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Introduction
Let C be an algebraically closed field and let F' be a function field of one variable over
C of genus g. Consider a finite nonempty set .S of prime divisors of F'/C. Denote the
maximal Galois extension of F' which is ramified at most at S by Fg. Let r = |S|. The
Galois group G(Fs/F) is also the completion of the fundamental group of the affine
curve which is obtained by deleting the r points that correspond to the elements of S
from the unique smooth projective model of F'/C.

If char(C') = 0, then a consequence of the Riemann existence theorem asserts that

G(Fs/F) is generated by 2g + r elements o4,...,0,,71,71,...,Tg, T, With the unique

g
relation oy - - 0,11, 7] [y, 7,] = 1. This implies that G(Fs/F) is the free profinite
group on the generators oy, ..., 0., 71,71, .., Ty, T, In particular G(Fs/F) is projective.

The elements o1, ...,0, above can be selected to generate inertia groups over the

elements of S. Let G(F) be the absolute Galois group of F'. Since G(F) = lim G(Fs/F),
where S ranges over all finite sets of prime divisors of F'/C, and since restriction maps
inertia groups onto inertia groups, G(F') is the free profinite group F,, of rank m =
card(C) [Rib, p. 70, Thm. 8.1 for C' = C or Jal, §1.8]. In particular, G(F) is a projective
group.

It turns out that the conclusion G(F) = F},, with m = card(C), is true also for
arbitrary characteristic. There are three methods to prove this result. The first one
which is due to Harbater [Har| uses formal patching. The second one of Pop [Pop]
applies analytic geometry. The third one, which Haran and Vélklein introduce in [HaV]
uses the elementary method of “field patching”. However, [HaV] treats only the case
where C' is countable. The general case along this line is treated in [Ja2].

Whereas the projectivity of G(F) in the case char(C') = 0 is a consequence of
the complex analytic methods which are inherited in the proof of Riemann existence
theorem, it is the starting point in each of the three proofs that the preceding paragraph
mentions.

In §1 we present a proof of the projectivity of G(F') which strives to be as elemen-
tary as possible. In particular, it replaces heavier use of Galois cohomology by more

basic results in that theory.



The projectivity of G(F) is also the starting point for the proof of the projectivity
of G(Fs/F) (S is, as above, a finite nonempty set of prime divisors of F'/C'), which we
prove in §2. Serre [Ser, Prop. 1] proves the projectivity of G(Fs/F) by etale cohomology.
Matzat and Malle [MaM, Chap. V, Thm. 5.3] use Grothendieck lifting to characteristic
0 and then rely on the result obtained by complex analytic methods.

Section 2 of this work suggests an elementary proof for the projectivity of G(Fs/F).
In order to get a weak solution for a finite embedding problem for G(Fgs/F) we first
solve it for G(F'). Then we modify the solution to decompose through G(Fg/F'). This
method goes back to Reichardt-Scholz, Schafarevich, and Sonn.

Unfortunately, we do not know how to prove that G(Fs/F) is free by elementary
methods if char(C) = 0. We do prove however in §3, as [MaM, §V5.1] does, that
G(Fs/F) is not free if char(C) # 0. Again, unlike in [MaM], we use only algebraic
methods in the proof.

ACKNOWLEDGEMENT: The writing of this work benefited from discussions with Sigrid

Boge, Dan Haran, Wulf-Dieter Geyer, Heinrich Matzat, and Aharon Razon.



1. The projectivity of G(C(x))

Let C be an algebraically closed field and let = be a transcendental element over C.
Denote the absolute Galois group of C(z) by G(C(x)). Recall that a profinite group
G is projective if for each epimorphism ¢: G — A and each epimorphism a: B — A
of profinite groups, there exists a homomorphism v: G — B such that a oy = ¢ [FrJ,
Chap. 20]. Alternatively, the cohomological dimesnion of G is at most 1. It is well know
that G(C(z)) is a projective group. This fact is sometimes referred to as “a theorem of
Tsen”. However, a careful analysis shows that Tsen’s contribution is only one ingredient
of the proof. We put here all the ingredients of the proof together and try to simplify

each step as much as possible.

THEOREM 1.1: Let F be a function field of one variable over an algebraically closed

field C. Then G(F) is a projective group.
Proof: The proof divides into eight parts.

PArT A: Let f;(Xo,...,Xa4), 7 =1,...,d, be forms with coefficients in C. Then there
exist xo,...,xq € C not all 0, such that f;(x) =0,i=1,...,d. [La2, p. 43].
From now on K will denote an algebraic extension of C'(z) which will be eventually

more specified.

PART B: K is a Ci-field. That is, each form of degree d over K with d + 1 variables
has a nontrivial zero. This is Tsen’s theorem from 1933 [Lor, p. 151]. The proof of this

part relies on Part A.

PART C: Let L be a finite Galois extension of K. Then Normyp,/xL* = K*.
Indeed, let w1, ..., wq be a basis of L/K and let G = G(L/K). Then

f(Xy,., Xa) = [ (wf + -+ + Xaw§)

ocG
is a form of degree d with coefficients in K. If x1,...,24 € K and f(x1,...,24) = 0,
then there exists o € G such that zyw{ + --- + zqwg = 0. Since w{,..., w7 also form
a basis over K, we have 1 = --- =24 = 0.



Let now a € K*. By Part B, there exist yo,¥y1,...,yq € K, not all 0, such that
f(1,...,ya) = yda. By the preceding paragraph, yo # 0. Hence, with x; = v; /%o,

i=1,...,d, and b =xyw; + - -+ + xqwq we have Normp, b = a.

PART D: Let L be a cyclic extension of K. Then every short exact sequence

l— L —E-""G(L/K) —1

for which the action of G(L/K) on L* is the Galois action splits.

Let n = [L : K| and let o be a generator of G(L/K). We have to find ¢ € E such
that h(e) = o and " = 1.

We begin with any ¢ € F such that h(e) = 0. By assumption, for each y € L*,
we have y° = e7lye = y7. Also, e® € L*. Hence, (¢")° = (¢")® = &, and therefore
e e K*.

By Part C, there exists x € L™ such that Normp, g2 = €". For arbitrary elements

x, e of a group G, one proves by induction on n that

n,.€ g .. €

(7t =c"x et =% o 277 =e"Normy o' = 1.

So, 7 '¢ is the desired element of E.

PArT E*: Let E be a p-Sylow subfield of C(x)s (i.e., E is the fixed field in C(x)s of
a p-Sylow subgroup of G(C(x)).). Then H*(G(E), EX) = 1. Indeed, by [Rib, p. 114],
H?(G(E),EY) = lim H?(G(N/E), N*), where N ranges over all finite Galois extensions

of ¥ and the maps involved in the direct limit are inflations. We prove by induction

* The standard argument at this point uses a special case of cohomological triviality: Let
G be a finite group and let A be a G-module. If H°(G,A) = A/NA = 0 (where
Na = Yyeqoa) and H' (G, A) = 0, then H*(G, A) = 0 [CaF, p. 113, Thm. 9]. In our
case, G = G(N/K), A = N* and A°/NA = K* /Normy,xN* = 1, by Part C. Also,
H'(G,N*) = 1, by Hilbert’s theorem 90. So, indeed, H*(G,A) = 1. We are indebted
to Sigrid Boge for her help to replace cohomological triviality by the more elementary
argument of Part E.



on the degree, that for each finite Galois extension N/K with E C K C N C C(z)s we
have H*(G(N/K),N*) = 1.

Indeed, N/K is a p-extension. Hence, if it is not trivial, it has a cyclic subextension
L/K of degree p. By Part D, H*(G(L/K),L*) = 1. By induction, H?>(G(N/L), N*) =

1. Finally use the exactness of the inflation restriction sequence
H*(G(L/K), L) =%+ H*(G(N/K), N*) ==~ H*(G(N/L), N*)

[CaF, p. 125] to conclude that H?(G(N/K), N*) = 1.

PART F: Let E be a p-Sylow subfield of C(x)s. Then, G(E) is projective; hence p-free.
The statement holds for p = char(FE) by [Rib, 256]. So, assume that p # char(E).
By [Rib, p. 211 and p. 218], we have to prove that H*(G(FE),Z/pZ) = 0. To this

end consider the short exact sequence
P
(1) l—sppp —> B — B —1,

where 1, is the group of roots of unity of order p and the map from E* to E is raising
to the pth power. Since p, C C, the action of G(E) on p, is trivial and therefore p,
is isomorphic to Z/pZ as a G(E)-module. Consider the following segment of the long

exact sequence that the exact sequence (1) gives [Rib, p. 115]:

(2) HY(G(E),B}) — H*(G(E), Z/pL) — H*(G(E), E).

S S

The left term of (2) is trivial, by Hilbert’s Theorem 90. The right term of (2) is trivial,
by Part F. Hence, the middle term of (2) is trivial.

PArT G: G(C(z)) is projective.
This follows from Part F and [FrJ, Prop. 20.47]. Note that the proof of the latter

theorem is carried out without cohomology.

PArT H: Conclusion of the proof. By [FrJ, Cor. 20.14], each closed subgroup of a
projective group is projective. Conclude from Part G that G(F') is projective. |

PROBLEM 1.2: Eliminate cohomology from the proof.



2. The projectivity of the fundamental group of a smooth affine curve

Let T" be a smooth curve of genus g over an algebraically closed field C' and let F' be
the function field of I'. Then I' corresponds to the set of all prime divisors of F’ minus a
finite subset S of, say, r elements. Let Fg be the maximal separable algebraic extension
of F which is unramified outside S. The Galois group Gg = G(Fs/F) is then the
fundamental group II; (I') of I" (actually the completion thereof). If C' = C, then by
the Riemann existence theorem Gg is presented by r 4 2¢g generators

/ /
(1) Olye s Opy T1, Ty -5 Tgs Ty

and a single relation
(2) 0'1--'0'7«[7'1,7'{]“‘[7'57,7';]:]--

Douady [Dou] extends this theorem to an arbitrary algebraically closed field C' of char-
acteristic 0 (see also [Jal, §1.8]). If however, char(C) > 0, then the structure of Gg is
unknown.

If r > 1, then each map of o,...,0.,71,7],...,74, 7, into a profinite group G
extends to a homomorphism of G into G. Hence, Gg is free on r — 1 4 2g generators.
In particular, Gg is projective.

The only known proof of Riemann existence theorem uses methods from complex
analysis and functional analysis. The aim of this section is to prove that G is projective,
without any restriction on the characteristic, by algebraic means*. This will in particular
reprove the projectivity of Gg in characteristic 0.

In Part G of the proof of Theorem 1.1 we have used that a profinite group G is
projective if and only if for each prime p each p-Sylow subgroup G, of G is projective
[FrJ, Prop. 20.37 and Prop. 20.47]. We therefore say that G is p-projective if G, is

projective.

LEMMA 2.1: Let p be a prime number.

* The proof is based on tips of Heinrich Matzat.
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(a) Let G be a profinite group. Suppose that for every open subgroup H of G, each

finite central non-split p-embedding problem

=

0— > Z/pZ — > B - A — 1
is solvable. Then G is p-projective.
(b) Let N/F be a Galois extension. Suppose that for each finite subextension K of
N/F, for each finite Galois subextension L/K of N/K, and every non-split central

exact sequence of p-groups
(3) 0 —» Z/pL —» B~ G(L/K) — 1,

there exists a Galois extension L of K which contains L and which is contained in
N and there exists an isomorphism v: G(L/K) — B such that oo~ = resy, (we say
that L solves the embedding problem (3).) Then G(N/F) is p-projective.

Proof: Statement (b) is a reinterpretation of (a) for Galois groups. So we prove (a).
Let G}, be a p-Sylow subgroup of G. It order to prove that G, is projective, it

suffices to prove that each finite central p-embedding problem

Gp

(4) Pp

0 —Z/pZ B —%» A -1

is weakly solvable, i.e., there exists a homomorphism v: G, — B such that aoy = ¢,
[Rib, p. 211, Prop. 3.1 and p. 218, Proposition 4.1]. If a has a section o/: A — B, then
v =a' oy, is a weak solution of (4). Suppose therefore that (4) does not split.

Choose an open normal subgroup N of G such that G, N N < Ker(yp,). Let
H = G,N. Then H is an open subgroup of G which contains G, and ¢,, extends to a
homomorphism ¢: H — A. By assumption, there exists a homomorphism v: H — B
such that ooy = ¢. The restriction of v to G, weakly solves embedding problem (4).
|



Let a;: G; — G, i = 1,2, be homomorphisms of profinite groups. Then G; xgG2 =
{(z1,22) € G1 X G2| a1(x1) = az(x2)} is the fibre product of G; and G2 over G.
It is characterized by the following property: For each pair 8;: H — G;, i = 1,2,
of homomorphisms such that a; o f1 = ag o f; there exists a unique homomorphism
B: H — G Xg Gy such that m;03 = (3;, where 7; is the projection on the ¢th coordinate,
i=1,2 [Fr], §20.2].

Recall that an epimorphism a: B — A of profinite groups is Frattini if it maps no
proper closed subgroup of B onto A [FrJ, §20.6]. For example, a short exact sequence

0 —» Z/pZ — G —%» A —» 1 does not split if and only if « is Frattini.

LEMMA 2.2 (After [Son, Lemma 2.6]): Consider exact sequences of finite groups,

l— H; — G; —+> G —1, i=1,2,

such that |Hy| = |Hs| and o is Frattini. Then there exists an isomorphism ¢: Go — G4

such that ay o = o if and only if the projection map mo: G1 X gG2 — G2 has a section.

Proof: Suppose first that ¢: G — G is an isomorphism such that a; o ¢ = as. Then
there is a homomorphism 75: G2 — G X G2 such that m5 o 75, = id.

Conversely, suppose that 745 as above exists. Let m: G; Xg G2 — G be the
projection on the first factor. Then ¢ = 7 o 75 is a homomorphism from Gy to G
such that aq o = as. In particular, a1 (¢(G2)) = G. Since «g is Frattini, p(G2) = Gy.

Since |G| = |G|, this implies that ¢ is an isomorphism. |

LEMMA 2.3 ([Sha, p. 109 or Son, Prop. 2.5]): Let p be a prime number and let L/K
be a finite Galois extension with p # char(K). Suppose that K contains a pth primitive
root ¢ of 1. Suppose also that (3) is a non-split* central embedding problem. Let
L(z'/P) with x € L* be a solution field of (3). Then,

(a) for each o € G(K) there is u € L™ such that ox = zuP, and

(b) the set of solution fields coincides with the set of fields L((ax)'/?), a € K*.

Proof of (a): Consider first ¢ € G(K). Then L((cx)'/?) = L(x'/P) and therefore,

by Kummer theory, there exist v € LX and 0 < i < p such that oz = x'uP. Hence,

* If (3) splits, z € K* N(LX)P, and a € o~ *(K*)P, then L(z*/?) is a solution field of (3)
but L((ax)*/?) = L is not.



ox'/P = (I2*/Py for some integer j. Let 7 be the generator of G(L(x'/P)/L) such that
rxl/P = (x'/P. Then tox'/P = 7(¢I2"/Pu) = (I 2Py and orzl/P = o(CxV/P) =
C{Ix'/Pu. Since G(L(z'/?)/K) acts trivially on G(L(2'/?)/L), we have o1 = 70. It

follows that 7 = 1 and therefore ox = xzuP.

Proof of (b): Consider now a € K* and let y = ax. If L(y'/?) = L, then za € LP and
therefore L(2'/?) = L(a'/?). Hence (3) splits, in contrast to our assumption. It follows
that L(y/P)/L is a cyclic extension of degree p. For each o € G(K) we have, by (a),
oy = axuP = yuP. So, L(y'/P) is a Galois extension of K. If L(y*/?) = L(x'/P), then
L(y'/?) is certainly a solution field of (3).

So, suppose that L(y'/?) # L(z'/?). Then a'/? ¢ L(y'/P). Let N = L(z'/?,y'/P).
Then G(N/K) = G(L(z'/?)/K) xg(r/x) G(L(y'/P)/K) and the restriction maps to
L(z'/P) and L(y'/P) are the projections on the groups G(L(z'/?)/K) and G(L(y'/?)/K),
respectively. Moreover, N = L(y'/P,a'/P) and therefore the map res: G(N/K) —
G(L(y*/?)/K) has a section. Since (3) does not split, res: G(L(z*/?)/K) — G(L/K) is
Frattini. By Lemma 2.2
(5) there exists an isomorphism ¢: G(L(y'/?)/K) — G(L(z'/?)/K) which commutes

with the restriction to L.
It follows that L(y'/?) is a solution field of (3).

Conversely, suppose that L is another solution of (3). Then, (5) holds, for L
instead of L(y'/?). Let N = L(z/?). By Lemma 2.2, res: G(N/K) — G(L/K) has a
section. Since (3) is a central extension, this means in field theoretic terms that K has
a cyclic extension K (b'/?) of degree p with b € K* such that L N K(b'/?) = K and
L(b'/P) = N.

As L(z'/P) = L(b¥/?), Kummer theory gives z € L and an integer k such that
x = 2Pb*. So, with a = b™", we have 27 = ax € L. If z € L, then L(z'/?) = L(b'/P)
and therefore (3) splits, in contrast to our assumption. Conclude that L = L(z) =

L((ax)/?), as claimed. i

Let v be a discrete valuation of a field L and let p be a prime number which is

not the characteristic of the residue field of L at v (e.g., L is a function field over C,
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p # char(C), and v is trivial on C). Consider x € L~ L?. Extend v to L(z'/?). Then
pv(z'/?) = v(z). Hence, if p f v(x), then v ramifies in L(z'/?). If v(z) = pk and ¢ is an
element in L such that v(t) = 1, then with y = t~*P2, we have L(2'/?) = L(y'/?) and
v(y) = 0. The reduction of X? —y at v decomposes into p distinct linear factors (in the
algebraic closure of the residue field). Hence, v is unramified in L(z'/?).

If K is a function field over C, we denote the set of divisors (resp., prime divisors)
of K over C' by Div(K) (resp., PrimDiv(K)).

The proof of the next lemma is a modification of the proof of [Son, Prop. 3.2].

LEMMA 2.4: Let K be a function field of one variable over an algebraically closed field
C. Let S be a finite nonempty set of prime divisors of K/C. Let p # char(K) be a
prime number and let L/ K be a finite Galois subextension of Kg/K . Suppose that the
central non-split p-embedding problem (3) has a solution. Then (3) has a solution field

L which is contained in K 5.

Proof: Let L(x'/P) be a solution field of (3). By Lemma 2.3, it suffices to find a € K*
such that L((az)'/?) C Kg.

To this end, let div(z) = Y vgp(x)P be a presentation of the principal divisor
of  as a sum of distinct B € PrimDiv(L) with coefficients vy (z) (where vy is the
normalized valuation of L associated with 93). By Lemma 2.3(a), for each 0 € G(L/K)

there is u € L* such that cx = xuP. Hence,

vy (7) = vy (07 ') = veqp(x) mod p.

The set of prime divisors in L of each prime divisor p of K is a conjugacy class (under
the action of G(L/K)). Thus, div(z) = >, np 3 g, B mod pDiv(L), where p ranges
over the prime divisors of K/C and n, = vyp(x) is independent of B|p.

If p ¢ S, then p is unramified in L and therefore p = ngp L. It follows that

div(z) = an Zi]3+ ZnPZ‘B = a+ B mod pDiv(L),

pES  Blp peS  Plp
where a € Div(K) and B is a divisor of L which involves only primes over S.
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Let A be the smooth projective curve over C' with function field K and let J be
its Jacobian variety. Denote the group of divisors of K of degree 0 by Divg(K). There
is an epimorphism of Divy(K') onto J(C) whose kernel is the group of principal divisors
of K [La3, §11.2]. Now choose py € S. Since C is algebraically closed, deg(pp) = 1
and therefore a — deg(a)po € Divo(K). Also, J(C) is p-divisible [Mum, p. 42]. Hence,
there exists a € K* such that (a) + a — deg(a)pp = 0 mod pDiv(K). It follows that
div(ax) = deg(a)po + B mod pDiv(L). This implies that vg(az) = 0 mod p for each
£ which does not lie over S. Such 9 is unramified in L((az)'/?). Conclude that
L((ax)'/?) C K. |

In order to prove Lemma 2.4 also for p = char(C) we have to replace Kummer
theory in the above arguments by Artin-Schreier theory. We consider the additive
operator p defined on a field K of characteristic p > 0 by p(x) = 2P — x. For each
x € K we choose z’ € K such that p(2’') = . Then o/,2" +1,...,2" +p — 1 are the
p distinct solutions of the equation p(X) = z. If z ¢ p(K), then the latter equation is
irreducible and K (2')/K is a cyclic extension of degree p and G(K (z')/K) is generated
by an element 7 such that 7(z’) = 2’ + 1. Conversely, if L/K is a cyclic extension of
degree p, then L = K(2') with x = p(2’) € K [Lal, p. 215]. Note that the map z +— '
is completely analogous to the map z +— 2'/P that we use for char(K) # p.

For each subgroup A of the additive group of K we have [K(p~1(A)) : K] =
[A+ p(K) : p(K)] [Lal, p. 221]. This gives the following rules for z,y,z € K:

(6a) K(z') = K if and only if z € p(K).

(6b) K(z') = K(y') if and only if there exist k,l € Z not both divisible by p such that
kx +ly =0 mod p(K).

(6c) o’ € K(y',2') if and only if there exist k,l € Z such that x = ky + Iz mod p(K).

LEMMA 2.5: Consider a non-split central embedding problem
(7) 0—7Z/pZ— B —*~G(L/K)—1

where L/K is a finite Galois extension of characteristic p. Suppose that L(x') is a
solution field of (7) for some x € L. Then L is a solution field of (7) if and only if
L =L((z+a)) for somea € K.

11



Proof:  Consider first 0 € G(L(2')/K). Since p(ox’) = op(z’) = ox, we have
L((oz)") = L(ox’) = L(z). Hence, by (6) there exist b € L and an integer 1 <[ < p
such that oz’ = Iz’ + b. Let 7 be the element of G(L(z')/L) such that 7o’ = 2’ + 1.
Then o7’ = o2’ +1 =12’ +b+1 and 702’ = 7(la’ +b) = l2’ +1+b. Since G(L(z')/K)
acts trivially on G(L(2')/L), ot = 7o. It follows that [ = 1 and therefore ox’ = 2’ + b.

Let now y = x + a with a € K. If L(y') = L, then z 4+ a € p(L) and therefore
L(z") = L(a’). Hence, (7) splits, in contrast to our assumption. It follows that L(y’)/L
is a cyclic extension of degree p.

Let 0 € G(K). By the preceding paragraph, cx = = + p(b) and therefore oy =
y mod p(L). Hence, by (6), L(y’) is a Galois extension of K. If L(y') = L('), then
L(y') is certainly a solution field of (7).

So, suppose that L(y') # L(z’). Then o’ ¢ L(y'). Let N = L(2',y’). Then
G(N/K) =G(L(2z")/K) xg(/k)G(L(y")/K) and the restriction maps to L(z’) and L(y’)
are the projections on the groups G(L(z")/K) and G(L(y')/K), respectively. Moreover,
N = L(y',a’) and therefore the map res: G(N/K) — G(L(y')/K) has a section. Since
(7) does not split, res: G(L(z')/K) — G(L/K) is Frattini. By Lemma 2.2
(8) there exists an isomorphism ¢: G(L(y')/K) — G(L(2')/K) which commutes with

the restriction to L.
It follows that L(y’) is a solution field of (7).

Conversely, suppose that L is another solution field of (7). In particular, Lisa
cyclic extension of degree p of L. Hence L = L(y}) with yo = p(y)) € L. Also, (8)
holds for L instead of L(y'). Hence, with N = L(z',y}), res: G(N/K) — G(L/K) has
a solution (Lemma 2.2). This implies that N = L(y(, a;) with ag = p(af) € K. Since
' € L(y),ai) and L(y() # L(z'), there exist k,l € Z with p { k and b € L such that
kyo + lag = = + p(b). So, with y = kyo — p(b) and a = —lag, we have y = = + a and
L = L(y'), as required. i

Let v be a discrete valuation of a field L of characteristic p and let x € L. If
v(xz) > 0, then 2’ is a root of the polynomial f(X) = XP — X — x with coefficients in
the valuation ring of v. The reduction of f at v has p distinct roots. Conclude that v

is unramified in L(z').
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The proof of Lemma 2.6 is a variant of part of the proof of [MaM, Thm. 5.2].

LEMMA 2.6: Let K be a function field of one variable over an algebraically closed field
C of characteristic p > 0. Let S be a finite nonempty set of prime divisors of K/C.
Let L be a finite Galois subextension of Kg/K. Suppose that the central non-split p-
embedding problem (7) has a solution. Then (7) has a solution field L which is contained
in Kg.

Proof: By assumption there exists x € L such that L(x') solves (7). Denote the set
of all p € PrimDiv(K) ™ S which have an extension P to L such that vgp(x) < 0 by T
Then T is a finite set. Extend each p € PrimDiv(K) S to a P = P, € PrimDiv(L).
Since C'is algebraically closed, it is the residue field of both L at 3 and of K at p. Since
in addition B/p is unramified, K is P-dense in L. We may therefore choose a, € K
such that

(9) vp(r — ay) > 0.

Since S is nonempty, the strong approximation theorem [FrJ, Prop. 2.11] gives a € K
such that

vp(a—ap) >0ifpeT NS
(10)
vp(a) > 0 if p € PrimDiv(K) N(T'U S).

Let y = z — a. By Lemma 2.5, L(y’) is a Galois extension of K which solves (7).

In order to prove that L(y') C Kg consider p € PrimDiv(K) > S. Let P = P,.
By (9) and (10), v (y) > 0. Hence, P is unramified in L(y"). Since L(y’) is Galois over
K, p is unramified in L(y’), as desired. |

Combine Theorem 1.1, Lemmas 2.4 and 2.6 with Lemma 2.1(b):

THEOREM 2.7: Let F' be a function field of one variable over an algebraically closed

field C. Let S be a finite nonempty subset of PrimDiv(F'). Then G(Fs/F) is projective.

Proof:  'We have to prove that G(Fs/F) is p-projective for each prime number p. By
Lemma 2.1(b) for Fgs instead of N, it suffices to prove that each embedding problem
(3) has a solution field L in Fg. Since G(F) is projective (Theorem 1.1), there exists a
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Galois extgension L of K which contains L and there exists embedding v: G(L/K) — B
such that oy =resy. If p # char(F'), Lemma 2.4 proves that it is possible to modify L
to a solution of (3) which is contained in Fs. Lemma 2.6 does the same for p = char(F).

Conclude that G(Fs/F) is projective. i
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3. The non-freeness of the fundamental group of a smooth affine curve

Let F' be a function field of one variable over an algebraically closed field C. Let S be a
finite nonempty set of prime divisors of F'//C. In the beginning of §2, we have mentioned
that if char(C) = 0, then G(Fs/F) is a free profinite group on 2genus(F') + |S| — 1
generators. Theorem 2.7 states that for arbitrary characteristic, G(Fs/F) is projective.
By [Har, Pop, or HaV], the absolute Galois group G(F') of F is free. So, one may be
tempted to think that G(Fs/F) is also free. Our main result in this section proves that
this is not the case in positive characteristic.

To this end we denote the maximal p-extension (resp., elementary abelian p-

extension) of F' which is unramified outside S by F ép ) (resp., Fép’elem)>_

THEOREM 3.1: Let F' and S be as in Theorem 2.7. Suppose that char(C') # 0. Then

G(Fs/F) is not a free profinite group.

Proof: Let g = genus(F'). For each prime number p, G (Fép ) /F') is the maximal pro-
p-quotient of G(Fs/F). Since G(Fs/F') is projective, so is Q(Fép)/F) [Rib, p. 255].
If G(Fs/F) were free, then rank(Q(Fép)/F)) would be equal to rank(G(Fs/F)). In
particular, rank(g (Fép )/ F)) would be independent of p. However, by Proposition 3.2
below, rank(Q(Fép)/F)) = 2g+|S| — 1 if p # char(C), while, by Proposition 3.3 below,
rank(Q(Fép)/F)) = oo if p = char(C). Conclude that G(Fs/F) is not free. i

PROPOSITION 3.2: Let F' be a function field of one variable over an algebraically closed
field C. Then, for each finite set S of prime divisors of F'/C" and for each prime number
p # char(C), Q(ng)/F) is a finitely generated group. More precisely,

o i g(r /) = {F0) g1 e

Proof: By [FrJ, Lemma 20.36], rank(g(Fém/F)) = dimp, Q(Fép’EIem)/F). Denote the
group of all divisors of F//C by Div(F'), let Divy(F') be the subgroup of all divisors of
degree 0, let P(F) be the subgroup of all principal divisors of F' and let g = genus(F).

CAsE A: S=1(. In order to prove (1) in this case, it suffices to prove that

(2) dimg g(FéWlem) /F) = 2g.
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Indeed*, Kummer theory sets a correspondence between the subgroups of
F*/(F*)P and the p-elementary abelian extensions of F. If U is a subgroup of F'*,
then F(u'/P| u € U) is the extension that corresponds to U(F*)?/(F*)P. An exten-
sion F(u!/P)/F is unramified at a prime p of F/C if and only if p|v,(u) (Here v, is the
normalized discrete valuation attached to p.) It follows that F(u'/?)/F is unramified
(ie., F(u'/P) C Fqu’elem)) if and only if p|div(u). So, U = {u € F*| p|div(u)} contains
(F*)P and satisfies U/(F*)P = G(F"™) /F).

Let a: U — Divg(F') be the homomorphism that attaches to uw € U the unique a,, €
Divg(F) such that div(u) = pa,. Since a((F*)?) = P(F), « induces an isomorphism
U/(F*)P = (Divg(F)/P(F)),. Let J be the Jacobian variety of F'/C. Then J(C), =
(Divo(F)/P(F))p. So, G(F"™ |F) 2 J(C), = (Z/pZ)* [Mum, p. 39], which proves
(2).

CaSE B: S ={p}. Ifuc F* and F(u'/?)/F is at most ramified at p, then div(u) =
vp(u)p + pa’ for some a’ € Div(F). Since deg(div(u)) = 0, we have p|v,(u). Hence,

F(u'/P)/F is unramified. By (2), dimg, G( {(gflem)/F) = dimp, G(F, (p’elem)/F) = 2g.

CAseE C: S contains at least two elements. By induction assume that (1) holds for
proper subsets of S. Choose p € S. Since p { char(C), p is tamely ramified in F’ ép selem),
Hence, the inertia subgroup I, of Q(Fép selem) /F) over p is cyclic [CaF, pp. 29-30,
Thm. 1]. But the only cyclic subgroups of the group (Z/pZ)™ have order 1 or p.

Let therefore Sop = S ~{p}. The fixed field of I, in Fép elem) F(p clem) gy

induction,

3) [P s ] = pPor ISt
0

Hence

,elem ,elem ,elem ,elem — _
() [ s F = [F s FGE G < F < pe gttt = prorlol,

Finally, choose a prime divisor o of F'/C not in S. Also, choose p’ € Sy. Let
v: Divo(F) — J(C) be the canonical map [La3, p. 35, Thm. 9]. Let p = v(p — 0) and

* This part of the proof is borrowed from [FrG, Satz 12].

16



p’ = v(p’ — o). Since J(C) is p-divisible [Mum, p. 42], there exists q € J(C) such that
p+ (p— 1)p’ = pq. It follows that there exist u € F* and a prime divisor q of F/C
such that div(u) = p + (p — 1)p’ — pq [La3, §I1.2]. By Case A, F(u!/?)/F is ramified
exactly at p and p’. Hence, F(u'/P) is an extension of degree p of F' which is linearly

disjoint from Féﬁ’elem). So, by (3),

) FPm) ¢ p) > (o (u/r) : F) = po it
Combine (4) and (5) to conclude that [Fép’elem) L F] = p2otlsi=1, i

The proof of the following result elaborates on the end of the proof of [MaM,
Chap. V, Thm. 5.2].

PROPOSITION 3.3: Let F' be a function field of one variable over an algebraically closed
field C of characteristic p > 0. Let S be a nonempty finite set of prime divisors of F'/C.
Then rank(g(Fép)/F)) = 00.

Proof: Again, as in the beginning of the proof of Proposition 3.2, it suffices to prove
that F' ép selem) /F' is an infinite extension.

Indeed, since S is nonempty, there exists x € F' C such that v,(x) > 0 for each
p ¢ S. Each cyclic extension F(u)/F of degree p with p(u) € Clz] is ramified at most
over S (see the remark that precedes Lemma 2.6). Let Sy be the restriction of S to
C(z). If we prove that C(x) has infinitely many p-elementary extensions which are
ramified at most over Sy, then since F//C(x) is a finite extension, F' will have infinitely
many p-elementary extensions which are ramified at most at S. So, we may assume
that F' = C(x).

So, by Artin-Schreier theory (see §2), it suffices to prove that the set {x’| i €
N, pt i} is linearly independent over F, modulo o(F). Suppose therefore that I is a

finite set of positive integers which are not divisible by p and that there exist relatively

prime polynomials f,g € C[z] such that >, ., sz’ = ggi)): - % with a; € Fp, not all
equal to 0. Then each irreducible factor of g(x) is a pole of the right hand side but not

of the left hand side. So, we may assume that g(z) = 1 and that f(x) = Z?Zl cjad,

17



with ¢; € C and ¢,, # 0. It follows that

n n
DU SEA el
il j=1 j=1
Comparison of the coefficients of ™ on both sides shows that ¢,, = 0. This contradiction

proves our claim. |
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