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A field K is ample if it satisfies one of the following equivalent conditions [Pop2,

Prop. 1.1]:

(1a) Each absolutely irreducible curve C over K with a simple K-rational point has

infinitely many K-rational points.

(1b) Each function field of one variable F/K with a prime divisor of degree 1 has

infinitely many such divisors.

(1c) K is existentially closed in K((t)).

The interest in ample fields lies in the fact that a large class of embedding prob-

lem over such fields are solvable. Thus, if K is an ample field, then every finite split

embedding problem over K(t) (with t indeterminate) is solvable (cf. [Pop1, Thm. 2.7]

or [HaJ2, Thm. 4.3]). If in addition K is Hilbertian, then each finite split embedding

problem over K is solvable (e.g. [HaJ1, Thm. 6.5]). If in addition the absolute Galois

group Gal(K) of K is projective and K is countable, then Gal(K) is the free profinite

group on countably many variables.

Examples of ample fields are PAC fields, Henselian fields, real closed fields, and

fields with a local global principle like PRC fields, PpC fields, and PSC fields with S

being a set of primes whose completions are local fields.

The following surprising observation of Colliot-Thélène [CoT, Introduction] gives

a sufficient condition for a field K to be simple in terms of Gal(K) alone.

Proposition 1: Let K be a perfect field such that Gal(K) is a pro-p group for some

prime number p. Then K is ample.

Proof: Consider a function field F of one variable over K of genus g with a prime

divisor p of degree 1. Let p1, . . . , pm be additional prime divisors of K. Use the weak

approximation theorem to choose f ∈ F with vp(f) = 1 and vpi
(f) = 0 for i = 1, . . . ,m.
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Then div(f) = p +
∑n

j=1 kjqj , for some additional distinct prime divisors q1, . . . , qn. It

follows that

(1) 0 = deg(div(f)) = 1 +
n∑

j=1

kj deg(qj).

Denote the residue field of F at qj by F̄qj . As K is perfect, F̄qj /K is separable. As

deg(qj) = [F̄qj
: K] and Gal(K) is a pro-p group, each of the numbers deg(qj) is a

power of p. Conclude from (1) that deg(qj) = 1 for some j between 1 and n. So, F/K

has infinitely many prime divisors of degree 1. In other words, K is ample.

The goal of this note is to generalize Colliot-Thélène’s observation to fields which

are not perfect.

Lemma 2: Let K be an infinite field, F an algebraic function field of one variable over

K of genus g, and a a positive divisor of F/K of degree at least 2g. Then there is

t ∈ F r K with div∞(t− a) = a for each a ∈ K.

Proof: Write a =
∑r

i=1 mipi with distinct prime divisors p1, . . . , pr of F/K and positive

integers m1, . . . ,mr. For each i between 1 and r let ai = a − pi. By assumption,

deg(ai) = deg(a) − 1 ≥ 2g − 1. Hence, by Riemann-Roch, dim(L(a)) = deg(a) + 1 − g

and dim(L(ai)) = deg(a) − g (We use the notation of [FrJ, §2.5].) So, L(ai) is a

proper subspace of L(a). As K is infinite, there is t ∈ L(a) r ⋃r
i=1 L(ai). It satisfies

div∞(t) = a. Hence div∞(t− a) = a for each a ∈ K.

Now we drop the condition “K is perfect” from Proposition 1.

Theorem 3: Let K be a field such that Gal(K) is a pro-p group for some prime number

p. Then K is ample.

Proof: Each finite field has finite extensions of every degree, in particular its absolute

Galois group is not pro-p. It follows that K is infinite.

Let F be a function field of one variable of genus g over K with a prime divisor

p of degree 1. Set p0 = p and let p1, . . . , pm with m ≥ 0 be additional prime divisors

of F/K of degree 1. Choose a positive multiple k of p such that k ≥ 2g and char(K)|k

if char(K) 6= 0. Consider the divisors a = p + k
∑m

i=0 pi and ai = a − pi, i = 0, . . . ,m,
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of F/K. Then deg(a) > deg(ai) ≥ k − 1 ≥ 2g − 1 for i = 0, . . . ,m. By Riemann-Roch,

dim(L(a)) = deg(a) + 1− g and dim(L(ai)) = deg(ai) + 1− g. Thus, L(ai) is a proper

subspace of L(a), i = 0, . . . ,m. Since K is infinite, there exists t ∈ L(a) r ⋃m
i=0 L(ai).

Hence, div(t) + a ≥ 0 but div(t) + ai 6≥ 0 for each i. It follows that div∞(t) = a, so

div∞(t− a) = a for each a ∈ K.

By definition

(2) deg(a) = 1 + k

m∑
i=1

deg(pi).

Hence,

(3) [F : K(t− a)] = deg(div∞(t− a)) = deg(a) ≡ 1 mod k.

In particular, if char(K) 6= 0, then char(K) - [F : K(t)]. Thus, in each case, F/K(t) is

a finite separable extension.

Now choose a primitive element x for F/K(t), integral over K[t]. Let f =

irr(x, K(t)). Then f(T, X) ∈ K[T, X] is an absolutely irreducible polynomial sepa-

rable in X [FrJ08, Cor. 10.2.2(b)]. Hence, there exists a ∈ K such that f(a, X) is

separable. The irreducible factors of f(a, X) over F correspond to zeros of t− a (as an

element of F ). Therefore, div0(t − a) =
∑r

i=1 qi and for each i, qi is a prime divisor

of F/K with residue field F̄qi
separable over K. The assumption on K implies that

deg(qi) = [F̄qi : K] is a power of p. By (3),

r∑
i=1

deg(qi) = deg(div0(t− a)) = deg(div∞(t− a)) ≡ 1 mod p.

Hence, there exists i between 1 and r with deg(qi) = 1. In addition, qi is relatively

prime to a (because div0(t − a) and div∞(t − a) are relatively prime divisors), so qi

differs from p, p1, . . . , pm. Consequently, K is ample.
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