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Abstract

We use elementary algebraic methods to reprove a theorem which was proved

by Pop using rigid analytic geometry and in a less general form by Harbater

using formal algebraic patching:

Let C be an algebraically closed field of cardinality m. Consider a sub-

set S of P1(C) of cardinality m. Then the fundamental group of P1(C) rS

is isomorphic to the free profinite group of rank m.

We also observe that if char(C) 6= 0 and 0 < card(S) < m, then

π1(P1(C) rS) is not isomorphic to a free profinite group.
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Introduction

The goal of this note is to provide an elementary algebraic proof of the following result:

Main Theorem: Let C be an algebraically closed field of cardinality m. Let x be

a transcendental element over C. Then the absolute Galois group of C(x) is the free

profinite group F̂m of rank m.

The Main Theorem was first proved in characteristic 0. The essential part of the

proof, for C = C, uses algebraic topology and complex analysis, specifically, the Rie-

mann Existence Theorem, to give a detailed description of the relative Galois group of

the maximal Galois extension of C(x) ramified at most at finitely many given points of

P1(C). (See the survey [Ja1, §1].) Unfortunately, this proof fails in positive character-

istic. Worse, in this case, the structure of the relative Galois group is still unknown.

Nevertheless, it is possible to prove that G(C(x)) is free by solving finite embedding

problems over C(x). Indeed, if card(C) = ℵ0, a criterion of Iwasawa reduces the proof

to showing that each finite embedding problem over C(x) has a solution. If m > ℵ0,

then, by Chatzidakis’ criterion, it suffices to prove that each finite embedding problem

over C(x) has m distinct solutions.

There is a standard way to construct m solutions to a given embedding problem.

If β is an ordinal number of cardinality less than m and if for each α < β, Solutionα is

a solution to the embedding problem, then one constructs Solutionβ such that it has a

new branch point.

Harbater [Har] and Pop [Pop] have (independently) carried out this construction.

Harbater uses formal patching in his construction. Pop applies methods of rigid analytic

geometry. Both methods rely on heavy machineries, which have also been applied in

Raynaud’s proof of Abhyankar’s conjecture and its generalization by both authors.

For the purpose of proving the Main Theorem, it suffices, however, to use the

more elementary technique of algebraic patching which Völklein and the first author

introduced in [HaV] and which resulted, among others, in the proof of the Main Theorem

for m = ℵ0. The work [HaV] was followed by [HJ1] and [HJ2]. Both works apply

algebraic patching to solve embedding problems, however, ignoring ramification. The
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present note therefore complements [HaV], [HJ1], and [HJ2] and fills up the gap of [HJ1]

and [HJ2] by taking care of ramification. As a result we provide here an elementary

algebraic proof of the Main Theorem.

It turns out that the same method allows us to prove the freeness of certain funda-

mental groups. Let S be a subset of C∪{∞} with card(S) = m. Denote the compositum

of all finite Galois extensions of C(x) unramified outside S by ES . Then G(ES/C(x)) is

called the fundamental group of P1(C) rS and is usually denoted by π1(P1(C) rS).

If S = C∪{∞}, then ES is the separable closure of E and π1(P1(C) rS) = G(C(x)). We

prove by algebraic patching that π1(P1(C) rS) ∼= F̂m (Theorem 3.4). Harbater [Har]

uses formal patching to prove the same result in the case where C rS is a finite set.

Pop [Pop] uses rigid patching to prove a stronger result: π1(X(C) rS) ∼= F̂m for any

irreducible projective curve X over C and for each subset S of X(C) of cardinality m.

Using complex analytic methods, notably the Riemann Existence Theorem, one

proves in characteristic 0 that if S is finite, then π1(P1(C) rS) is a free profinite group.

Indeed, the result is much stronger and allows to deduce the freeness of π1(P1(C) rS)

for an arbitrary algebraically closed field C of characteristic 0 and for an arbitrary subset

of C ∪{∞}. If char(C) > 0 and S is finite, then by [Ser], π1(P1(C) rS) is not free. We

point out here (Theorem 3.6), that if card(S) < m, then π1(P1(C) rS) is not free. So,

the results of the preceding paragraph are optimal.
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1. Ramification

Let K be a field and let E be the field of rational functions of one variable over K,

say, E = K(x). Each α ∈ K̃∪{∞} defines a K-place ϕ: E → K̃∪{∞} by ϕ(x) = α. Let

us denote the corresponding prime divisor of E/K (the equivalence class of ϕ) by px,α.

Then px,α = px,β if and only if α, β are conjugate over K (letting ∞ to be conjugate

only to itself). Thus we may identify the prime divisors of E/K with the conjugacy

classes of K̃ ∪ {∞}.

Let F/E be a finite extension. An element α ∈ K̃ ∪ {∞} is a branch point of

F/E (with respect to x) if px,α is ramified in F . Denote the set of all branch points of

F/E with respect to x by Branchx(F/E); this set is finite.

Remark 1.1: Every K-automorphism θ of E = K(x) is given by θ(x) = ax+b
cx+d , where(

a
c

b
d

)
∈ Gl2(K). It induces

(i) a permutation θ′ of K̃ ∪ {∞} by θ′(α) = aα+b
cα+d ; and

(ii) a permutation θ∗ of the set of prime divisors of E/K by mapping the equivalence

class of the place ϕ onto the equivalence class of ϕ ◦ θ.

In particular, θ(x) is another generator of E/K. It is easy to check that

(1) θ∗(px,α) = px,θ′(α) and pθ(x),θ′(α) = px,α.

Furthermore, let F/E be a finite extension, and extend θ to an isomorphism of fields

F → θ(F ). Then θ(F ) is a finite extension of E and we have

(2)
θ′

(
Branchx(θ(F )/E)

)
= Branchx(F/E),

θ′
(
(Branchx(F/E))

)
= Branchθ(x)(F/E).

Indeed, let α ∈ K̃ ∪ {∞} and let ϕ′: E → K̃ ∪ {∞} be the representative of px,α

given by ϕ′(x) = α. Then ϕ′ ◦ θ: E → K̃ ∪ {∞} represents θ∗(px,α) = px,θ′(α). If

ψ′: θ(F ) → K̃ ∪ {∞} extends ϕ′, then ψ′ ◦ θ: F → K̃ ∪ {∞} extends ϕ′ ◦ θ. Clearly ψ′

ramifies in θ(F )/E if and only if ψ′ ◦ θ ramifies in F/E. Therefore px,α is ramified in

θ(F )/E if and only if px,θ′(α) is ramified in F/E. This proves the first equation of (2).

Furthermore, α ∈ Branchx(F/E) if and only if px,α is ramified in F/E if and only

if pθ(x),θ′(α) is ramified in F/E if and only if θ′(α) ∈ Branchθ(x)(F/E).
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To simplify the notation, write Branch(F/E) instead of Branchx(F/E) from now

on.

For the rest of this section assume that K is complete under a non-trivial ultra-

metric absolute value | |. Extend | | from K to E by |
∑
anx

n| = maxn |an|, an ∈ K.

Let I 6= ∅ be a finite set. Let ci ∈ K, for i ∈ I, such that |ci| ≤ |ci − cj | = 1 for

i 6= j. For each i ∈ I put wi = 1
x−ci

∈ K(x). Let R = K{wi | i ∈ I} be the completion

of the subring K[wi | i ∈ I] of E. Thus (cf. [HJ1, Lemma 3.3]) each element f of R has

a unique presentation as a multiple power series:

f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i ,

where a0, ain ∈ K, and |ain| → 0 as n → ∞. Moreover, |f | = maxi,n{|a0|, |ain|}. Let

Q = Quot(R) be the quotient field of R.

Extend the absolute value | | from K to K̃ (uniquely, since K is complete).

Lemma 1.2: Let px,α be a prime divisor of E/K and let v be be the associated discrete

valuation of E/K.

(a) If |α − ci| ≥ 1 for all i ∈ I, then v extends to a valuation v̂ of Q such that the

extension (Q, v̂)/(E, v) is immediate.

(b) Let F/E be a finite Galois extension such that F ⊆ Q. If α ∈ Branch(F/E), then

there is i ∈ I such that |α− ci| < 1.

Proof: (a) The map ϕ: R→ K(α) given by

a0 +
∑
i∈I

∞∑
n=1

ainw
n
i 7→ a0 +

∑
i∈I

∞∑
n=1

ain

( 1
α− ci

)n

is clearly an epimorphism of rings. Fix i ∈ I. By [HJ1, Prop. 3.9] and its proof, R is a

principal ideal domain and the ideal Ker(ϕ) of R is generated by an element q ∈ K[wi]

such that Ker(ϕ) ∩K[wi] = qK[wi].

Since q is irreducible in R, the localization RqR is a discrete valuation ring, and

hence ϕ uniquely extends to a place ϕ: Q→ K(α)∪{∞}. Clearly, ϕ extends px,α. Thus

the corresponding discrete valuation v̂ on Q extends v. It has the same residue field

K(α) as v has, and q is a uniformizer for both v and v̂. Therefore v̂/v is immediate.
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(b) Suppose that |α − ci| ≥ 1 for each i ∈ I. By (a), v extends to Q such that

the extension is immediate; in particular, it is unramified. But E ⊆ F ⊆ Q, hence v is

unramified in F .

Now assume that I has at least 2 elements. For each i ∈ I let

Qi = Quot(K{wj | j 6= i}) and Q′i = Quot(K{wi}).

Then

(3a)
⋂

i∈I Qi = E and Q′i =
⋂

j 6=iQj , for each i ∈ I [HJ1, Prop. 3.10];

(3b) For each positive integer n and for all B ∈ GLn(Q) and i ∈ I there exist B1 ∈

GLn(Qi) and B2 ∈ GLn(Q′i) such that B = B1B2 [HJ1, Cor. 4.5].

Furthermore, let Gi ≤ G, i ∈ I, be finite groups and Fi, i ∈ I, be fields such that

(3c) Fi/E is a Galois extension with group Gi, i ∈ I;

(3d) Fi ⊆ Q′i;

(3e) G = 〈Gi | i ∈ I〉.

Remark 1.3: Conditions (3a)-(3e) amount to saying that E = (E,Fi, Qi, Q;Gi, G)i∈I is

a patching data in the sense of [HaV, Definition 3.3], [HJ1, Definition 1.1], and [HJ2,

Definition 3.1]. In what follows we shall consider the compound F of E . As explained

in [HaV, Lemma 3.6], F is a certain Galois extension of E contained in Q with Galois

group G. More precisely, by (3a) we have for each i ∈ I that Qi∩Q′i = E, and hence the

restriction map of Galois groups G(FiQi/Qi) → G(Fi/E) = Gi is an isomorphism. If we

identify G(FiQi/Qi) with Gi via this map, then F is the largest subfield of
⋂

i∈I FiQi,

on which G acts so that each subgroup Gi of G acts via the restriction of automorphisms

to F [HaV, Lemma 3.6(b),(c)].

Lemma 1.4: Let F be the compound of E = (E,Fi, Qi, Q;Gi, G)i∈I .

(a) Let i ∈ I. If α ∈ Branch(Fi/E), then |α − ci| < 1. In particular, the sets

Branch(Fi/E), for i ∈ I, are disjoint.

(b) Branch(F/E) =
⋃
· i∈I Branch(Fi/E).

(c) Suppose that the set I contains the symbol 1 and G = HoG1, where H = 〈Gi | i ∈

I r{1}〉 / G. Then FH = F1 and Branch(FG1/E) =
⋃
· i∈I

i6=1
Branch(Fi/E).
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Proof: (a) By assumption, Fi ⊆ Q′i. By Lemma 1.2(b), with I = {i}, each α ∈

Branch(Fi/E) satisfies |α− ci| < 1.

(b) Let px,α be prime divisor of E/K and let v be the corresponding discrete

valuation of E. Assume first that v is ramified in Fi. By (a), |α − ci| < 1. For each

j 6= i we have |ci − cj | = 1, hence |α − cj | = 1. By Lemma 1.2(a), v extends to a

valuation vi on Qi which is immediate in Qi/E. By [HaV, Lemma 3.6(e)], v is ramified

in F .

Conversely, assume that v is ramified in F . We claim that there is i ∈ I such that

(*) |α− cj | ≥ 1 for all j 6= i.

Indeed, if there is i ∈ I such that |α− ci| < 1, then i satisfies (*), because |ci − cj | = 1

for all j 6= i. Otherwise each i ∈ I satisfies (*).

Fix i ∈ I that satisfies (*). By Lemma 1.2(a), v extends to a valuation vi on Qi

which is immediate in Qi/E. By [HaV, Lemma 3.6(e)], v is ramified in Fi.

(c) We have FH = F1 by [HJ2, Cor. 3.4(d)] with Γ = 1. It follows that F1∩FG1 =

E and F1F
G1 = F . Hence Branch(F/E) = Branch(F1/E) ∪ Branch(FG1/E).

Let α ∈
⋃

i 6=1 Branch(Fi/E). By (b), α ∈ Branch(F/E); but, by (a), α /∈

Branch(F1/E). Hence α ∈ Branch(FG1/E).

Conversely, let α ∈ Branch(FG1/E). Then α ∈ Branch(F/E). By (b), there is

i ∈ I such that α ∈ Branch(Fi/E). If i = 1, then, as in the first paragraph of the

proof of (b), the valuation v corresponding to px,α extends to a valuation vi on Qi

which is immediate in Qi/E. But FG1 ⊆ (F1Q1)G1 = Q1, so vi is ramified over v.

A contradiction. Therefore α ∈
⋃

i 6=1 Branch(Fi/E).
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2. The fundamental group of a subset of a line

Let K be an algebraically closed field, and fix a transcendental element x over K. The

set P of prime divisors of E = K(x) can be identified with K ∪ {∞}. For each subset

S of P let ES be the maximal Galois extension of E unramified outside S, and let

GS(E) = G(ES/E). In particular, GP (E) is the absolute Galois group G(E) of E.

The main result of this section is that if K is complete with respect to a non-

trivial ultrametric absolute value, and card(K rS) < card(K), then GS(E) is the free

profinite group of cardinality card(K).

Recall [FrJ, p. 289] that a finite embedding problem for a profinite group G

(1) (α: B → A, ϕ: G→ A)

consists of an epimorphism α: B → A of finite groups and a continuous epimorphism

ϕ: G → A. The kernel of (1) is Kerα. A solution (resp., a weak solution) is a

continuous epimorphism (resp. homomorphism) ψ: G→ B such that α ◦ ψ = ϕ.

Without loss of generality ϕ is the quotient map modulo Kerϕ. Thus if G is a

Galois group, say G = G(Ê/E), then A = G(F1/E), where F1 is a finite Galois extension

of E contained in Ê, and ϕ is the restriction map from Ê to F1. In this case we usually

abbreviate (1) as

(2) α: B → G(F1/E).

A solution field of (2) is a Galois extension F of E such that E ⊆ F1 ⊆ F ⊆ Ê, and an

isomorphism λ: G(F/E) → B such that α◦λ = resF/F1 . By Galois theory, the solutions

fields F of (2) correspond to the kernels of the solutions ψ: G(Ê/E) → B. Notice that

only finitely many solutions may have the same kernel.

We begin with a weaker assertion:

Lemma 2.1: Let S ⊆ P . Then GS(E) is projective, i.e., every finite embedding problem

for GS(E) has a weak solution.

Proof: If S is finite, this is the content of [Ser, Prop. 1] or [Ja2, Theorem 2.7]. (If

S = ∅ then GS(E) = 1 by the Riemann-Hurwitz genus formula [FrJ, Prop. 2.15].)
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In the general case we have to show that each finite embedding problem (2) for

GS(E) has a weak solution. Here F1 ⊆ ES .

Let T = Branch(F1/E). Then T ⊆ S, and hence F1 ⊆ ET ⊆ ES . Factor

the restriction ϕ: GS(E) → G(F1/E) into the restrictions res1: GS(E) → GT (E) and

res2: GT (E) → G(F1/E). As T is finite, by the above quoted result there is a homomor-

phism ψ2: GT (E) → B such that α ◦ψ2 = res2. Put ψ = ψ2 ◦ res1. Then α ◦ψ = resF1 .

Lemma 2.2: For each integer n > 1 there exists a cyclic extension F/E of degree n

such that Branch(F/E) = {1,∞}. If char(K) > 0 and n is a power of char(K), then

there exists a cyclic extension F/E of degree n such that Branch(F/E) = {∞}.

Proof: If char(K) - n, let F = E(y), where yn = x − 1. If n = p = char(K) > 0, let

F = E(y), where either yp−y = x or yp−y = x2

x−1 . In the first case Branch(F/E) = {∞}

and in the second case Branch(F/E) = {1,∞}.

The rest of the proof reduces the general case to these two cases.

Part A: Without loss of generality n is a prime power. Indeed, if n =
∏m

i=1 p
ri
i , where

p1, . . . , pm are distinct primes, and for each 1 ≤ i ≤ m there is a cyclic extension Fi/E

of degree pri
i , ramified at {1,∞}, then the compositum F =

∏m
i=1 Fi has the required

properties.

Part B: Without loss of generality n is prime. Indeed, assume that n is a power of

a prime p and there is a cyclic extension F1/E of degree p, ramified at {1,∞}. Let

S = {1,∞}. By Lemma 2.1, the embedding problem

(α: Z/nZ → Z/pZ = G(F1/E), res: GS(E) → G(F1/E))

for GS(E) has a weak solution, say, ψ: GS(E) → Z/nZ. But ψ is surjective, since

α(ψ(Z/nZ)) = Z/pZ and Z/nZ is the only subgroup H of Z/nZ with α(H) = Z/pZ.

The fixed field F of Kerψ has the required properties.

Lemma 2.3: Assume that K is complete with respect to a non-trivial ultrametric ab-

solute value | |. Let c ∈ K and put w = 1
x−c . Let n > 1 be an integer. Then there is

8



0 < r < 1 such that for all b1, b2 ∈ K with |b1− c|, |b2− c| ≤ r there is a cyclic extension

F/E of degree n, with Branch(F/E) = {b1, b2} and F ⊆ Quot(K{w}).

Proof: Lemma 2.2 produces a cyclic extension F1/E of degree n with Branch(F1/E) =

{1,∞}. Since F1/E is unramified at 0, we have F1 ⊆ K((x)). By [HaV, Lemma 4.2(b)]

there is r > 0 with the following property: If a ∈ K× and |a| ≤ r, then the K-

automorphism of E given by x 7→ ax extends to an embedding µa: F1 → Quot(K{x}).

Without loss of generality r < 1. Let b1, b2 ∈ K such that |b1 − c|, |b2 − c| ≤ r. Put

a = b2 − b1 and denote F2 = µa(F1). By Remark 1.1,

Branch(F2/E) = (µ′a)−1(Branch(F1/E)) =
1
a
{1,∞} = { 1

b2 − b1
,∞}.

Let θ be the K-automorphism of E given by θ(x) = w. Extend θ to an isomor-

phism of fields θ: F2 → F3. Then F3 ⊆ Quot(K{w}). We have

Branch(F3/E) = (θ′)−1(Branch(F2/E)) = (θ′)−1{ 1
b2 − b1

,∞} = {c+ b2 − b1, c}.

Let d = c− b1. Then |d| ≤ r ≤ 1. Let λ be the automorphism of K[[w]] that maps

f =
∑∞

n=0 anw
n onto

λ(f) =
∞∑

n=0

an(w + d)n =
∞∑

n=0

an

n∑
k=0

(
n

k

)
dn−kwk =

∞∑
k=0

( ∞∑
n=k

(
n

k

)
and

n−k
)
wk

Then ∣∣ ∞∑
n=k

(
n

k

)
and

n−k
∣∣ ≤ max

n≥k
|an|

and hence λ(K{w}) ⊆ K{w}. Therefore we can extend λ to an automorphism of

Quot(K{w}). The restriction of λ to E is the map w 7→ w + d. Let F = λ(F3). Then

F ⊆ Quot(K{w}) and

Branch(F/E) = (λ′)−1(Branch(F3/E)) = {c+ b2 − b1 − d, c− d} = {b2, b1}.

To prove that a projective group is free, we need the following criterion, essentially

due to Iwasawa [FrJ, Cor. 24.2] and Chatzidakis [FrJ, Lemma 24.14 and Prop. 24.18].
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Lemma 2.4: Let m be an infinite cardinal number and let G be a projective group of

rank ≤ m. Put

m′ =
{

1 if m = ℵ0,
m if m > ℵ0,

and assume that each finite split embedding problem for G with a nontrivial kernel has

m′ distinct solutions. Then G ∼= F̂m.

Proof: The existence of m solutions of (1) for A = 1 and B = Z/2Z implies that G is

of rank m.

By [FrJ, Cor. 24.2] in the first case and by [FrJ, Lemma 24.14 and Prop. 24.18] or

[Ja1, Lemma 2.1] in the second case, it suffices to prove that each (i.e., not necessarily

split) finite embedding problem (1) for G with Kerα 6= 1 has m′ distinct solutions. As

G is projective, there exists a homomorphism ψ: G → B such that α ◦ ψ = ϕ. Then

Â = G/Kerψ is a finite group and there exist homomorphisms ϕ̂: Â→ A and ψ̂: Â→ B

such that ϕ̂ ◦ π = ϕ, ψ̂ ◦ π = ψ, and α ◦ ψ̂ = ϕ̂, where π: G → Â is the quotient map.

Let B̂ = B ×A Â and let α̂: B̂ → Â and β: B̂ → B be the projections from B̂. Then

there exists θ: Â → B̂ such that α̂ ◦ θ = idÂ and β ◦ θ = ψ̂ [FrJ, Lemma 20.6]. So,

(π: G→ Â, α̂: B̂ → Â) is a finite split embedding problem for G and Kerα̂ ∼= Kerα 6= 1.

By assumption, there exist m′ distinct epimorphisms ψi: G→ B̂ such that α̂◦ψi =

π, i ∈ I. If i, i′ ∈ I and β ◦ ψi = β ◦ ψi′ , then ψi = ψi′ [FrJ, Lemma 20.6]. Conclude

that β ◦ ψi, i ∈ I, are m′ distinct solutions of embedding problem (1).

A disk in K ∪ {∞} is a set of the form

D = θ({a ∈ K | |a| ≤ r})

where r > 0 and θ is a Möbius transformation over K. Thus each set of the form

D = {a ∈ K | |a− c| ≤ r′} or D = {a ∈ K | |a| ≥ r′} ∪ {∞} , where r′ > 0 and c ∈ K,

is a disk. (In fact, each disk is of this form; but we shall not use this fact.) Note that

the cardinality of a disk is the same as the cardinality of K.

Lemma 2.5: Assume that K is complete with respect to a non-trivial ultrametric ab-

solute value. Let F1/E be a finite Galois extension with group G1. Let

(3) α: G = H oG1 → G1 = G(F1/E)
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be a finite split embedding problem for G(E). Suppose that H = Kerα is generated

by a finite family {Gi}i∈J of nontrivial cyclic subgroups. Then there exists a fam-

ily of pairwise disjoint disks {Di}i∈J in K ∪ {∞} such that for every B ⊂
⋃

i∈J Di

with card(B ∩ Di) = 2 , for each i ∈ J , there exists a solution field F to (3) with

Branch(FG1/E) = B.

Proof: For the sake of compatibility with [HJ2] assume that J does not contain the

symbol 1 and put I = J ∪ {1}. Then G = 〈Gi | i ∈ I〉. For each i ∈ I let ci ∈ K, wi,

etc., be as in Section 1 (see Remark 1.3). In particular, Qi = Quot(K{wj | j 6= i}) and

Q′i = Quot(K{wi}).

Claim: We may assume that F1 ⊆ Q′1. Indeed, as K is algebraically closed, every

prime divisor of F1/K is of degree 1. In particular, F1/K has an unramified prime

divisor of degree 1. By [HaV, Lemma 4.2] there is a K-automorphism of E that extends

to an embedding θ: F1 → Q′1. Let F ′1 = θ(F1) and extend θ to an automorphism of Ẽ.

Then θ defines isomorphisms θ∗: G(F1/E) → G(F ′1/E) and θ∗: G(E) → G(E) such that

the following diagram commutes

G(E) -θ∗ G(E)

?
res

?
res

G -α G(F1/E) -θ∗ G(F ′1/E).

Suppose that there is a family of disks {D′i}i∈J such that for every B′ ⊂
⋃

i∈J D
′
i with

card(B′ ∩ D′i) = 2 , for each i ∈ J , there exists a solution field F ′ to the embedding

problem

(θ∗ ◦ α: G→ G(F ′1/E), res: G(E) → G(F ′1/E))

with Branch(F ′G1/E) = B′. Then the disks Di = θ′(Di), for i ∈ J , have the required

property.

Indeed, if B ⊂
⋃

i∈J Di and card(B ∩ Di) = 2 , for each i ∈ J , put B′ =

(θ′)−1(B), and let F ′ be as above. Clearly, F = θ−1(F ′) solves (3). By Remark 1.1,

Branch(FG1/E) = B.

Thus, replacing F1 by F ′1 we may assume that F1 ⊆ Q′1.
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By Lemma 2.3 there is 0 < r < 1 such that the (necessarily disjoint) disks Di =

{a ∈ K | |a − ci| ≤ r}, for i ∈ J , have the following property. For every B ⊂
⋃

i∈J Di

with card(B∩Di) = 2, for each i ∈ J , there exist Galois extensions Fi/E with the cyclic

Galois group Gi and Branch(Fi/E) = B ∩Di and Fi ⊆ Quot(K{wi}), for each i ∈ J .

By Remark 1.3, E = (E,Fi, Qi, Q;Gi, G)i∈I is a patching data. Its compound F

is, by [HJ2, Cor. 3.4(d)] with Γ = 1, a Galois extension of E that solves (3). By Lemma

1.4(c),

Branch(FG1/E) =
⋃
i∈J

Branch(Fi/E) =
⋃
i∈J

B ∩Di = B.

12



3. Descent

We wish to apply Lemma 2.5 to a sufficiently large complete extension of a given alge-

braically closed field.

Thus we consider the following situation. Let C1 ⊆ C2 be two algebraically closed

fields and let x be transcendental over C2. Denote E1 = C1(x) and E2 = C2(x). Let

(1) ρ: G = H oG1 → G1 = G(F1/E1)

be a finite split embedding problem for G(E1) with a nontrivial kernel. Let F2 = F1E2.

Then the restriction G(F2/E2) → G(F1/E1) is an isomorphism. Identify G(F2/E2) with

G1 = G(F1/E1) via this map. Then (1) induces a finite split embedding problem

(2) ρ: G = H oG1 → G1 = G(F2/E2)

for G(E2) with a nontrivial kernel.

Before dealing with embedding problems let us notice a simple fact:

Remark 3.1: Let A be an infinite subset of a field K. Then every nonempty Zariski

K-open subset of An meets An. Indeed, the only polynomial in n variables over K that

vanishes on An is 0.

Lemma 3.2: Let A be an infinite subset of C1. Assume that (2) has a solution field L2

such that ∞ /∈ Branch(LG1
2 /E2) and the elements of Branch(LG1

2 /E2) are algebraically

independent over C1. Then (1) has a solution field L1 with Branch(LG1
1 /E1) ⊆ A.

Proof: There is an irreducible monic polynomial h ∈ C2[x, Z] such that L2 = E2(z),

where h(x, z) = 0. Furthermore, there are irreducible polynomials f1, . . . , fr ∈ C2[x,Z]

such that a root zi of fi is a primitive element of LG1
2 /E2 (and hence also of L2/F2),

and

(3) Branch(LG1
2 /E2) =

r⋂
j=1

Discr(fj)

[Has, p. 64].
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There is an integer l and a l-tuple u = (u1, . . . , ul) of elements of C2 such that

h, f1, . . . , fr ∈ C1[u][x,Z]. Without loss of generality Branch(LG1
2 /E2) ⊆ {u1, . . . , ul},

say, Branch(LG1
2 /E2) = {u1, . . . , uk}, where k ≤ l.

Now, u generates a variety U = Spec(C1[u]) over C1. For each u′ ∈ U(C1)

the C1-specialization u → u′ extends to a C1(x)-homomorphism ′: C1(x)[u] → C1(x),

and from there to an F1-homomorphism ′: F1[u] → F1. Extend it to an F1-place

from L2 into the algebraic closure of F1. Let B = {u′1, . . . , u′k} ⊆ C1 be the image of

Branch(LG1
2 /E2) = {u1, . . . , uk}.

The variety U has a nonempty Zariski open subset U ′ such that if u′ ∈ U ′, then,

in the above notation,

(4a) h, f ′1, . . . , f
′
r ∈ C1[x, Z] are irreducible over C1(x) [FrJ, Prop. 8.8];

(4b) L1 = E1(z′) is Galois over E1 and G(L1/E1) ∼= G(L2/E2) = G [FrJ, Lemma 5.5];

(4c) the respective roots z′1, . . . , z
′
r of f ′1, . . . , f

′
r are primitive elements for LG1

1 /E1.

Thus L1 solves (1). From (3), B =
⋂r

j=1 Discr(f ′j). In particular, since LG1
1 /E1 is

unramified at each point outside Discr(f ′1),

(4d) Branch(LG1
1 /E1) ⊆ B.

By assumption, u1, . . . , uk are algebraically independent over C1. Thus the projection

on the first k coordinates pr: U → Ak is a dominant map, and hence pr(U ′) contains a

Zariski open subset of Ak [Lan, Prop. 4 on p. 88]. By Remark 3.1 we may choose u′ so

that B = {u′1, . . . , u′k} ⊆ A. Thus Branch(LG1
1 /E1) ⊆ A.

To achieve the algebraic independence in Lemma 3.2 we use:

Lemma 3.3: Let C1 ⊆ C2 be two algebraically closed fields such that card(C1) <

card(C2). Let {Dj}j∈J be a finite collection of pairwise disjoint subsets of C2 of cardi-

nality card(C2). Then there exists a set B ⊆
⋃

j∈J Dj such that card(B ∩Dj) = 2 for

each j ∈ J and the elements of B are algebraically independent over C1.

Proof: Write J as {1, . . . , k}, and suppose, by induction, that we have already found

bj , b
′
j ∈ Dj , for j = 1, . . . , k − 1, such that b1, b′1, . . . , bk−1, b

′
k−1 are algebraically inde-

pendent over C1. The cardinality of the algebraic closure C̃1 of C1(b1, b′1, . . . , bk−1, b
′
k−1)
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in C2 is card(C1) < card(C2) = card(Dk), so there exist bk, b′k ∈ Dk algebraically inde-

pendent over C̃1. Thus b1, b′1, . . . , bk, b
′
k are algebraically independent over C1.

The preceding lemmas yield the main result:

Theorem 3.4: Let C be an algebraically closed field of cardinality m and let E = C(x)

be the field of rational functions over C. Let S ⊆ C∪{∞} of cardinalitym. Then GS(E)

is isomorphic to the free profinite group of rank m.

Proof: Put C1 = C and E1 = E. By Lemma 2.1, GS(E) is projective. Therefore, by

Lemma 2.4, it suffices to show that every finite split embedding problem (1) for GS(E)

has m′ solution fields, where m′ = 1 if m = ℵ0, and m′ = m otherwise.

Let β < m be an ordinal number. Suppose, by transfinite induction, that {Lα}α<β

is a family of distinct solution fields of (1). For each α, the set Branch(Lα/E) is finite.

Hence, A = Sr ⋃
α<β Branch(Lα/E) is infinite.

Choose an algebraically closed field K = C2 which contains C, complete with

respect to a non-trivial ultrametric absolute value, such that card(C) < card(K). For

instance, choose a field C ′ that contains C such that card(C) < card(C ′), and let K

be the completion of the algebraic closure of C ′((t)). Consider the induced embedding

problem (2).

By Lemma 2.5 there exists a family of disks {Dj}j∈J in K ∪ {∞} such that for

every B ⊂
⋃

j∈J Dj with card(B ∩ Dj) = 2 , for each j ∈ J , there exists a solution

field L2 to (2) with Branch(LG1
2 /K(x)) = B. Choose such a set B. By Lemma 3.3,

with Dj r{∞} instead of Dj , we may assume that the elements of B are algebraically

independent over C. Therefore by Lemma 3.2, (1) has a solution field F such that

Branch(FG1/E) ⊆ A.

Since F = F1F
G1 , we have Branch(F/E) = Branch(F1/E) ∪ Branch(FG1/E).

Furthermore, Branch(F1/E),Branch(FG1/E) ⊆ S. Thus Branch(F/E) ⊆ S. Also, let

α < β. Then Branch(FG1/E) ∩ Branch(Lα/E) = ∅. But Branch(FG1/E) 6= ∅ by the

Riemann-Hurwitz genus formula [FrJ, Prop. 2.15] and Branch(FG1/E) ⊆ Branch(F/E).

Therefore Branch(F/E) 6= Branch(Lα/E), whence F 6= Lα.
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Corollary 3.5: Let C be an algebraically closed field of cardinality m. Let E be a

field of algebraic functions in one variable over C. Then G(E) is isomorphic to the free

profinite group of rank m.

Proof: If E is the field of rational functions, apply Theorem 3.4 with S = P . In

the general case E is a finite separable extension of C(x). Therefore G(E) is an open

subgroup of G(C(x)). The assertion follows from [FrJ, Prop. 15.27].

If char(C) = 0 and S is an arbitrary subset of C ∪ {∞}, then, using the Riemann

Existence Theorem and a result of Douady for the case when S is finite, one can prove

that GS(E) is a free profinite group (as in [Ja1, §1.8]). If, however, char(C) > 0 and

card(S) < card(C), then this is no longer true. In fact, GS(E) is even not free:

Theorem 3.6: Let C be an algebraically closed field of positive characteristic and of

cardinality m. Let E be a finite extension of C(x) and let S be a nonempty subset of

prime divisors of E/C of cardinality less than m. Denote the maximal Galois extension

of E unramified outside S by ES . Then G(ES/E) is not a free profinite group.

Proof: Assume that G(ES/E) is isomorphic to the free profinite group of rank k. For

each prime number p denote the maximal pro-p extension of E in ES by E
(p)
S . Then

G(E(p)
S /E) is isomorphic to the free pro-p group of rank k. Denote the family of Galois

extensions of degree p in E
(p)
S by DS(p). Let dS(p) be the cardinality of DS(p). Then

dS(p) is the cardinality of the family of open normal subgroups of G(E(p)
S /E) of index p.

Hence, dS(p) is finite if k is finite [FrJ, Lemma 15.1] and dS(p) = k if k is infinite [FrJ,

Supplement 15.2]. But this contradicts the conjunction of the following two claims.

Claim A: If p 6= char(C), then dS(p) < m.

Indeed, if S is a finite set, then dS(p) is finite [Ja2, Prop. 3.2]. In the general case,

let A be the collection of all finite nonempty subsets of S. Its cardinality is, like that

of S, less than m. Then E
(p)
S is the compositum of all fields E(p)

A , with A ∈ A. Hence,

dS(p) ≤
∑

A∈A dA(p) < m.

Claim B: If p = char(C), then dS(p) = m.

Indeed, the case where m = ℵ0 is covered by [Ja2, Prop. 3.3]. So, assume that
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m > ℵ0. Since E/C(x) is a finite extension, it suffices to construct m linearly disjoint

cyclic extensions of C(x) of degree p unramified outside S|C(x). We may therefore

assume without loss that E = C(x). Also, apply a Möbius transformation on E, if

necessary, to assume that ∞ ∈ S.

For each ordinal number α < m choose aα ∈ C such that the transfinite sequence

(aα | α < m) is linearly independent over Fp. Each of the fields E(zα) with zp
α−zα = aαx

is a cyclic extension of E of degree p. Moreover, Branchx(E(zα)/E) = {∞}. Finally,

the field extensions E(zα), α < m, of E are linearly disjoint.

Indeed, by the theory of Artin-Schreier, it suffices to prove that the set {aαx | α <

m} is linearly independent over Fp modulo ℘(E), where ℘(y) = yp − y. Suppose that

there exist relatively prime polynomials f and g in C[x] such that
∑

α<m uαaαx =
f(x)p

g(x)p − f(x)
g(x) , with elements uα in Fp which are zero for all but finitely many α. Then

each irreducible factor of g(x) is a pole of the right hand side but not of the left hand

side. So, we may assume that g(x) = 1 and that f(x) =
∑n

j=0 cjx
j with cj ∈ C and

cn 6= 0. It follows that
∑

α<m uαaαx =
∑n

j=0 c
p
jx

jp −
∑n

j=0 cjx
j . Comparison of the

coefficients of xjn proves that n = 0 and
∑

α<m uαaα = 0. Hence, by assumption,

uα = 0 for each α.
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