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Introduction

One of the results of Tate’s celebrated article from 1966 on endomorphisms of abelian

varieties over finite fields [Tat] was the isogeny theorem: Let A and A′ be abelian

varieties over a finite field K. If l 6= char(K) and ρA,l∞ ∼ ρA′,l∞ , then A ∼K A′ (see

below for notation). Zarhin generalized the isogeny theorem to the case where K is

finitely generated over Fp and p 6= 2. The case p = 2 was treated by Mori. Finally, one

of the outcomes of Faltings’ solution of Mordell’s conjecture in 1983 was the isogeny

theorem for fields which are finitely generated over Q. As a result, we know now that

the isogeny theorem holds over each finitely generated field K.

One may view ρA,l∞ as the limit of the representations ρA,li : Gal(K) → Aut(Ali).

It is therefore appropriate to rename the isogeny theorem as the vertical isogeny

theorem. A result of Zarhin implies a horizontal isogeny theorem for abelian

varieties: If the representations ρA,l and ρA′,l of Gal(K) are equivalent for infinitely

many prime numbers l, then A ∼K A′.

Our main interest in this work is elliptic curves over a finitely generated field K.

If E and E′ are elliptic curves over K and ρE,l ∼ ρE′,l for some l, then Ker(ρE,l) =

Ker(ρE′,l). Hence, K(El) = K(E′
l). Of course, the latter condition does not imply the

former one, because Gal(K(El)/K) may have outer automorphisms.

One may relax the latter condition to [K(El, E
′
l) : K(El) ∩K(E′

l)] ≤ c for all l in

a large set Λ of prime numbers and for some constant c ≥ 1 which is independent of l

and look for an isogeny between E and E′.

Of course, one can not hope for an isogeny over K. For example, let E and E′ be

elliptic curves over K which are not K-isogenous but become K ′-isomorphic for some

finite separable extension K ′ of K. Then K ′(El) = K ′(E′
l) and hence [K(El, E

′
l) :

K(El) ∩K(E′
l)] ≤ [K ′ : K] for all l.

So, it makes more sense to ask about an isogeny after some field extension. It

follows from results of Serre [Ser, Lemma 9 and Théorème 7] that if K is a number field,

then the existence of c and an infinite set Λ as above implies E ∼K̃ E′. Here K̃ denotes

the algebraic closure of K. We generalize Serre’s results:

Theorem A (The strong isogeny theorem for elliptic curves): Let E and E′ be elliptic
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curves over a finitely generated field K. Suppose there exist c ≥ 1 and a set Λ of prime

numbers such that [K(El, E
′
l) : K(El) ∩K(E′

l)] ≤ c for each l ∈ Λ. Then E′ ∼K̃ E in

each of the following three cases:

(a) Λ is infinite and E has no CM;

(b) Λ is infinite, E has CM, and char(K) = 0;

(c) Λ has Dirichlet density > 3
4 , E has CM, and char(K) > 0.

The basic idea in the case where E has no CM is as in Serre’s proof. Let Nl =

K(El, E
′
l) and Ml = K(El) ∩K(E′

l). First we realize that if [Nl : Ml] ≤ c for infinitely

many l, then also E′ has no complex multiplication. Then we use that Gal(Nl/K(ζl)) ∼=

SL(2, Fl) if l is large to find a quadratic character εl: Gal(K) → ±1 with ρE′,l ∼ εl⊗ρE,l.

In the case that K is a number field, Serre proves that the εl are unramified

outside a finite set of prime divisors of K. Hence, Λ has an infinite subset Λ0 such that

εl = ε is independent of l for all l ∈ Λ0. Let K ′ be the fixed field of Ker(ε). Then the

restrictions of ρE′,l and ρE,l to Gal(K ′) are equivalent. It follows from the horizontal

isogeny theorem that E ∼K′ E.

We reduce the case where K is a function field of one variable over a number field

to the case of number fields by good reduction. In the case where K is a function field

of one variable over a finite field, two additional ingredients appear: Tate curves and

Hilbert class fields.

The proof of Theorem A for a finite field K is completely different. Under the

assumption of (c), we first find a finite extension K ′ of K and a subset Λ′ of Λ of

Dirichlet density larger than 3
4 with K ′(El) = K ′(E′

l) for all l ∈ Λ′. If E and E′ are

not K̃-isogenous, then Q has distinct imaginary quadratic extensions L and L′ with

L ⊆ EndK̃(E) ⊗ Q and L′ ⊆ EndK̃(E′) ⊗ Q. Then we find an infinite subset Λ′′ of

Λ′ such that each l in Λ′′ is prime in L′ but decomposes in L. With the aid of these

l we construct infinitely many non isomorphic elliptic curves over K ′ all of which are

K ′-isogenous to E′. This contradiction proves that E ∼K̃ E′.

The condition “Λ has Dirichlet density > 3
4” in Theorem A(c) can not be relaxed

to “Λ is infinite”. This follows from an improved version of a result of Heath-Brown

concerning primitive roots modulo p. This result was communicated to the authors by
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R. Murty. We do not know whether Theorem A(c) holds under the condition “Λ has

positive Dirichlet density”.

Convention and Notation

For a field K we let Ks be its separable closure, K̃ its algebraic closure, and Gal(K) =

Gal(Ks/K) its absolute Galois group. If char(K) - n, then ζn denotes a primitive root

of unity of order n. We say that K is finitely generated if K is finitely generated over

its prime field.

Let A, A′ be abelian varieties over K and L a field extension of K. We write

A ∼L A′ if the varieties A×K L and A′ ×K L (which are defined over L) are isogenous.

In this case we also say that A and A′ are L-isogenous. Suppose now that K0 is a

subfield of K. We say that A is defined over K0 if there exists an abelian variety A0

over K0 with A ∼= A0 ×K0 K.

Let Al, Tl(A), and Vl be the subgroup of l-torsion points of A, its l-Tate-module,

and Tl(A)⊗Zl
Ql, respectively. Here and through the whole work we use l for a prime

number. Denote the torsion subgroup of A by Ator.

Further, we use ρA,l and ρA,l∞ to denote the l-ic (also known as “mod l”) and

l-adic representations of Gal(K) defined by the action of Gal(K) on Al(K̃) and Tl(A),

respectively. We will tacitly assume that bases for Al(K̃) and Tl(A) have been chosen

and consider ρA,l and ρA,l∞ as homomorphisms of Gal(K) into GL(n, Fl) and GL(n, Zl),

respectively, for an appropriate n.

For l-ic representations ρ: Gal(K) → GL(n, Fl) and ρ′: Gal(K) → GL(n′, Fl)

we write ρ ∼ ρ′ if ρ and ρ′ are equivalent. That is, n = n′ and there exists g ∈

GL(n, Fl) with g−1ρ(σ)g = ρ′(σ) for all σ ∈ Gal(K). Similarly we write ρ ∼ ρ′ for

l-adic representations ρ: Gal(K) → GL(n, Ql) and ρ′: Gal(K) → GL(n′, Ql) if n = n′

and there is g ∈ GL(n, Ql) with g−1ρ(σ)g = ρ′(σ) for all σ ∈ Gal(K).

Let E be an elliptic curve over a field K. We write EndK̃(E) for End(E ×K K̃).

We say that E has CM if EndK̃(E) properly contains Z.

Acknowledgement: We are indebted to Wulf-Dieter Geyer for help in case when

K is finite and to Aharon Razon for a critical reading of the manuscript.

3



1. Isogeny theorems for abelian varieties

We start with an observation about the effect of an isogeny between two abelian varieties

over a field K on the l-adic and l-ic representations of Gal(K) associated with these

varieties.

Lemma 1.1: Let λ: A → A′ be an isogeny of abelian varieties over a field K. Then the

following holds:

(a) ρA,l∞ ∼ ρA′,l∞ for each l 6= char(K).

(b) trace(ρA,l(σ)) = trace(ρA′,l(σ)) for each l 6= char(K) and every σ ∈ Gal(K).

(c) ρA,l ∼ ρA′,l for each l 6= char(K) which does not divide |Ker(λ)|.

Proof of (a): Suppose l 6= char(K). By definition, λ(A(K̃)) = A′(K̃) and Ker(λ) is

finite. So, dim(A) and dim(A′) are the same number d.

By [Mum, p. 64], Tl(A) (resp. Tl(A′)) is a free Zl-module of rank 2d. As Ker(λ) is

finite, λ induces an embedding of Zl-modules, Tl(λ): Tl(A) → Tl(A′). So, Coker(Tl(λ))

is finite. Tensoring with Ql gives an isomorphism Vl(λ): Vl(A) → Vl(A′) of finite

dimensional Ql-vector spaces. Since the isomorphism commutes with the action of

Gal(K), we have ρA,l∞ ∼ ρA′,l∞ .

Proof of (b): By (a), trace(ρA,l∞(σ)) = trace(ρA′,l∞(σ)). Reduction modulo l gives

trace(ρA,l(σ)) = trace(ρA′,l(σ)).

Proof of (c): For each l 6= char(K), restriction to Al gives a homomorphism

λl: Al(K̃) → A′l(K̃) of Fl-vectors spaces of dimension 2d which commutes with the

action of Gal(K). If in addition l - |Ker(λ)|, then λl is injective and therefore bijective.

Conclude that ρA,l ∼ ρA′,l.

The isogeny theorems go in the other direction. Under suitable assumptions on

the representations attached to A and A′, they assert that A and A′ are isogenous. The

basic results of this sort are due to Tate, Zarhin, Faltings, and Mori.

Proposition 1.2: Let K be a finitely generated field, A and A′ abelian varieties over

K, and l 6= char(K). Then:

(a) Semi-simplicity: Vl(A) is a semi-simple Gal(K)-module.
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(b) Tate’s conjecture: The natural map HomK(A,A′)⊗Zl → HomGal(K)(Tl(A), Tl(A′))

is an isomorphism.

(c) Vertical isogeny theorem for abelian varieties: If the l-adic representations ρA,l∞

and ρA′,l∞ of Gal(K) are equivalent, then A ∼K A′.

Proof: The case where K is a finite field is due to Tate [Tat, essentially Thm. 1]. This

has been generalized to arbitrary finitely generated extensions of Fp by Zarhin for p 6= 2

and by Mori-Zarhin [MoB, p. 244–245, Thm. 2.5] for p = 2.

In the case where K is a finitely generated extension of Q, the proposition is due

to Faltings [FaW, p. 204, Thm. 1(b) and p. 118 “Proof of 1.3, (ii) =⇒ (i)”].

Here is an l-ic analog to Proposition 1.2(a),(b):

Proposition 1.3 (Zarhin): Let A and A′ be abelian varieties over a finitely generated

field K. Then for almost all l the Gal(K)-module Al is semisimple and the canonical

homomorphism

ϕl: HomK(A,A′)⊗ Fl → HomGal(K)(Al, A
′
l)

is an isomorphism. Here ϕl maps each K-homomorphism η: A → A′ onto its restriction

to Al.

Proof: Zarhin proves the theorem in [Zar1, Thm. 1.1] when char(K) 6= 0, 2 and in

[Zar2, Cor. 5.4.5] when char(K) = 0. Using a latter result of Mori [MoB, p. 244,

Cor. 2.4], the above proofs work also in characteristic 2.

Proposition 1.4 (Horizontal isogeny theorem for abelian varieties): Let A and A′ be

abelian varieties over a finitely generated field K. Suppose ρA,l ∼ ρA′,l for infinitely

many l. Then A and A′ are K-isogenous.

Proof: It is possible to reduce the horizontal isogeny theorem to the vertical isogeny

theorem. However, following an oral communication with Zarhin, we prefer to show

how the horizontal isogeny theorem follows from Proposition 1.3.

Let l be a prime number 6= char(K) such that ρA,l ∼ ρA′,l and the homomorphism

ϕl of Proposition 1.3 is an isomorphism. In particular there exists a Gal(K)-isomorphism

h: Al → A′l. Lift h over ϕl to a K-homomorphism η: A → A′ and let H be the

5



K̃-connected component of the identity of Ker(η). Then Hl ≤ Ker(h) and therefore

dim(H) = 1
2 dimFl

(Hl(K̃)) = 0. Thus, Ker(η) is finite.

In addition, dim(A) = 1
2 dimFl

(Al(K̃)) = 1
2 dimFl

(A′l(K̃)) = dim(A′). Conclude

that η is an isogeny.
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2. Pairs of elliptic curves without CM

The group GL(2, Fl) appears often as the image of Gal(K) under ρE,l where E is an

elliptic curve over K without CM. A few facts about this group turn out to be useful

in the investigation of isogenies of E.

Fact 2.1: Let l ≥ 3 be a prime number.

(a) SL(2, Fl) is generated by all elementary matrices with determinant 1 (also called

transvections) [Hup, p. 179, Hilfsatz 6.6]. These matrices have the form
(

1
0

β
1

)
or(

1
γ

0
1

)
. So, SL(2, Fl) is actually generated by the matrices

(
1
0

1
1

)
and

(
1
1

0
1

)
. The

order of these matrices is l.

(b) The centralizer of SL(2, Fl) in GL(2, Fl) consists of all scalar matrices. So, it can be

identified with F×l . The center of SL(2, Fl) is the group ±1 =
{(

1
0

0
1

)
,
(−1

0
0
−1

)}
.

Moreover, SL(2, Fl) ·F×l is the unique subgroup of index 2 of GL(2, Fl) that contains

SL(2, Fl).

(c) If l ≥ 5, then PSL(2, Fl) = SL(2, Fl)/±1 is a nonabelian simple group [Hup, p. 182,

Satz 6.13].

(d) |GL(2, Fl)| = (l2 − 1)(l2 − l) and |SL(2, Fl)| = l(l2 − 1) [Hup, p. 178, Hilfsatz 6.2].

(e) Every automorphism of PSL(2, Fl) or of PGL(2, Fl) comes from conjugation with

an element of GL(2, Fl). This is a result of Hua. See [Die, §§IV1, IV3, IV6].

Lemma 2.2: For a prime number l ≥ 5 the only proper nontrivial normal subgroup of

SL(2, Fl) is ±1.

Proof: Denote SL(2, Fl) by S. Suppose N / S and N 6= 1,±1, S. By Fact 2.1(c),

±1 ·N = S. Hence (S : N) ≤ 2. Thus, each a ∈ S satisfies a2 ∈ N . If ord(a) = l, this

implies a ∈ N . In particular,
(

1
0

1
1

)
and

(
1
1

0
1

)
are in N . Since these matrices generate

S (Fact 2.1(a)), we conclude that N = S.

Proposition 2.3: Let E be an elliptic curve over a finitely generated field K. Suppose

E has no CM. Then, for almost all l

(1a) ρE,l(Gal(K)) ≥ SL(2, Fl),

(1b) Gal(K(El)/K(ζl)) ∼= SL(2, Fl), and
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(1c) if char(K) = 0, then ρE,l(Gal(K)) = GL(2, Fl).

Proof: For each l, the properties of the lth Weil pairing [Sil1, p. 96, Prop. 8.1] im-

ply that ζl ∈ K(El). Moreover, ζσ
l = ζ

det(ρA,l(σ))
l for each σ ∈ Gal(K). Hence,

ρE,l(Gal(K(ζl))) = SL(2, Fl) ∩ ρE,l(Gal(K)). So, (1b) follows from (1a). Statement

(1c) follows from (1b) because [K(ζl) : K] = l− 1 for almost all l. We reduce the proof

of (1a) to three cases which appear in the literature.

Reduction step A: If K ′ is a finite extension of K and (1a) holds for K ′, then it also

holds for K. This follows from the inclusion ρE,l(Gal(K ′)) ≤ ρE,l(Gal(K)).

Reduction step B: If L is a finite separable extension of K and (1a) holds for K,

then it also holds for L. Indeed, by Reduction step A, we may replace L by the Galois

closure of L/K, if necessary, to assume that L/K is Galois.

Next observe that for l 6= char(K) the field K(El) ∩ L(ζl) is a Galois extension

of K(ζl) of degree at most [L : K]. So, almost all l satisfy l ≥ 5, Gal(K(El)/K(ζl)) ∼=

SL(2, Fl), [K(El) : K(El) ∩ L(ζl)] > 2, and |SL(2, Fl)| > [L : K]. Since the only

nontrivial normal subgroups of SL(2, Fl) are itself and ±1 (Lemma 2.2), we must have

K(El) ∩ L(ζl) = K(ζl). Hence, Gal(L(El)/L(ζl)) ∼= SL(2, Fl).

Reduction step C: If L is a purely inseparable extension of K or L = K(t) with

t transcendental over K and if (1a) holds for K, then it also holds for L. Indeed, in

both cases, if l 6= char(K), then K(El) is a Galois extension of K and therefore linearly

disjoint from L over K.

Conclusion of the proof: Let K0 be the prime field of K. By [Sil1, p. 50,

Prop. 1.4], there exists an elliptic curve E′ with j(E′) = j(E) = j which is defined

over K0(j) and becomes isomorphic to E over a finite extension of K. Hence, if (1a)

holds for E′ over K0(j), then, by the reduction steps, it is true also for E over K.

We may therefore assume that K = K0(j). Since E has no CM, K0(j) is an

infinite field [Sil1, p. 137, Thm. 3.1(b)]. There are therefore three cases.

Either K is a number field. Then (1a) follows from [Ser, p. 260].

Or, j is transcendental over Q. Then, by a classical result of Weber [Lan2, p. 68],

ρE,n(Gal(K)) = GL(2, Z/nZ) for each positive integer n. So, (1a) holds.
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Or, j is transcendental over Fp. By a theorem of Igusa [Igu, pp. 469-470], for each

l 6= p we have ρE,l(Gal(K)) = {A ∈ GL(2, Fl) | det(A) ∈ 〈p〉}, where 〈p〉 denotes the

subgroup of F×l generated by p. In particular, SL(2, Fl) ≤ ρE,l(Gal(K)) and therefore

(1a) holds.

Remark 2.4: Pairs of elliptic curves. Consider elliptic curves E and E′ over a field

K with Gal(K(El)/K(ζl)) ∼= Gal(K(E′
l)/K(ζl)) ∼= SL(2, Fl) for all large l. Let Nl =

K(El, E
′
l) and Ml = K(El) ∩K(E′

l). Then Gal(K(El)/Ml) is isomorphic to a normal

subgroup of SL(2, Fl). Hence by Lemma 2.2, Ml = K(ζl), [K(El) : Ml] = 2, or Ml =

K(El). In the first case [K(El) : Ml] = |SL(2, Fl)| = [K(E′
l) : Ml]. In the second case,

[K(El) : Ml] = 2 = [K(E′
l) : Ml]. In the third case K(El) = K(E′

l). It follows that if

[Nl : K(El)] ≤ c for some constant c and for all l in an infinite set Λ, then for all large

l ∈ Λ either K(El) = K(E′
l) or [Nl : K(El)] = [Nl : K(E′

l)] = 2 and [Nl : Ml] = 4. We

prove in this case that E and E′ are isogenous over K̃.

Lemma 2.5: Let E and E′ be elliptic curves over a field K. Consider a prime number

l ≥ 5 with l 6= char(K),

(a) Gal(K(El)/K(ζl)) ∼= Gal(K(E′
l)/K(ζl)) ∼= SL(2, Fl), and

(b) [K(El, E
′
l) : K(El)] ≤ 2.

Then there exists a quadratic character εl: Gal(K) → ±1 such that ρE′,l ∼ εl ⊗

ρE,l.

Proof: The representation ρE,l (resp. ρE′,l) induces an isomorphism of Gal(K(El)/K)

(resp. Gal(K(E′
l)/K)) onto a subgroup H (resp., H ′) of GL(2, Fl) containing SL(2, Fl).

By (a), |H| = |H ′|. Since GL(2, Fl)/SL(2, Fl) ∼= F×l is a cyclic group, H = H ′.

Let πl: GL(2, Fl) → PGL(2, Fl) be the canonical map whose kernel is the group of

all scalar matrices, which we identify with F×l . Let ρ̄E,l = πl ◦ρE,l and ρ̄E′,l = πl ◦ρE′,l,

and H̄ = πl(H). Denote the fixed field of Ker(ρ̄E,l) (resp. Ker(ρ̄E′,l)) in Ks by Ll

(resp. L′l). Thus, Ll (resp. L′l) is the fixed field in K(El) (resp. K(E′
l)) of the center of

Gal(K(El)/K) (resp., Gal(K(E′
l)/K)). We claim Ll = L′l.

This is clear if K(El) = K(E′
l). Suppose K(El) 6= K(E′

l) and let Ml = K(El) ∩

K(E′
l). Then [K(El) : Ml] = [K(E′

l) : Ml] = 2 and both ρE,l and ρE′,l map Gal(Ml)
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onto the unique subgroup ±1 of SL(2, Fl) of order 2. Then Ll ∩ K(ζl) is the unique

quadratic subfield K ′ of K(ζl)/K and Ll ·K(ζl) = Ml (Fact 2.1(b)). As Gal(Ml/K(ζl))

is isomorphic to the simple nonabelian group PSL(2, Fl) (Fact 2.1(c)), Ll is uniquely

determined by those conditions. As L′l satisfies the same conditions, it coincides with

Ll. Thus, in all cases, Ker(ρ̄E,l) = Ker(ρ̄E′,l). It follows that ρ̄E′,l = ᾱl ◦ ρ̄E,l for some

ᾱl ∈ Aut(H̄).

Since (PGL(2, Fl) : PSL(2, Fl)) = 2, we have H̄ = PSL(2, Fl) or H̄ = PGL(2, Fl).

By Fact 2.1(e) there exists g ∈ GL(2, Fl) such that πl(ρE′,l(σ)) = πl(ρE,l(σ)g) for all

σ ∈ Gal(K). Hence, there exists a function εl: Gal(K) → F×l such that ρE′,l(σ) =

εl(σ)ρE,l(σ)g for all σ ∈ Gal(K). So, εl is a homomorphism. Also, det(ρE′,l(σ)) =

εl(σ)2 det(ρE,l(σ)). By the properties of the Weil pairing

ζ
det(ρE,l(σ))
l = ζσ

l = ζ
det(ρE′,l(σ))

l = ζ
εl(σ)2 det(ρE,l(σ))
l .

Conclude that εl(σ)2 = 1 for each σ ∈ Gal(K).

Lemma 2.6: Let K be a function field of one variable over a perfect field K0 of charac-

teristic 6= 2. Consider elliptic curves E and E′ over K. Let Λ be an infinite set of prime

numbers. For each l ∈ Λ let dl be an element of K such that K(
√

dl) ⊆ K(El, E
′
l).

Then K has a quadratic extension K ′, Λ has an infinite subset Λ0, and for each l ∈ Λ0

there exists bl ∈ K0 such that K ′(
√

bl) = K ′(
√

dl).

Proof: For each prime divisor p of K/K0 denote the corresponding normalized valua-

tion by vp. Denote the set of all prime divisors p of K/K0 such that E or E′ have bad

reduction at p by Π′. Let Π be the complement set. If p ∈ Π and l 6= char(K), then

vp(l) = 0. Hence, by Néron-Ogg-Shafarevich, p is unramified in K(El, E
′
l) [Sil1, p. 184,

Thm. 7.1] and therefore also in K(
√

dl). So, 2|vp(dl).

It follows that div(dl) = al + 2bl, where the divisor al of K/K0 is a linear com-

bination of elements of Π′ with coefficients in the set {0, 1}. As Π′ is finite, there are

only finitely many possibilities for al. Thus, Λ has an infinite subset Λ1 and K/K0

has a divisor a such that div(dl) = a + 2bl for each l ∈ Λ1. Choose l1 ∈ Λ1 to get

div(d−1
l1

dl) = 2(bl − bl1) for all l ∈ Λ1.
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The divisors bl − bl1 correspond modulo principal divisors of K/K0 to points of

J2(K̃0), where J is the Jacobian of K/K0. As J2(K̃0) is a finite group, K/K0 has a

divisor b and Λ1 has an infinite subset Λ2 such that for each l ∈ Λ2 there exists cl ∈ K×

with bl − bl1 = b + div(cl).

It follows that for each l ∈ Λ2 we have div(d−1
l1

dl) = 2b + div(c2
l ). Choose l2 ∈ Λ2

to get div(dld
−1
l2

) = div(c2
l c
−2
l2

). Hence, there exists bl ∈ K0 with dl = blc
2
l c
−2
l2

dl2 . The

field K ′ = K(
√

dl2) and Λ0 = Λ2 satisfy the requirements of the lemma

Lemma 2.7: Let K be a finitely generated field. Let E and E′ be elliptic curves over

K. Suppose that there exists an infinite set Λ of prime numbers and a constant c such

that

(2) [K(El, E
′
l) : K(El)] ≤ c

for each l ∈ Λ. Then jE and jE′ are algebraically dependent over the prime field of K.

Proof: Denote the prime field of K by K0. Let j = jE and j′ = jE′ . K has a finite

separable extension L such that E (resp. E′) is isomorphic over L to an elliptic curve

E1 (resp. E′
1) such that E1 (resp. E′

1) is already defined over K0(j) (resp. K0(j′)). Con-

dition (2) for K, E,E′ implies the same condition for L,E1, E
′
1. Hence, we may replace

K, E, E′ by L,E1, E
′
1, if necessary, to assume that E (resp. E′) is already defined over

K0(j) (resp. K0(j′)). Let K1 be the algebraic closure of K0(j, j′) in K. In particular,

K1(El, E
′
l) ∩ K = K1 and therefore [K1(El, E

′
l) : K1(El)] = [K(El, E

′
l) : K(El)] ≤ c

for each l ∈ Λ. We may therefore replace K by K1, if necessary, to assume that K

is a finite extension of K0(j, j′). Enlarging c, if necessary, we may even assume that

K = K0(j, j′).

Assume that j and j′ are algebraically independent over K0. In particular, each

of them is transcendental over K0 and therefore has no CM. Suppose without loss that

char(K) /∈ Λ. Then, for each l ∈ Λ, K0(j, El) (resp. K0(j′, E′
l)) is a regular extension

of K0(ζl) [Igu, p. 468, Thm. 1]. Hence, K0(j, El) and K0(j′, E′
l) are linearly disjoint
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over K0(ζl) [FrJ, Lemma 9.9].

K0(j, El) K(El) K(El, E
′
l)

K0(ζl, j) K(ζl) K(E′
l)

K0(ζl) K0(ζl, j
′) K0(j′, E′

l)

Hence, by Proposition 2.3,

Gal(K(El, E
′
l)/K(El)) ∼= Gal(K0(j′, E′

l)/K0(ζl, j
′)) ∼= SL(2, Fl)

for all large l. Conclude from Fact 2.1(d) that [K(El, E
′
l) : K(El)] = l(l2 − 1). This

contradicts (2) and proves our claim.

Proposition 2.8: Let K be a finitely generated field, E and E′ elliptic curves over K

without CM, and c > 0. Suppose [K(El, E
′
l) : K(El)] ≤ c for infinitely many l. Then

E is K̃-isogenous to E′.

Proof: By Remark 2.4, [K(El, E
′
l) : K(El)] ≤ 2 for infinitely many l. For each l let

Nl = K(El, E
′
l). By assumption and by Proposition 2.3 there exists an infinite set Λ of

prime numbers such that for each l ∈ Λ the following conditions hold:

(3a) l ≥ 5 and l 6= char(K).

(3b) Gal(K(El)/K(ζl)) ∼= Gal(K(E′
l)/K(ζl)) ∼= SL(2, Fl).

(3c) [Nl : K(El)] ≤ 2.

For each l ∈ Λ, Lemma 2.5 gives a quadratic character εl: Gal(K) → ±1 with

(4) ρE′,l ∼ εl ⊗ ρE,l.

In particular, εl(σ) = 1 for each σ ∈ Gal(Nl). Denote the fixed field in Ks of Ker(εl)

by Kl. Then Kl is an extension of K of degree at most 2 which is contained in Nl.

Moreover, ρE,l|Gal(Kl) ∼ ρE′,l|Gal(Kl). Suppose we prove there are only finitely many

possibilities for Kl. Then there will be a quadratic extension K ′ of K and an infinite
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subset Λ0 of Λ such that Kl = K ′ for each l ∈ Λ0. By the horizontal isogeny theorem

(Proposition 1.4), E will be K ′-isogenous to E′.

Let therefore K0 be the prime field of K. By Lemma 2.7, jE and jE′ are alge-

braically dependent over K0. Moreover, the first paragraph of the proof of Lemma 2.7

allows us to assume that K is a finite extension of K0(jE , jE′). There are therefore

three cases to consider.

Case A: K is a number field. At the end of [Ser, Proof of Lemma 8] Serre proves

that if v is a valuation of K which is unramified over Q and both E and E′ have

good reduction at v, then v is unramified in Kl. Hence, there are only finitely many

possibilities for Kl [Sil1, p. 194, Prop. 1.6].

Case B: jE and jE′ are transcendental over Q. Then K is a function field of one

variable over a number field F . By Lemma 2.6, K has a quadratic extension K ′, Λ has

an infinite subset Λ0 and for each l ∈ Λ0 there exists dl ∈ F with K ′Kl = K ′(
√

dl).

Replace K by K ′ and F by its algebraic closure in K ′, if necessary, to assume that

Kl = K(
√

dl). Choose a prime divisor p of K/F at which both E and E′ have good

reduction and none of the reduced curves Ēp and Ē′
p has CM. (E.g., choose p such that

the reductions of jE and jE′ modulo p are not algebraic integers.) Omit finitely many

elements of Λ to assume that Conditions (3a) and (3b) hold also for Ēp and Ē′
p over F .

Then so does (3c). By Néron-Ogg-Shafarevich we may reduce (4) to

(5) ρĒ′
p,l ∼ ε̄l ⊗ ρĒp,l,

where ε̄l is a quadratic character of Gal(K̄) with K̄ being the residue field of K at p.

Extending p to a prime divisor of K̃ with the same name, we find that the residue field

of Kl is K̄(
√

dl). Moreover, by (5), the latter field is the fixed field in K̄s of ε̄l. As

in Case A, there are only finitely many possibilities for K̄(
√

dl). Hence, there are only

finitely many possibilities for KK̄(
√

dl). So, there are only finitely many possibilities

for Kl.

Case C: jE and jE′ are transcendental over Fp with p = char(K). Then K is a

function field of one variable over Fpm for some m ∈ N. Replace K by a finite extension,

if necessary, to assume that each prime divisor p of K satisfies the following condition:
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(6a) If E has bad reduction at p, then the reduction is not potentially good.

(6b) If E′ has bad reduction at p, then the reduction is not potentially good.

Let l ∈ Λ. By (3a), l 6= char(K) and l 6= 2. Consider a prime divisor p of K. Let

K̂p be the completion of K at p. Denote the index of ramification of p in K(El) by e.

If e > 1, then by Néron-Ogg-Shafarevich and since l 6= char(K), E has bad reduction

at p. By (6a), the reduction is not potentially good. Hence, jE is not p-integral [Sil1,

p. 181, Prop. 5.5]. Let q be the period that corresponds to jE [Lan2, p. 201]. Let E(p) be

the Tate-curve over K̂p with period q and absolute invariant jE . Then E is isomorphic

to E(p) over a quadratic extension of K̂p. Use Krasner’s lemma to replace K by a

finite extension, if necessary, such that E is already isomorphic to E(p) over K̂p. (As E

has bad reduction at only finitely many prime divisors of K, we may make the above

finite extension independent of p.) By [Lan2, p. 203, Thm. 3], K̂p(El) = K̂p(ζl, q
1/l).

But K̂p(ζl)/K is an unramified extension. Hence, e = l. So, in each case e divides l.

Similarly, the index of ramification of p in K(E′
l) divides l.

Let Ml = K(El)∩K(E′
l). By (3) and Remark 2.4, [K(El) : Ml] ≤ 2 and [K(E′

l) :

Ml] ≤ 2. Hence, each extension P of p to Ml is unramified both in K(El) and in K(E′
l).

So, P is unramified in Nl. It follows that the ramification index of p in Nl divides l. In

particular, p is unramified in Kl.

We have therefore proved that Kl is an unramified quadratic extension of K. As

such, it is contained in the Hilbert class field of K. The latter is a finite extension of K

[CaF, p. 356]. Hence, Kl has only finitely many possibilities.

Using remark 2.4 we may reformulate Proposition 2.8 in a way that generalizes

[Ser, Lemme 9].

Corollary 2.9: Let K be a finitely generated field. Let E and E′ be elliptic curves

over K without CM. If E is not K̃-isogenous to E′, then K(El)∩K(E′
l) = K(ζl) for all

but finitely many l.
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3. Elliptic curves with CM in characteristic 0

Let E and E′ be elliptic curves over a number field K. Suppose one of the curves has

CM. Suppose further there is c > 0 with [K(El, E
′
l) : K(El)] ≤ c for infinitely many l.

It is possible to prove then that K(Etor)∩K(E′
tor) is an infinite extension of Kcycl (the

field obtained from K by adjoining all roots of unity). By [Ser, Thm. 7], E ∼K̃ E′.

There are few ways to prove the latter result directly. We present one of them

here.

Lemma 3.1: Let F be a number field, L an abelian extension of Q which contains F ,

and l a prime number. Suppose l is unramified in F and tamely ramified in L. Suppose

further L/F is unramified outside the primes which lie over l. Then there is c > 0 which

depends on F but not on l such that [L : Q] ≤ cl.

Proof: By Kronecker-Weber, L ⊆ Q(ζm) for some positive integer m. Let I be the

inertia group of l in Gal(L/Q). Denote the fixed field of I in L by L0. Then [L : L0] is

relatively prime to l and divides the ramification index of l in Q(ζm). The latter divides

(l − 1)lr for some positive integer r. Hence, [L : L0]|(l − 1). Also, L0/F is an abelian

unramified extension. So, [L0 : F ] is at most the class number hF of F . Conclude:

[L : Q] ≤ [F : Q]hF (l − 1).

For each prime number l let al and bl be real numbers. We use the notation

“al � bl” to indicate the existence of c > 0 such that al ≤ cbl for all l.

Lemma 3.2: Let F1, F2 be distinct quadratic extensions of Q. For i = 1, 2 and each

prime number l denote the maximal abelian extension of Fi which is unramified outside

l and tamely ramified over l by Fi,l. Then [F1,l ∩ F2,l : Q] � l.

Proof: Write Fi = Q(
√

di) with di a square free integer. Let Hi be the Hilbert class

field of Fi, that is, the maximal unramified extension of Fi, i = 1, 2. Put F = F1F2,

Ll = F1,lF2 ∩F1F2,l, and H = H1 ∩H2. Then Hi, H, Fi,l, and Ll are Galois extensions

of Q.

Claim A: F1 6⊆ H2 or F2 6⊆ H1. Otherwise F ⊆ H. Hence F is unramified over both

F1 and F2. Denote the third quadratic extension of Q which is contained in F by F0.
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For each prime divisor p of F which ramifies over Q put Fp for the inertia field of p over

Q. Then p is totally ramified over Fp. Hence, Fp = F0. So, p|F0 is unramified over Q.

It follows, F0/Q is an unramified quadratic extension. This contradiction proves our

claim.

Assume for example F2 6⊆ H1.

Claim B: There is at most one l with F2 ⊆ F1,l. Indeed, let l, l′ be distinct prime

numbers. Then F1,l∩F1,l′ is an unramified abelian extension of F1. So, F1,l∩F2,l ⊆ H1.

Conclude from F2 6⊆ H1 that either F2 6⊆ F1,l or F2 6⊆ F1,l′ .

Claim C: [Ll : Q] � l. Indeed let l be a prime number with F2 6⊆ F1,l. Put L1,l =

F1,l ∩ Ll and consider the following diagram of fields

F1,l F1,lF2

L1,l Ll F1F2,l

F1 F

Q F2 F2,l

In particular, L1,l is a Galois extension of Q. By assumption, F1,l ∩ F2 = Q. Hence,

L1,l ∩ F2 = Q. Also, [Ll : L1,l] = [F1,lF2 : F1,l] = [F2 : Q] = 2. Hence, L1,lF2 = Ll. It

follows, Gal(L1,l/Q) ∼= Gal(Ll/F2). In addition, F1F2,l = FF2,l is an abelian extension

of F2. Hence, Ll/F2 is abelian. Therefore, L1,l/Q is abelian.

By assumption, L1,l/F1 is unramified outside l and tamely ramified over l. So,

Lemma 3.1 gives c > 0, independent of l, with [L1,l : Q] ≤ cl. Then, [F1,l ∩ F2,l : Q] ≤

[Ll : Q] ≤ cl, as desired.

Lemma 3.3: Let E be an elliptic curve with CM over a field K of characteristic 0. Let

F be the CM-field of E.

(a) If l - 2 · discriminant(End(E)), then l - [K(El) : K]. If in addition F ⊆ K, then

Gal(K(El)/K) is abelian.

(b) l2 � [K(El) : K] � l2 as l →∞.
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Proof: End(E) is isomorphic to an order S of F . Let K ′ = KF . Consider l as in (a).

Then |(S/lS)×| is (l−1)2 or l2−1 [GeJ, §4.1]. Moreover, Gal(K ′(El)/K ′) is isomorphic

to a subgroup of (S/lS)× of index at most 6 [GeJ, §4.2 and Prop. 4.2]. As [K ′ : K] ≤ 2,

this proves both (a) and (b).

When an elliptic curve E is defined over a field K of characteristic 0 by a Weier-

strass equation we denote the Weber function on finite points (x, y) of E(K̃) by h. It

is a constant times x (or x2 or x3) [GeJ, p. 277].

Lemma 3.4: For i = 1, 2 let Ei be an elliptic curve over a field of characteristic 0.

Suppose that Ei has CM. Denote the CM-field of Ei by Fi. Suppose that Ei is defined

over F (jEi) and that End(Ei) is the ring of integers of Fi. Let Fi,l = Fi(jEi , h(Ei,l)).

Suppose that F1 6= F2. Then [F1,lF2,l : F1,l] � l

Proof: By definition, Fi = Q(
√
−di), where di is a square free positive integer. Denote

the set of all prime numbers l that do not divide 2d1d2 by Λ. Let from now on l range

over the elements of Λ. Then the following statements are true for i = 1, 2:

(1a) Fi,l is the maximal abelian extension of Fi unramified outside l.

(1b) Fi,l is a Galois extension of Q.

(1c) l is tamely ramified in Fi,l.

(1d) l2 � [Fi,l : Fi] � l2.

Indeed, Fi,l is the ray class field of Fi with conductor l [Lan2, p. 126, Thm. 2].

So (1a) holds [Neu, p. 100, Cor. 7.6]. Condition (1b) follows from (1a). Next note that

Fi(jEi
) is the maximal abelian unramified extension of Fi [Lan2, p. 23]. By Lemma

3.3(a), l - [Fi(jEi
, Ei,l) : Fi(jEi

)]. Hence, l is tamely ramified in Fi(jEi
, Ei,l) and

therefore also in Fi,l. This proves (1c). Finally, Observe that [Fi(jEi) : Fi] does not

depend on l while [Fi(jEi , Ei,l) : Fi(jEi , h(Ei,l)] ≤ 6 [GeJ, Prop. 4.2]. So, (1d) is a

consequence of Lemma 3.3(b).

Finally, by (1) and Lemma 3.2, [F1,lF2,l : F1,l] = [F2,l : F1,l∩F2,l] = [F2,l:Q]
[F1,l∩F2,l:Q] �

l, as contended.

Theorem 3.5: Let E1 and E2 be elliptic curves over a finitely generated field K.

Suppose at least one of the elements jE or jE′ does not belong to a finite field. Suppose
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also there exists c with [K(E1,l, E2,l) : K(E1,l)] ≤ c for infinitely many l. Then E1 has

CM if and only if E2 has CM. Moreover, E ∼K̃ E′.

Proof: By Lemma 2.7 none of the elements jE and jE′ belongs to a finite field. There-

fore, if char(K) 6= 0, then neither E nor E′ has CM. So, by Proposition 2.8, E ∼K̃ E′.

Assume therefore char(K) = 0. The case were neither E nor E′ has CM is covered

by Proposition 2.8. So, assume at least one of the curves has CM. Extend K, if necessary,

to assume that K contains the CM-field of that curve. Let Ml = K(El)∩K(E′
l). Then

either K(El)/K or K(E′
l)/K is an abelian extension [GeJ, (4) on p. 277]. In both

cases Ml/K(ζl) is abelian. If the other curve had no CM, we might choose l ≥ 5 with

Gal(Ml/K(ζl)) ∼= PSL(2, Fl) (Proposition 2.3). Conclude that this can not happen. So,

both curves have CM.

Suppose both E1 and E2 have CM. For i = 1, 2 let Fi be the CM-field of Ei.

Replace Ei by an isomorphic curve, if necessary, to assume that Ei is defined over

Q(jEi
) [Sil1, p. 50, Prop. 1.4(c)]. Then there exists c′ such that

(2) [F1F2(jE1 , jE2 , E1,l, E2,l) : F1(jE1 , E1,l)] ≤ c′ for infinitely many l.

Next take an elliptic curve E′
i over Q(jEi

) such that End(E′
i) is isomorphic to the ring

of integers of Fi [Shi, p. 104, Prop. 4.8]. Then E′
i is Q̃-isogenous to Ei [Shi, p. 105,

Prop. 4.9]. In particular, E′
i is isomorphic to Ei over a finite extension of Q. Hence, (2)

remains valid for E′
1, E

′
2 instead of for E1, E2. We may therefore replace Ei by E′

i, if

necessary, to assume that End(Ei) is isomorphic to the ring of integers of Fi, i = 1, 2.

By [GeJ, Prop. 4.2], [Fi(jE1 , Ei,l) : Fi(jEi , h(Ei,l)] ≤ 6. Hence, there exists c′′ such that

[F1F2(jE1 , jE2 , h(E1,l), h(E2,l)) : F1(jE1 , h(E1,l))] ≤ c′′ for infinitely many l.

Hence, by Lemma 3.4, F1 = F2. Conclude from [Shi, p. 105, Prop. 4.9] that E1 ∼K̃ E2.
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4. Elliptic curves over finite fields

Let E and E′ be elliptic curves over a finite field K such that

(1) [K(El, E
′
l) : K(El)∩K(E′

l)] ≤ c for some constant c and for all l in a set Λ of prime

numbers.

Since Gal(K(El, E
′
l)/K) is a cyclic group, Condition (1) gives us less information than

in all other cases. We have therefore to assume much more about Λ than just being

infinite in order to deduce that E ∼K̃ E′. For example, if the Dirichlet density of Λ is

greater than 3
4 , then E ∼K̃ E′.

We start with the introduction of the notion of ‘Dirichlet set’ and ‘ε-density’.

For relatively prime integers a and n let Λa,n be the set of all prime numbers l with

l ≡ a mod n. Let Λ be a set of prime numbers. If Λ has a Dirichlet density, we denote

it by δ(Λ). Dirichlet’s theorem says that δ(Λa,n) = 1
ϕ(n) , where ϕ(n) is Euler’s totient

function [Lan1, p. 167, Example]. We call Λ a Dirichlet set if Λ differs from a finite

union of sets of the form Λa,n by a finite set. Thus, each infinite Dirichlet set has a

positive Dirichlet density. The collection of all Dirichlet sets is a Boolean algebra, i.e.,

it is closed under unions, intersections, and taking complements. Indeed, let n1, . . . , nr

be positive integers and a1, . . . , ar be integers with gcd(ai, ni) = 1, i = 1, . . . , r. Put

n = lcm(n1, . . . , nr). Let Pi be the finite set of all prime numbers p ≡ ai mod ni with

p|n. Then there exist bij relatively prime to n with Λai,ni
= Pi ∪

⋃
j Λbij ,n. Hence, the

intersection of the Λai,ni is again a Dirichlet set.

Let ε be a real number. We say that Λ is ε-dense if Λ ∩ Λ′ is an infinite set for

each Dirichlet set Λ′ with Dirichlet density at least 1−ε. If ε′ < ε and Λ is ε-dense, then

Λ is also ε′-dense. If Λ is ε-dense for each ε < 1, then, by Dirichlet’s theorem, Λ ∩ Λ′

is infinite for each infinite Dirichlet set Λ′. If δ(Λ) > ε, then Λ is ε-dense. However,

there is a set Λ which is ε-dense for each ε < 1 but δ(Λ) = 0. For example, order the

sets Λa,n in a sequence Λ1,Λ2,Λ3, . . . . Then choose pn ∈ Λn with pn > 2pn−1. Let

Λ = {p1, p2, p3, . . .}. Since for each i there exists j > i such that Λi ⊇ Λj , the set Λ has

the desired properties.

Note that if Λ is ε-dense and Λ0 is a Dirichlet set with δ(Λ0) ≤ γ, then Λ r Λ0

is (ε − γ)-dense. Indeed, let Λ′ be a Dirichlet set with δ(Λ′) ≥ 1 − ε + γ. Then

19



δ(Λ′ r Λ0) ≥ 1− ε. Hence, (Λ r Λ0) ∩ Λ′ = Λ ∩ (Λ′ r Λ0) is an infinite set.

Suppose L is a number field with a ring of integers OL and l is a prime number.

We say that l is prime in L if lOL is a prime ideal of OL. Similarly, we say that l

decomposes into k distinct primes in L if lOL decomposes into k distinct prime

ideals in OL.

Lemma 4.1: Let L and L′ be distinct quadratic extensions of Q. Let Λ be a 3
4 -dense

set of prime numbers. Then Λ contains infinitely many l which are prime in L′ but

decompose into two distinct primes in L or Λ contains infinitely many l which are prime

in L but decompose into two distinct primes in L′.

Proof: Denote the discriminant of L (resp. L′) by d (resp. d′). Let ∆1 (resp. ∆−1) be

the set of all l such that l - 2d and
(
d
l

)
= 1 (resp. l - 2d and

(
d
l

)
= −1). If l ∈ ∆1, then l

decomposes into two distinct primes in L; if l ∈ ∆−1, then l is prime in L [BoS, p. 236,

Thm. 1]. Similarly we define ∆′
1 and ∆′

−1 with respect to d′.

The quadratic reciprocity law implies that ∆1∩∆′
−1 is a union of sets of the form

Λa,4dd′ where a ranges over 1
4 of all possible values. So, δ(∆1 ∩∆′

−1) = 1
4 . Since Λ is

3
4 -dense, Λ ∩ (∆1 ∩∆′

−1) is an infinite set.

Recall that either EndK̃(E) ⊗ Q is an imaginary quadratic extension of Q or

EndK̃(E) ⊗ Q is a quaternion algebra over Q. In the former case one says that E is

ordinary (or also singular), in the latter case one says that E is supersingular.

Remark 4.2: Norm of an ideal in EndK̃(E). Consider α ∈ EndK̃(E) r Z and let α̂

be the dual endomorphism. Then N(α) = αα̂ = deg(α) ∈ Z [Sil1, p. 86]. Hence,

T (α) = α + α̂ = 1 + N(α) −N(α − 1) ∈ Z. So, α and α̂ are the roots of the equation

X2 − T (α)X + Nα = 0 with coefficients in Z. Thus, L = Q(α) is a quadratic subfield

of EndK̃(E)⊗Q. It follows that Nα = normL/Qα and Tα = traceL/Q(α). So, fα(X) =

X2 − T (α)X + Nα is the characteristic polynomial of α, viewed as a linear operator of

L over Q.

For each l, α may be viewed as an endomorphism αl of the Ql-vector space Vl(E).

If l 6= char(K), then det(αl) = deg(α) = Nα and trace(αl) = 1+deg(α)−deg(1−α) =
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Tα [Sil1, p. 134, Prop. 2.3]. Hence, the characteristic polynomial of αl coincides with

fα(X).

Let now S = L ∩ EndK̃(E). Then S is an order of L. For each ideal a of S we

define Ker(a) =
⋂

α∈a Ker(α). Since Ker(α) is a finite subgroup of E(K̃) in case α 6= 0,

also Ker(a) is a finite subgroup of E(K̃) if a 6= 0. Next we define Na to be the ideal

of Z generated by all Nα with α ∈ a. In particular, N(αS) = αα̂Z. If, in addition,

char(K) - deg(α), then deg(α) = |Ker(α)| [Sil1, p. 76] and therefore N(αS) = |Ker(α)|Z.

Claim: If a is relatively prime to char(K) and to the conductor of S, then |Ker(a)|Z =

Na = (S : a)Z. To this end recall that the conductor of S is a positive integer c such

that S = Z + cO, where O = OL. Since a + cO = S, we have O = S + aO. By [Lan2,

p. 92, Thm. 4], aO ∩ S = a. Hence, (S : a) = (O : aO).

The norm of an ideal of O is the ideal of Z defined by the norm of its elements

[Jan, p. 35]. Every x ∈ aO can be written as x =
∑m

i=1 aixi with ai ∈ a and xi ∈ O.

Then cx =
∑m

i=1 ai ·cxi = a ∈ a. Hence, c2Nx = Na ∈ Na. As c is relatively prime to a,

it is also relatively prime to Na. It follows that Nx ∈ Na. Conclude that Na = N(aO).

By [Jan, p. 37, Prop. 8.6], Na = (O : aO)Z = (S : a)Z.

In order to prove that |Ker(a)|Z = Na it suffices to prove for each l the equality

|Ker(a)∩El∞ |Z(l) = Na(l). Here El∞ =
⋃∞

i=1 Eli . The subscript (l) means localization

with respect to the multiplicative set Z r lZ.

First suppose l|c. Then l is relatively prime to a. Hence, Ker(a) ∩ El∞ = 0

and therefore |Ker(a) ∩ El∞ |Z(l) = Z(l) = Na(l). Suppose therefore that l - c. Then

S(l) = O(l). As O(l) is a Dedekind domain with finitely many prime ideals (at most 2),

it is principal [Lan1, p. 21]. Thus, there exists α ∈ O with a(l) = αS(l). Also, if l - m,

then multiplication by m gives an automorphism of El∞ . Hence, each element of S(l) is

an endomorphism of El∞ . So,

Ker(a) ∩ El∞ = Ker(a(l)|El∞ ) = Ker(α|El∞ ).

Hence, |Ker(a) ∩ El∞ |Z(l) = |Ker(α|El∞ )|Z(l) = |Ker(α)|Z(l) = Nα · Z(l) = Na(l), as

desired.
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Here is a criterion for the existence of an isogeny of elliptic curves over finite fields

which is similar to the one for elliptic curves with CM over number fields.

Lemma 4.3: Let E and E′ be elliptic curves over a finite field K. Suppose that

EndK̃(E)⊗Q and EndK̃(E′)⊗Q have a common quadratic subfield L. Then E ∼K̃ E′.

In particular, all supersingular elliptic curves are isogenous over K̃.

Proof: Let p = char(K). If E is ordinary, then p decomposes in L into two distinct

primes [Lan2, p. 175, Thm. 5]. If E′ is supersingular, then EndK̃(E′) ⊗ Q ramifies in

p [Lan2, p. 178, Remark proceeding Theorem 8]. This implies that EndK̃(E′) ⊗ Qp is

a division algebra (See also [Wei, p. 202]). As L ⊗ Qp is a commutative subalgebra of

EndK̃(E′)⊗Qp, it is a field. So, there is only one prime of L over p. [CaF, p. 57, Thm.].

Hence, either both curves are ordinary or both of them are supersingular. In the first

case EndK̃(E) ⊗ Q = L = EndK̃(E′) ⊗ Q. In the second case both EndK̃(E) ⊗ Q and

EndK̃(E′)⊗Q are the unique quaternion algebra Q∞,p which ramifies exactly at p and

∞ [Deu, p. 220]. Conclude from [Mum, p. 259, Cor.] that E ∼K̃ E′.

Denote the group of upper triangular matrices in GL(2, Fl) by T (2, Fl).

Lemma 4.4: Let H be a cyclic subgroup of GL(2, Fl). Then H is conjugate to a

subgroup of T (2, Fl) if and only if |H| divides (l − 1)l.

Proof: Each a =
(

α
0

β
γ

)
∈ T (2, Fl) satisfies a(l−1)l = 1. So, the condition is necessary.

Suppose therefore that |H| divides (l − 1)l. Let h be a generator of H. Let α

and α′ be the eigenvalues of h. If α ∈ Fl, then β ∈ Fl and h is conjugate to an upper

triangular matrix.

So, assume α /∈ Fl. Then α ∈ Fl2 , α′ is the conjugate of α over Fl, and α 6= α′. It

follows that h is conjugate in GL(2, Fl2) to the diagonal matrix
(

α
0

0
α′

)
. Since h(l−1)l = 1,

also α(l−1)l = 1. But as the order of α divides l2 − 1, it is relatively prime to l. Hence,

αl−1 = 1 and therefore α ∈ Fl. This contradiction proves that H is conjugate to a

subgroup of T (2, Fl).

Proposition 4.5: Let E and E′ be elliptic curves over a finite field K. Let Λ be a

3
4 -dense set of prime numbers. Suppose K(El) = K(E′

l) for each l ∈ Λ. Then E ∼K̃ E′.
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Proof: Both EndK̃(E) and EndK̃(E′) are finitely generated over Z [Sil1, p. 94, Cor. 7.5].

So, we may replace K by a finite extension, if necessary, to assume that all endomor-

phisms of both E and E′ are defined over K.

If both E and E′ are supersingular, then E ∼K̃ E′ (Lemma 4.3). So, assume for

example E′ is ordinary. Then L′ = Q⊗End(E′) is a quadratic field but Q⊗End(E) is

either a quadratic field or a quaternion algebra. In each case choose a quadratic subfield

L of Q⊗ End(E).

Assume E 6∼K̃ E′. By Lemma 4.3, L 6= L′. So, Lemma 4.1 gives an infinite subset

Λ0 of Λ such that each l ∈ Λ0 is prime in L′ but decomposes into two distinct primes

in L.

Put S = EndK̃(E) ∩L and S′ = EndK̃(E′). Remove finitely many elements from

Λ0, if necessary, to assume that each l ∈ Λ0 is relatively prime to the conductors of S

and S′ and that l 6= char(K).

We break up the rest of the proof into three parts and draw a contradiction.

Part A: Constructions of isogenies of E. Consider an l ∈ Λ0. Let lS = l̄l be the

decomposition of l into two distinct irreducible ideals of S. By Remark 4.2, |Ker(l)|Z =

N l = lZ. Hence, Ker(l) is a subgroup of E(K̃) of order l. Since the action of Gal(K)

and EndK̃(E) commute, Gal(K) leaves Ker(l) invariant. Hence, E has an isogeny λ

with Ker(λ) = Ker(l) which is defined over K and has degree l. In particular, Ker(λ)

is cyclic.

Choose a generator p of Ker(λ) and another point q of El(K̃) such that p,q

form a basis for El(K̃) over Fl. For each σ ∈ Gal(K) there exists a ∈ Fl such that

σp = ap. Hence, ρE,l(Gal(K)) is a subgroup of T (2, Fl). As K is finite, ρE,l(Gal(K)) ∼=

Gal(K(El)/K) is cyclic. Hence, by Lemma 4.4, |ρE,l(Gal(K))| divides (l − 1)l.

Part B: Cyclic isogenies of E′. By assumption, |ρE′,K(Gal(K))| = [K(E′
l) : K] =

[K(El) : K] = |ρE,l(Gal(K))|. Hence, by Part A and since K is finite, ρE′,l(Gal(K))

is a cyclic subgroup of GL(2, Fl) whose order divides (l − 1)l. Hence, by Lemma 4.4,

ρE′,l(Gal(K)) is conjugate to a subgroup of T (2, Fl). Thus, E′
l(K̃) has an Fl-basis p′,q′

such that Gal(K) leaves the subgroup that p′ generates invariant. It follows that this
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subgroup is the kernel of a K-isogeny λ′ of E′ of degree l.

Part C: Infinitely many non-isomorphic curves over K. List the elements of Λ0 as

l1, l2, l3, . . . . For each i Part B gives a K-isogeny λ′i of E′ of degree li. For each positive

integer n, Cn =
∑n

i=1 Ker(λ′i) is a cyclic subgroup of E′(K̃) of order l1l2 · · · ln which

Gal(K) leaves invariant. Hence, D(n) = E′/Cn is an elliptic curve which is K-isogenous

to E′. We prove that if m < n, then D(m) 6∼= D(n). This will give infinitely many elliptic

curves over K which are mutually non isomorphic over K̃. Since K is finite, this will

produce the desired contradiction.

Indeed, since D(m) ∼K E′, we have EndK̃(D(m)) ⊗ Q = EndK̃(E′) ⊗ Q = L′.

Also, there is a K-isogeny µ: D(m) → D(n) of degree d = lm+1lm+2 · · · ln. If D(m) were

isomorphic to D(n) over K̃, then µ would be a K̃-endomorphism of D(m) and therefore

would belong to L′. Hence, d = deg(µ) = NL′/Q(µ) (Remark 4.2). Then µOL′ would

decompose into prime ideals of OL′ which lie over the prime numbers li, i = m+1 . . . , n.

But, by construction, liOL′ is a prime ideal of OL′ and NL′/Q(liOL′) = l2i Z. It would

follow that l2i |d, i = m + 1, . . . , n, which is a contradiction.

Lemma 4.6: Let E and E′ be elliptic curves over a finite field K, Λ a set of prime

numbers, ε > 0, and c ≥ 1. Suppose for each l ∈ Λ

[K(El, E
′
l) : K(El) ∩K(E′

l)] ≤ c.

Then there exists a Dirichlet set of prime numbers Λ0 with δ(Λ0) < ε and there exists

a finite extension K ′ of K such that K ′(El) = K ′(E′
l) for each l ∈ Λ r Λ0.

Proof: Let Nl = K(El, E
′
l) and Ml = K(El) ∩K(E′

l). For each positive integer m let

Λm be the set of all l such that l ≤ c or l ≡ ±1 mod qm for some prime number q ≤ c.

By Dirichlet’s theorem,

δ(Λm) ≤
∑
q≤c

2
(q − 1)qm−1

−→ 0, as m →∞.

Choose m large enough such that δ(Λm) < ε and let Λ0 = Λm.

For each prime number q ≤ c let vq be the normalized q-adic valuation of Q. Let

k = max
(
vq([Nl : Ml]) | q ≤ c, l ∈ Λ

)
. Then let K ′ be the unique extension of K of

degree
∏

q≤c q3m+k. Let N ′
l = K ′(El, E

′
l) and M ′

l = MlK
′.
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Consider now l ∈ Λ r Λ0 and a prime number q ≤ c. Then

(3) [M ′
l : Ml] =

[K ′ : K]
gcd

(
[Ml : K], [K ′ : K]

) .

Since l /∈ Λ0, we have l > c ≥ q and l 6≡ ±1 mod qm. Therefore vq(l) = 0 and

vq(l ∓ 1) ≤ m. Since [Ml : K]|[K(El) : K]|(l − 1)2l(l + 1) (Fact 2.1(d)), we have

(4) vq([Ml : K]) ≤ vq

(
(l − 1)2l(l + 1)

)
= 2vq(l − 1) + vq(l + 1) ≤ 3m.

Hence, by (3) and (4),

vq

(
[M ′

l : Ml]
)

= 3m + k −min
(
vq

(
[Ml : K]

)
, 3m + k

)
≥ 3m + k − vq([Ml : K]) ≥ k ≥ vq

(
[Nl : Ml]

)
.

By assumption, each prime divisor of [Nl : Ml] is at most c. It follows that [Nl : Ml]

divides [M ′
l : Ml]. Hence, since K(El) is a finite field, Nl ⊆ M ′

l and therefore M ′
l = N ′

l .

Conclude: K ′(El) = K ′(E′
l), as desired.

Theorem 4.7: Let E and E′ be elliptic curves over a finitely generated field K. Sup-

pose jE or jE′ belong to a finite field. Let c ≥ 1 and let Λ be a set of prime numbers

such that [K(El, E
′
l) : K(El) ∩K(E′

l)] ≤ c for each l ∈ Λ. Further suppose there exists

ε > 0 such that Λ is ( 3
4 +ε)-dense. Then E ∼K̃ E′. In particular, this holds if δ(Λ) > 3

4 .

Proof: By Lemma 2.7, both jE and jE′ belong to a finite field. We may therefore

assume that K is finite. Lemma 4.6 gives a subset Λ′ of Λ and a finite extension K ′

of K such that Λ′ is 3
4 -dense and K ′(El) = K ′(E′

l) for each l ∈ Λ′. Conclude from

Proposition 4.5 that E ∼K̃ E′.

Remark 4.8: On the impossibility to improve Theorem 4.7. We prove that, in contrast

to the case where jE does not belong to a finite field, the condition on Λ in Theorem

4.7 can not be weakened to “Λ is infinite”.

For each prime number q let Λq (resp. Λ′q) be the set of all l 6= q such that q

is a primitive root modulo l (resp. and l ≡ 1 mod 4). A well known conjecture of

Artin says that Λq has positive density [Art, pp. viii-x]. Lenstra [Len, Thm. 8.3] proves

under the generalized Riemann hypothesis that Λ′q has positive density if q ≡ 1 mod 4.
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Heath-Brown [HBr, Cor. 2] proves that, with the exception of two prime numbers, each

Λq is infinite. Ram Murty (private communication) informed the authors that Heath-

Brown’s proof can be adapted to prove that Λ′q is infinite. In Example 4.10 below we use

Murty’s remark to find a finite field K, elliptic curves E and E′ over K which are not K̃-

isogenous, and an infinite set Λ of prime numbers such that [K(El, E
′
l) : K(El)∩K(E′

l)]

is bounded when l ranges on Λ.

We could also use Lenstra’s result to prove the existence of K, E, E′, and Λ as

above. But this would depend on the truth of the generalized Riemann Hypothesis.

Lemma 4.9: Let p ≡ 1 mod 4 be a prime number, ∆ an infinite set of prime numbers

each of which is congruent to 1 modulo 4, and n a positive integer. Then ∆ has an

infinite subset Λ and there exist positive integers d1, . . . , dn such that the following

conditions hold:

(4a) d1, . . . , dn are square-free and mutually relatively prime.

(4b) p - d1 · · · dn and l - d1 · · · dn for all l ∈ Λ.

(4c)
(−di

p

)
= 1 and

(−di

l

)
= 1 for i = 1, . . . , n and each l ∈ Λ.

Proof: Induction on n reduces the proof of the lemma to the case where n = 1. To

prove this case let Π be the set of all prime numbers which do not belong to ∆∪{2, p}.

Make ∆ smaller, if necessary, to assume that Π is infinite. Choose distinct large elements

q1 and q2 in Π. By assumption,
(−1

l

)
= 1 for each l ∈ ∆. Hence, for each l ∈ ∆ we have(−q1

l

)
= 1, or

(−q2
l

)
= 1, or

(−q1q2
l

)
= 1. One of the possibilities occurs infinitely often.

In other words, there is c in {q1, q2, q1q2} and there is an infinite subset ∆1 of ∆ such

that
(−c

l

)
= 1 for each l ∈ ∆1.

Apply the same procedure to find a positive integer c′ and an infinite subset Λ of

∆1 with p - cc′, gcd(c, c′) = 1, and
(−c′

l

)
= 1 for each l ∈ Λ. If

(
c
p

)
= 1, let d = c. If(

c′

p

)
= 1, let d = c′. If

(
c
p

)
= −1 and

(
c′

p

)
= −1, let d = cc′. Now use that p ≡ 1 mod 4

and l ≡ 1 mod 4 for each l ∈ Λ to conclude that
(−d

p

)
= 1 and

(−d
l

)
= 1 for each l ∈ Λ.

Example 4.10: Use Remark 4.8 to choose a prime number p ≡ 1 mod 4 for which
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the set of all l ≡ 1 mod 4 such that p is a primitive root modulo l is infinite. Denote

this set by ∆. Let Λ be the infinite subset and d1, d2 positive integers which satisfy

Condition 4 with n = 2. Then Fp has a finite extension K̄, there exist ordinary elliptic

curves Ē and Ē′ over K̄ which are not F̃p-isogenous, and there exists c > 0 such that

[K̄(Ēl, Ē
′
l) : K̄(Ēl) ∩ K̄(Ē′

l)] ≤ c for each l ∈ Λ.

Proof: Choose elliptic curves E and E′ over Q̃ such that End(E) is isomorphic to

the ring of integers of Q(
√
−d1) and End(E′) is isomorphic to the ring of integers of

Q(
√
−d2) [Sil2, p. 99]. By Serre-Tate we may choose a finite Galois extension K of Q

which contains Q(
√
−d1,

√
−d2) such that both E and E′ have good reduction at each

prime divisor p of K which lies over p [Sil2, p. 149].

Choose such a p and denote reduction modulo p by a bar. In particular, Ē

and Ē′ are elliptic curves over K̄. The latter is a finite extension of Fp. By (4c), p

decomposes in Q(
√
−d1) into two distinct primes. Hence, by [Lan2, p. 182, Thm. 12],

End(Ē) = End(E). In particular, Ē is ordinary [Lan2, p. 177, Thm. 7]. Similarly, Ē′ is

an ordinary elliptic curve over K̄ and End(Ē′) ∼= End(E′). In particular, End(Ē) ⊗ Q

and End(Ē′)⊗Q are distinct imaginary quadratic extensions of Q. Hence, Ē 6∼F̃p
Ē′.

By (4c), for each l ∈ Λ, Gal(K(El)/K) is isomorphic to a subgroup of Z/(l−1)Z⊕

Z/(l− 1)Z [GeJ, p. 276, (3) and (4)]. By good reduction, Gal(K̄(Ēl)/K̄) is isomorphic

to a subgroup of Gal(K(El)/K). On the other hand Gal(K̄(Ēl)/K̄) is cyclic. Hence,

K̄(Ēl) is contained in the unique extension K̄l−1 of K̄ of degree l − 1. In addition,

K̄(ζl) ⊆ K̄(Ēl). Similarly, K̄(ζl) ⊆ K̄(Ē′
l) ⊆ K̄l−1. Since ordlp = l − 1, we have

[Fp(ζl) : Fp] = l − 1. Hence,

[K̄(Ēl, Ē
′
l) : K(Ēl) ∩K(Ē′

l)] ≤ [K̄l−1 : K̄(ζl)] =
l − 1

[K̄(ζl) : K̄]
=

[Fp(ζl) : Fp]
[K̄(ζl) : K̄]

≤ [K̄ : Fp].

This completes the proof of our claim.

Problem 4.11: Do there exist a finite field K, elliptic curves E and E′ over K which

are not K̃-isogenous, a constant c, and a set of prime numbers Λ with positive Dirichlet

density such that [K(El, E
′
l) : K(El) ∩K(E′

l)] ≤ c for each l ∈ Λ?
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