ON THE NUMBER OF ELLIPTIC CURVES WITH CM OVER LARGE ALGEBRAIC FIELDS

by

Gerhard Frey

Institute for Experimental Mathematics, Essen University
Ellernstrasse 29, D-45326 Germany
e-mail: frey@exp-math.uni-essen.de

and

Moshe Jarden

School of Mathematics, Tel Aviv University
Ramat Aviv, Tel Aviv 69978, Israel
e-mail: jarden@post.tau.ac.il

MR Classification: 12E30
Directory: \Jarden\Diary\CM
19 July, 2005

* Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

** This note was partially written while the second author was a guest of the IWR Research Group Algorithmic Algebra of Heidelberg University.
Introduction

The goal of this note is to report on a new phenomena in the theory of large fields.

As usual, we denote the absolute Galois group of \(\mathbb{Q} \) by \(\operatorname{Gal}(\mathbb{Q}) \) and equip each of the cartesian powers \(\operatorname{Gal}(\mathbb{Q})^e \) by the normalized Haar measure \(\mu \). Let \(\bar{\mathbb{Q}} \) be the algebraic closure of \(\mathbb{Q} \). For each \(\sigma = (\sigma_1, \ldots, \sigma_e) \) let \(\bar{\mathbb{Q}}(\sigma) \) be the fixed field in \(\bar{\mathbb{Q}} \) of \(\sigma_1, \ldots, \sigma_e \). The behavior of the fields \(\bar{\mathbb{Q}}(\sigma) \) becomes regular if we remove sets of measure zero. This is exemplified by the following fundamental result:

Theorem A ([FrJ, Thms. 18.5.6 and 18.6.1]): The following statements hold for almost all \(\sigma \in \operatorname{Gal}(\mathbb{Q})^e \):

(a) The absolute Galois group of \(\bar{\mathbb{Q}}(\sigma) \) is isomorphic to the free profinite group \(\hat{F}_e \) on \(e \) generators.

(b) The field \(\bar{\mathbb{Q}}(\sigma) \) is PAC, that is, each absolutely irreducible variety \(V \) defined over \(\bar{\mathbb{Q}}(\sigma) \) has a \(\bar{\mathbb{Q}}(\sigma) \)-rational point.

Likewise, the following holds for Abelian varieties:

Theorem B ([FyJ]): Let \(A \) be an abelian variety over \(\mathbb{Q} \). Then for almost all \(\sigma \in \operatorname{Gal}(\mathbb{Q})^e \) the rank of \(A(\bar{\mathbb{Q}}(\sigma)) \) is infinite.

Note that the fields \(\bar{\mathbb{Q}}(\sigma) \) become smaller as \(e \) increases. Thus, it is expected that in general less arithmetical objects will be defined over \(\bar{\mathbb{Q}}(\sigma) \) as \(e \) increases. Here are two typical examples:

Theorem C ([JaJ, Main Theorem(a)]): Let \(A \) be an Abelian variety and \(l \) a prime number. Then for each \(e \geq 1 \) and for almost all \(\sigma \in \operatorname{Gal}(K)^e \) the set \(\bigcup_{i=1}^{\infty} A_l(\bar{\mathbb{Q}}(\sigma)) \) is finite (while \(\bigcup_{i=1}^{\infty} A_l(\bar{\mathbb{Q}}) \) is infinite, which is the case if \(e = 0 \)).

Here \(A_n(L) = \{ p \in A(L) \mid np = 0 \} \) for each positive integer \(n \) and each field extension \(L \) of \(K \).

Theorem D: [Jar, Thms. 8.1 and 8.2] The following holds for almost all \(\sigma \in \operatorname{Gal}(\mathbb{Q})^e \):

(a) If \(e = 1 \), then \(\bar{\mathbb{Q}}(\sigma) \) contains infinitely many roots of unity.

(b) If \(e \geq 2 \), then \(\bar{\mathbb{Q}}(\sigma) \) contains only finitely many roots of unity.

1
Theorem E: Let E be an elliptic curve over \mathbb{Q}. Then the following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

(a) If $e = 1$, then $E_{\text{tor}}(\bar{\mathbb{Q}}(\sigma))$ is infinite.

(b) If $e \geq 2$, then $E_{\text{tor}}(\bar{\mathbb{Q}}(\sigma))$ is finite.

The arithmetical reason that lies behind the distinction between the cases $e = 1$ and $e \geq 2$ in Theorems D and E is that the series $\sum \frac{1}{l^e}$, with l ranges over all prime numbers, diverges for $e = 1$ and converges for $e \geq 2$.

In general, we call a nonnegative integer e_0 a cut for the large fields over \mathbb{Q} if there exists an infinite set P of arithmetical or geometrical objects defined over $\bar{\mathbb{Q}}$ such that for almost all $\sigma \in \text{Gal}(K)^e$ infinitely many objects of P are defined over $\bar{\mathbb{Q}}(\sigma)$ if $e < e_0$ and only finitely many objects of P are defined over $\bar{\mathbb{Q}}(\sigma)$ if $e \geq e_0$.

Theorem C implies that 1 is a cut for the large fields over \mathbb{Q}, while Theorems D and E imply that 2 is a cut for the large fields over \mathbb{Q}.

For a long time 1 and 2 were the only known cuts for large fields over \mathbb{Q}. The goal of the present note is to prove that also 3 and 4 are cuts for large fields over \mathbb{Q}. The relevant properties of fields were hidden in the theory of elliptic curves with complex multiplication:

Theorem F: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

(a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\bar{\mathbb{Q}}(\sigma)$ such that $\text{End}(E) \subseteq \bar{\mathbb{Q}}(\sigma)$.

(b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\bar{\mathbb{Q}}(\sigma)$ such that $\text{End}(E) \subseteq \bar{\mathbb{Q}}(\sigma)$.

Theorem G: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

(a) If $e \leq 3$, then there are infinitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\bar{\mathbb{Q}}(\sigma)$.

(b) If $e \geq 4$, then there are only finitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\bar{\mathbb{Q}}(\sigma)$.

The proofs of Theorems F and G use the standard properties of the j-function of elliptic curves with CM as in [Shi] and [Lan] and information about the growth of the
class number of imaginary quadratic fields:

Theorem H: For each prime number p let $h(p)$ be the class number of $\mathbb{Q}(\sqrt{-p})$. Then

$$\sum_{p \equiv 3 \pmod{4}} \frac{1}{h(p)^2} = \infty,$$

where p ranges on all prime numbers which are congruent to 3 modulo 4.

The authors are indebted to Ram Murty for kindly supplying the proof of Theorem H.

Finally, we rephrase Theorem F for a family of large fields which are considerably smaller than the fields $\tilde{\mathbb{Q}}(\sigma)$. For each $\sigma \in \text{Gal}(\mathbb{Q})^c$ we denote the maximal Galois extension of \mathbb{Q} which is contained in $\tilde{\mathbb{Q}}(\sigma)$ by $\tilde{\mathbb{Q}}[\sigma]$. Then the following holds:

Theorem I: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^c$:

(a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\tilde{\mathbb{Q}}[\sigma]$.

(b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\tilde{\mathbb{Q}}[\sigma]$.

3
1. On the growth of the class number of imaginary quadratic fields

For each prime number \(p \) let \(h(p) \) be the class number of \(K_p = \mathbb{Q}(\sqrt{-p}) \). By a theorem of Siegel, \(\log h(p) \sim \log \sqrt{p} \) \cite[p. 96]{Lan}. Thus, there exists \(\varepsilon(p) \) which tends to 0 as \(p \to \infty \) such that \(\log h(p) = (1 + \varepsilon(p)) \log \sqrt{p} \). It follows that

\[
\sum_p \frac{1}{h(p)^2} = \sum \frac{1}{p^{1+\varepsilon(p)}}.
\]

One knows that \(\sum \frac{1}{p} \) diverges. Unfortunately, without any additional information about \(\varepsilon(p) \) one cannot draw from (1) that its left hand side diverges. Still, the sum does diverge, as we prove below:

Proposition 1.1 (Murty): With the notation above,

\[
\sum_{p \equiv 3 \mod 4} \frac{1}{h(p)^2} = \infty,
\]

Proof: Lemma 1.2 below reduces (2) to the proof of the existence of a constant \(c > 0 \) such that

\[
\sum_{p \equiv 3 \mod 4} \frac{h(p)}{p} \sim \frac{c \sqrt{x}}{\log x}.
\]

In order to prove (3) suppose \(p \equiv 3 \mod 4 \) is a prime number and let \(\chi_p \) be the quadratic character of \(K_p \). Thus, \(\chi_p(n) = (-1)^{n+1} \left(\frac{n}{p} \right) \) if \(p \nmid n \) \cite[Chap. 3, §8.2]{BoS}. Let \(l \) be a prime number satisfying \(l \nmid 2p \). Then \(l \) decomposes in \(K_p \) into two distinct primes if \(\chi_p(l) = 1 \) and \(l \) remains prime in \(K_p \) if \(\chi_p(l) = -1 \) \cite[Chap. 3, §8.2, Thm. 2]{BoS}. Let \(L(s, \chi_p) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} \) be the corresponding \(L \)-series. By the Dirichlet class number formula \(\text{BoS, Chap. 5, §4.1} \), \(h(p) \) is a multiple of \(\sqrt{p}L(1, \chi_p) \) by a constant. Hence, (3) is equivalent to the existence of \(c > 0 \) such that

\[
\sum_{p \equiv 3 \mod 4} \frac{L(1, \chi_p)}{\sqrt{p}} \sim \frac{c \sqrt{x}}{\log x}.
\]

Statement (4) is essentially proved in \cite[pp. 91–93]{FoM}. \(\blacksquare \)

The rest of this section proves the equivalence of (2) and (3).
For each set \(P \) of prime numbers let \(\pi(P, x) \) be the number of \(p \in P \) with \(p \leq x \).

In particular, if \(P \) is the set of all prime numbers, then \(\pi(P, x) = \pi(x) \). If \(P \) is the set of all prime numbers \(p \equiv a \mod n \), we write \(\pi_{a,n}(x) \) for \(\pi(P, x) \). By the prime number theorem for arithmetical progressions [LaO, Thms. 1.3 and 1.4 applied to the case of \(L = \mathbb{Q}(\zeta_n) \)],

\[
\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right) \quad \text{and} \quad \pi_{a,n}(x) = \frac{1}{\varphi(n)} \cdot \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right),
\]

where \(\varphi(n) \) is Euler’s totient function.

Lemma 1.2: For each prime number \(p \) let \(h(p) \) be a positive real number. Suppose that there exists \(c > 0 \) such that

\[
\sum_{\substack{p \leq x \mod 4 \leq x \atop p \equiv 3 \mod 4}} h(p) \frac{\sqrt{p}}{p} \sim c \frac{\sqrt{x}}{\log x}.
\]

Then (2) is true.

Proof: Apply summation by parts:

\[
\sum_{\substack{p \leq x \mod 4 \leq x \atop p \equiv 3 \mod 4}} \frac{h(p)}{\sqrt{p}} = \sum_{\substack{p \leq x \mod 4 \leq x \atop p \equiv 3 \mod 4}} \frac{h(p)}{p} \cdot \sqrt{p}
\]

\[
= \sum_{\substack{p \leq x \mod 4 \leq x \atop p \equiv 3 \mod 4}} \frac{h(p)}{p} \cdot \sqrt{p} - \frac{1}{2} \int_2^x \sum_{\substack{p \leq t \mod 4 \leq t \atop p \equiv 3 \mod 4}} \frac{h(p)}{p} \cdot \frac{1}{\sqrt{t}} \, dt
\]

\[
\sim c \frac{\sqrt{x}}{\log x} \cdot \sqrt{x} - \frac{c}{2} \int_2^x \frac{\sqrt{t}}{\log t} \cdot \frac{1}{\sqrt{t}} \, dt \quad \text{by (6)}
\]

\[
= c \frac{x}{\log x} - \frac{c}{2} \int_2^x \frac{dt}{\log t} \sim \frac{c}{2} \frac{x}{\log x}.
\]

The latter approximation is a consequence of the formula \(\int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x} \) [Gol, pp. 254–255, Remark (2)]. Hence, by (5) there exists \(x_0 \) such that

\[
c \pi_{3,4}(x) \geq \frac{1}{2} \sum_{\substack{p \leq x \mod 4 \leq x \atop p \equiv 3 \mod 4}} \frac{h(p)}{\sqrt{p}}
\]

and \(\pi_{3,4}(x) \geq \frac{1}{3} \pi(x) \) for all \(x \geq x_0 \). Let \(P = \{ p \equiv 3 \mod 4 \mid h(p) > 6c\sqrt{p} \} \) and let \(P' = \{ p \equiv 3 \mod 4 \mid h(p) \leq 6c\sqrt{p} \} \). Then, for all \(x \geq x_0 \)

\[
\pi_{3,4}(x) \geq \frac{1}{2c} \sum_{\substack{p \leq x \mod 4 \leq x \atop p \equiv 3 \mod 4}} \frac{h(p)}{\sqrt{p}} \geq \frac{1}{2c} \sum_{\substack{p \leq x \mod 4 \leq x \atop p \in P}} \frac{h(p)}{\sqrt{p}} \geq 3\pi(P, x).
\]
It follows from $\pi_{3,4}(x) = \pi(P, x) + \pi(P', x)$ that $\pi(P', x) \geq \frac{2}{3} \pi_{3,4}(x) \geq \frac{2}{5} \pi(x)$ for all $x \geq x_0$. It follows from Lemma 1.3 below that

$$\sum_{p \equiv 3 \mod 4} \frac{1}{h(p)^2} \geq \sum_{p \in P'} \frac{1}{h(p)^2} \geq \frac{1}{36c^2} \sum_{p \in P'} \frac{1}{p} = \infty,$$

as contended. ■

Lemma 1.3: Let Q be a set of prime numbers, $0 < b \leq 1$, and $x_0 > 0$ such that $\pi(Q, x) \geq b \pi(x)$ for all $x \geq x_0$. Then $\sum_{p \in Q} \frac{1}{p} = \infty$.

Proof: We reduce the statement to the well known fact that $\sum \frac{1}{p} = \infty$ [LeV, p. 100, Thm. 6-13]. To this end make b smaller and add all prime numbers $p \leq x_0$ to Q if necessary, in order to assume that $x_0 = 1$. Then write the set of all prime numbers as an ascending sequence, $p_1 < p_2 < p_3 \cdots$ and define

$$\chi(n) = \begin{cases} 1 & p_n \in Q \\ 0 & p_n \notin Q \end{cases}$$

Then $s(n) = \sum_{i=1}^{n} \chi(i) = \pi(Q, p_n) \geq b \pi(p_n) = bn$. Therefore, with $s(0) = 0$, we have

$$\sum_{p_i \in Q} \frac{1}{p_i} = \sum_{i=1}^{n} \frac{\chi(i)}{p_i} = \sum_{i=1}^{n} \frac{s(i) - s(i-1)}{p_i} = \sum_{i=1}^{n} \frac{s(i)}{p_i} - \sum_{i=1}^{n} \frac{s(i-1)}{p_i} = \frac{bn}{p_n} + b \sum_{i=1}^{n-1} i \left(\frac{1}{p_i} - \frac{1}{p_{i+1}} \right) = b \sum_{i=1}^{n} \frac{i}{p_i} - b \sum_{i=1}^{n-1} \frac{i}{p_{i+1}} = b \sum_{i=1}^{n} \frac{1}{p_i} \rightarrow \infty \quad \text{as } n \rightarrow \infty$$

as contended. ■
2. On the number of elliptic curves with CM over large algebraic fields

Consider a positive integer e and choose σ in $\text{Gal}(\mathbb{Q})^e$ at random. We would like to know whether there are infinitely many elliptic curves E (up to C-isomorphism) with CM which are defined over $\mathbb{Q}(\sigma)$. We would also like to know whether there are infinitely many elliptic curves E (up to C-isomorphism) which are defined over $\mathbb{Q}(\sigma)$ and such that all C-endomorphisms of E are defined over $\mathbb{Q}(\sigma)$. Since $\mathbb{Q}(\sigma)$ becomes smaller as e increases, we expect to find for each of those questions an e_0 such that the answer to the question is affirmative if and only if $e \leq e_0$. Indeed, we prove that $e_0 = 3$ for the former question and $e_0 = 2$ for the latter.

These results reflect the distribution of the modular j-function at singular values, that is complex values which correspond to elliptic curves with CM. To be more precise consider an imaginary quadratic field K, an order O of K, and a proper O-ideal a. Then a is a 2-dimensional lattice which is O-invertible [Lan, p. 91]. Let z_1, z_2 be a basis of a and put $z = z_1/z_2$. Then $j(a) = j(z)$ is the absolute invariant of an elliptic curve E with the analytic presentation C/a and such that $\text{End}(E) \cong O$. Moreover, E can be chosen to be defined by a Weierstrass equation over $\mathbb{Q}(j(a))$. The basic properties of $j(a)$ are intimately connected to class field theory:

Proposition 2.1 ([Shi, p. 123, Thm. 5.7]): Let K be an imaginary quadratic field, O an order of K, and a a proper O-ideal. Then:

(a) $K(j(a))/K$ is a Galois extension and $\text{Gal}(K(j(a))/K)$ is isomorphic to the group of all classes of proper O-ideals through the correspondence $\sigma \mapsto b$ such that $j(a^\sigma) = j(b^{-1}a)$.

(b) $[K(j(a)) : K] = [\mathbb{Q}(j(a)) : \mathbb{Q}]$.

(c) If a_1, \ldots, a_n are representatives of the classes of proper O-ideals, then the values $j(a_1), \ldots, j(a_n)$ form a complete set of conjugates of $j(a)$ over \mathbb{Q}, and over K.

(d) If O is the ring of integers of K (hence, a is a fractional ideal of O in K), then $K(j(a))$ is the maximal unramified abelian extension of K, and for each fractional ideal b of K we have $j(a^\sigma) = j(b^{-1}a)$ where $\sigma = \left(\frac{K(j(a))/b}{b}\right)$ is the Artin symbol.

Corollary 2.2: Fix an embedding of \mathbb{Q} in \mathbb{C}. Then, with the notation of Proposition
2.1, we have:
(a) \(K(j(a)) \) is the Galois closure of \(\mathbb{Q}(j(a)) \) over \(\mathbb{Q} \).
(b) \([K(j(a)) : \mathbb{Q}(j(a))]=2\).
(c) \(K(j(a))/K \) is an abelian extension.
(d) If \(\tau \) is a conjugate of the restriction to \(K(j(a)) \) of the complex conjugation, then \(\tau^{-1}\alpha\tau=\alpha^{-1} \) for each \(\alpha \in \text{Gal}(K(j(a))/K) \).

Proof: Statement (d) follows from [Lan, p. 134, Remark 2]. Statement (c) is a consequence of Proposition 2.1(a). Statements (a) and (b) follow from Proposition 2.1(b,c) and from (d).

Denote the set of all squarefree positive integers by \(D \). For each \(d \in D \) let \(K_d=\mathbb{Q}(\sqrt{-d}) \). Denote the ring of integers and the class number of \(K_d \), respectively, by \(\mathcal{O}_d \) and \(h(d) \). Choose a nonzero ideal \(\mathfrak{a}_d \) of \(\mathcal{O}_d \) and let \(L_d=K_d(j(\mathfrak{a}_d)) \). By Proposition 2.1(a), \(h(d)=[L_d : K_d] \). Choose also an elliptic curve \(E^{(d)} \) with \(j(\mathfrak{a}_d) \) as its absolute invariant which is defined over \(\mathbb{Q}(j(\mathfrak{a}_d)) \) [Lan, p. 300, Thm. 2].

Lemma 2.3: Let \(\Lambda \) be the set of all prime \(l \equiv 3 \mod 4 \). Then, the fields \(L_l \), with \(l \in \Lambda \), are linearly disjoint over \(\mathbb{Q} \).

Proof: Consider a finite set \(\Lambda_0 \) of \(\Lambda \) and an element \(l' \in \Lambda \setminus \Lambda_0 \). Let \(L=\prod_{l \in \Lambda_0} L_l \). By Corollary 2.2(a), each \(L_l \) is Galois over \(\mathbb{Q} \). Hence, it suffices to prove that \(L \cap L_{l'}=\mathbb{Q} \). Since, by a theorem of Minkowski, each proper extension of \(\mathbb{Q} \) is ramified [Jan, p. 57, Cor. 11.11] it suffices to prove that no prime number \(p \) is ramified in \(L \cap L_{l'} \).

Indeed, for each \(l \in \Lambda \) we have \(-l \equiv 1 \mod 4 \). Hence, the discriminant of \(K_l/\mathbb{Q} \) is \(-l \) [BoS, §2.7, p. 132, Thm. 1], so the only prime number which ramifies in \(K_l \) is \(l \). Since \(L_l/K_l \) is unramified (Proposition 2.1(d)), the only prime number which ramifies in \(L_l \) is \(l \). In particular, \(l' \) is unramified in each \(L_l \) with \(l \in \Lambda_0 \). Hence, \(l' \) is unramified in \(L \), so \(l' \) is unramified in \(L \cap L_{l'} \). If \(p \neq l' \), then \(p \) is unramified in \(L_{l'} \), so \(p \) is also unramified in \(L \cap L_{l'} \). Consequently, \(L \cap L_{l'}=\mathbb{Q} \), as asserted.

The orders of \(K_d \) have the form \(O_{d,c}=\mathbb{Z}+c\mathcal{O}_d \), where \(c \) ranges over all positive integers. For each \(d \in D \) and \(c \in \mathbb{N} \) choose a proper \(\mathcal{O}_{d,c} \)-ideal \(\mathfrak{a}_{d,c} \) and let \(L_{d,c}=\mathbb{Q}(\sqrt{-d}) \).
$K_d(j(a_{d,c}))$. By Proposition 2.1(c), $h(d,c) = [L_{d,c} : K_d]$ is the class number of $O_{d,c}$. It is related to $h(d)$ by the following formula [Lan, p. 95]:

$$h(d,c) = h(d) - \frac{\psi(d,c)}{(O_d^\times : O_{d,c}^\times)},$$

where

$$\psi(d,c) = c \prod_{p|c} \left(1 - \frac{K_d}{p} \frac{1}{p} \right),$$

and $(\frac{K_d}{p})$ is 1 if p decomposes in K_d, -1 if p remains irreducible in K_d, and 0 if p ramifies in K_d.

Lemma 2.4: Let L be a finite Galois extension of \mathbb{Q}. Then there are only finitely many elliptic curves E with CM (up to \mathbb{C}-isomorphism) which are defined over L and satisfy $\text{End}(E) \subseteq L$.

Proof: Let E be an elliptic curve over L with CM such that $\text{End}(E) \subseteq L$. Then $\text{End}(E) \otimes \mathbb{Q} = K_d$ for some $d \in D$ [Shi, p. 103, Prop. 4.5]. Moreover, $\text{End}(E)$ is an order of O_d and there is a unique $c \in \mathbb{N}$ with $\text{End}(E) = O_{d,c}$ [Shi, p. 105, Prop. 4.1]. In addition, $E \cong \mathbb{C}/a$ for some proper $O_{d,c}$-ideal a [Shi, p. 104, Prop. 4.8]. In particular $j(a)$ is the absolute invariant of E, so $K_d(j(a)) \subseteq L$. By the comments preceding the lemma, $[K_d(j(a)) : \mathbb{Q}] = 2h(d,c)$ and $h(d,c)$ tends to infinity if d or c tend to infinity. Indeed, by the estimates quoted in the proof of the next lemma, $\log h(d) \sim \log d^{1/2}$ and $\psi(d,c) \geq \frac{ac}{\log \log c}$ for some $a > 0$. Thus, there are only finitely many possibilities for (d,c). For each pair $(d,c) \in D \times \mathbb{N}$ there are only finitely many possibilities (up to \mathbb{C}-isomorphism) for E. They correspond to the number $h(d,c)$ of classes of proper $O_{d,c}$-ideals [Shi, p. 105, Prop. 4.10]. Consequently, there are only finitely many \mathbb{C}-isomorphism classes of elliptic curves E with CM such that $j(E) \in L$ and $\text{End}(E) \subseteq L$.

Lemma 2.5: Let D be the set of all squarefree positive integers. Then

$$\sum_{d \in D} \sum_{c=1}^{\infty} \frac{1}{h(d,c)^2} < \infty.$$
Proof: By (1), it suffices to prove that

$$
\sum_{d \in D} \frac{1}{h(d)^3} \sum_{c=1}^{\infty} \frac{\left(O_d^x : O_{d,c}^x \right)^3}{\psi(d,c)^3} < \infty.
$$

There are at most 6 units in O_d [BoS, §2.7.3]. Hence, the numerator in the inner sum of the right hand side of (4) is bounded. Next consider the Euler totient function: $\varphi(c) = c \prod_{p \mid c} \left(1 - \frac{1}{p} \right)$. It has an estimate from below: $\varphi(c) > \frac{ac}{\log \log c}$ for some positive constant a [Lev, p. 114, Thm. 6-26]. For each p, $1 - \left(\frac{K}{p} \right) / p \geq 1 - \frac{1}{p}$. Hence, $\psi(d,c) \geq \varphi(c)$, so

$$
\sum_{c=1}^{\infty} \frac{1}{\psi(d,c)^3} \leq \sum_{c=1}^{\infty} \frac{1}{\varphi(c)^3} \leq \frac{1}{a^3} \sum_{c=1}^{\infty} \frac{(\log \log c)^3}{c^3} < \infty.
$$

Finally, by a theorem of Siegel, $\log h(d) \sim \log d^{1/2}$ [Lan, p. 96]. This means that for each $d \in D$ there exists $\varepsilon(d) > 0$ such that $h(d) = d^{\varepsilon(d)/2}$ and $\varepsilon(d) \to 1$ as $d \to \infty$. In particular, $\varepsilon(d) > \frac{3}{4}$ for all d sufficiently large. Hence, $\frac{3-\varepsilon(d)}{2} > \frac{9}{8}$ for almost all d sufficiently large, so there exists $b > 0$ such that

$$
\sum_{d \in D} \frac{1}{h(d)^3} = \sum_{d \in D} \frac{1}{d^{3\varepsilon(d)/2}} \leq \sum_{d=1}^{\infty} \frac{b}{d^{9/8}} < \infty.
$$

We conclude from (5) and (6) that (4) holds.

The main tool from probability theory we use is the Borel-Cantelli Lemma. We formulate its Galois theoretic version as appears in [FrJ, Theorem 18.5.3]:

Lemma 2.6: Let L_1, L_2, L_3, \ldots be finite separable extensions of a field K. For each $i \geq 1$ let \tilde{A}_i be a set of left cosets of $\text{Gal}(L_i)^e$ in $\text{Gal}(K)^e$ and

$$
A_i = \{ \sigma \in \text{Gal}(K)^e \mid \sigma \text{Gal}(L_i)^e \in \tilde{A}_i \}.
$$

Let A be the set of all $\sigma \in \text{Gal}(K)^e$ which belong to infinitely many A_i’s.

(a) If $\sum_{i=1}^{\infty} \frac{|A_i|}{|L_i:K|^e} < \infty$, then $\mu(A) = 0$.

(b) Suppose L_1, L_2, L_3, \ldots are linearly disjoint over K and $\sum_{i=1}^{\infty} \frac{|A_i|}{|L_i:K|^e} = \infty$, then $\mu(A) = 1$.

10
Theorem 2.7: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

(a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\hat{\mathbb{Q}}(\sigma)$ such that $\text{End}(E) \subseteq \hat{\mathbb{Q}}(\sigma)$.

(b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\hat{\mathbb{Q}}(\sigma)$ such that $\text{End}(E) \subseteq \hat{\mathbb{Q}}(\sigma)$.

Proof of (a): Let Λ be the set of all prime numbers $l \equiv 3 \mod 4$. For each l we have $[L_l : K_l] = h(l)$ and $[L_l : \mathbb{Q}_l] = 2h(l)$. In addition, $E^{(l)}$ is defined over $\mathbb{Q}(j(a_l))$ and $\text{End}(E^{(l)}) = O_l$. Hence, if $\sigma \in \text{Gal}(L_l)$, then $E^{(l)}$ is defined over $\hat{\mathbb{Q}}(\sigma)$ and $\text{End}(E^{(l)}) \subseteq \hat{\mathbb{Q}}(\sigma)$. By Proposition 1.1,

$$\sum_{l \in \Lambda} \frac{1}{[L_l : \mathbb{Q}]^e} = \frac{1}{2^e} \sum_{l \in \Lambda} \frac{1}{h(l)^e} \geq \frac{1}{2^e} \sum_{l \in \Lambda} \frac{1}{h(l)^2} = \infty.$$

By Lemma 2.3, the fields L_l, $l \in \Lambda$, are linearly disjoint. In particular $j(a_l) \neq j(a_{l'})$, so $E^{(l)} \neq E^{(l)}$ if $l \neq l'$. It follows from Borel-Cantelli [FrJ, Lemma 18.5.3(b)] that for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many primes l such that $E^{(l)}$ is defined over $\hat{\mathbb{Q}}(\sigma)$ and $\text{End}(E^{(l)}) \subseteq \hat{\mathbb{Q}}(\sigma)$, as desired.

Proof of (b): Let $\sigma \in \text{Gal}(\mathbb{Q})^e$. If an elliptic curve E with CM is defined over $\hat{\mathbb{Q}}(\sigma)$ and $\text{End}(E) \subseteq \hat{\mathbb{Q}}(\sigma)$, then there exist $d \in D$ and a positive integer c such that $L_{d,c} \subseteq \hat{\mathbb{Q}}(\sigma)$. By Lemma 2.4, for each d and c there are only finitely many E's (up to a \mathbb{C}-isomorphism) which are defined together with their endomorphisms over $L_{d,c}$. Thus, if there are infinitely many elliptic curves with CM which are defined together with their endomorphisms over $L_{d,c}$, then σ belongs to infinitely many sets $\text{Gal}(L_{d,c})^e$. Since $[L_{d,c} : \mathbb{Q}] = 2h(d,c)$, Lemma 2.5 implies that $\sum_{d \in D} \sum_{c=1}^{\infty} \frac{1}{[L_{d,c} : \mathbb{Q}]^e} = \sum_{d \in D} \sum_{c=1}^{\infty} \frac{1}{h(d,c)^e} < \infty$. Hence, by Borel-Cantelli [FrJ, Lemma 18.5.3.(a)], the measure of those σ's is 0.

If an elliptic curve E with CM is defined over a field K and if $\text{End}(E) \subseteq K$, then, by Proposition 2.1, all conjugates of j_E are in $K(j_E)$. Therefore, for $\sigma \in \text{Gal}(\mathbb{Q})^e$, if we drop the condition that the endomorphisms of the elliptic curves are defined over $\hat{\mathbb{Q}}(\sigma)$, then the probability that there are infinitely many elliptic curves with CM over $\hat{\mathbb{Q}}(\sigma)$ increases. This is reflected in the following result:
Theorem 2.8: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

(a) If $e \leq 3$, then there are infinitely many elliptic curves E (up to isomorphism) with CM over $\bar{\mathbb{Q}}(\sigma)$.

(b) If $e \geq 4$, then there are only finitely many elliptic curves E (up to isomorphism) with CM over $\bar{\mathbb{Q}}(\sigma)$.

Proof of (a): As in the proof of Theorem 2.7 let Λ be the set of primes $l \equiv 3 \mod 4$. Consider $l \in \Lambda$ and let K_l, O_l, L_l, a_l, $E(l)$, and $h(l)$ be as above. Let τ be a generator of $\text{Gal}(L_l/\mathbb{Q}(j(a_l)))$. If $\alpha \in \text{Gal}(L_l/K_l)$, then τ^α generates $\text{Gal}(L_l/\mathbb{Q}(j(a_l))^\alpha)$ and $(E(l))^\alpha$ is an elliptic curve with CM which is defined over $\mathbb{Q}(j(a_l))^\alpha$. Thus, if $\sigma \in \text{Gal}(\mathbb{Q})^e$ and $\text{res}_{L_l} \sigma \in (\tau^\alpha)^e$, then $(E(l))^\alpha$ is defined over $\bar{\mathbb{Q}}(\sigma)$.

Claim: $\#\{\tau^\alpha \mid \alpha \in \text{Gal}(L_l/K_l)\} = h(l)$.

Indeed, embed L_l in \mathbb{C} and let ρ be the restriction of the complex conjugation to L_l. Since K_l is an imaginary quadratic field, $\text{res}_{K_l} \rho \neq 1$, so $\rho^2 = 1$ and $\rho \neq 1$. Since $l \equiv 3 \mod 4$, $h(l)$ is odd [BoS, p. 346, Thm. 4]. Thus, $\rho \in \text{Gal}(L_l/\mathbb{Q}) \setminus \text{Gal}(L_l/K_l)$. Now assume $\rho^\alpha = \rho$ for some $\alpha \in \text{Gal}(L_l/K_l)$. By Corollary 2.2(d), $\rho \alpha \rho = \alpha^{-1}$, hence $1 = \rho^2 = \alpha^{-1} \rho \alpha = \alpha^{-2}$, which implies $\alpha = 1$ (because $h(l)$ is odd). It follows that the map $\alpha \mapsto \rho^\alpha$ from $\text{Gal}(L_l/K_l)$ into $\text{Gal}(L_l/\mathbb{Q}) \setminus \text{Gal}(L_l/K_l)$ is injective. Since both sets have the same cardinality, the map is bijective. In particular, τ is conjugate to ρ by an element of $\text{Gal}(L_l/K_l)$. Consequently, $\#\{\tau^\alpha \mid \alpha \in \text{Gal}(L_l/K_l)\} = \#\{\rho^\alpha \mid \alpha \in \text{Gal}(L_l/K_l)\} = [L_l : K_l] = h(l)$.

Let $\bar{A}_l = \bigcup_{\alpha \in \text{Gal}(L_l/K_l)} \{1, \tau^\alpha\}^e$. Each of the sets $\{1, \tau^\alpha\}^e$ has 2^e elements and the intersection of every two of them contains only one element (by the Claim). Thus, $|\bar{A}_l| = h(l) \cdot 2^e - (h(l) - 1)$. Let $A_l = \{\sigma \in \bar{\mathbb{Q}} \mid \text{res}_{L_l} \sigma \in \bar{A}_l\}$. Then, $\mu(A_l) = \frac{h(l) \cdot 2^e - (h(l) - 1)}{(2h(l))^e}$. Since $e \leq 3$, Proposition 1.1 implies that

$$\sum_{l \in \Lambda} \mu(A_l) = \sum_{l \in \Lambda} \frac{h(l) \cdot 2^e - (h(l) - 1)}{(2h(l))^e} \geq \frac{2^e - 1}{2^e} \sum_{l \in \Lambda} \frac{1}{h(l)^2} = \infty.$$

By Lemma 2.3, the fields L_l, $l \in \Lambda$ are linearly disjoint. It follows from Borel-Cantelli that for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many elliptic curves with CM which are defined over $\bar{\mathbb{Q}}(\sigma)$.

12
Proof of (b): Let d range over D and let c range over all positive integers. For each d and c let
\[A(d, c) = \bigcup_{\alpha \in \text{Gal}(L_{d,c}/K_d)} \text{Gal}(\mathbb{Q}(j(a_{d,c})^\alpha))^{e}. \]
By Proposition 2.1(b),
\[\mu(A(d, c)) \leq [L_{d,c} : K_d] \left(\frac{1}{[\mathbb{Q}(j(a_{d,c})) : \mathbb{Q}]} \right)^e = \frac{1}{h(d,c)^{e-1}}. \]
If for $\sigma \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many elliptic curves with CM which are defined over $\tilde{\mathbb{Q}}(\sigma)$, then σ belongs to infinitely many of the sets $A(d, c)$ (as argued in the proof of Lemma 2.4). Since $e \geq 4$, we have by Lemma 2.5 that
\[\mu\left(\bigcup_{d,c} A(d, c) \right) \leq \sum_{d,c} \frac{1}{h(d,c)^{e-1}} \leq \sum_{d,c} \frac{1}{h(d,c)^3} < \infty. \]
We conclude from Borel-Cantelli that almost no $\sigma \in \text{Gal}(\mathbb{Q})^e$ belongs to infinitely many sets $A(d, c)$. Thus, for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$, there are only finitely many elliptic curves with CM (up to a \mathbb{C}-isomorphism) which are defined over $\tilde{\mathbb{Q}}(\sigma)$.

Corollary 2.9: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

(a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\tilde{\mathbb{Q}}[\sigma]$.

(b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C}-isomorphism) with CM over $\tilde{\mathbb{Q}}[\sigma]$.

Proof: First suppose $e \leq 2$. By Theorem 2.7(a), for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many elliptic curves E with CM over $\tilde{\mathbb{Q}}(\sigma)$ such that $\text{End}(E) \subseteq \tilde{\mathbb{Q}}(\sigma)$. For all such σ and E let K_E be the quotient field of $\text{End}(E)$. Then $K_E(j_E)$ is a Galois extension of \mathbb{Q} which is contained in $\tilde{\mathbb{Q}}(\sigma)$. Hence, $K_E(j_E) \subseteq \tilde{\mathbb{Q}}[\sigma]$. It follows that an isomorphic copy of E (over \mathbb{C}) is defined over $\tilde{\mathbb{Q}}[\sigma]$.

Now suppose $e \geq 3$. For each $\sigma \in \text{Gal}(\mathbb{Q})^e$ let $\mathcal{E}(\sigma)$ be the set of all elliptic curves E (up to \mathbb{C}-isomorphism) which are defined over $\tilde{\mathbb{Q}}(\sigma)$ such that $\text{End}(E) \subseteq \tilde{\mathbb{Q}}(\sigma)$. Let S be the set of all $\sigma \in \text{Gal}(\mathbb{Q})^e$ such that $\mathcal{E}(\sigma)$ is a finite set. By Theorem 2.7(b), $\mu(S) = 1$.

13
Consider $\sigma \in S$ and let E be an elliptic curve with CM over $\mathbb{Q}[\sigma]$. Then $j_E \in \mathbb{Q}[\sigma]$. Hence, the Galois closure of $\mathbb{Q}(j_E)/\mathbb{Q}$ is contained in $\mathbb{Q}[\sigma]$. By Corollary 2.2(a), the latter contains $\text{End}(E)$. Hence, $E \in \mathcal{E}(\sigma)$. Consequently, there are only finitely many elliptic curves (up to \mathbb{C}-isomorphism with CM over $\mathbb{Q}[\sigma]$). □
References

9 February, 2007