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Abstract

This paper deals with a classical question of Frey and Jarden, who asked in their 1974 paper if a
zero Abelian variety over a number fieldK acquires infinite rank over the maximal Abelian extensionKab

of the ground field. We generalize recent results of Rosen and Wong on the subject. However, the
question in full generality remains open. Some further results on the rank in certain other infinite exte
are included.
 2006 Published by Elsevier Inc.
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1. Introduction

Let K a field andA|K an Abelian variety. By the Mordell–Weil theorem,A(K) is finitely
generated providedK is a finitely generated field. On the other hand it is known thatA(K) is of
infinite rank unlessK is algebraic over a finite field. (We often tacitly assumeA �= 0.) Interesting
problems arise if one studies the rank in other infinite algebraic extensions ofK . For elliptic
curvesE|Q Frey and Jarden showed thatE(Ω) is of infinite rank whereΩ denotes the maxima
Kummer extension ofQ of exponent 2. In the light of these facts Frey and Jarden asked in
paper [2]:
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Question. Is rank(A(Kab)) = ∞ for every Abelian varietyA over a number fieldK? HereKab

denotes the maximal Abelian extension ofK .

The most recent result towards this question we are aware of is due to Rosen and Wo
They show (over a number fieldK as ground field) that rank(JT (Kab)) = ∞ for any cyclic
coverT |P1 of positive genus. Papers [9,19,26] contain special cases of this statement. W
strengthen the above result as follows.

Theorem 1.1. Let K a Hilbertian field andT |K a smooth projective curve of positive gen
Suppose thatT can be realized as a Galois cover ofP1 with groupΓ . Let B an arbitrary non-
zero quotient ofJT . Then there is an infinite Galois extensionΩ|K with group

∏∞
i=1 Γ such that

rank(B(Ω)) = ∞. In particular rank(B(Kab)) = ∞ providedΓ is Abelian.

We can thus treat a broader class of Abelian varieties and a broader class of ground fi

Remark 1.2. (1) Any Abelian varietyA over a fieldK is the quotient of a Jacobian variety. S
[17, 10.1] for example.

(2) Theorem 1.1 naturally leads us to the following question: Is any simple Abelian v
over a fieldK the quotient of the JacobianJT of a curveT |K which can be realized as an Abeli
Galois cover ofP1? Lange pointed out that the answer to this question is not known even
the complex numbersK = C. If the answer to this question is yes, thenA(Kab) is of infinite
rank for any non-zero Abelian varietyA over a Hilbertian fieldK .

In the proof of Theorem 1.1 we use methods totally different from the method in [21]
key argument in our paper is a specialization theorem for Abelian varieties over Hilbertian
(see Proposition 3.1 below). We want to mention that while reading papers [22,23] of Rub
Silverberg on rank frequencies in families of quadratic twists of elliptic curves, it occurred
that we might use a specialization theorem. The specialization technique also allows us t
the following infinite rank result.

Theorem 1.3. Let A a non-zero Abelian variety over a Hilbertian fieldK . Suppose thatA
admits a degreed projective embedding. Assume thatd � 2. Thenrank(A(Ω)) = ∞ whereΩ is
the compositum of all extensions ofK of degreed .

In [21] this is shown for the compositum of all extensions ofK of degree� d(4 dim(A) + 2)

instead ofΩ . Finally we can slightly generalize a classical result in [2].

Theorem 1.4 (Frey–Jarden).Let A a non-zero Abelian variety over a Hilbertian fieldK and
e � 1. WriteKs for the separable closure ofK . For σ = (σ1, . . . , σe) ∈ Ge

K denote byKs(σ ) the
fixed field inKs of the closure of the group〈σ1, . . . , σe〉 ⊂ GK generated by the components
the vectorσ . Thenrank(A(Ks(σ ))) = ∞ for almost all(in the sense of Haar measure onGe

K )
σ ∈ Ge

K .

Several remarks1 are in order.

1 We want to thank M. Jarden for a detailed explanation of the relative roles of Theorem 1.4, [2, 9.1], [4, Theo
and the result in Appendix A.
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Remark 1.5. (1) In [2, 9.1] Frey and Jarden have shown Theorem 1.4 under the addition
pothesis thatK is afinitely generatedHilbertian field.

(2) Forσ ∈ Ge
K , denote byKs[σ ] the maximal Galois extension ofK in Ks(σ ). In Appen-

dix A to this paper Jarden proves that the statement of the above Theorem 1.4 remains tru
replacesKs(σ ) by its subfieldKs[σ ]. This was known in case of afinitely generatedHilbertian
field K due to work of Geyer and Jarden (see [4, Theorem B]), but the case of an arbitra
necessarily finitely generated Hilbertian fieldK as ground field is new.

(3) Let F a finitely generated field andK an infinite algebraic extension ofF . Assume
that K is Hilbertian. LetA|K a non-zero Abelian variety. Then there is a finitely genera
Hilbertian intermediate fieldF ⊂ K ′ ⊂ K with [K ′ : F ] < ∞ and an Abelian varietyA′|K ′ such
thatA ∼= A′ ⊗K ′ K . By the classical result [2, 9.1] mentioned above rank(A′(K ′

s(σ ))) = ∞ for
almost allσ ∈ Ge

K ′ . Furthermore we may identifyGK with a subgroup ofGK ′ . However this
doesnot immediately imply rank(A(Ks(σ ))) = ∞ for almost allσ ∈ Ge

K asGe
K has measure

zero inGe
K ′ by our hypothesis[K : F ] = ∞. Thus our Theorem 1.4 is stronger than the class

result [2, 9.1] of Frey and Jarden. By a similar kind of reasoning Jarden’s result in Appen
is stronger than the result [4, Theorem B] of Geyer and Jarden.

(4) Im has shown in [8] that for any elliptic curveE|Q and anyσ ∈ GQ the Mordell–
Weil group E(Qs(σ )) is of infinite rank. Furthermore, ifE is an elliptic curve over a num
ber field K and if E(K) contains a pointP such that 2P �= 0 and 3P �= 0, then again
rank(E(Ks(σ ))) = ∞ for all σ ∈ GK by Im’s result [7]. Larsen suspects in [13] that it mig
be true, that rank(A(Ks(σ ))) = ∞ for any non-zero Abelian varietyA over an infinite, finitely
generated fieldK and anyσ ∈ Ge

K .

This paper is organized as follows. After summarizing some generalities on Hilbertian
in Section 2 we prove a specialization theorem for Abelian varieties over Hilbertian fie
Section 3. In Section 4 we prove an abstract sufficient condition for infinite rank over in
extensions. In the final section we derive the above theorems from the result in Section 4

2. Hilbertian fields

We briefly summarize elementary but important facts about Hilbertian fields, including
tion of so-called abstract Hilbert sets. The most useful references on Hilbertian fields are

Let K a field. LetT = (T1, . . . , Tn) a vector of indeterminates andX a single indeterminate
For an irreducible polynomial

f (T ,X) =
d∑

i=0

ai(T )Xi ∈ K(T )[X]

of degreed let Uf beAn with the poles of theai removed and let

Hf := {
t ∈ Uf (K) | f (t,X) ∈ K[X] irreducible of degreed

}

the correspondingfundamental Hilbert set. A Hilbert set is any subset ofAn(K) which may be
written as the intersection of finitely many fundamental Hilbert sets and one non-empty op

K is said to be aHilbertian field if (for all n) all Hilbert sets are non-empty and hence de
in An(K). Note that algebraically closed fields, local fields and finite fields are never Hilbe
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On the other hand number fields, fields of the formF(u) whereF is an arbitrary field and finite
extensions of Hilbertian fields are Hilbertian.

If S is an integral scheme, then we shall denote its function field byR(S) in the sequel. Le
X an integral, separated, algebraicK-scheme. We shall say thatp :Y → X is aHilbert coverof
X if Y is an integral, separated, algebraicK-scheme andp is a finite, flat, generically separab
(that is, the extension of function fieldsR(Y )|R(X) is separable) morphism. Note that we assu
Y is integral butnot necessarily geometrically integral.

If S is aK-scheme ands ∈ S is a point, then we shall denote byK(s) the residue field ofs.
Note thatK(s) is an extension field ofK . Now let p :Y → X a Hilbert cover of degreed and
x ∈ X a closed point. We shall say thatx is inert for p if p−1(x) is connected and geometrica
reduced overK(x). Thusx is inert forp iff p−1(x) is Spec of a finite separable extension fi
of K(x) of degreed . If x is inert forp, then we writesY |X(x) for the unique point overx. We
denote the set of all closed pointsx ∈ X which are inert forp by Inert(Y |X) and call Inert(Y |X)

the abstract Hilbert setassociated top. Note that Hilbert sets consist ofK-rational points in
An(K) whereas an abstract Hilbert set Inert(Y |X) is a set of closed points ofX. For example, if
X is aK-variety (varieties are always meant to be geometrically integral in this paper) andF |K
is a finite, separable extension, thenXF → X is a Hilbert cover and Inert(XF |X) consists of the
closed pointsx ∈ X for whichK(x)|K is a separable extension linearly disjoint fromF .

Remark 2.1. Let X an integral, separated, algebraicK-scheme,Y → X a Hilbert cover ofX
andZ → Y a Hilbert cover ofY . Let x ∈ X a closed point. Thenx ∈ Inert(Z|X) if and only if
x ∈ Inert(Y |X) andsY |X(x) ∈ Inert(Z|Y).

Proposition 2.2. Let K a Hilbertian field andn � 1. Let U ⊂ An a non-empty open set an
p : X → U a Hilbert cover ofU . Then the set

Inert(X|U) ∩ U(K) ⊂ An(K)

contains a Hilbert set. In particular it is dense inAn(K) and thus infinite.

Proof. We may assume thatU = Spec(A) and hence alsoX = Spec(B) is affine. Eventually
makingU smaller we may even assumep étale andB = A[b]. Let T = (T1, . . . , Tn) the co-
ordinates ofAn. ThenK(T ) is the quotient field ofA. Let f (T ,Z) ∈ K(T )[Z] the minimum
polynomial ofb. We havef (T ,Z) ∈ A[Z], asA is normal, andB = A[Z]/f (T ,Z)A[Z]. Now
t ∈ U(K) is inert for p iff B ⊗A K(t) = K[Z]/f (t,Z) is a field, that is iff the specializatio
f (t,Z) is irreducible. Thus Inert(X|U) ∩ U(K) contains the Hilbert setHf ∩ U(K). �

In the following we let Inert(Y•|X) = ⋂s
i=1 Inert(Yi |X) if (pi :Yi → X)i=1,...,s is a finite

family of Hilbert covers ofX. Furthermore, iff : T → S is a finite, flat morphism of scheme
andΓ := AutS(T ), then we shall say thatf is aGalois coverif the canonical map

Mor(S,Z) → Mor(T ,Z)Γ , h �→ h ◦ f

is bijective for all schemesZ.
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Remark 2.3. Let K a field andX a smoothK-variety. Then the function fieldR(X) contains a
purely transcendental subfieldL over whichR(X) is of finite degree. Letn the transcendenc
degree ofL|K . We may then construct a diagram

X′

p

⊂ X

U ⊂ An,

where the vertical mapp is an étale Hilbert cover of degree[R(X) : L], the symbols⊂ stand for
open immersions andp induces the inclusionL → R(X) if we identify L with R(An). (One may
use [3, 6.1.5] to see this.) Once such a diagram is established, ifR(X) = R(X′) happens to be
Galois overL = R(U), thenp will even be an étale Galois cover with groupG(R(X′)|R(U)).
See [6, Exposé V] for generalities on Galois covers of schemes.

Corollary 2.4. Let X a smooth variety over a Hilbertian fieldK and (pi : Yi → X)i a finite
family of Hilbert covers ofX. ThenInert(Y•|X) is infinite.

Proof. Consider a diagram as in the above remark. LetY ′
i := p−1

i (X′). Now Inert(Y ′•|U) is
infinite by Proposition 2.2 and for anyu ∈ Inert(Y ′•|U) there is a unique pointx ∈ X′ over u

which lies in Inert(Y ′•|X′) by Remark 2.1 and hence in Inert(Y•|X). �
The following strengthening of the corollary will be important in Section 3. Theorems sim

to Proposition 2.5 below with similar proofs can be found in several places in book [3] of
and Jarden. See part A of the proof of [3, 18.6.1] for example.

Proposition 2.5. Let K a Hilbertian field. Consider a diagram as in Remark2.3. Let
(pi :Yi → X)i a finite ( possibly empty) family of Hilbert covers ofX. Let F |K a finite, sep-
arable extension( possiblyF = K) and fix once and for all aK-embeddingF → Ks . Then there
is a sequence(ti)i∈N of geometric points inX′(Ks) with the following properties:

(1) Each geometric pointti is localized in a point inInert(Y•|X).
(2) p(ti) ∈ U(K) is K-rational and[K(ti) : K] = [R(X) : R(U)] for all i.
(3) (F,K(t1),K(t2), . . .) is a linearly disjoint sequence of fields, that isF ⊗ ⊗∞

i=1 K(ti) is a
field.

LetΩ the composite field inKs of F with all theK(ti). ThenX(Ω) is infinite.

Proof. Suppose that geometric pointst1, . . . , tm ⊂ X′(Ks) are already constructed, such th
properties (1) and (2) hold for 1� i � m and such that(F,K(t1), . . . ,K(tm)) is a linearly disjoint
family of extensions ofK . Let E = FK(t1) · · ·K(tm) the composite field. LetY ′

i = p−1
i (X′).

Consider the composite Hilbert coversY ′
i → X′ → U and X′

E → X′ → U . We may pick
a K-rational pointu ∈ Inert(Y ′•|U) ∩ Inert(X′

E |U) ∩ U(K). Then u is inert for p by Re-
mark 2.1. Hence there is a unique closed pointx ∈ X′ over u and, again by Remark 2.1, w
havex ∈ Inert(Y ′•|X′) ∩ Inert(X′

E |X′). Let tm+1 ∈ X′(Ks) one of the geometric points loca
ized atx (corresponding to aK-embeddingj :K(x) → Ks ). Clearly (1) holds fori = m + 1.
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Furthermorep(tm+1) = u is K-rational by construction. Fromu ∈ Inert(X′|U) it follows that
[K(tm+1) : K] = deg(p) = [R(X) : R(U)]. Hence (2) holds fori = m + 1. To see that also (3
holds for i = m + 1 note thatK(x) ⊗K E must be a field, becausex ∈ Inert(X′

E |X′). Hence
K(tm+1) = j (K(x)) is linearly disjoint fromE = FK(t1) · · ·K(tm). �
Remark 2.6. (1) If R(X)|R(U) and hencep happens to be Galois with groupΓ , then allK(ti)|K
will be Galois with groupΓ . If in additionF |K is Galois, thenΩ|K is an infinite Galois exten
sion withG(Ω|K) = G(F |K) × ∏∞

i=1 Γ by 2.
(2) As indicated above we may apply the theorem without the familyY•|X. It then states tha

for any diagram as in Remark 2.3, there is a sequence(ti)i in X(Ks) satisfying (2) and (3).
(3) In particular we see that for any varietyX, whose function fieldR(X) contains a purely

transcendental subfield over whichR(X) is Galois with groupΓ , there is an infinite Galoi
extensionΩ|K with group

∏
i∈N Γ , such thatX(Ω) is infinite. FurthermoreX(Kab) is infinite

providedΓ is Abelian. For exampleC(Kab) is infinite for any smooth curve which can b
realized as an Abelian Galois cover ofP1.

We briefly indicate how the proof of our infinite rank results will proceed. Suppose w
given a diagram as in Remark 2.3 over a Hilbertian fieldK , an Abelian varietyA|K and a
non-constant morphismf : X → A. We will see by the specialization Theorem 3.1 in the n
section that one can construct a finite family of Hilbert coversY•|X such thatf (X(Ω)) generates
a subgroup of infinite rank inA(Ω), providedΩ is as in Proposition 2.5. All infinite rank resul
in this paper arise in that way.

3. Specialization

In this section we will discuss a specialization theorem that will play the key role in the se
This specialization theorem is similar to a theorem in Lang’s encyclopaedia [11, I.7]. Lang
not give a proof but refers to a paper of Néron [20] containing a version weaker than [11
which is formulated in the language of Weil’s foundations and therefore difficult to read fo
generation. For that reason we include a proof following [24] in some places.

For the whole section letK be a Hilbertian field,A|K an Abelian variety andT |K a smooth,
projective variety. Assume thatA(K) is of finite rank. Fort ∈ T there is a specialization map

αt : MorK(T ,A) → A
(
K(t)

)
, f �→ f (t).

In the rest of the paper we view without further mentioningA(K) as the subgroup of consta
morphisms in MorK(T ,A) and letMK(T ,A) := MorK(T ,A)

A(K)
. Thenαt induces a homomorphism

αt :MK(T ,A) → A(K(t))

A(K)

which fits into an exact diagram

0 A(K) MorK(T ,A)

αt

MK(T ,A)

αt

0

0 A(K) A
(
K(t)

)
A(K(t))
A(K) 0.
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Thus ker(αt ) ∼= ker(αt ). Note that ker(αt ) is non-zero for anyK-rational pointt ∈ T (K) pro-
videdMK(T ,A) �= 0. Hence the specialization maps can be non-injective for infinitely mat .
However we have the following specialization theorem.

Proposition 3.1. There is a finite family of étale Hilbert coversgi :Xi → T such that the spe
cialization mapsαt andαt are injective for allt ∈ Inert(X•|T ).

The proof will occupy the rest of this section.

Lemma 3.2. MK(T ,A) is a freeZ-module of finite rank. In particularker(αt ) is a freeZ-module
of finite rank for allt ∈ T .

Proof. The injection MorK(T ,A) → MorK(TK,AK) induces an injectionMK(T ,A) →
MK(TK,AK). Let J |K the Albanese variety ofTK . There is an isomorphism

MK(TK,AK) ∼= HomK(J,AK)

by the universal mapping property of the Albanese variety. (See [11, p. 31] and [12, Sectio
for information on the Albanese variety.) Furthermore, by [17, 12.5] or [18, Theorem 3, p.
HomF (B1,B2) is finitely generated andZ-free for any two Abelian varietiesB1 andB2 over
a field F . ThusMK(T ,A) and ker(αt ) are finitely generated andZ-free as submodules of th
finitely generated andZ-freeZ-module HomK(J,AK). �
Lemma 3.3. Let l a prime different from the characteristic. There exists a finite separable e
sionF |K such that for allt ∈ Inert(TF |T ) the restriction

αt |MorK(T ,A)l → Al

(
K(t)

)

of the specialization map is bijective.

Proof. Clearly ker(αt ) ∩ MorK(T ,A)l = 0 as ker(αt ) is Z-free. The maplA is an étale isogen
due to our hypothesis onl. Hence the group schemeAl is finite and étale overK . Thus there are
separable extension fieldsEi overK such that there is anK-isomorphism

Al
∼=

s∐
i=1

Spec(Ei).

Let F = E1 · · ·Es the composite field andm = |{i | Ei = K}|. If t ∈ Inert(TF |T ), thenK(t)

is linearly disjoint fromF and henceAl(K(t)) = Al(K). (To see this note that|Al(L)| =
Σ |HomK(Ei,L)| = m for all finite extension fieldsL|K which are linearly disjoint fromF , in
particular forL = K or L = K(t).) Now αt |MorK(T ,A)l → Al(K(t)) = Al(K) is clearly sur-
jective for all t ∈ Inert(TF |T ), as MorK(T ,A) contains the constant morphisms inAl(K). �
Lemma 3.4. Let l a prime different from the characteristic. Then the groupMorK(T ,A)⊗Z Z/l

is finite.
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Note that we did assume rank(A(K)) < ∞ throughout this section, but we do not assume
A(K) is finitely generated. Hence also MorK(T ,A) needs not be finitely generated.

Proof2 of Lemma 3.4. Let M := MorK(T ,A). Then M/A(K) = MK(T ,A) is a finitely
generated, freeZ-module by Lemma 3.2. It is thus enough to show thatA(K)/l is finite.
F := A(K)/A(K)tor is a torsion-free Abelian group and rank(F ) < ∞ by our hypothesis
rank(A(K)) < ∞. It follows that dimFl

(F/l) � rank(F ) < ∞. HenceF/l is finite. It remains to
prove thatA(K)tor/l is finite. If r = dim(A), thenA(K)li injects toA(K)li = (Z/li)2r and hence
dimFl

(A(K)li / l) � 2r for all i ∈ N. Consider thel-Sylow subgroupA(K)l∞ = ⋃∞
i=1 A(K)li . It

follows thatA(K)l∞/l is finite. Finally, making use of the isomorphismA(K)tor/l ∼= A(K)l∞/l,
we conclude thatA(K)tor/l is finite, as desired. �
Lemma 3.5. Let f :X → Y a finite, flat morphism of integral schemes and suppose thatY is
normal. Iff is of degree1 (that is[R(X) : R(Y )] = 1), thenf is an isomorphism.

Proof. f (X) is closed asf is a finite morphism and open asf is a flat morphism. Hencef must
be surjective, asY is connected. Ifx ∈ X andU is an open, affine neighborhood ofy = f (x),
thenV := f −1(U) is open and affine. The homomorphismf � :OY (U) → OX(V ) = f∗OX(U)

is a monomorphism of integral domains which makesOX(V ) a finite and hence integral algeb
overOY (U). The hypothesis[R(X) : R(Y )] = 1 implies that both ringsOY (U) andOX(V ) have
the same quotient field. FurthermoreOY (U) is normal. Hencef � :OY (U) → OX(V ) must be
an isomorphism. It follows thatf is an isomorphism. �
Lemma 3.6. Let l a prime different from the characteristic. There is a finite family of é
Hilbert covers(gi :Xi → T )i of T such that the map

MorK(T ,A) ⊗Z Z/l → A
(
K(t)

) ⊗Z Z/l

induced byαt is injective for allt ∈ Inert(X•|T ).

Proof. Let M := MorK(T ,A) andf ∈ M . We denote the multiplication byl mapA → A by lA.
Note thatlA is finite and étale by [16, 8.2]. Form Cartesian squares

F (f )

h

j

X(f )

g

f ′
A

lA

Spec
(
K(t)

) w
T

f
A,

that isX(f ) = T ×A,lA A andF (f ) = Spec(K(t)) ×T X(f ). The vertical morphismsg andh are
finite and étale aslA is.

X(f ) must be regular by [5, IV.6.5.2] becauseg is a finite, étale morphism andT is regular.
All local rings of X(f ) are regular local rings and hence integral. Therefore, by [5, I.6.1.10
connected components ofX(f ) are open and finite in number. (Note thatX(f ) is of finite type

2 We thank C. Greither and M. Jarden for independently providing us with a proof of Lemma 3.4.
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over a field and thus Noetherian.) Hence they are also closed. It follows thatX(f ) splits up into
the coproduct

X(f ) =
s(f )∐
i=1

X
(f )
i

over its connected components. Letνi :X(f )
i → X(f ) the inclusion. Thenνi is an open immersion

(and hence étale) and a closed immersion (and hence finite) at the same time. If we de
gi := g ◦ νi :X(f )

i → T the restriction of the mapg :X(f ) → T to X
(f )
i , thengi is finite and étale

as a composite of two maps which are each finite and étale. Thus the mapsgi are Hilbert covers
of T .

Now let t ∈ H(f ) := Inert(X(f )• |T ). Denote byxi ∈ X
(f )
i the unique point abovet . Then

F (f ) =
s(f )∐
i=1

Spec
(
K(xi)

)

and the morphismF (f ) → X(f ) is the coproduct of the canonical morphisms Spec(K(xi)) →
Xi . Moreover we have[K(xi) : K(t)] = deg(gi). Assume nowαt (f ) ∈ lA(K(t)). This means
that there is a morphisma : Spec(K(t)) → A such thatlA ◦ a = f ◦ w. Using the Cartesia
diagram above gives a morphisms : Spec(K(t)) → F (f ) such thath ◦ s = IdSpec(K(t)) and
(f ′ ◦ j) ◦ s = a. In other words:h has a section. Hence there is an indexi whereK(xi) = K(t).
Thengi must be a finite flat morphism of degree 1. By Lemma 3.5gi is an isomorphism.

It follows thatg :X(f ) → T has a sectiong′ :T → X(f ) and this impliesf ∈ l · MorK(T ,A).
Indeed, sincef ◦ g = lA ◦ f ′ we havef = f ◦ g ◦ g′ = lA ◦ f ′ ◦ g′. We have shown:

∀t ∈ H(f ): f ∈ lM ⇐⇒ αt (f ) ∈ lA
(
K(t)

)
.

M/l is finite by Lemma 3.4. LetR ⊂ M a system of representatives forM/l. R is finite and
henceΣ := {X(f )

i | f ∈ R, i ∈ {1, . . . , s(f )}} is a finite set. LetH := ⋂
Y∈Σ Inert(Y |T ). Then

∀t ∈ H : ∀f ∈ R: f ∈ lM ⇐⇒ αt (f ) ∈ lA
(
K(t)

)
.

From this it is immediate thatαt induces an injectionM ⊗ Z/l → A(K(t)) ⊗ Z/l for all
t ∈ H . �
Proof of Proposition 3.1. Let l a prime different from char(K) and M := MorK(T ,A). Let
X1, . . . ,Xs as in the assertion of Lemma 3.6 andF |K as in Lemma 3.3. PutX0 := TF . Let
t ∈ Inert(X•|T ). We show thatαt is injective. Denote byN the kernel and byI the image ofαt .
There is an obvious exact sequence

Ml → Il
δ−→ N/l → M/l → I/ l.

The mapδ is explicitly given as follows: For eachi ∈ Il choosem ∈ M with αt (m) = i. Then
αt (lm) = 0, solm ∈ N . Map i to the residue classlm+ lN . In the above exact sequence the le
hand map is surjective and the right-hand map is injective by Lemmas 3.3 and 3.6, respe
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HenceN/l = 0. FurthermoreN is finitely generated andZ-free by Lemma 3.2. This implie
N = 0. �
Remark 3.7. We briefly compare the specialization Theorem 3.1 with other specialization
rems in the literature.

(1) As mentioned in the introduction to this section, there is a classical specialization th
due to Néron [20, Chapitre IV, Theorem 6, p. 133]. We restate Néron’s result in our languag
B|R(T ) an Abelian variety. ThenB extends to an Abelian schemeπ :B → U over a non-empty
open subschemeU of T and fort ∈ U we denote byBt the fiberπ−1(t) of t . Bt is an Abelian
variety overK(t). Néron showed thatBt(K(t)) contains a copy ofB(R(T )) for infinitely many
values oft providedB is the Jacobian variety of a curve overR(T ). This is not enough fo
our application as we do not want to restrict our attention to Jacobians. In [11] Lang giv
statement for an arbitrary Abelian varietyB|R(T ), but a proof is not included in [11]. Serre
[24, 11.1] proves the statement for an arbitrary Abelian varietyB|R(T ) but under the additiona
hypothesis thatT = P1 andK is a number field. This is again not enough for our application

(2) Let A|K a Jacobian variety. One may apply Néron’s theorem to the case of the co
family, that is withB = A ⊗K R(T ), U = T andB = T ×K A. ThenB(R(T )) = A(R(T )) =
MorK(T ,A) because every rational map from the smooth varietyT to an Abelian variety is
defined on the whole ofT by [16, 3.1]. By Néron’s theorem, as we assumed thatA is a Jacobian
A(K(t)) contains a copy of MorK(T ,A) for infinitely many values oft . This also follows by
Proposition 3.1 together with Corollary 2.4, but in Proposition 3.1 there is no need to a
thatA is a Jacobian variety.

(3) An interesting specialization theorem due to Silverman (see [1,25]) implies a stat
similar to Proposition 3.1: LetA|K an arbitrary Abelian variety andΛ ⊂ MorK(T ,A) a subgroup
for which Λ ∩ A(K) is torsion. Whileαt andαt can be non-injective for infinitely manyt ∈ T

as mentioned above, ker(αt ) ∩ Λ must be zero outside a set of closed points of bounded he
providedK is a global field and the Néron–Severi group ofT is cyclic. Nevertheless we prefe
to use Proposition 3.1 above, because we neither want to impose stricter hypothesis onK nor
an additional hypothesis onT and, most importantly, because we need the injectivity ofαt for
sufficiently manyt , which is equivalent to the injectivity ofαt on the whole of MorK(T ,A). The
weaker estimate of the good locus does not matter in our application.

4. Sufficient condition for infinite rank

In this section we exploit the above results to establish an infinite rank result that will
the theorems mentioned in the introduction. For the whole section letK a Hilbertian field and
A|K an Abelian variety. Assume thatA(K) is of finite rank. Consider a diagram

T ′

p

⊂ T

U⊂ An,

where the vertical mapp is an étale Hilbert cover and the symbols⊂ stand for open immer
sions. (Recall Remark 2.3.) Furthermore letF |K a finite separable extension and assume
MF (TF ,AF ) �= 0. Fix once and for all aK-embeddingF → Ks .
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Remark 4.1. One may assumeF = K for a first reading. We need the extraF when we apply the
results in the important special case whereT is a smooth projective curve of positive genus a
A = JT is its Jacobian variety. ThenT (K) can be empty andMK(T ,JT ) can be zero. As soo
asT has a rational point overF , however,MF (TF ,JT,F ) contains the canonicalF -embedding
TF → JT,F and is thus non-zero.

Theorem 4.2. There is a sequence(ti)i∈N of points inT ′(Ks) with the following properties:

(1) rank(A(FK(ti))) � rank(A(F )) + rank(MF (TF ,AF )) for all i. HereFK(ti) is the corre-
sponding composite field inKs .

(2) p(ti) ∈ U(K) is K-rational and[K(ti) : K] = deg(p) for all i.
(3) (F,K(t1),K(t2), . . .) is a linearly disjoint sequence of fields.

Let I ⊂ N and consider the composite fieldΩI = F · ∏
i∈I K(ti). If I is finite, then

rank(A(ΩI )) � rank(A(F )) + |I | rank(MF (TF ,AF )). Finally, if I is infinite, then
rank(A(ΩI )) = ∞. (Recall that we assumedMF (TF ,AF ) �= 0 at the beginning of this section.)

Proof. By Proposition 3.1 there is a finite family(pi :Yi → TF ) of étale Hilbert covers such tha

αx :MF (TF ,AF ) → A(F(x))

A(F )
, f �→ f (x)

is injective for every closed pointx ∈ Inert(Y•|TF ). (HereF(x) denotes the residue field of th
closed pointx ∈ TF which is, of course, anF -algebra.) Now consider the composite Hilb
coversYi → TF → T . By Proposition 2.5 there is a sequence(ti)i∈N of geometric points in
T ′(Ks), which satisfies (2) and (3) and such that eachti is localized in a pointxi ∈ Inert(Y•|T ).
By Remark 2.1 there is a unique closed pointx̂i ∈ T ′

F ⊂ TF abovexi andx̂i ∈ Inert(Y•|TF ).
If we let f one of the non-constant morphismsTF → AF , we obtain the following diagram:

∐
Yi

Spec
(
F(x̂i)

)
T ′

F ⊂ TF

f
AF

Spec
(
K(xi)

)
T ′ ⊂ T A

U ⊂ An

in which the two complete squares are Cartesian. ThusF(x̂i) = F ⊗K K(xi) = FK(ti). αx̂i
must

be injective, aŝxi ∈ Inert(Y•|TF ). Hence rank(A(FK(ti))) � rank(A(F ))+ rank(MF (TF ,AF )).
This concludes the existence proof for a sequence which satisfies (1)–(3).
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Now (FK(t1),FK(t2), . . .) is a linearly disjoint sequence of extensions ofF for any sequenc
(ti)i∈N, which satisfies (1)–(3). From this it is immediate that

⊕
i∈I

A(FK(ti))

A(F )
→ A(ΩI )

A(F )

is injective. This implies the statements about rank(A(ΩI )). �
Remark 4.3. Let (f1, . . . , fR) ⊂ MorF (TF ,AF ) a family of morphisms whose image
MF (TF ,AF ) is Z-linearly independent. Then(fj (xi))1�j�R,i∈I is Z-linearly independen
in A(ΩI ) by the proof of the theorem. Note thatfj (xi) ∈ A(FK(xi)) but not necessaril
∈ A(K(xi)), asfj need not be defined overK .

Remark 4.4. If p is a Galois cover with groupΓ andF |K is Galois, then allK(ti)|K are
Galois with groupΓ and alsoΩI |K is Galois with G(ΩI |K) = G(F |K) × ∏

i∈I Γ . Thus
rank(A(Kab)) = ∞ providedp is an Abelian Galois cover andF |K is an Abelian extension.

5. Proof of Theorems 1.1, 1.3 and 1.4

We can now prove the theorems mentioned in the introduction.

Proof of Theorem 1.1. Let T a smooth, projective curve of positive genus over a Hilber
field K andp :T → P1 a Galois cover with groupΓ . Let a ∈ P1(K). There is a pointx ∈ T (Ks)

with p(x) = a, becausep is surjective.F := K(x) is then a Galois extension ofK = K(a) (with
group a subquotient ofΓ ). If we choosea ∈ Inert(T |P1) at the beginning, thenG(F |K) = Γ .

Now T (F ) is non-empty, and thus we have a canonicalF -embeddingλ :TF → JT,F , which
sendsy ∈ T (Ks) to the divisor class[y] − [x] ∈ JT (Ks). Let B a non-zero Abelian variet
and π :JT → B a surjective homomorphism. ThenπF ◦ λ : TF → BF is non-constant an
thusMF (TF ,BF ) �= 0. Let U ⊂ P1 \ ∞ a non-empty open set such thatT ′ := p−1U → U is
étale. IfB(K) is already of infinite rank, then there is nothing to prove. Thus we may as
rank(B(K)) < ∞. Then rank(B(Ω)) = ∞ for a certain infinite Galois extensionΩ|K with group
G(Ω|K) = ∏

i∈N Γ by Theorem 4.2 and Remark 4.4.�
Proof of Theorems 1.3 and 1.4. Let K a Hilbertian field andA|K a non-zero Abelian vari
ety. We will apply Theorem 4.2 withT := A andF := K in order to prove Theorems 1.3 an
1.4 simultaneously. Again we may and do assume rank(A(K)) < ∞. ObviouslyMK(T ,A) =
EndK(A) is of rank� 1, as it contains the identity morphism. The function fieldR(A) contains
a purely transcendental subfieldL, over which it is a finite extension. IfA admits a projective
embedding of degreed , then we may assume[R(A) : L] = d in addition. By Remark 4.1 ther
are non-empty open setsT ′ ⊂ A andU ⊂ An and an étale Hilbert coverp :T ′ → U of degree
[R(A) : L]. By Theorem 4.2 we can conclude that there is a linearly disjoint sequence(Ki)i∈N of
separable extensions ofK , all of degree[R(A) : L], such that rank(A(Ki)) � rank(A(K)) + 1.
FurthermoreA acquires infinite rank over the composite field of allKi and, of course, also ove
the composite field of any infinite subfamily of(Ki)i∈N. Theorem 1.3 readily follows from tha

To prove Theorem 1.4 we have to show that

X = {
σ ∈ Ge

K | rank
(
A

(
Ks(σ )

)) = ∞}
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is of measure 1. LetHi = G(Ks |Ki). Then obviously

X ⊃ {
σ ∈ Ge

K | Ks(σ ) contains infinitely manyK(xi)
} =

∞⋂
n=1

∞⋃
i=n

He
i .

It follows from the linear disjointness of(Ki)i∈N that(He
i )i∈N is an independent family of ope

subgroups ofGe
K . By the lemma of Borel–Cantelli [3, 18.3.5] it remains to note that the se∑∞

i=1[Ge
K : He

i ]−1 = ∑∞
i=1[R(A) : L]−e diverges, in order to obtain that the right-hand term

measure 1, as desired.�
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Appendix A. The rank of Abelian varieties over large Galois extensions of Hilbertian
fields

Moshe Jarden, Tel Aviv University3

We denote the absolute Galois group of a fieldK by Gal(K). For eachσ ∈ Gal(K)e let
Ks(σ ) be the fixed field ofσ1, . . . , σe in Ks and letKs[σ ] be the maximal Galois extensio
of K in Ks(σ ). Consider an Abelian varietyA over K . Theorem B of [4] says that ifK is
infinite and finitely generated over its prime field (hence Hilbertian), then rank(A(Ks[σ ])) = ∞
for almost allσ ∈ Gal(K)e. Theorem 1.4 of the main text asserts that ifK is Hilbertian, then
rank(Ks(σ )) = ∞ for almost allσ ∈ Gal(K)e. The following theorem generalizes both result

Theorem A.1. LetK be a Hilbertian field,A an Abelian variety overK , ande a positive integer
Thenrank(A(Ks[σ ])) = ∞ for almost allσ ∈ Gal(K)e.

Proof. Let r = dim(A) and letF be the function field ofA over K . The stability of fields [3,
Theorem 18.9.3] gives a stabilizing basist1, . . . , tr for F/K . Thus,t1, . . . , tr are algebraically
independent overK , F/K(t) is a finite separable extension, and the Galois closureF̂ of F/K(t)

is a regular extension ofK . The latter condition implies that̂F/K has a projective geometrical

integral modelX. Choose rational mapsX α−→ A
β−→ Ar

K corresponding to the field embeddin
K(t) → F → F̂ . Choose Zariski open subsetsX0 of X, A0 of A, and U of Ar

K such that

3 The author is indebted to Wulf–Dieter Geyer for help in this appendix.
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with α0 = α|X0 andβ0 = β|A0, X0
α0−→ A0

β0−→ U is a sequence of surjective morphisms a
K(x)/K(β(α(x))) is Galois for each closed pointx of X0. Using thatK is Hilbertian, Proposi-
tions 2.5 and 3.1 of the main text give a sequencex1,x2,x3, . . . of closed points ofX0 such that
ai = α(xi ) andui = β(ai ) satisfy the following conditions for eachi:

(1a) K(ui ) = K .
(1b) K(xi )/K is Galois and[K(xi ) : K] = [F̂ : K(t)].
(1c) K(x1),K(x2),K(x3), . . . are linearly disjoint overK .
(1d) The mapαai

: EndK(A) → A(K(ai ))/A(K) is injective.

Here we have used the natural isomorphism MorK(A,A)/A(K) ∼= EndK(A). In particular, since
n · idA �= 0, we have for eachi thatnai + A(K) = αai

(n · idA) �= 0, soai + A(K) has infinite
order, hence rank(A(K(ai ))/A(K)) � 1. For each finite subsetI0 of N, induction on|I0| proves
that the map(bi )i∈I0 �→ ∑

i∈I0
bi defines an injection

⊕
i∈I0

A
(
K(ai )

)
/A(K) → A

( ∏
i∈I0

K(ai )

)
/A(K).

Indeed, if
∑

i∈I0
bi + A(K) = 0 andI0 �= ∅ we choosei0 ∈ I0 and observe that

bi0 ∈ A
(
K(ai0)

) ∩ A

( ∏
i �=i0

K(ai )

)
⊆ A

(
K(xi0)

) ∩ A

( ∏
i �=i0

K(xi )

)
= A(K)

(the latter equality follows from (1c)). Hence,
∑

i∈I0\{i0} bi + A(K) = 0 and we may use induc
tion to conclude thatbi + A(K) = 0 for all i ∈ I0. It follows that

rank

(
A

( ∏
i∈I0

K(ai )

))
� |I0| − rank

(
A(K)

)
.

Consequently, rank(A(
∏

i∈I K(ai ))) = ∞ for each infinite subsetI of N.
By Borel–Cantelli [3, Lemma 18.5.3] and by (1a) and (1c), for almost allσ ∈ Gal(K)e there

exists an infinite subsetI of N such thatK(xi ) ⊆ Ks(σ ) for eachi ∈ I . Since eachK(xi )/K is
Galois,

∏
i∈I K(ai ) ⊆ ∏

i∈I K(xi ) ⊆ Ks[σ ]. Consequently, rank(Ks[σ ]) = ∞. �
Remark A.2 (Comparison with [4, Theorem B]). There are many Hilbertian fields which
not finitely generated over their prime fields. For example, each finite proper separable ex
of a Galois extension of a Hilbertian field is Hilbertian [3, Theorem 13.9.1]. Also, each G
extensionK of a Hilbertian fieldK0 such that Gal(K/K0) is finitely generated is Hilbertia
[3, Proposition 16.11.1]. However, if rank(A(K)) = ∞, then rank(A(Ks[σ ])) = ∞ for each
σ ∈ Gal(K)e, so Theorem A.1 is trivial in this case. Thus, Theorem A.1 gives a really new r
compared to [4, Theorem B] only if the pair(K,A) consisting of a fieldK and an Abelian variety
overK satisfies the following conditions:

(2a) K is Hilbertian but not finitely generated over its prime field.
(2b) rank(A(K)) < ∞.
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We give three examples for pairs(K,A) satisfying condition (2).
(a) Let K be an function field of several variables over an infinite fieldK0 and letA be an

Abelian variety overK . SupposeÃ = A×K KK̃0 has no non-trivial Abelian subvarietyA0 which
is isomorphic to an Abelian variety defined overK̃0. Then the pair(K,A) satisfies condition (2)
For example, this is the case whenA is an elliptic curve overK with a transcendentalj -invariant.

By [3, Proposition 13.2.1],K is Hilbertian, so condition (2a) is satisfied. To settle condit
(2b), we prove the stronger statement thatA(K) is finitely generated.

ReplacingK0 by K̃0 and A by Ã, we may assume thatK0 is algebraically closed. By
theorem of Chow and the relative Mordell–Weil theorem [10, pp. 138–139], there exis
Abelian varietyB over K0 and a homomorphismτ :B ×K0 K → A with a finite kernel such
thatA(K)/τ(B(K0)) is finitely generated (see also [12, p. 213, Theorem 8]).4 The finite kernel
is necessarily defined overK0, so we may replaceB by B/Ker(τ ) to assume thatτ is injec-
tive. If B �= 0, thenτ(B ×K0 K) is a non-zero Abelian subvariety ofA, in contradiction to our
assumption on the Abelian subvarieties ofA. Thus,B = 0 andA(K) is finitely generated.

(b) LetK be a finitely generated transcendental extension ofK0 = F̃p for some prime numbe
p and letA be an Abelian variety overK . Let (B, τ) be as in (a). ThenB(K0) is a torsion group
Hence, rank(A(K)) = rank(A(K)/τ(B(K0))) < ∞. Thus,(K,A) satisfies condition (2).

(c) In [14] Mazur gives examples of a number fieldK0, a Zp extensionK of K0, and an
elliptic curveA overK0 such thatA(K) is finitely generated. By [3, Proposition 16.11.1],K is
Hilbertian. Thus, condition (2) holds for(A,K).
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