A field K is **ample** if it satisfies one of the following equivalent conditions [Pop2, Prop. 1.1]:

(1a) Each absolutely irreducible curve C over K with a simple K-rational point has infinitely many K-rational points.

(1b) Each function field of one variable F/K with a prime divisor of degree 1 has infinitely many such divisors.

(1c) K is existentially closed in $K((t))$.

The interest in ample fields lies in the fact that a large class of embedding problem over such fields are solvable. Thus, if K is an ample field, then every finite split embedding problem over $K(t)$ (with t indeterminate) is solvable (cf. [Pop1, Thm. 2.7] or [HaJ2, Thm. 4.3]). If in addition K is Hilbertian, then each finite split embedding problem over K is solvable (e.g. [HaJ1, Thm. 6.5]). If in addition the absolute Galois group $\text{Gal}(K)$ of K is projective and K is countable, then $\text{Gal}(K)$ is the free profinite group on countably many variables.

Examples of ample fields are PAC fields, Henselian fields, real closed fields, and fields with a local global principle like PRC fields, $\mathbb{P}_{\mathbb{C}}$ fields, and $\mathbb{P}_{\mathbb{S}}$ fields with S being a set of primes whose completions are local fields.

The following surprising observation of Colliot-Thélène [CoT, Introduction] gives a sufficient condition for a field K to be simple in terms of $\text{Gal}(K)$ alone.

Proposition 1: Let K be a perfect field such that $\text{Gal}(K)$ is a pro-p group for some prime number p. Then K is ample.

Proof: Consider a function field F of one variable over K of genus g with a prime divisor p of degree 1. Let p_1, \ldots, p_m be additional prime divisors of K. Use the weak approximation theorem to choose $f \in F$ with $v_p(f) = 1$ and $v_{p_i}(f) = 0$ for $i = 1, \ldots, m$.

* Research partially supported by the Minkowski Center for Geometry at Tel Aviv University founded by the Minerva Foundation.
Then \(\text{div}(f) = p + \sum_{j=1}^{n} k_j q_j \), for some additional distinct prime divisors \(q_1, \ldots, q_n \). It follows that

\[
0 = \deg(\text{div}(f)) = 1 + \sum_{j=1}^{n} k_j \deg(q_j).
\]

Denote the residue field of \(F \) at \(q_j \) by \(\bar{F}_{q_j} \). As \(K \) is perfect, \(\bar{F}_{q_j}/K \) is separable. As \(\deg(q_j) = [\bar{F}_{q_j}:K] \) and \(\text{Gal}(K) \) is a pro-\(p \) group, each of the numbers \(\deg(q_j) \) is a power of \(p \). Conclude from (1) that \(\deg(q_j) = 1 \) for some \(j \) between 1 and \(n \). So, \(F/K \) has infinitely many prime divisors of degree 1. In other words, \(K \) is ample.

The goal of this note is to generalize Colliot-Thélène’s observation to fields which are not perfect.

Lemma 2: Let \(K \) be an infinite field, \(F \) an algebraic function field of one variable over \(K \) of genus \(g \), and \(a \) a positive divisor of \(F/K \) of degree at least \(2g \). Then there is \(t \in F \setminus K \) with \(\text{div}_\infty(t - a) = a \) for each \(a \in K \).

Proof: Write \(a = \sum_{i=1}^{r} m_i p_i \) with distinct prime divisors \(p_1, \ldots, p_r \) of \(F/K \) and positive integers \(m_1, \ldots, m_r \). For each \(i \) between 1 and \(r \) let \(a_i = a - p_i \). By assumption, \(\deg(a_i) = \deg(a) - 1 \geq 2g - 1 \). Hence, by Riemann-Roch, \(\dim(\mathcal{L}(a)) = \deg(a) + 1 - g \) and \(\dim(\mathcal{L}(a_i)) = \deg(a) - g \) (We use the notation of [FrJ, §2.5].) So, \(\mathcal{L}(a_i) \) is a proper subspace of \(\mathcal{L}(a) \). As \(K \) is infinite, there is \(t \in \mathcal{L}(a) \setminus \bigcup_{i=1}^{r} \mathcal{L}(a_i) \). It satisfies \(\text{div}_\infty(t) = a \). Hence \(\text{div}_\infty(t - a) = a \) for each \(a \in K \).

Now we drop the condition “\(K \) is perfect” from Proposition 1.

Theorem 3: Let \(K \) be a field such that \(\text{Gal}(K) \) is a pro-\(p \) group for some prime number \(p \). Then \(K \) is ample.

Proof: Each finite field has finite extensions of every degree, in particular its absolute Galois group is not pro-\(p \). It follows that \(K \) is infinite.

Let \(F \) be a function field of one variable of genus \(g \) over \(K \) with a prime divisor \(p \) of degree 1. Set \(p_0 = p \) and let \(p_1, \ldots, p_m \) with \(m \geq 0 \) be additional prime divisors of \(F/K \) of degree 1. Choose a positive multiple \(k \) of \(p \) such that \(k \geq 2g \) and \(\text{char}(K)|k \) if \(\text{char}(K) \neq 0 \). Consider the divisors \(a = p + k \sum_{i=0}^{m} p_i \) and \(a_i = a - p_i, i = 0, \ldots, m, \)
of F/K. Then $\deg(a) > \deg(a_i) \geq k - 1 \geq 2g - 1$ for $i = 0, \ldots, m$. By Riemann-Roch, $\dim(L(a)) = \deg(a) + 1 - g$ and $\dim(L(a_i)) = \deg(a_i) + 1 - g$. Thus, $L(a_i)$ is a proper subspace of $L(a)$, $i = 0, \ldots, m$. Since K is infinite, there exists $t \in L(a) \setminus \bigcup_{i=0}^{m} L(a_i)$. Hence, $\text{div}(t) + a \geq 0$ but $\text{div}(t) + a_i \not\geq 0$ for each i. It follows that $\text{div}_\infty(t) = a$, so $\text{div}_\infty(t - a) = a$ for each $a \in K$.

By definition

$$\deg(a) = 1 + k \sum_{i=1}^{m} \deg(p_i).$$

Hence,

$$[F : K(t - a)] = \deg(\text{div}_\infty(t - a)) = \deg(a) \equiv 1 \mod k.$$

In particular, if $\text{char}(K) \neq 0$, then $\text{char}(K) \nmid [F : K(t)]$. Thus, in each case, $F/K(t)$ is a finite separable extension.

Now choose a primitive element x for $F/K(t)$, integral over $K[t]$. Let $f = \text{irr}(x, K(t))$. Then $f(T, X) \in K[T, X]$ is an absolutely irreducible polynomial separable in X [FrJo08, Cor. 10.2.2(b)]. Hence, there exists $a \in K$ such that $f(a, X)$ is separable. The irreducible factors of $f(a, X)$ over F correspond to zeros of $t - a$ (as an element of F). Therefore, $\text{div}_0(t - a) = \sum_{i=1}^{r} q_i$ and for each i, q_i is a prime divisor of F/K with residue field \tilde{F}_{q_i} separable over K. The assumption on K implies that $\deg(q_i) = [\tilde{F}_{q_i} : K]$ is a power of p. By (3),

$$\sum_{i=1}^{r} \deg(q_i) = \deg(\text{div}_0(t - a)) = \deg(\text{div}_\infty(t - a)) \equiv 1 \mod p.$$

Hence, there exists i between 1 and r with $\deg(q_i) = 1$. In addition, q_i is relatively prime to a (because $\text{div}_0(t - a)$ and $\text{div}_\infty(t - a)$ are relatively prime divisors), so q_i differs from p, p_1, \ldots, p_m. Consequently, K is ample.

\[\boxed{} \]
Acknowledgement: The author is indebted to Jean-Louis Colliot-Thélène for some useful comments.

References

