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Introduction

Let C be an algebraically closed field and let F be a function field of one variable over

C of genus g. Consider a finite nonempty set S of prime divisors of F/C. Denote the

maximal Galois extension of F which is ramified at most at S by FS . Let r = |S|. The

Galois group G(FS/F ) is also the completion of the fundamental group of the affine

curve which is obtained by deleting the r points that correspond to the elements of S

from the unique smooth projective model of F/C.

If char(C) = 0, then a consequence of the Riemann existence theorem asserts that

G(FS/F ) is generated by 2g + r elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g with the unique

relation σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1. This implies that G(FS/F ) is the free profinite

group on the generators σ2, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g. In particular G(FS/F ) is projective.

The elements σ1, . . . , σr above can be selected to generate inertia groups over the

elements of S. Let G(F ) be the absolute Galois group of F . Since G(F ) = lim←−G(FS/F ),

where S ranges over all finite sets of prime divisors of F/C, and since restriction maps

inertia groups onto inertia groups, G(F ) is the free profinite group F̂m of rank m =

card(C) [Rib, p. 70, Thm. 8.1 for C = C or Ja1, §1.8]. In particular, G(F ) is a projective

group.

It turns out that the conclusion G(F ) ∼= F̂m, with m = card(C), is true also for

arbitrary characteristic. There are three methods to prove this result. The first one

which is due to Harbater [Har] uses formal patching. The second one of Pop [Pop]

applies analytic geometry. The third one, which Haran and Völklein introduce in [HaV]

uses the elementary method of “field patching”. However, [HaV] treats only the case

where C is countable. The general case along this line is treated in [Ja2].

Whereas the projectivity of G(F ) in the case char(C) = 0 is a consequence of

the complex analytic methods which are inherited in the proof of Riemann existence

theorem, it is the starting point in each of the three proofs that the preceding paragraph

mentions.

In §1 we present a proof of the projectivity of G(F ) which strives to be as elemen-

tary as possible. In particular, it replaces heavier use of Galois cohomology by more

basic results in that theory.
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The projectivity of G(F ) is also the starting point for the proof of the projectivity

of G(FS/F ) (S is, as above, a finite nonempty set of prime divisors of F/C), which we

prove in §2. Serre [Ser, Prop. 1] proves the projectivity of G(FS/F ) by etale cohomology.

Matzat and Malle [MaM, Chap. V, Thm. 5.3] use Grothendieck lifting to characteristic

0 and then rely on the result obtained by complex analytic methods.

Section 2 of this work suggests an elementary proof for the projectivity of G(FS/F ).

In order to get a weak solution for a finite embedding problem for G(FS/F ) we first

solve it for G(F ). Then we modify the solution to decompose through G(FS/F ). This

method goes back to Reichardt-Scholz, Schafarevich, and Sonn.

Unfortunately, we do not know how to prove that G(FS/F ) is free by elementary

methods if char(C) = 0. We do prove however in §3, as [MaM, §V5.1] does, that

G(FS/F ) is not free if char(C) 6= 0. Again, unlike in [MaM], we use only algebraic

methods in the proof.

Acknowledgement: The writing of this work benefited from discussions with Sigrid

Böge, Dan Haran, Wulf-Dieter Geyer, Heinrich Matzat, and Aharon Razon.
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1. The projectivity of G(C(x))

Let C be an algebraically closed field and let x be a transcendental element over C.

Denote the absolute Galois group of C(x) by G(C(x)). Recall that a profinite group

G is projective if for each epimorphism ϕ: G → A and each epimorphism α: B → A

of profinite groups, there exists a homomorphism γ: G → B such that α ◦ γ = ϕ [FrJ,

Chap. 20]. Alternatively, the cohomological dimesnion of G is at most 1. It is well know

that G(C(x)) is a projective group. This fact is sometimes referred to as “a theorem of

Tsen”. However, a careful analysis shows that Tsen’s contribution is only one ingredient

of the proof. We put here all the ingredients of the proof together and try to simplify

each step as much as possible.

Theorem 1.1: Let F be a function field of one variable over an algebraically closed

field C. Then G(F ) is a projective group.

Proof: The proof divides into eight parts.

Part A: Let fi(X0, . . . , Xd), i = 1, . . . , d, be forms with coefficients in C. Then there

exist x0, . . . , xd ∈ C not all 0, such that fi(x) = 0, i = 1, . . . , d. [La2, p. 43].

From now on K will denote an algebraic extension of C(x) which will be eventually

more specified.

Part B: K is a C1-field. That is, each form of degree d over K with d + 1 variables

has a nontrivial zero. This is Tsen’s theorem from 1933 [Lor, p. 151]. The proof of this

part relies on Part A.

Part C: Let L be a finite Galois extension of K. Then NormL/KL× = K×.

Indeed, let w1, . . . , wd be a basis of L/K and let G = G(L/K). Then

f(X1, . . . , Xd) =
∏
σ∈G

(X1w
σ
1 + · · ·+ Xdw

σ
d )

is a form of degree d with coefficients in K. If x1, . . . , xd ∈ K and f(x1, . . . , xd) = 0,

then there exists σ ∈ G such that x1w
σ
1 + · · · + xdw

σ
d = 0. Since wσ

1 , . . . , wσ
d also form

a basis over K, we have x1 = · · · = xd = 0.
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Let now a ∈ K×. By Part B, there exist y0, y1, . . . , yd ∈ K, not all 0, such that

f(y1, . . . , yd) = yd
0a. By the preceding paragraph, y0 6= 0. Hence, with xi = yi/y0,

i = 1, . . . , d, and b = x1w1 + · · ·+ xdwd we have NormL/Kb = a.

Part D: Let L be a cyclic extension of K. Then every short exact sequence

1 - L× - E -h G(L/K) - 1

for which the action of G(L/K) on L× is the Galois action splits.

Let n = [L : K] and let σ be a generator of G(L/K). We have to find ε ∈ E such

that h(ε) = σ and εn = 1.

We begin with any ε ∈ E such that h(ε) = σ. By assumption, for each y ∈ L×,

we have yε = ε−1yε = yσ. Also, εn ∈ L×. Hence, (εn)σ = (εn)ε = εn, and therefore

εn ∈ K×.

By Part C, there exists x ∈ L× such that NormL/Kx = εn. For arbitrary elements

x, ε of a group G, one proves by induction on n that

(xε)n = εnxεn

xεn−1
· · ·xε.

In our case, for x−1 instead of x, this formula gives

(x−1ε)n = εnx−εn

x−εn−1
· · ·x−ε = εnx−σn

x−σn−1
· · ·x−σ = εnNormL/Kx−1 = 1.

So, x−1ε is the desired element of E.

Part E∗: Let E be a p-Sylow subfield of C(x)s (i.e., E is the fixed field in C(x)s of

a p-Sylow subgroup of G(C(x)).). Then H2(G(E), E×
s ) = 1. Indeed, by [Rib, p. 114],

H2(G(E), E×
s ) = lim−→H2(G(N/E), N×), where N ranges over all finite Galois extensions

of E and the maps involved in the direct limit are inflations. We prove by induction

* The standard argument at this point uses a special case of cohomological triviality: Let
G be a finite group and let A be a G-module. If Ĥ0(G, A) = AG/NA = 0 (where
Na = Σσ∈Gσa) and H1(G, A) = 0, then H2(G, A) = 0 [CaF, p. 113, Thm. 9]. In our
case, G = G(N/K), A = N× and AG/NA = K×/NormN/KN× = 1, by Part C. Also,
H1(G, N×) = 1, by Hilbert’s theorem 90. So, indeed, H2(G, A) = 1. We are indebted
to Sigrid Böge for her help to replace cohomological triviality by the more elementary
argument of Part E.
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on the degree, that for each finite Galois extension N/K with E ⊆ K ⊆ N ⊆ C(x)s we

have H2(G(N/K), N×) = 1.

Indeed, N/K is a p-extension. Hence, if it is not trivial, it has a cyclic subextension

L/K of degree p. By Part D, H2(G(L/K), L×) = 1. By induction, H2(G(N/L), N×) =

1. Finally use the exactness of the inflation restriction sequence

H2(G(L/K), L×) -inf H2(G(N/K), N×) -res H2(G(N/L), N×)

[CaF, p. 125] to conclude that H2(G(N/K), N×) = 1.

Part F: Let E be a p-Sylow subfield of C(x)s. Then, G(E) is projective; hence p-free.

The statement holds for p = char(E) by [Rib, 256]. So, assume that p 6= char(E).

By [Rib, p. 211 and p. 218], we have to prove that H2(G(E), Z/pZ) = 0. To this

end consider the short exact sequence

(1) 1 - µp
- E×

s
-p E×

s
- 1,

where µp is the group of roots of unity of order p and the map from E×
s to E×

s is raising

to the pth power. Since µp ⊆ C, the action of G(E) on µp is trivial and therefore µp

is isomorphic to Z/pZ as a G(E)-module. Consider the following segment of the long

exact sequence that the exact sequence (1) gives [Rib, p. 115]:

(2) H1(G(E), E×
s ) - H2(G(E), Z/pZ) - H2(G(E), E×

s ).

The left term of (2) is trivial, by Hilbert’s Theorem 90. The right term of (2) is trivial,

by Part F. Hence, the middle term of (2) is trivial.

Part G: G(C(x)) is projective.

This follows from Part F and [FrJ, Prop. 20.47]. Note that the proof of the latter

theorem is carried out without cohomology.

Part H: Conclusion of the proof. By [FrJ, Cor. 20.14], each closed subgroup of a

projective group is projective. Conclude from Part G that G(F ) is projective.

Problem 1.2: Eliminate cohomology from the proof.
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2. The projectivity of the fundamental group of a smooth affine curve

Let Γ be a smooth curve of genus g over an algebraically closed field C and let F be

the function field of Γ. Then Γ corresponds to the set of all prime divisors of F minus a

finite subset S of, say, r elements. Let FS be the maximal separable algebraic extension

of F which is unramified outside S. The Galois group GS = G(FS/F ) is then the

fundamental group Π1(Γ) of Γ (actually the completion thereof). If C = C, then by

the Riemann existence theorem GS is presented by r + 2g generators

(1) σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g

and a single relation

(2) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

Douady [Dou] extends this theorem to an arbitrary algebraically closed field C of char-

acteristic 0 (see also [Ja1, §1.8]). If however, char(C) > 0, then the structure of GS is

unknown.

If r ≥ 1, then each map of σ2, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g into a profinite group Ḡ

extends to a homomorphism of G into Ḡ. Hence, GS is free on r − 1 + 2g generators.

In particular, GS is projective.

The only known proof of Riemann existence theorem uses methods from complex

analysis and functional analysis. The aim of this section is to prove that GS is projective,

without any restriction on the characteristic, by algebraic means∗. This will in particular

reprove the projectivity of GS in characteristic 0.

In Part G of the proof of Theorem 1.1 we have used that a profinite group G is

projective if and only if for each prime p each p-Sylow subgroup Gp of G is projective

[FrJ, Prop. 20.37 and Prop. 20.47]. We therefore say that G is p-projective if Gp is

projective.

Lemma 2.1: Let p be a prime number.

* The proof is based on tips of Heinrich Matzat.
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(a) Let G be a profinite group. Suppose that for every open subgroup H of G, each

finite central non-split p-embedding problem

H

?

ϕ

0 - Z/pZ - B -α A - 1

is solvable. Then G is p-projective.

(b) Let N/F be a Galois extension. Suppose that for each finite subextension K of

N/F , for each finite Galois subextension L/K of N/K, and every non-split central

exact sequence of p-groups

(3) 0 - Z/pZ - B -α G(L/K) - 1,

there exists a Galois extension L̂ of K which contains L and which is contained in

N and there exists an isomorphism γ: G(L̂/K)→ B such that α ◦ γ = resL (we say

that L̂ solves the embedding problem (3).) Then G(N/F ) is p-projective.

Proof: Statement (b) is a reinterpretation of (a) for Galois groups. So we prove (a).

Let Gp be a p-Sylow subgroup of G. It order to prove that Gp is projective, it

suffices to prove that each finite central p-embedding problem

(4)

Gp

?

ϕp

0 - Z/pZ - B -α A - 1

is weakly solvable, i.e., there exists a homomorphism γ: Gp → B such that α◦γ = ϕp

[Rib, p. 211, Prop. 3.1 and p. 218, Proposition 4.1]. If α has a section α′: A→ B, then

γ = α′ ◦ ϕp is a weak solution of (4). Suppose therefore that (4) does not split.

Choose an open normal subgroup N of G such that Gp ∩ N ≤ Ker(ϕp). Let

H = GpN . Then H is an open subgroup of G which contains Gp and ϕp extends to a

homomorphism ϕ: H → A. By assumption, there exists a homomorphism γ: H → B

such that α ◦ γ = ϕ. The restriction of γ to Gp weakly solves embedding problem (4).
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Let αi: Gi → G, i = 1, 2, be homomorphisms of profinite groups. Then G1×GG2 =

{(x1, x2) ∈ G1 × G2 | α1(x1) = α2(x2)} is the fibre product of G1 and G2 over G.

It is characterized by the following property: For each pair βi: H → Gi, i = 1, 2,

of homomorphisms such that α1 ◦ β1 = α2 ◦ β2 there exists a unique homomorphism

β: H → G1×GG2 such that πi◦β = βi, where πi is the projection on the ith coordinate,

i = 1, 2 [FrJ, §20.2].

Recall that an epimorphism α: B → A of profinite groups is Frattini if it maps no

proper closed subgroup of B onto A [FrJ, §20.6]. For example, a short exact sequence

0 - Z/pZ - G̃ -α A - 1 does not split if and only if α is Frattini.

Lemma 2.2 (After [Son, Lemma 2.6]): Consider exact sequences of finite groups,

1 - Hi
- Gi

-αi G - 1, i = 1, 2,

such that |H1| = |H2| and α1 is Frattini. Then there exists an isomorphism ϕ: G2 → G1

such that α1◦ϕ = α2 if and only if the projection map π2: G1×GG2 → G2 has a section.

Proof: Suppose first that ϕ: G2 → G1 is an isomorphism such that α1 ◦ϕ = α2. Then

there is a homomorphism π′2: G2 → G1 ×G G2 such that π2 ◦ π′2 = id.

Conversely, suppose that π′2 as above exists. Let π1: G1 ×G G2 → G1 be the

projection on the first factor. Then ϕ = π1 ◦ π′2 is a homomorphism from G2 to G1

such that α1 ◦ϕ = α2. In particular, α1(ϕ(G2)) = G. Since α1 is Frattini, ϕ(G2) = G1.

Since |G1| = |G2|, this implies that ϕ is an isomorphism.

Lemma 2.3 ([Sha, p. 109 or Son, Prop. 2.5]): Let p be a prime number and let L/K

be a finite Galois extension with p 6= char(K). Suppose that K contains a pth primitive

root ζ of 1. Suppose also that (3) is a non-split∗ central embedding problem. Let

L(x1/p) with x ∈ L× be a solution field of (3). Then,

(a) for each σ ∈ G(K) there is u ∈ L× such that σx = xup, and

(b) the set of solution fields coincides with the set of fields L((ax)1/p), a ∈ K×.

Proof of (a): Consider first σ ∈ G(K). Then L((σx)1/p) = L(x1/p) and therefore,

by Kummer theory, there exist u ∈ L× and 0 ≤ i < p such that σx = xiup. Hence,

* If (3) splits, x ∈ K×r(L×)p, and a ∈ x−1(K×)p, then L(x1/p) is a solution field of (3)
but L((ax)1/p) = L is not.

8



σx1/p = ζjxi/pu for some integer j. Let τ be the generator of G(L(x1/p)/L) such that

τx1/p = ζx1/p. Then τσx1/p = τ(ζjxi/pu) = ζjζixi/pu and στx1/p = σ(ζx1/p) =

ζζjxi/pu. Since G(L(x1/p)/K) acts trivially on G(L(x1/p)/L), we have στ = τσ. It

follows that i = 1 and therefore σx = xup.

Proof of (b): Consider now a ∈ K× and let y = ax. If L(y1/p) = L, then xa ∈ Lp and

therefore L(x1/p) = L(a1/p). Hence (3) splits, in contrast to our assumption. It follows

that L(y1/p)/L is a cyclic extension of degree p. For each σ ∈ G(K) we have, by (a),

σy = axup = yup. So, L(y1/p) is a Galois extension of K. If L(y1/p) = L(x1/p), then

L(y1/p) is certainly a solution field of (3).

So, suppose that L(y1/p) 6= L(x1/p). Then a1/p /∈ L(y1/p). Let N = L(x1/p, y1/p).

Then G(N/K) = G(L(x1/p)/K) ×G(L/K) G(L(y1/p)/K) and the restriction maps to

L(x1/p) and L(y1/p) are the projections on the groups G(L(x1/p)/K) and G(L(y1/p)/K),

respectively. Moreover, N = L(y1/p, a1/p) and therefore the map res: G(N/K) →

G(L(y1/p)/K) has a section. Since (3) does not split, res: G(L(x1/p)/K) → G(L/K) is

Frattini. By Lemma 2.2

(5) there exists an isomorphism ϕ: G(L(y1/p)/K) → G(L(x1/p)/K) which commutes

with the restriction to L.

It follows that L(y1/p) is a solution field of (3).

Conversely, suppose that L̂ is another solution of (3). Then, (5) holds, for L̂

instead of L(y1/p). Let N = L̂(x1/p). By Lemma 2.2, res: G(N/K) → G(L̂/K) has a

section. Since (3) is a central extension, this means in field theoretic terms that K has

a cyclic extension K(b1/p) of degree p with b ∈ K× such that L̂ ∩ K(b1/p) = K and

L̂(b1/p) = N .

As L̂(x1/p) = L̂(b1/p), Kummer theory gives z ∈ L̂ and an integer k such that

x = zpbk. So, with a = b−k, we have zp = ax ∈ L. If z ∈ L, then L(x1/p) = L(b1/p)

and therefore (3) splits, in contrast to our assumption. Conclude that L̂ = L(z) =

L((ax)1/p), as claimed.

Let v be a discrete valuation of a field L and let p be a prime number which is

not the characteristic of the residue field of L at v (e.g., L is a function field over C,

9



p 6= char(C), and v is trivial on C). Consider x ∈ L r Lp. Extend v to L(x1/p). Then

pv(x1/p) = v(x). Hence, if p - v(x), then v ramifies in L(x1/p). If v(x) = pk and t is an

element in L such that v(t) = 1, then with y = t−kpx, we have L(x1/p) = L(y1/p) and

v(y) = 0. The reduction of Xp− y at v decomposes into p distinct linear factors (in the

algebraic closure of the residue field). Hence, v is unramified in L(x1/p).

If K is a function field over C, we denote the set of divisors (resp., prime divisors)

of K over C by Div(K) (resp., PrimDiv(K)).

The proof of the next lemma is a modification of the proof of [Son, Prop. 3.2].

Lemma 2.4: Let K be a function field of one variable over an algebraically closed field

C. Let S be a finite nonempty set of prime divisors of K/C. Let p 6= char(K) be a

prime number and let L/K be a finite Galois subextension of KS/K. Suppose that the

central non-split p-embedding problem (3) has a solution. Then (3) has a solution field

L̂ which is contained in KS .

Proof: Let L(x1/p) be a solution field of (3). By Lemma 2.3, it suffices to find a ∈ K×

such that L((ax)1/p) ⊆ KS .

To this end, let div(x) =
∑

vP(x)P be a presentation of the principal divisor

of x as a sum of distinct P ∈ PrimDiv(L) with coefficients vP(x) (where vP is the

normalized valuation of L associated with P). By Lemma 2.3(a), for each σ ∈ G(L/K)

there is u ∈ L× such that σx = xup. Hence,

vP(x) ≡ vP(σ−1x) ≡ vσP(x) mod p.

The set of prime divisors in L of each prime divisor p of K is a conjugacy class (under

the action of G(L/K)). Thus, div(x) ≡
∑

p np

∑
P|p P mod pDiv(L), where p ranges

over the prime divisors of K/C and np = vP(x) is independent of P|p.

If p /∈ S, then p is unramified in L and therefore p =
∑

P|p P. It follows that

div(x) =
∑
p/∈S

np

∑
P|p

P +
∑
p∈S

np

∑
P|p

P ≡ a + B mod pDiv(L),

where a ∈ Div(K) and B is a divisor of L which involves only primes over S.
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Let ∆ be the smooth projective curve over C with function field K and let J be

its Jacobian variety. Denote the group of divisors of K of degree 0 by Div0(K). There

is an epimorphism of Div0(K) onto J(C) whose kernel is the group of principal divisors

of K [La3, §II.2]. Now choose p0 ∈ S. Since C is algebraically closed, deg(p0) = 1

and therefore a − deg(a)p0 ∈ Div0(K). Also, J(C) is p-divisible [Mum, p. 42]. Hence,

there exists a ∈ K× such that (a) + a − deg(a)p0 ≡ 0 mod pDiv(K). It follows that

div(ax) ≡ deg(a)p0 + B mod pDiv(L). This implies that vP(ax) ≡ 0 mod p for each

P which does not lie over S. Such P is unramified in L((ax)1/p). Conclude that

L((ax)1/p) ⊆ KS .

In order to prove Lemma 2.4 also for p = char(C) we have to replace Kummer

theory in the above arguments by Artin-Schreier theory. We consider the additive

operator ℘ defined on a field K of characteristic p > 0 by ℘(x) = xp − x. For each

x ∈ K we choose x′ ∈ Ks such that ℘(x′) = x. Then x′, x′ + 1, . . . , x′ + p − 1 are the

p distinct solutions of the equation ℘(X) = x. If x /∈ ℘(K), then the latter equation is

irreducible and K(x′)/K is a cyclic extension of degree p and G(K(x′)/K) is generated

by an element τ such that τ(x′) = x′ + 1. Conversely, if L/K is a cyclic extension of

degree p, then L = K(x′) with x = ℘(x′) ∈ K [La1, p. 215]. Note that the map x 7→ x′

is completely analogous to the map x 7→ x1/p that we use for char(K) 6= p.

For each subgroup A of the additive group of K we have [K(℘−1(A)) : K] =

[A + ℘(K) : ℘(K)] [La1, p. 221]. This gives the following rules for x, y, z ∈ K:

(6a) K(x′) = K if and only if x ∈ ℘(K).

(6b) K(x′) = K(y′) if and only if there exist k, l ∈ Z not both divisible by p such that

kx + ly ≡ 0 mod ℘(K).

(6c) x′ ∈ K(y′, z′) if and only if there exist k, l ∈ Z such that x ≡ ky + lz mod ℘(K).

Lemma 2.5: Consider a non-split central embedding problem

(7) 0 - Z/pZ - B -α G(L/K) - 1

where L/K is a finite Galois extension of characteristic p. Suppose that L(x′) is a

solution field of (7) for some x ∈ L. Then L̂ is a solution field of (7) if and only if

L̂ = L((x + a)′) for some a ∈ K.
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Proof: Consider first σ ∈ G(L(x′)/K). Since ℘(σx′) = σ℘(x′) = σx, we have

L((σx)′) = L(σx′) = L(x′). Hence, by (6) there exist b ∈ L and an integer 1 ≤ l < p

such that σx′ = lx′ + b. Let τ be the element of G(L(x′)/L) such that τx′ = x′ + 1.

Then στx′ = σx′ +1 = lx′ + b+1 and τσx′ = τ(lx′ + b) = lx′ + l + b. Since G(L(x′)/K)

acts trivially on G(L(x′)/L), στ = τσ. It follows that l = 1 and therefore σx′ = x′ + b.

Let now y = x + a with a ∈ K. If L(y′) = L, then x + a ∈ ℘(L) and therefore

L(x′) = L(a′). Hence, (7) splits, in contrast to our assumption. It follows that L(y′)/L

is a cyclic extension of degree p.

Let σ ∈ G(K). By the preceding paragraph, σx = x + ℘(b) and therefore σy ≡

y mod ℘(L). Hence, by (6), L(y′) is a Galois extension of K. If L(y′) = L(x′), then

L(y′) is certainly a solution field of (7).

So, suppose that L(y′) 6= L(x′). Then a′ /∈ L(y′). Let N = L(x′, y′). Then

G(N/K) = G(L(x′)/K)×G(L/K)G(L(y′)/K) and the restriction maps to L(x′) and L(y′)

are the projections on the groups G(L(x′)/K) and G(L(y′)/K), respectively. Moreover,

N = L(y′, a′) and therefore the map res: G(N/K) → G(L(y′)/K) has a section. Since

(7) does not split, res: G(L(x′)/K)→ G(L/K) is Frattini. By Lemma 2.2

(8) there exists an isomorphism ϕ: G(L(y′)/K) → G(L(x′)/K) which commutes with

the restriction to L.

It follows that L(y′) is a solution field of (7).

Conversely, suppose that L̂ is another solution field of (7). In particular, L̂ is a

cyclic extension of degree p of L. Hence L̂ = L(y′0) with y0 = ℘(y′0) ∈ L. Also, (8)

holds for L̂ instead of L(y′). Hence, with N = L(x′, y′0), res: G(N/K) → G(L̂/K) has

a solution (Lemma 2.2). This implies that N = L(y′0, a
′
0) with a0 = ℘(a′0) ∈ K. Since

x′ ∈ L(y′0, a
′
0) and L(y′0) 6= L(x′), there exist k, l ∈ Z with p - k and b ∈ L such that

ky0 + la0 = x + ℘(b). So, with y = ky0 − ℘(b) and a = −la0, we have y = x + a and

L̂ = L(y′), as required.

Let v be a discrete valuation of a field L of characteristic p and let x ∈ L. If

v(x) ≥ 0, then x′ is a root of the polynomial f(X) = Xp −X − x with coefficients in

the valuation ring of v. The reduction of f at v has p distinct roots. Conclude that v

is unramified in L(x′).
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The proof of Lemma 2.6 is a variant of part of the proof of [MaM, Thm. 5.2].

Lemma 2.6: Let K be a function field of one variable over an algebraically closed field

C of characteristic p > 0. Let S be a finite nonempty set of prime divisors of K/C.

Let L be a finite Galois subextension of KS/K. Suppose that the central non-split p-

embedding problem (7) has a solution. Then (7) has a solution field L̂ which is contained

in KS .

Proof: By assumption there exists x ∈ L such that L(x′) solves (7). Denote the set

of all p ∈ PrimDiv(K) r S which have an extension P to L such that vP(x) < 0 by T .

Then T is a finite set. Extend each p ∈ PrimDiv(K) r S to a P = Pp ∈ PrimDiv(L).

Since C is algebraically closed, it is the residue field of both L at P and of K at p. Since

in addition P/p is unramified, K is P-dense in L. We may therefore choose ap ∈ K

such that

(9) vP(x− ap) ≥ 0.

Since S is nonempty, the strong approximation theorem [FrJ, Prop. 2.11] gives a ∈ K

such that

(10)
vp(a− ap) ≥ 0 if p ∈ T r S

vp(a) ≥ 0 if p ∈ PrimDiv(K) r(T ∪ S).

Let y = x− a. By Lemma 2.5, L(y′) is a Galois extension of K which solves (7).

In order to prove that L(y′) ⊆ KS consider p ∈ PrimDiv(K) r S. Let P = Pp.

By (9) and (10), vP(y) ≥ 0. Hence, P is unramified in L(y′). Since L(y′) is Galois over

K, p is unramified in L(y′), as desired.

Combine Theorem 1.1, Lemmas 2.4 and 2.6 with Lemma 2.1(b):

Theorem 2.7: Let F be a function field of one variable over an algebraically closed

field C. Let S be a finite nonempty subset of PrimDiv(F ). Then G(FS/F ) is projective.

Proof: We have to prove that G(FS/F ) is p-projective for each prime number p. By

Lemma 2.1(b) for FS instead of N , it suffices to prove that each embedding problem

(3) has a solution field L̂ in FS . Since G(F ) is projective (Theorem 1.1), there exists a

13



Galois extgension L̂ of K which contains L and there exists embedding γ: G(L̂/K)→ B

such that α◦γ = resL. If p 6= char(F ), Lemma 2.4 proves that it is possible to modify L̂

to a solution of (3) which is contained in FS . Lemma 2.6 does the same for p = char(F ).

Conclude that G(FS/F ) is projective.
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3. The non-freeness of the fundamental group of a smooth affine curve

Let F be a function field of one variable over an algebraically closed field C. Let S be a

finite nonempty set of prime divisors of F/C. In the beginning of §2, we have mentioned

that if char(C) = 0, then G(FS/F ) is a free profinite group on 2 genus(F ) + |S| − 1

generators. Theorem 2.7 states that for arbitrary characteristic, G(FS/F ) is projective.

By [Har, Pop, or HaV], the absolute Galois group G(F ) of F is free. So, one may be

tempted to think that G(FS/F ) is also free. Our main result in this section proves that

this is not the case in positive characteristic.

To this end we denote the maximal p-extension (resp., elementary abelian p-

extension) of F which is unramified outside S by F
(p)
S (resp., F

(p,elem)
S ).

Theorem 3.1: Let F and S be as in Theorem 2.7. Suppose that char(C) 6= 0. Then

G(FS/F ) is not a free profinite group.

Proof: Let g = genus(F ). For each prime number p, G(F (p)
S /F ) is the maximal pro-

p-quotient of G(FS/F ). Since G(FS/F ) is projective, so is G(F (p)
S /F ) [Rib, p. 255].

If G(FS/F ) were free, then rank(G(F (p)
S /F )) would be equal to rank(G(FS/F )). In

particular, rank(G(F (p)
S /F )) would be independent of p. However, by Proposition 3.2

below, rank(G(F (p
S )/F )) = 2g + |S| − 1 if p 6= char(C), while, by Proposition 3.3 below,

rank(G(F (p)
S /F )) =∞ if p = char(C). Conclude that G(FS/F ) is not free.

Proposition 3.2: Let F be a function field of one variable over an algebraically closed

field C. Then, for each finite set S of prime divisors of F/C and for each prime number

p 6= char(C), G(F (p)
S /F ) is a finitely generated group. More precisely,

(1) rank(G(F (p)
S /F )) =

{
2 genus(F ) if S = ∅
2 genus(F ) + |S| − 1 if S 6= ∅.

Proof: By [FrJ, Lemma 20.36], rank(G(F (p)
S /F )) = dimFp G(F

(p,elem)
S /F ). Denote the

group of all divisors of F/C by Div(F ), let Div0(F ) be the subgroup of all divisors of

degree 0, let P (F ) be the subgroup of all principal divisors of F and let g = genus(F ).

Case A: S = ∅. In order to prove (1) in this case, it suffices to prove that

(2) dimFp
G(F (p,elem)

∅ /F ) = 2g.
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Indeed∗, Kummer theory sets a correspondence between the subgroups of

F×/(F×)p and the p-elementary abelian extensions of F . If U is a subgroup of F×,

then F (u1/p | u ∈ U) is the extension that corresponds to U(F×)p/(F×)p. An exten-

sion F (u1/p)/F is unramified at a prime p of F/C if and only if p|vp(u) (Here vp is the

normalized discrete valuation attached to p.) It follows that F (u1/p)/F is unramified

(i.e., F (u1/p) ⊆ F
(p,elem)
∅ ) if and only if p|div(u). So, U = {u ∈ F× | p|div(u)} contains

(F×)p and satisfies U/(F×)p ∼= G(F (p,elem)
∅ /F ).

Let α: U → Div0(F ) be the homomorphism that attaches to u ∈ U the unique au ∈

Div0(F ) such that div(u) = pau. Since α
(
(F×)p

)
= P (F ), α induces an isomorphism

U/(F×)p ∼= (Div0(F )/P (F ))p. Let J be the Jacobian variety of F/C. Then J(C)p
∼=

(Div0(F )/P (F ))p. So, G(F (p,elem)
∅ /F ) ∼= J(C)p

∼= (Z/pZ)2g [Mum, p. 39], which proves

(2).

Case B: S = {p}. If u ∈ F× and F (u1/p)/F is at most ramified at p, then div(u) =

vp(u)p + pa′ for some a′ ∈ Div(F ). Since deg(div(u)) = 0, we have p|vp(u). Hence,

F (u1/p)/F is unramified. By (2), dimFp G(F
(p,elem)
{p} /F ) = dimFp G(F

(p,elem)
∅ /F ) = 2g.

Case C: S contains at least two elements. By induction assume that (1) holds for

proper subsets of S. Choose p ∈ S. Since p - char(C), p is tamely ramified in F
(p,elem)
S .

Hence, the inertia subgroup Ip of G(F (p,elem)
S /F ) over p is cyclic [CaF, pp. 29–30,

Thm. 1]. But the only cyclic subgroups of the group (Z/pZ)m have order 1 or p.

Let therefore S0 = S r{p}. The fixed field of Ip in F
(p,elem)
S is F

(p,elem)
S0

. By

induction,

(3) [F (p,elem)
S0

: F ] = p2g+|S0|−1.

Hence

(4) [F (p,elem)
S : F ] = [F (p,elem)

S : F
(p,elem)
S0

][F (p,elem)
S0

: F ] ≤ p · p2g+|S0|−1 = p2g+|S|−1.

Finally, choose a prime divisor o of F/C not in S. Also, choose p′ ∈ S0. Let

ν: Div0(F ) → J(C) be the canonical map [La3, p. 35, Thm. 9]. Let p = ν(p − o) and

* This part of the proof is borrowed from [FrG, Satz 12].
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p′ = ν(p′ − o). Since J(C) is p-divisible [Mum, p. 42], there exists q ∈ J(C) such that

p + (p − 1)p′ = pq. It follows that there exist u ∈ F× and a prime divisor q of F/C

such that div(u) = p + (p − 1)p′ − pq [La3, §II.2]. By Case A, F (u1/p)/F is ramified

exactly at p and p′. Hence, F (u1/p) is an extension of degree p of F which is linearly

disjoint from F
(p,elem)
S0

. So, by (3),

(5) [F (p,elem)
S : F ] ≥ [F (p,elem)

S0
(u1/p) : F ] = p2g+|S|−1.

Combine (4) and (5) to conclude that [F (p,elem)
S : F ] = p2g+|S|−1.

The proof of the following result elaborates on the end of the proof of [MaM,

Chap. V, Thm. 5.2].

Proposition 3.3: Let F be a function field of one variable over an algebraically closed

field C of characteristic p > 0. Let S be a nonempty finite set of prime divisors of F/C.

Then rank(G(F (p)
S /F )) =∞.

Proof: Again, as in the beginning of the proof of Proposition 3.2, it suffices to prove

that F
(p,elem)
S /F is an infinite extension.

Indeed, since S is nonempty, there exists x ∈ F r C such that vp(x) ≥ 0 for each

p /∈ S. Each cyclic extension F (u)/F of degree p with ℘(u) ∈ C[x] is ramified at most

over S (see the remark that precedes Lemma 2.6). Let S0 be the restriction of S to

C(x). If we prove that C(x) has infinitely many p-elementary extensions which are

ramified at most over S0, then since F/C(x) is a finite extension, F will have infinitely

many p-elementary extensions which are ramified at most at S. So, we may assume

that F = C(x).

So, by Artin-Schreier theory (see §2), it suffices to prove that the set {xi | i ∈

N, p - i} is linearly independent over Fp modulo ℘(F ). Suppose therefore that I is a

finite set of positive integers which are not divisible by p and that there exist relatively

prime polynomials f, g ∈ C[x] such that
∑

i∈I αix
i = f(x)p

g(x)p − f(x)
g(x) with αi ∈ Fp, not all

equal to 0. Then each irreducible factor of g(x) is a pole of the right hand side but not

of the left hand side. So, we may assume that g(x) = 1 and that f(x) =
∑n

j=1 cjx
j ,
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with cj ∈ C and cn 6= 0. It follows that

∑
i∈I

αix
i =

n∑
j=1

cp
jx

jp −
n∑

j=1

cjx
j .

Comparison of the coefficients of xnp on both sides shows that cn = 0. This contradiction

proves our claim.
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