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Introduction

Separably closed fields, Henselian fields, PAC fields, PRC fields, and PpC fields enjoy a

common feature: each of them is existentially closed in the corresponding field of formal

power series. We have called a field K with this property ample∗. Alternatively, a field

K is ample, if each absolutely irreducible curve C over K with a simple K-rational point

has infinitely many K-rational points. The main result of [HaJ] reveals a remarkable

property of K: Each finite constant split embedding problem over K(x) has a rational

solution. More precisely, [HaJ] gives an alternative proof to a result of Pop [Po1, Main

Theorem A]:

Theorem A: Let K be an ample field and let L be a finite Galois extension of K.

Suppose that G(L/K) acts on a finite group G. Then, there is a field F with the

following properties:

(a) F is a Galois extension of K(x) which contains L.

(b) There is an isomorphism α: Go G(L/K) → G(F/K(x)) such that resL ◦ α = pr.

(c) F has an L-rational place ϕ: F → L ∪ {∞}.

Among others, this result settled Problem 24.41 of [FrJ]: Every PAC Hilbertian

field is ω-free.

Previous proofs of this result used analytical methods (complex analytical methods

in characteristic 0 [FrV] and rigid analytical methods in the general case [Po1]). In

contrast, our approach in [HaJ] was elementary, algebraic, and together with [HaV], self-

contained. Indeed, we took an axiomatic approach: Let F/E be a Galois extension of

arbitrary fields. Suppose that G(F/E) acts on a finite group G. Suppose that this action

extends to a “proper action” on an appropriate “patching data” (E,Fi, Qi, Q;Gi, G)i∈I .

Then, the split embedding problem Go G(F/E) → G(F/E) has a solution.

In this note we use our approach via algebraic patching to give an elementary

proof of a generalization of Theorem A, due to Pop [Po2, Theorem 2.7]:

* Pop, who introduces this type of fields in [Po1], calls them ‘large’. Since this name has been
used earlier with a different meaning, we have modified it to ‘ample’ [HaJ, Definition 6.3
and the attached footenote].
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Theorem B: Let E be a function field of one variable over an ample field K. Suppose

that E/K is separable. Let F be a finite Galois extension of E. Denote the algebraic

closure of K in F by L. Suppose that G(F/E) acts on a finite group G. Then there

exists a finite field F̂ with the following properties:

(a) F̂ is a Galois extension of E which contains F ;

(b) There is an isomorphism α: Go G(F/E) → G(F̂ /E) such that resF ◦ α = pr.

(c) F̂ is a regular extension of L.

Group theoretic and Galois theoretic manipulations reduce the proof of Theorem B

to the case where E = K(x) and x is, as always, transcendental overK (Proposition 1.4).

Moreover, we may extend L if necessary, so that F has an L-rational place ϕ: F →

L ∪ {∞} and ϕ(x) ∈ K. As usual, we replace K at this point by K((t)), if necessary,

to assume that K is complete under an ultra-metric absolute value, its residue field is

infinite, and L/K is an unramified extension. Let Γ = G(L(x)/E) and G1 = G(F/L(x)).

The existence of ϕ implies that the extension G(F/E) → Γ splits. As in [HaJ], we then

construct a patching data (L(x), Fi, Qi, Q;Gi, G o G1)i∈I , on which Γ acts properly

such that 1 ∈ I and F1 = F . The “compound” F̂ of this patching data is a Galois

extension of E, and there exists an isomorphism α: (GoG1) o Γ → G(F̂ /E) such that

resF̂ /L(x) ◦ α = prΓ. Moreover, let α0 be the restriction of α to G o G1. Based on

an observation of [HaV], we find that F̂ contains F , α0(G o G1) = G(F̂ /L(x)), and

resF̂ /F ◦ α0 = prG1
. As (G oG1) o Γ = G o (G1 o Γ) = G o G(F/E), the field F̂ is a

solution to the original embedding problem pr: Go G(F/E) → G(F/E).
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1. Generalities on split embedding problems

Let K0 be a field. Let x be a transcendental element over K0, let E0 be a finite extension

of K0(x), and let E be a finite Galois extension of E0. Assume that G(E/E0) acts on a

finite group G; let Go G(E/E0) be the semidirect product and let pr: Go G(E/E0) →

G(E/E0) be the corresponding projection. We call

(1) Go G(E/E0) -pr G(E/E0).

a split K0-embedding problem. A solution field to problem (1) is a finite Galois

extension F of E0 containing E for which there exists an isomorphism α: GoG(E/E0) →

G(F/E0) such that resE ◦ α = pr.

Let K be the algebraic closure of K0 in E. We say that (1) is regular if E/K

is regular, that is, E/K is separable. For instance, if E0/K0 is separable, then (1) is

regular. We say that the solution is regular if F is regular over K.

Clearly, only a regular embedding problem may have a regular solution.

Lemma 1.1: In the above notation let (1) be a split K0-embedding problem. Let E′

be a finite Galois extension of E0 that contains E, let res: G(E′/E0) → G(E/E0) be the

restriction map, and let h: G′ → G be an epimorphism of finite groups. Assume that

G(E′/E0) acts on G′ such that

(2) h(σγ) = h(σ)res(γ) for each γ ∈ G(E′/E0) and σ ∈ G′.

Consider the corresponding split K0-embedding problem

(1′) G′ o G(E′/E0) -pr′ G(E′/E0).

(a) If (1′) has a solution, then (1) has a solution;

(b) if (1′) has a regular solution and E0/K0 is separable, then (1) has a regular solution.

Proof: Let F ′ be a solution of (1′) and let α′: G′ o G(E′/E0) → G(F ′/E0) be an

isomorphism such that resE′ ◦ α′ = pr′.
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By (2), there is a commutative diagram of group epimorphisms

(3)

G′ o G(E′/E0) -pr′ G(E′/E0)

?
(h,res)

?
res

Go G(E/E0) -pr G(E/E0).

Let C be the kernel of the map (h, res): G′ o G(E′/E0) → G o G(E/E0) and let F be

the fixed field of α′(C) in F ′, that is, α′(C) = G(F ′/F ). As C / G′ o G(E′/E0), the

extension F/E0 is Galois. We have

resEG(F ′/F ) = resE′/E ◦ resE′ ◦ α′(C) = resE′/E ◦ pr′(C).

Hence by (3), resEG(F ′/F ) = 1. Therefore, E ⊆ F . The isomorphism α′ induces an

isomorphism α: Go G(E/E0) → G(F/E0) such that resE ◦ α = pr.

(4)

1 1 1

? ? ?

F F ′ C -α′ G(F ′/F ) -res G(E′/E)

? ? ?

E0 E E′ G′ o G(E′/E0) -α′ G(F ′/E0) -res G(E′/E0)

?
(h,res)

?
res

?
res

K0 K K ′ Go G(E/E0) -α G(F/E0) -res G(E/E0)

? ? ?

1 1 1

This proves (a).

Let K be the algebraic closure of K0 in E and let K ′ be the algebraic closure of

K0 in E′. Assume that E0/K0 is separable. Then so is F/K0, and hence also F/K.

By diagram (4), resE′G(F ′/F ) = G(E′/E). Hence F ∩ E′ = E. It follows that

F ∩K ′ = F ∩ E′ ∩K ′ = E ∩K ′ = K. Thus, if F ′/K ′ is regular, so is F/K.
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Lemma 1.2: Let F be a (regular) solution of a split K0-embedding problem

Go G(E/E0) -pr G(E/E0).

Let E′
0 be an intermediate field of E/E0, and let K ′

0 be the algebraic closure of K0 in

E′
0. Then, the subgroup G(E/E′

0) of G(E/E0) defines a split K ′
0-embedding problem

Go G(E/E′
0) -pr′ G(E/E′

0)

and F is its (regular) solution.

Proof: If α: GoG(E/E0) → G(F/E0) is an isomorphism such that resE ◦α = pr, then

α(Go G(E/E′
0)) = G(F/E′

0).

Lemma 1.3: Let Γ be a subgroup of a finite group ∆. Suppose that Γ acts on a finite

group G. Then there exist a finite group G′ and an epimorphism h: G′ → G such that

∆ acts on G′ and h(σγ) = h(σ)γ for each γ ∈ Γ and σ ∈ G′.

Proof:

Part A: A free group. We first omit the requirement that G′ be finite; in fact, we

now require that it be a finitely generated free group. Choose a set X of generators of

G. Let Y = X ×∆ and let Ĝ be the free group on Y . The group ∆ acts on the set Y

by multiplication from the right on the second factor. This action extends to an action

of ∆ on the group Ĝ. Choose a system of representatives ∆0 for the left cosets of Γ in

∆, that is, ∆ =
⋃
· δ∈∆0

δΓ. Define a map ĥ: Y → G by

ĥ(x, δγ) = xγ for x ∈ X, δ ∈ ∆0, and γ ∈ Γ.

This map extends to an epimorphism ĥ: Ĝ→ G. For all γ, γ′ ∈ Γ we have ĥ((x, δγ′)γ) =

ĥ(x, δγ′γ) = xγ
′γ = ĥ(x, δγ′)γ . Hence ĥ(σ̂)γ = ĥ(σ̂γ) for each σ̂ ∈ Ĝ and each γ ∈ Γ, as

required.

Part B: A finite group. As Ĝ if finitely generated, the collection F of all epimor-

phisms of Ĝ onto G is finite. Therefore N =
⋂
f∈F Kerf is a normal subgroup of Ĝ of
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finite index. As ĥ ∈ F , we have N ≤ Kerĥ. Hence G′ = Ĝ/N is a finite group and ĥ

induces an epimorphism h: G′ → G.

If δ ∈ Aut(Ĝ), then {f ◦ δ | f ∈ F} = F , and hence δ(N) = N . Therefore each

δ ∈ ∆ induces a unique automorphism δ of G′ such that (σN)δ = σδN for each σ ∈ Ĝ.

It follows that ∆ acts on the group G′. Moreover, for each γ ∈ Γ

h((σN)γ) = h(σγN) = ĥ(σγ) = ĥ(σ)γ = h(σN)γ .

Hence h(σγ) = h(σ)γ for each γ ∈ Γ and each σ ∈ G′.

Proposition 1.4: Suppose that every (regular) split K0-embedding problem

(5′) G′ o G(E′/K0(x)) -pr′ G(E′/K0(x))

has a (regular) solution. Then every (regular) split K0-embedding problem

(5) Go G(E/E0) -pr G(E/E0)

has a (regular) solution.

Proof: There are two cases to consider:

Case A: E0/K0 is separable. Replace x by another transcendental element (separat-

ing transcendence basis) of E0/K0 to assume that E0/K0(x) is separable. Let E′ be

the Galois closure of E over K0(x). Then G(E′/E0) acts on G via the restriction map

G(E′/E0) → G(E/E0). Lemma 1.3 gives a finite group G′, an epimorphism h: G′ → G,

and an action of G(E′/K0(x)) on G′ such that h(σγ) = h(σ)γ for each γ ∈ G(E′/E0) and

σ ∈ G′. This action defines a split K0-embedding problem (5′). As E′/K0 is separable,

(5′) is regular. By assumption, it has a regular solution. By Lemma 1.2, this solution

is also a regular solution of

G′ o G(E′/E0) -pr′ G(E′/E0).

By Lemma 1.1, (5) has a regular solution.
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Case B: E0/K0 is not separable. In this case char(K) = p > 0. Let K ′
0 = K

1/q
0 ,

where q is a power of p, and put E′
0 = EK ′

0 and E′ = EK ′
0. If q is sufficiently large,

then E′
0/K

′
0 is a separable extension; assume this is the case.

As E′
0/E0 is purely inseparable, E′/E′

0 is a Galois extension and the restriction

res: G(E′/E′
0) → G(E/E0) is an isomorphism. Thus (5) induces a split K ′

0-embedding

problem

(6) Go G(E′/E′
0) - G(E′/E′

0).

The map y 7→ yq gives an isomorphism of K ′
0 onto K0, and hence the assumptions of our

proposition are satisfied with K ′
0 instead of K0. Therefore, by Case A, (6) has a regular

solution F ′. Again, as E′
0/E0 is linearly disjoint from the separable closure of E0 over

E0, there exists a unique Galois extension F/E0 such that F ′ = FE′
0. In particular, the

restriction G(F ′/E′
0) → G(F/E0) is an isomorphism, and hence F is a solution of (5).

Suppose now that (5) is regular, that is, E is regular over K = E ∩ K̃0. Let

K ′ = KK ′
0. Then K ′/K is a purely inseparable extension and EK ′ = EK ′

0 = E′.

Hence E′/K ′ is regular, that is, (6) is regular. By our construction F ′/K ′ is regular.

As both F/E and E/K are separable, so is F/K. Therefore the algebraic closure

M of K in F is separable over K and F/M is separable. But F ⊆ F ′, and K ′ is

algebraically closed in F ′, hence M ⊆ K ′. As K ′/K is a purely inseparable, we have

M = K. Conclude that F is a regular extension of K.
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2. Embedding problems under existentially closed extensions

Consider a field extension K̂0/K0 such that K0 is existentially closed in K̂0. That

is, each algebraic subset A of An that has a K̂0-rational point also has a K0-rational

point.

In particular, K̂0/K0 is regular. Furthermore, if K is a finite extension of K0 and

K̂ = KK̂0, then K is existentially closed in K̂. Indeed, let ω1, . . . , ωd be a linear basis

of K/K0. So if f ∈ K[X1, . . . , Xn], there are unique f1, . . . , fd ∈ K0[X1, . . . , Xn] such

that f =
∑d
i=1 ωifi. As K̂0/K0 is regular, ω1, . . . , ωd is also a basis of K̂/K̂0. It follows

that the equation f(X1, . . . , Xn) = 0 has a solution in Kn (resp., K̂n) if and only if

d∑
i=1

ωifi(
d∑
i=1

ωiX1i, . . . ,
d∑
i=1

ωiXni) = 0

has a solution in Knd (resp., K̂nd). The latter equation can be written as a system of

equations over K0 (resp., over K̂0). Thus f(X1, . . . , Xn) = 0 has a solution in Kn if

and only if it has a solution in K̂n.

Consider a regular split K0-embedding problem

(1) H o G(E/K0(x)) -pr G(E/K0(x)).

Assume that x is transcendental over K̂0 and put Ê = EK̂0. Then E is linearly disjoint

from K̂0 over K0 [FrJ, Lemma 9.9] and therefore resÊ/E : G(Ê/K̂0(x)) → G(E/K0(x))

is an isomorphism. Thus G(Ê/K̂0(x)) acts on H via resÊ/E . This gives rise to a regular

split K̂0-embedding problem

(2) H o G(Ê/K̂0(x)) -pr G(Ê/K̂0(x)).

Let K be the algebraic closure of K0 in E. Then K̂ = KK̂0 is the algebraic closure

of K̂0(x) in Ê [FrJ, Lemma 9.3]. Furthermore, let ϕ: E → K ∪ {∞} be a K-place

unramified over K(x). As K̂ and E are linearly disjoint over K, the place ϕ extends to

a K̂-rational place ϕ̂ of Ê, unramified over K̂(x).

In this setup we prove:
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Lemma 2.1: Assume that (2) has a solution field F̂ such that ϕ̂ extends to a K̂-rational

place of F̂ unramified over K̂(x). Then (1) has a solution field F such that ϕ extends

to a K-rational place of F unramified over K(x).

Proof: We may assume that ϕ(x) = ∞, otherwise replace x by another generator of

K(x) over K.

By assumption, there exists an isomorphism α: H o G(Ê/K̂0(x)) → G(F̂ /K̂0(x))

such that resÊ ◦ α = pr.

So, there exist polynomials f ∈ K̂0[X,Z], g ∈ K̂[X,Y ], and elements z, y ∈ F̂

such that the following conditions hold:

(3a) F̂ = K̂0(x, z), f(x,Z) = irr(z, K̂0(x)); we may therefore identify G(f(x,Z), K̂0(x))

with G(F̂ /K̂0(x));

(3b) F̂ = K̂(x, y), g(x, Y ) = irr(y, K̂(x)); therefore g(X,Y ) is absolutely irreducible; by

Lemma 2.2 below we may assume that g(X,Y ) = Y d + a1(X)Y d−1 + · · ·+ ad(X)

with ai ∈ K̂[X] and deg ai(X) ≤ deg a1(X) ≥ 1, for i = 1, . . . , d.

All of these objects depend on only finitely many parameters from K̂0. So, let

u1, . . . , un be elements of K̂0 such that the following conditions hold:

(4a) F = K0(u, x, z) is a Galois extension of K0(u, x), the coefficients of f(X,Z) lie in

K0[u], f(x, Z) = irr(z,K0(u, x)), and G(f(x,Z),K0(u, x)) = G(f(x, Z), K̂0(x));

(4b) F = K(u, x, y) and the coefficients of g lie in K[u]; hence g(x, Y ) = irr(y,K(u, x));

As K̂0/K0 is regular over K0, so is K0(u). Thus, u generates an absolutely irre-

ducible variety U = Spec(K0[u]) over K0. The variety U has a nonempty Zariski open

subset U ′ such that for each u′ ∈ U ′ the K0-specialization (u, x) → (u′, x) extends to

an E-homomorphism ′: E[u, x, z,y] → E[u′, x, z′,y′] such that the following conditions

hold:

(5a) f ′(x, z′) = 0, the discriminant of f ′(x,Z) is not zero, and F ′ = K0(u′, x, z′) is the

splitting field of f ′(x, Z) over K0(u′, x); in particular F ′/K0(u′, x) is Galois;

(5b) g′(X,Y ) is absolutely irreducible and g′(x, y′) = 0; so g′(x, Y ) = irr(y′,K(u′, x));

furthermore, g′(X,Y ) = Y d + a′1(X)Y d−1 + · · · + a′d(X) with a′i ∈ K[X] and

deg a′i(X) ≤ deg a′1(X) ≥ 1, for i = 1, . . . , d.
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To achieve the absolute irreducibility of g′ we have used the Bertini-Noether the-

orem [FrJ, Prop. 8.8]. Since K0 is existentially closed in K̂0 and since u ∈ U ′(K̂0), we

can choose u′ ∈ U ′(K0). By (5a), the homomorphism ′ induces an embedding

ϕ∗: G(f ′(x, Z),K0(x)) → G(f(x,Z),K0(u, x))

which commutes with the restriction to G(K(x)/K0(x)) [La, p. 248]. Observe that K(x)

is linearly disjoint from K0(u) over K0.

F ′ F F̂

E E(u) Ê

K(x) K(u, x) K̂(x)

K0(x) K0(u, x) K̂0(x)

K0 K0(u) K̂0

Hence, by (5b),

|G(f ′(x, Z),K0(x))| = [F ′ : K0(x)] = deg(g′(x,Z))[K(x) : K0(x)]

= deg(g(x,Z))[K(u, x) : K0(u, x)]

= [F : K0(u, x)] = |G(f(x,Z),K0(u, x))|.

It follows that ϕ∗ is an isomorphism. Hence (ϕ∗)−1 ◦ α solves embedding problem (1).

Extend ϕ to a place ϕ′ of F ′. Then ϕ′ extends the specialization x → ∞. By

Lemma 2.2 below and (5b), ϕ′ totally decomposes in F ′/K(x), that is, ϕ′ is unramified

and K-rational.
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Lemma 2.2 ([GeJ, Lemma 9.2 and Lemma 9.3]): Let K be an arbitrary field and

consider a Galois extension F of K(x) of degree d which is regular over K. Then the

K-place x→∞ of K(x) totally decomposes in F if and only if there exists y ∈ F such

that irr(y,K(x)) = Y d + a1(x)Y d−1 + · · ·+ ad(x) with ai ∈ K[x] such that deg ai(X) ≤

deg a1(X) ≥ 1, for i = 1, . . . , d.
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3. Split embedding problems and patching data

In this section we fix a finite Galois extension E/E0 with Galois group Γ. Assume that

Γ properly acts on a patching data

(1) E = (E,Fi, Qi, Q;Gi, G)i∈I .

We explain these notions [HJ, Definition 1.1 and Definition 1.4]:

Definition 3.1: Patching data with a proper action. Let I be a finite set with |I| ≥ 2.

A patching data (1) consists of fields E ⊆ Fi, Qi ⊆ Q and finite groups Gi ≤ G,

i ∈ I, such that

(2a) Fi/E is a Galois extension with group Gi, i ∈ I;

(2b) Fi ⊆ Q′
i, where Q′

i =
⋂
j 6=iQj , i ∈ I;

(2c)
⋂
i∈I Qi = E;

(2d) G = 〈Gi | i ∈ I〉;

(2e) Let n = |G|. For all B ∈ GLn(Q) and i ∈ I there exist Bi ∈ GLn(Qi) and

B′
i ∈ GLn(Q′

i) such that B = BiB
′
i.

A proper action of Γ on E is a triple that consists of an action of Γ on the group G,

an action of Γ on the field Q, and an action of Γ on the set I such that the following

conditions hold:

(3a) The action of Γ on Q extends the action of Γ on E;

(3b) F γi = Fiγ , Qγi = Qiγ , and Gγi = Giγ , for all i ∈ I and γ ∈ Γ;

(3c) (aτ )γ = (aγ)τ
γ

for all a ∈ Fi, τ ∈ Gi, i ∈ I, and γ ∈ Γ.

The action of Γ on G defines a semidirect product Go Γ such that τγ = γ−1τγ for all

τ ∈ G and γ ∈ Γ.

For each i ∈ I let Pi = FiQi be the compositum of Fi and Qi in Q.

Remark 3.2: Identifications. (a) Identify Γ with a subgroup of Aut(Q/E0) by (3a).

Furthermore, if L/E0 is a Galois extension such that E ⊆ L ⊆ Q, then the restriction

resQ/L: Aut(Q/E0) → G(L/E0) maps Γ onto a subgroup Γ̄ of G(L/E0). Moreover,

resL/E : G(L/E0) → G(E/E0) maps Γ̄ onto Γ. Hence Γ̄ is isomorphic to Γ. Again,
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identify Γ̄ with Γ. Thus both restrictions resL/E : G(L/E0) → G(E/E0) and resQ/L: Γ →

G(L/E) map Γ identically onto itself. In particular, G(L/E0) = G(L/E) o Γ.

(b) Conditions (2b) and (2c) imply that Fi ∩ Qi = E. Hence Pi/Qi is a Galois

extension with Galois group isomorphic (via the restriction of automorphisms) to Gi =

G(Fi/E). Identify G(Pi/Qi) with Gi via this isomorphism. If L/E is a Galois extension

such that LQi = Pi, then the restriction of Gi to L is isomorphic to Gi; again, identify

this group with Gi.

Consider the Q-algebra

N = IndG1 Q =
{ ∑
θ∈G

aθθ | aθ ∈ Q
}
,

where addition and multiplication are defined componentwise. Thus Q embeds diago-

nally in N . For each i ∈ I, consider the Q-subalgebra

Ni = IndGGi
Pi =

{ ∑
θ∈G

aθθ ∈ N | aθ ∈ Pi, aτθ = aθτ for all θ ∈ G, τ ∈ Gi
}
.

Let F =
⋂
i∈I Ni.

We know [HJ, Proposition 1.5] that F/E0 is a Galois extension of fields and there

is an isomorphism ψ: G o Γ → G(F/E0). In fact, the proof of [HJ, Proposition 1.5]

explicitly describes this isomorphism, or, equivalently, the action of GoΓ on F . Indeed,

G acts on N by

(4)
( ∑
θ∈G

aθθ
)σ

=
∑
θ∈G

aθσ
−1θ =

∑
θ∈G

aσθθ, σ ∈ G,

and Γ acts on N by

(5)
( ∑
θ∈G

aθθ
)γ

=
∑
θ∈G

aγθθ
γ aθ ∈ Q, γ ∈ Γ;

these two actions combine to an action of Go Γ on N . The restriction of this action to

F is the required action.

The homomorphism π: N → Q given by
( ∑

θ∈G aθθ
)π = a1 fixes E and hence

also E0. Therefore F ′ = Fπ (the compound of E) is a Galois extension of E0 with

G(F ′/E0) ∼= G(F/E0) ∼= Go Γ and and π defines an action of Go Γ on F ′ by

(aπ)g = (ag)π, a ∈ F, g ∈ Go Γ.
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Let us describe this action, using (4) and (5). Let a =
∑
θ∈G aθθ ∈ F . For each γ ∈ Γ

we have

aγπ =
( ∑
θ∈G

aγθθ
γ
)π = aγ1 = aπγ .

Furthermore, for each i ∈ I and each σ ∈ Gi = G(Pi/Qi) we have F ′ ⊆ Pi and

aσπ =
( ∑
θ∈G

aσθθ
)π = aσ = aσ1 = aπσ.

This gives the following result (in which F stands for F ′; the original F will not be used

henceforth):

Proposition 3.3: Let F be the compound of E . Then F/E0 is Galois and there is an

isomorphism ψ: Go Γ → G(F/E0) that maps Γ and the Gi identically onto themselves

(under the identification of Remark 3.2).

Corollary 3.4: Assume that 1 ∈ I and the following condition holds:

(6a) 1γ = 1 for all γ ∈ Γ; and

(6b) G = H oG1, where H = 〈Gi | i ∈ I, i 6= 1〉 ≤ G; let ρ: G→ G1 be the canonical

projection.

Then

(a) F1, Q1, and G1 are Γ-invariant; put ∆ = G1 o Γ;

(b) F1/E0 is a Galois extension;

(c) G(F1/E0) = ∆, that is, the action of Γ on G1 = G(F1/E) by conjugation in

G(F1/E0) coincides with the action induced from the given action of Γ on G;

(d) F1 ⊆ F and resF/F1 : G(F/E) → G(F1/E) is ρ: G→ G1;

(e) The following diagram is commutative

Go Γ -ψ G(F/E0)

?
ρoidΓ

?
res

∆ = G1 o Γ ===== G(F1/E0).

Proof: (a) This follows from (3b) by (6a).
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(b) By assumption, F1/E is Galois. By (a), F1 is Γ-invariant, that is, every element of

G(E/E0) extends to an automorphism of F1. Hence each E0-isomorphism of F1 into Ẽ0

maps F1 onto itself.

(c) Remark 3.2 asserts that G(F1/E0) is a semidirect product of G1 with Γ. By (3c),

aγ
−1τγ = aτ

γ

for all a ∈ F1 and γ ∈ Γ.

(d) We have F1 ⊆
⋂
i∈I Pi, because P1 = F1Q1 and, by (2b), F1 ⊆ Qi ⊆ Pi, for

each 1 6= i ∈ I. Hence, if σ ∈ Gi and 1 6= i ∈ I, then, since F1 ⊆ Qi, we have

ρ(σ) = 1 = resPi/F1(σ). If σ ∈ G1 = G(P1/Q1) then ρ(σ) = σ = resP1/F1(σ), by our

identifications. Hence by [HV, Lemma 3.6(c)] we have F1 ⊆ F and resF/F1 = ρ.

(e) It suffices to verify the commutativity on the elements of Γ and the Gi’s, since they

generate Go Γ. Therefore the result follows from (d) and Proposition 3.3.
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4. Split embedding problems over functions fields of one variable over ample

fields

In this section we present the main result. We first consider the special case of complete

field and then deduce the general case from it.

Proposition 4.1: Let K/K0 be a finite unramified Galois extension of complete fields

under a nontrivial ultra-metric absolute value such that the residue field K̄0 is infinite.

Let

(1) H o G(F1/K0(x)) -pr G(F1/K0(x))

be a split K0-embedding problem. Suppose that K ⊆ F1. Let ϕ be a K-rational K-

place of F1, unramified over K(x), such that ϕ(x) ∈ K0 ∪{∞}. Then (1) has a solution

field F such that ϕ extends to a K-rational place of F unramified over K(x).

Proof: Put E0 = K0(x), E = K(x), and let Γ = G(K/K0) = G(E/E0). We may

assume that H 6= 1.

We break up the proof into several parts. The idea of the proof is to extend

(E,F1) to a patching data E = (E,Fi, Qi, Q;Gi, G)i∈I with 1 ∈ I on which Γ properly

acts; its compound F will be the required solution field.

Part A: Completion of (E, | |). Extend | | to an absolute value on E by the formula∑n
i=1 aix

i = max{|a0|, . . . , |an|}. Then, the residue x̄ of x is transcendental over K̄

and the residue fields satisfy Ē0 = K̄0(x) and Ē = K̄(x̄) [HJ, Remark 3.2(b)]. Since

K/K0 is unramified, [K : K0] = [K̄ : K̄0] = [Ē : Ē0]. Let (Ê0, | |) be the completion

of (E0, | |). Then Ê = Ê0K is the completion of E with respect to | |. Moreover,

[K : K0] = [Ē : Ē0] ≤ [Ê : Ê0] ≤ [K : K0]. Hence, [Ê : Ê0] = [K : K0] and therefore

Ê0 ∩K = K0. So, we may identify G(Ê/Ê0) with Γ via restrictions to E and K. Since

the extension of | | from Ê0 to Ê is unique, each γ ∈ Γ preserves the absolute value on

Ê. In particular, each γ ∈ Γ is a continuous automorphism of Ê.

Part B: Construction of the Qi’s. Write H as

(2) H = {τj | j ∈ J}
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with the index set J of the same cardinality as that of H. Put I2 = J ×Γ and let Γ act

on I2 by (j, γ′)γ = (j, γ′γ). Identify (j, 1) ∈ I2 with j, for each j ∈ J . Then

(3) every i ∈ I2 can be uniquely written as i = jγ with j ∈ J and γ ∈ Γ.

Let I = {1} ·∪ I2 and extend the action of Γ on I2 to an action on I by 1γ = 1 for each

γ ∈ Γ.

By Claim A of the proof of [HJ, Proposition 5.2], K has a subset {ci | i ∈ I2} such

that

(4) cγi = ciγ and |ci| = |ci − cj | = 1 for i 6= j and γ ∈ Γ.

As K̄0 is infinite, we may choose c1 ∈ K0 such that c̄1 6= 0,∞ and c̄1 /∈ {c̄i | i ∈ I2}. It

follows that (4) holds for all i, j ∈ I.

For each i ∈ I let wi = 1
x−ci

. Let R = K{wi | i ∈ I} be the closure of K[wi | i ∈ I]

in Ê and let Q = Quot(R). For each i ∈ I let

Qi = QI r{i} = Quot(K{wj | j 6= i}) and Q′
i = Q{i} = Quot(K{wi}).

By [HJ, Proposition 3.10], Q′
i =

⋂
j 6=iQj and E = K(x) =

⋂
i∈I Qi. By (4), each

γ ∈ Γ satisfies wγi = wiγ and therefore maps K[wi | i ∈ I] onto itself. Since the action

of γ on Ê is continuous, γ leaves R, and hence also Q, invariant. We identify Γ with its

image in Aut(Q). In addition, Qγi = Qiγ and (Q′
i)
γ = Q′

iγ for each i ∈ I.

Part C: Without loss of generality F1 ⊆ Q′
1 and ϕ(w1) = 0. To show this it suffices

to construct a K-embedding θ: F1 → Q′
1 such that θ(E0) = E0, θ(E) = E, and

ϕ ◦ θ−1(w1) = 0. Indeed, the isomorphism θ: F1 → θ(F1) ensures that the assumptions

and the conclusions of our proposition hold for (F1, ϕ) if and only if they hold for

(θ(F1), ϕ ◦ θ−1).

We construct θ as above in two steps.

As ϕ maps w1 into K0∪{∞}, there is a K0-automorphism ω of E0 = K0(w1) such

that ϕ◦ω−1(w1) = 0. Extend ω to a K-automorphism of E and then to an isomorphism

of fields F1 → F ′
1. Apply it to assume that ϕ(w1) = 0.

Let F ∗
1 be the completion of F1 at ϕ, and let E∗ ⊆ F ∗

1 be the corresponding

completion of E. Then [F ∗
1 : E∗] = e(F1/E) f(F1/E) = 1. But E∗ = K((w1)). Hence

F1 ⊆ F ∗
1 = K((w1)).
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Let z ∈ K((w1)) be a primitive element for F1/E. For c 6= 0 in K0 let µc be the

automorphism of K((w1)) mapping f(w1) =
∑∞
i=m aiw

i
1 to f(cw1) =

∑∞
i=m(aici)wi1.

Note that µc leaves E = K(w1) and E0 = K0(w1) invariant, and ϕ ◦ µ−1
c (w1) =

ϕ(c−1w1) = 0. By [Ar, Theorem 2.14]∗ there is c ∈ K× such that z as a Laurent series

in w1 converges at c. Thus µc(z) ∈ Q′
1 and hence µc(F1) ⊆ Q′

1.

Part D: Groups. As F1 ⊆ Q is a Galois extension of E0, it is Γ-invariant. Let

G1 = G(F1/E). Identify Γ ≤ Aut(Q/E0) with its image in G(F1/E0). Then G(F1/E0) =

G1 o Γ, where Γ acts on G1 by conjugation in G(F1/E0). Thus

(5) (aτ )γ = (aγ)τ
γ

for all γ ∈ Γ, a ∈ F1 and τ ∈ G1.

The given action of G(F1/E0) on H induces an action of its subgroups G1 and Γ

on H. Let G = H oG1 with respect to this action. Then

H o G(F1/E0) = H o (G1 o Γ) = (H oG1) o Γ = Go Γ.

Let i ∈ I2. Use (3) to write i = jγ
′

with unique j ∈ J and γ′ ∈ Γ. Then define

τi = τγ
′

j and observe that

(6a) τγi = τiγ for all i ∈ I2 and γ ∈ Γ.

By (2),

(6b) H = 〈τi | i ∈ I2〉.

For each i ∈ I2 let Gi = 〈τi〉 ≤ H. Thus

(6c) G = 〈Gi | i ∈ I〉 and H = 〈Gi | i ∈ I2〉;

(6d) Gγi = Giγ for all i ∈ I and γ ∈ Γ;

(6e) |I| ≥ 2.

Part E: Patching data. For each j ∈ J , [HJ, Proposition 5.1] gives a cyclic extension

Fj/E with Galois group Gj = 〈τj〉 such that Fj ⊆ Q′
j . For an arbitrary i ∈ I2 there

exist unique j ∈ J and γ ∈ Γ such that i = jγ (by (3)). Let Fi = F γj . As γ acts on Q

and leaves E invariant, Fi is a Galois extension of E and Fi ⊆ Q′
i.

The isomorphism γ: Fj → Fi gives an isomorphism G(Fj/E) ∼= G(Fi/E) which

maps each τ ∈ G(Fj/E) onto γ−1 ◦ τ ◦ γ ∈ G(Fi/E). We can therefore identify Gi with

* Although Artin uses analysis to prove that an algebraic power series converges, one can
give an algebraic proof of this result, in the style of the proof of Hensel’s Lemma.
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G(Fi/E) such that τi coincides with γ−1 ◦ τj ◦ γ. This means that (aτ )γ = (aγ)τ
γ

for

all a ∈ Fj and τ ∈ Gj .

It follows that for all i ∈ I and γ ∈ Γ we have F γi = Fiγ . Moreover, (aτ )γ = (aγ)τ
γ

for all a ∈ Fi and τ ∈ Gi; this extends (5).

By [HJ, Corollary 4.5], GLn(Q) = GLn(Qi)GLn(Q′
i) for each n ∈ N and each

i ∈ I. Thus E = (E,Fi, Qi;Gi, G)i∈I is a patching data on which Γ properly acts

(Definition 3.1). By Corollary 3.4(e) the compound F of E is a solution of (1).

Part F: Extension of ϕ. Let b ∈ K0 such that |b| > 1 and put z = b
x . Let K{z} be

the ring of convergent power series in z over K with respect to the absolute value | |z
given by |

∑∞
n=0 anz

n|z = max(|an|). Let R0 = K[wi | i ∈ I]. Observe that

wi =
1

x− ci
=

z

b− ciz
=
z

b
· 1
1− ci

b z
=
z

b

∞∑
n=1

(
ci
b

)nzn ∈ K{z}, for each i ∈ I.

Thus R0 ⊆ K{z}. Moreover, |wi|z = 1
|b| < 1 = |wi|. By [HJ, Lemma 3.3] every f ∈ R0

is of the form f = a0 +
∑
i∈I

∑∞
n=1 ainw

n
i , where ain ∈ K and almost all of them are

0. Hence |f |z ≤ |f | and therefore |f |z ≤ |f |. Therefore the inclusion R0 ⊆ K{z} is a

continuous R0-homomorphism. As R is the completion of R0 with respect to | |z [HJ,

Lemma 3.3], this inclusion induces a continuous R0-homomorphism λ: R → K{z}. By

[HJ, Proposition 3.9] there is p ∈ R0 such that Kerλ = (p). It follows that p = 0 and

hence λ is injective.

Identify R with its image under λ to assume that R ⊆ K{z} ⊆ K[[z]]. The

specialization z → 0 extends to a K-rational place of K((z)) unramified over E = K(z).

Its restriction to F is a K-rational place ψ of F unramified over E = K(z).

As ψ(w1) = 0 = ϕ(w1), we have resE0ψ = resE0ϕ. Replace ψ by ψ ◦ σ for a

suitable σ ∈ G(F/E0), if necessary, to assume that resF1ψ = ϕ.

Proposition 4.2: Let K0 be an ample field. Consider a (regular) split K0-embedding

problem

(7) H o G(E/K0(x)) -pr G(E/K0(x)).

Let K be the algebraic closure of K0 in E. Then
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(a) (7) has a (regular) solution F .

(b) Suppose that E has a K-rational K-place ϕ unramified over K(x) such that ϕ(x) ∈

K0 ∪ {∞}. Then F has a K-rational K-place ϕ unramified over K0(x).

Proof: We first prove (b) and then deduce (a) from (b).

Proof of (b): Let t be transcendental over E. Let K̂0 = K0((t)), K̂ = K((t)) and

Ê = EK̂. Then K̂/K̂0 is a finite Galois extension of complete fields under the t-adic

absolute value and the corresponding extension of residue fields is K/K0 (these are

infinite fields). In particular, K̂/K̂0 is an unramified extension. Since the extension

K̂/K is regular and free from E/K, the fields K̂ and E are linearly disjoint over K.

Hence ϕ extends to a K̂-rational place ϕ̂ of Ê, and therefore K̂ is the algebraic closure

of K̂0 in Ê. Furthermore, ϕ̂ is unramified over K̂(x). Finally, G(Ê/K̂0(x)) is isomorphic

to G(E/K0(x)) and acts on H via the restriction map. Thus

(8) H o G(Ê/K̂0(x)) -pr G(Ê/K̂0(x))

is a split K̂0-embedding problem.

By Proposition 4.1, (8) has a solution field F̂ such that ϕ̂ extends to a K̂-rational

place of F̂ unramified over Ê. Since K0 is ample, it is existentially closed in K̂0.

Lemma 2.1 therefore asserts the existence of a solution field F of (7) and of a K-rational

K-place of F unramified over K(x).

Proof of (a): Only finitely many K0-places of E are ramified over K0(x). Thus, there

is a K0-place ϕ of E unramified over K0(x) such that ϕ(x) ∈ K0. Composing ϕ with

an automorphism of E over K0(x), we may assume that the restriction of ϕ to K(x)

is a K-place. However, ϕ need not be K-rational. Nevertheless, the residue field K ′

of ϕ is a finite Galois extension of K0 that contains K. Let E′ = EK ′. Then ϕ

extends to a K ′-rational place ϕ′ of E′, unramified over K ′(x). Furthermore, E′/K0(x)

is a Galois extension and its Galois group G(E′/K0(x)) acts on H via the restriction
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G(E′/K0(x)) → G(E/K0(x)).

E E′

K0(x) K(x) K ′(x)

The existence of ϕ′ implies that E′/K ′ is regular.

By (b), the split embedding problem

(7′) H o G(E′/K0(x)) -pr G(E′/K0(x))

has a regular solution. Conclude from Lemma 1.1 that (7) has a solution which is

regular, if (7) is regular.

Combine Proposition 4.2 with Proposition 1.4 to get:

Theorem 4.3: Let K0 be an ample field. Then every (regular) split K0-embedding

problem

H o G(E/E0) -pr G(E/E0)

has a (regular) solution.
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