that G has the embedding property if each finite

embedding problem (2) is solvable, provided B is a quotient of G. If in addition, each

finite group is a quotient of G, we say that G is ω-free. Thus G is ω-free, if every finite

embedding problem for G is solvable.

1.5 The group F̂e. A profinite group F of rank ≤ e (e finite) is isomorphic to F̂e if

and only if each finite group of rank at most e is a quotient of F [FrJ, Lemma 15.29].

1.6 Iwasawa’s criterion. Iwasawa [FrJ, Cor. 24.2] characterizes F̂ω as a profinite

group of rank ℵ0 which is ω-free. Example 3.1 below shows that this characterization

is false for groups of uncountable ranks.

1.7 Presentation of a free profinite group of arbitrary rank as an inverse

limit of free profinite groups of finite rank. One way to construct a free

profinite group of arbitrary rank is to start with a set X. For each finite subset S of

X consider the free profinite group F̂S with basis S. If S′ is another finite subset of X

which contains S, then the map S′ → F̂S which sends each s ∈ S onto itself and each

s′ ∈ S′ rS onto 1 uniquely extends to an epimorphism αS′S : F̂S′ → F̂S . The inverse

limit of the groups F̂S and the maps αS′S is isomorphic to the free profinite group F̂X

with basis X. Moreover, for each S, the map αXS : F̂X → F̂S is an epimorphism whose

kernel is the smallest closed normal subgroup of F̂X which contains X rS [Rib, Props.

7.4 and 7.5 of Chap. 1].

Using compactness, it is possible to relax the above rigid condition on the maps

αS′S . Suppose that G = lim←−GS , where S ranges over all finite subsets of X. Assume
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that for each S the group GS is isomorphic to F̂S , and if S′ ⊇ S, then the associated

homomorphism ρS′S : GS′ → GS is surjective. Consider also the compact space (GS)S

of all functions from S into GS . Let ΦS be a closed subset of (GS)S . Suppose that

each ϕ ∈ ΦS satisfies 〈ϕ(s) | s ∈ S〉 = GS . Suppose also that if S′ ⊇ S and ϕ′ ∈ ΦS′ ,

then ϕ = ρS′S ◦ ϕ′|S ∈ ΦS and ρS′S(ϕS′(s′)) = 1 for each s′ ∈ S′ rS. Then ϕ (resp.,

ϕ′) uniquely extends to an isomorphism ϕ: F̂S → GS (resp., ϕ′: F̂S′ → GS) such that

ρS′S ◦ ϕS′ = ϕS ◦ αS′S . It follows that Φ = lim←−ΦS is nonempty and each ϕ ∈ Φ gives

an isomorphism of F̂X onto G. In particular, ϕ(X) is a basis of G and for each S we

have ρS ◦ ϕ|S ∈ ΦS (see also the proof of [Rib, Chap. 1, Prop. 8.2]).

1.8 Douady’s theorem. Let C be an algebraically closed field of characteristic zero.

Douady [Dou] applies the criterion of 1.7 to prove that the absolute Galois group of

K = C(t) is free of rank equal to the cardinality of C. Consider first a finite subset S of

C of r elements. Let KS be the maximal extension of K in which at most the points of

S ∪ {∞} are ramified. It is a Galois extension of K. Let GS = G(KS/K). The inertia

group of each s ∈ S in KS is a procyclic group (actually isomorphic to Ẑ), which is

determined up to conjugacy. Let ΦS be the set of all functions ϕ: S → GS such that

ϕ(s) generates an inertia group of s and 〈ϕ(s) | s ∈ S〉 = GS . It is a closed subset of

(GS)S and if S′ ⊇ S, then the restriction map res: GS′ → GS maps ΦS′ into ΦS as in

1.7.

Consider now an algebraically closed field C ′ that contains C. Let K ′ = C ′(t),

K ′
S , G′

S , and Φ′
S be the fields, the Galois group, and the set defined for C ′ as K,

KS , GS , ΦS are defined for C. Using transcendental descent methods or by the model

completeness of the theory of algebraically closed fields, one proves that K ′
S = C ′KS .

Hence, res: G′
S → GS is an isomorphism. Moreover, restriction maps Φ′

S onto ΦS .

This reduces the problem of determining the groups GS to the case C = C. In this

case one uses algebraic topology and proves for C = C that ΦS is nonempty. Application

of the Riemann existence theorem guarantees that each finite group of rank at most r

is a quotient of GS [Mat. p. 21]. It follows from 1.5 that GS
∼= F̂S .

By 1.7, the absolute Galois group G(K) of K is isomorphic to F̂C . Moreover,

there is an injective map ϕ: C → G(K) such that ϕ(C) is a basis for G(K) and for each
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finite subset S of C and for each s ∈ S the restriction of ϕ(s) to KS generates an inertia

group of s in KS .

2. Alternative criterion for freeness

The application of algebraic topology and the Riemann existence theorem restrict

Douady’s proof to characteristic zero. In order to prove that G(C(t)) is free if C is

an algebraically closed field of arbitrary characteristic one needs other criteria for free-

ness.

Lemma 2.1 (Chatzidakis): Let m be an infinite cardinal. A necessary and sufficient

condition for a profinite group F to be isomorphic to F̂m is that each finite embedding

problem for F with a nontrivial kernel has exactly m solutions.

Proof: Lemma 24.14 of [FrJ] says that the condition is necessary.

Conversely, suppose that each finite embedding problem for F with a nontrivial

kernel has exactlym solutions. Hence, in order to prove that F ∼= F̂m, it suffices to prove

that rank(F ) = m [FrJ, 24.18]. Indeed, each embedding problem (F → 1, G→ 1) with

G finite and nontrivial has exactly m solutions. Hence, F has exactly m open normal

subgroups. By [FrJ, Suppl. 15.12], rank(F ) = m.

If a field C is not separably closed, then cd(G(C)) ≥ 1 [Rib, p. 208], hence

cd(G(C(t))) ≥ 2 [Rib, p. 272]. In other words, G(C(t)) is not projective and in particular

G(C(t)) is not free. So, in order to prove freeness for G(C(t)) we have to assume that C

is separably closed. In general we denote the separable closure of a field K by Ks and its

algebraic closure by K̃. Observe that Ks(t)s ∩ K̃(t) = Ks(t) and Ks(t)sK̃(t) = K̃(t)s.

Hence G(Ks(t)) ∼= G(K̃(t)). So, we may assume that C is algebraically closed.

Let again K = C(t). Lemma 2.1 states that in order to prove that G(K) is free

of rank m = card(C) we have to prove that each finite embedding problem for G(K)

with a nontrivial kernel has exactly m solutions. Since K has at most m finite algebraic

extensions, it suffices to solve each such embedding problem at least m times.

Now, a finite embedding problem for G(K) can be represented as an epimorphism

(1) α: B → G(L/K),
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where L/K is a finite Galois extension and B is a finite group. A solution to this prob-

lem is a Galois extension N of K which contains L and an isomorphism θ: G(N/K)→ B

such that α ◦ θ = resL. One way to insure that two solutions θ1 and θ2 with solution

fields N1 and N2 are distinct is to construct them such that the sets of branch points

of K in N1 and N2 do not coincide. Another way is to solve the embedding problem

(1) in a regular way. This means, to construct a Galois extension F of K(u) (with u

transcendental over K) which is regular over L and an isomorphism θ: G(F/K(u))→ B

such that α ◦ θ = resL. Since K is a Hilbertian field, it is possible to specialize u to an

element of K and to extend the specialization to a place of F into K̃ ∪ {∞} such that

the residue field of F will solve the embedding problem (1). Due to the special nature

of the Hilbert sets of K, we can do it in m distinct ways. This depends on the following

result.

Lemma 2.2: Let K = C(t) be the field of rational functions of an arbitrary field C

of cardinality m. Suppose that L′ is the compositum of less than m finite separable

algebraic extensions of K. Then each separable Hilbert subset of L′ contains elements

of K. In particular, L′ is separably Hilbertian.

Proof: Consider a separable Hilbert subset H of L′. By [FrJ, Lemma 11.12],

there exists an irreducible polynomial f ∈ L′[T,X] which is separable in X such that

H = HL′(f) = {a ∈ L′‖f(a,X) is irreducible in L′[X]}. By assumption L′ =
⋃

κ<k Lκ,

where k is a smaller cardinal than m and Lκ is a finite separable extension of K, which

we may assume to contain the coefficients of f . Then
⋂

κ<k HLκ(f) ⊆ HL′(f).

Each HLκ
contains a separable Hilbert subset of K [FrJ, Cor. 11.7]. Hence, by

[FrJ, Thm. 12.9], there exists a nonempty Zariski open subset Uκ of A2 such that

(2) {(a+ bt‖(a, b) ∈ Uκ(K)} ⊆ HLκ
.

Since k < m, the intersection of all Uκ(K) is nonempty. Combined with the preceding

paragraph, this concludes the proof of the lemma.

To be on the safe side, let us prove the claim about the intersection. To this end

observe that the complement Cκ of Uκ is a union of finitely many curves and points.
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As such, Cκ contains only finitely many lines. As k < m, there exists a line Λ which

is defined over K and is not contained in any of the sets Cκ. Hence Λ(K) ∩ Cκ(K)

is a finite set for each κ < k. Since the cardinality of Λ(K) is m, this implies that

Λ(K) 6⊆
⋃

κ<k Cκ(K). Conclude that Λ(K) contains points (indeed m points) that

belong to each Uκ.

Proposition 2.3: Let K = C(t) be the field of rational functions of an arbitrary field

C and let m = card(C). If an embedding problem (1) has a regular solution, then it

has m solutions, which are linearly disjoint over L.

In particular, if each finite embedding problem over K has a regular solution, then

G(K) is free of rank m.

Proof: Let λ < m be an ordinal and suppose by infinite induction that for each κ < λ

we have already constructed a solution field Lκ to (1) such that the fields Lκ with κ < λ

are linearly disjoint over L. Denote the compositum of all these Lκ by L′. Recall that

m, as a cardinal number, is the smallest ordinal with cardinality at least m. Thus, the

cardinality λ is less than m.

Write the regular solution field F of (1) as K(u, x) with x integral over K[u]. Then

irr(x,K(u)) is an irreducible Galois polynomial f(u,X) and irr(x, L(u)) is an absolutely

irreducible polynomial g(u,X). In particular g(u,X) is irreducible over L′. Now use

Lemma 2.2 to specialize u to an element a of K such that the Galois group of f(a,X)

over K is isomorphic to that of f(u,X) over K(u) and g(a,X) is irreducible over L′.

The splitting field of f(a,X) over K is a new solution of (1), which we may take as Lλ.

It is linearly disjoint from L′ over L. This concludes the transfinite induction.

The second part of the Proposition follows from Lemma 2.1.

Applications 2.4: Let C be an algebraically closed field of cardinality m and let K =

C(t). Harbater [Ha2, Thm. 3.6] solves each finite embedding problem with a nontrivial

kernel m times by varying the branch points that enter in the solutions. He concludes

from Lemma 2.1 that G(K) ∼= F̂m [Ha2, Thm. 4.4].

Remark 2.5: Recall that each open subgroup of F̂m is isomorphic to F̂m [FrJ, Prop.

15.27]. Hence, once one proves that G(C(t)) is free of rank m, then so is G(L) for each
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finite extension L of C(t).

Problem 2.6: Let C be an algebraically closed field and let K = C(t). Does every

finite embedding problem over K have a regular solution?

3. Nonfree ω-free groups

The next example proves that Iwasawa’s criterion for F̂ω is not valid for profinite groups

of uncountable rank.

Example 3.1: Let m be an uncountable cardinal. Then there exists a nonfree closed

normal subgroup G of F̂m for which each finite embedding problem is solvable.

Proof: We recall several definitions and results of Melnikov [Me1] which hold for each

infinite cardinal m. Consider a profinite group G and a finite simple group S. Denote

the intersection of all open normal subgroup M of G such that G/M ∼= S by MS(G).

Then G/MS(G) ∼= SI for some set I whose cardinality we denote by rG(S) (Melnikov

denotes it by rS(G)). We call rG the rank function of G. Let X(m) be the set of all

functions f from the set of finite simple groups to the set of cardinal numbers ≤ m such

that for each prime p the value f(Z/pZ) is either 0 or m. Melnikov proves:

(1a) The set of all rank functions of normal subgroups of F̂m coincides with X(m) [Me1,

Thm. 3.2].

(1b) If two closed normal subgroups of F̂m have the same rank function, they are

isomorphic [Me1, Thm. 3.1].

(1c) A closed normal subgroup G of F̂m is isomorphic to F̂m if and only if rG(S) = m

for each finite simple group S [Me1, Cor. 3.1].

We adjust the proof of [Me1, Prop. 3.1] to prove:

(1d) Let G be a closed normal subgroup of F̂m such that rG(S) =∞ for each S. Then,

each finite embedding problem (ϕ: G→ A, α: B → A) for G is solvable.

Indeed, let C = Ker(α). By induction on the order of B we may assume that C

is a minimal normal closed subgroup of B. Hence C ∼= Sk for some finite simple group

S and a positive integer k. Extend ϕ to an epimorphism ϕ′ of an open subgroup F

of F̂m onto A. Then F is free of rank m ([FrJ, Prop. 15.27] and §1.1). It follows that
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there exists an epimorphism ψ: F → B such that α ◦ ψ = ϕ′. Then ψ(G) is a normal

subgroup of B and Cψ(G) = B. By the minimality of C there are two possibilities.

Either C ≤ ψ(G) or C ∩ ψ(G) = 1. In the former case ψ(G) = B and ψ|G solves the

embedding problem. In the latter case, B ∼= C × ψ(G) and therefore ψ(G) ∼= A. Since

C is a minimal normal subgroup of B, this implies that k = 1. That is, C ∼= S. So,

B = S × A. As rG(S) = ∞, there exists a closed normal subgroup N of G such that

G/N ∼= S and Ker(ϕ) 6≤ N . Hence G→ G/(Ker(ϕ)∩N) ∼= S×A = B gives the desired

solution.

Assume again thatm is uncountable. To construct the desired group define f(S) =

ℵ0 if S is simple nonabelian and f(Z/pZ) = m for all p. By (1a), F̂m has a closed normal

subgroup G such that rG = f . By (1d), each finite embedding problem for G is solvable.

By (1c), G is not free, as desired.

Recall that a field K is PAC if each absolutely irreducible variety defined over

K has a K-rational point. A field K is ω-free if G(K) is ω-free, i.e., if every finite

embedding problem over K is solvable. If in addition K is countable, then, by Iwasawa’s

criterion, G(K) ∼= F̂ω.

Open problem 7 of [FrJ] asks whether every PAC Hilbertian field is ω-free. Fried

and Völklein [FrV, Thm. A] solve the problem in characteristic 0. Pop [Po1, Thm. 1]

does it in the general case.

We translate Example 3.1 into an example of fields which shows that in some

sense, the result of Fried-Völklein and Pop is sharp.

Example 3.2: Every field K0 has an extension K which is perfect, PAC, and separably

Hilbertian but G(K) is not free.

Proof: Choose an uncountable cardinal m. Let G be the closed normal subgroup of F̂m

which Example 3.1 supplies. As G is projective, [FrJ, Cor. 20.16] supplies an extension

K of K0 which is perfect, PAC and G(K) ∼= G. In particular, K is ω-free. By a theorem

of Roquette [FrJ, Cor. 24.38], K is separably Hilbertian. Finally, note that by the choice

of G, the group G(K) is not free.
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Remark 3.3: Dominating embedding problems. LetG be a profinite group. Let α: Â→

A be an epimorphism of profinite groups. We say that an embedding problem (ϕ̂: Ĝ→

Â, π̂: B̂ → Â) dominates the embedding problem (ϕ: G → A, π: B → A) over α, if

ϕ = α ◦ ϕ̂ and there exists an epimorphism β: B̂ → B such that π ◦ β = α ◦ π̂. If in this

case γ̂ is a solution to the former embedding problem, then γ = β ◦ γ̂ is a solution to

the latter embedding problem.

Let (ϕi: G → Ai, πi: Bi → Ai), i = 1, 2 be finite embedding problems of a

profinite group G. Let α: A2 → A1 be a homomorphism such that α ◦ ϕ2 = ϕ1.

Let B = B1 ×A1 B2 be the fibred product of B1 and B2 over A1 [FrJ, Sect. 20.2].

Denote the projection of B onto Bi by ρi, i = 1, 2. Then the embedding problem

(ϕ2: G → A2, π2 ◦ ρ2: B → A2) dominates each of the given embedding problems.

Lemma 3.4: Every ω-free profinite group G is isomorphic to an inverse limit G ∼=

lim←−
i∈I

Gi where Gi
∼= F̂ω for each i ∈ I and card(I) = rank(G).

Proof: Let N be the collection of all closed normal subgroups N of G such that

G/N ∼= F̂ω. We construct a subfamily Nω of N of cardinality rank(G) such that each

open normal subgroup K of G contains a group N which belongs to Nω. Hence, the

intersection of all N ∈ Nω is 1. Moreover, for all N1, N2 ∈ Nω there exists N ∈ Nω

with N ≤ N1 ∩N2. So, the quotients G/N with N ∈ Nω build an inverse system and

G ∼= lim←−G/N .

The construction applies two claims.

Claim A: Let K1 ≥ K2 ≥ K3 ≥ · · · be open normal subgroups of G. Then G has a

closed normal subgroup Kω ∈ N which is contained in each Ki. The proof of Claim

A follows that of [Jar, Lemma 6.6]. By induction we construct a descending sequence

G ≥ N1 ≥ N2 ≥ N3 ≥ · · · of open normal subgroups of G such that Nn ≤ Kn,

n = 1, 2, 3, . . ., and for each i we order the finite embedding problems of the form

(G→ G/Ni, π: B → G/Ni) in a sequence

(2) (G→ G/Ni, πij : Bij → G/Ni)
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j = 1, 2, 3, . . ., such that for each n and for each i, j ≤ n, embedding problem (2) has a

solution which factors through G/Nn+1.

Indeed, suppose that Ni, Bij , and πij have already been constructed for i ≤ n and

for each j. Choose by Remark 3.3 a finite embedding problem (G → G/Nn, : π: B →

G/Nn) which dominates (2) for each i, j ≤ n. Since G is ω-free, this problem has a

solution γ. Then Nn+1 = Ker(γ) ∩Kn+1 satisfies the requirements of the induction.

Let Kω =
⋂∞

n=1Nn. To prove that G/Kω is ω-free, consider a finite embedding

problem (ϕ: G/Kω → A, π: B → A). Since the kernel of ϕ contains Ni/Kω for some

i, we may take the corresponding fibred product as in Remark 3.3 and assume that

A = G/Ni and that ϕ is the canonical map. Hence, in the above notation, B = Bij and

π = πij for some j. Let n = max{i, j}. By construction, there is a solution γ to that

problem which factors through G/Nn+1 and therefore also through G/Kω. Conclude

that G/Kω is ω-free.

Claim B: Let Kω and Lω be closed normal subgroups of G such that rank(G/Kω)

and rank(G/Lω) are at most ℵ0. Then G has a closed normal subgroup N ∈ N which

is contained in both Kω and Lω. Indeed, there exists a descending sequence of open

normals subgroup Ni whose intersection is contained in both Kω and Lω. By Claim A,

there exists a normal subgroup N ∈ N of G which is contained in each Ni. It satisfies

N ≤ Kω ∩ Lω.

Part C: Construction. Since G is ω-free, its rank is infinite. Hence, the cardinality

of the collection of all open subgroups of G is rank(G) [FrJ, Supplement 15.12]. For

each open normal subgroup K of G choose N ∈ N contianed in K (Claim A). Denote

the subcollection of N obtained in this way by N0. Then card(N0) = rank(G).

Now use induction to construct an ascending sequence N0 ⊆ N1 ⊆ N2 ⊆ · · ·

of subcollections of N , each of cardinality card(G), such that for each i and for all

K,L ∈ Ni there exists N ∈ Ni+1 which is contained in both K and L. Indeed, having

constructed Ni, we use Claim B to choose for each pair (K,L) ∈ N 2
i exactly one N ∈ N

such that N ≤ K ∩ L and let Ni+1 be the collection of all those N .

The union Nω =
⋃∞

i=0Ni has the desired properties.
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The following example has slightly different properties than Example 3.1, but

serves the same goal as Example 3.1.

Example 3.5 (Melnikov [Me2, Example]): Let m be an uncountable cardinal. Then

there exists a nonfree ω-free profinite group G for which each finite embedding problem

is solvable. In particular G is projective. Moreover, no open subgroup of G is isomorphic

to a closed normal subgroup of a free profinite group.

Proof: We break the proof into several parts and start with a general (well known)

statement:

Part A: Let P be a projective group and let F be an ω-free profinite group. Then the

free product G = P ∗ F is also ω-free.

Indeed, let (ϕ: G → A, α: B → A) be a finite embedding problem for G. Then

there exists a homomorphism γ1: P → B such that α ◦ γ1 = ϕ|P . Also, there exists an

epimorphism γ2: F → B such that α◦γ2 = ϕ|F . Combine γ1 and γ2 to an epimorphism

γ: G → B. Then α ◦ γ = ϕ and therefore γ is a solution of the embedding problem.

Conclude that G is ω-free.

Part B: The example. Let P be a free pro-p group of rank m and let F = F̂ω. Then

G = P ∗ F has the properties stated in the example

Indeed, the proof of Lemma 3.4 works in the category of pro-p groups as it works

in the category of all profinite groups. In particular we may present P as an inverse

limit P = lim←−Pi of free pro-p groups of rank ℵ0. In particular, each Pi is projective.

Hence, by Part A, Gi = Pi ∗ F is ω-free. Since rank(Gi) = ℵ0, Iwaswa’s criterion 1.6

implies that Gi
∼= F̂ω. Now note that G = lim←−Gi.

Part C: No open subgroup H of G is isomorphic to a closed normal subgroup of a free

group.

Let H be an open subgroup of G. Consider the double class decompositions of G:

G =
⋃
· i∈I PxiH and G =

⋃
· j∈J FyjH. By a theorem of Binz, Neukirch, and Wenzel

[BNW, p. 105] H is a free product: H ∼=
∏
∗ i∈I(P

xi ∩H) ∗
∏
∗ j∈J(P yj ∩H) ∗ E, where

E is a free profinite group of finite rank. In particular, in the notation of Example 3.1,
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rH(Z/pZ) = m and rH(Z/qZ) = ℵ0 for each prime q 6= p. Conclude from (1d), that H

is isomorphic to no closed normal subgroup of a free profinite group.

Part C: Remark. At the end of the Melnikov’s example he asks about the existence

of a nonfree inverse limit of free profinite groups of finite rank. This is however already

included in the present example. Indeed, each Gi is the inverse limit of free profinite

groups of finite rank. Hence, so is G.

Combine Example 3.1 (or Example 3.5) with Lemma 3.4:

Corollary 3.6: There exists a nonfree inverse limit G = lim←−
i∈I

Gi of free profinite

groups, such that card(I) = rank(G).

Remark 3.7: On a proof of Pop. Pop [Po2, end of Sect. 2] considers an algebraically

closed field C, lets K = C(t) (in our notation), and proves that G(K) is free. To that

end he writes C as a union of countable algebraically closed fields Ci, lets Ki = Ci(t),

and states that “G(K) is the inverse limit of G(Ki) in a canonical way”. He then proves

that G(Ki) ∼= F̂ω and concludes that G(K) is free.

In light of Corollary 3.6, Pop’s proof appear to be incomplete.

4. On a conjecture of Fried and Völklein

Recall that the absolute Galois group of a PAC field is projective. So, in an attempt

to generalize their theorem “Hilbertian, PAC, and characteristic 0 imply ω-free”, Fried

and Völklein [FrV, p. 270] conjecture that the absolute Galois group of each countable

Hilbertian field with a projective absolute Galois group is ω-free. Since the maximal

cyclotomic extension Qcycl (= Qab) of Q is both Hilbertian (Kuyk [FrJ, Thm. 15.6]) and

with a projective absolute Galois group (a consequence of [Rib, Thm. 8.8 on page 302]),

this conjecture generalizes a conjecture the Shafarevich that G(Qcycl) is free. Note that

Qcycl is not PAC (Frey [FrJ, Cor. 10.15]). So Shafarevich’s conjecture does not follow

from the theorem of Fried and Völklein. If one replaces Q by a function field K of one

variable over a finite field of characteristic p, then Kcycl becomes a finite extension of

F̃p(t). By the theorem of Harbater and Pop G(F̃p(t)) ∼= F̂ω. So, G(Kcycl), as an open

subgroup of F̂ω, is isomorphic to F̂ω. In particular Kcycl is ω-free.
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Observation 4.1: If each countable separably Hilbertian field with a projective abso-

lute Galois group is ω-free, then so is each arbitrary separably Hilbertian field with a

projective absolute Galois group.

Proof: To say that a polynomial with coefficients in a field K is irreducible is an

elementary statement on K [FrJ, p. 77]. Hence, to say that K is Hilbertian, is a

conjunction of countably many elementary statements on K.

Similarly, the solvability of each finite embedding problem over K is an elementary

statement on K [FrJ, Remark on p. 315]. Hence, to say that K is ω-free is also a

conjunction of countably many elementary statements on K.

Finally, an embedding problem (2) of Section 1 with G = G(K) is weakly solvable

if at least one of the embedding problems (ϕ: G(K)→ A, α: B0 → A) in which B0 is a

subgroup of B such that α(B0) = A is solvable. So, this is also an elementary statement

on K. Thus, to say that G(K) is projective is equivalent to a conjunction of countably

many elementary statements on K.

Suppose now that K is a separably Hilbertian field with G(K) projective. By

Skolem-Löwenheim’s theorem [FrJ, Prop. 6.4], K has a countable elementary subfield

K0. By the first and the third paragraphs of this proof, K0 is separably Hilbertian and

G(K0) is projective. By assumption, K0 is ω-free. It follows that K is also ω-free.

We have already mentioned (Remark 2.4) that each open subgroup of a free profi-

nite group is free. We use the technique of the proof of Observation 4.1 to prove the

analog of this results for ω-free groups.

Lemma 4.2: Let G be an ω-free profinite group. Then each open subgroup of G is

ω-free and each closed normal subgroup of G has the embedding property.

Proof: Let (ϕ: H → A, α: B → A) be a finite embedding problem for H. As in

the proof of Lemma 3.3, find a closed normal subgroup N of G, which is contained in

Ker(ϕ) such that G/N ∼= F̂ω. Since H/N is open in G/N , it is isomorphic to F̂ω. As ϕ

factors through H/N , the embedding problem is solvable.

In particular, each open normal subgroup of G has the embedding property.

Hence, by [FrJ, Lemma 24.3], so does each closed normal subgroup of G.
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As mentioned in Section 2, if C is algebraically closed, then each closed subgroup

of G(C(t)) is projective. We may therefore rephrase a special case of the conjecture of

Fried and Völklein:

Conjecture 4.3: Let C be an algebraically closed field and let M be an algebraic

extension of C(t) which is separably Hilbertian. Then M is ω-free.

Here is a special case in which Conjecture 4.3 holds.

Proposition 4.4: Let C be an algebraically closed field and letN be a Galois extension

of K = C(t) which is separably Hilbertian. Then N is ω-free.

Proof: By Douady’s theorem in characteristic 0 and by the theorem of Harbater-Pop,

G(K) is ω-free. Hence, by Lemma 4.2, G(N) has the embedding property.

Let u be a transcendental element over K. and let G be a finite group. Then C(u)

has a Galois extension L with G(L/C(u)) ∼= G. Observe that L is linearly disjoint from

N over C. Hence, also G(NL/N(u)) ∼= G. Since N is Hilbertian, G occurs as a Galois

group over N . Combine this with the preceding paragraph to conclude that G(N) is

ω-free.

Remark 4.5: GA realization. Let S be a finite group with a trivial center and let K

be a field. We say that S is GA over K if the following condition holds:

(GA) K(t) has a subfield E and an extension F such that F/K is regular, F/E is Galois

and there exists an isomorphism of G(F/E) onto Aut(S) which maps G(F/K(t))

onto Inn(S) ∼= S.

It follows that S is also GA over every extension of K.

Matzat [Mat, Satz 2 and Bemerkung 5] proves that if K is Hilbertian, char(K) = 0

(the proof works for char(K) 6= 2), G(K) is projective, and every finite nonabelian

simple group is GA over K, then K is ω-free. In an attempt to solve Shafarevich’s

conjecture, he then gives a long list of finite simple groups which are GA over Qcycl.

For example all An’s with n ≥ 5 and all sporadic groups are on that list.

Let now C be an algebraically closed field∗ of char(K) 6= 2 and let M be a

separable algebraic extension of K = C(t) which is Hilbertian. If char(C) = 0, then all

* The author is indebted to Helmut Völklein for the following argument.
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groups on Matzat’s list are GA over M . In general, consider the group Out(S) of outer

automorphisms and suppose that

(2) Out(S) is a subgroup of PGL(2, C) = Aut(C(t)/C).

Let E be the fixed field of Out(S) in C(t). By Luroth’s theorem, E = C(u) for some

transcendental element u over C. Since G(C(u)) is free, we can solve the embedding

problem 1 → S → Aut(S) → G(C(t)/C(u)) → 1 over C(u). Hence S is GA over C.

For example, condition (2) holds if Out(S) ∼= Z/nZ with n relatively prime to char(C).

Note that Out(S) is cyclic for all alternating and sporadic simple groups. Moreover, 6

families of the 16 families of simple groups of Lie type satisfy the condition ‘Out(S) is

cyclic’. Some more satisfy the weaker condition (2). However, there are finite simple

group which do not satisfy (2). So, it is not clear that this method will lead to the

solution of Conjecture 4.3.

16



References

[BNW] E. Binz, J. Neukirch and G. H. Wenzel, A subgroup theorem for free products of

profinite groups, Journal of Algebra 19 (1971), 104–109.
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