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Let K a field andA|K an Abelian variety. By the Mordell-Weil theorem(K) is finitely ~ 3°
generated provideff is a finitely generated field. On the other hand it is known th@) is of 3¢
infinite rank unles is algebraic over a finite field. (We often tacitly assumet 0.) Interesting %7
problems arise if one studies the rank in other infinite algebraic extensioks Bbr elliptic 38
curvesE |Q Frey and Jarden showed thags2) is of infinite rank where2 denotes the maximal 3°
Kummer extension of) of exponent 2. In the light of these facts Frey and Jarden asked in tH&ir
paper [2]: 4
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Question. Is rank A(K“?)) = oo for every Abelian varietyA over a number fieldk ? HereK® 1
denotes the maximal Abelian extensionfof 2
3
The most recent result towards this question we are aware of is due to Rosen and Wong421].
They show (over a number fiel® as ground field) that rariy (K?)) = oo for any cyclic s
coverT [P, of positive genus. Papers [9,19,26] contain special cases of this statement. Wes can
strengthen the above result as follows. 7
8
Theorem 1.1. Let K a Hilbertian field and7 |K a smooth projective curve of positive genus?
Suppose thal’ can be realized as a Galois cover®f with groupI". Let B an arbitrary non- 10
zero quotient of/7. Then there is an infinite Galois extensi@iK with group[ ]2, I such that 11
rank(B(£2)) = oo. In particular rank(B(K “?)) = oo provided!™ is Abelian. 12
13
We can thus treat a broader class of Abelian varieties and a broader class of ground fields.
15
Remark 1.2. (1) Any Abelian varietyA over a fieldK is the quotient of a Jacobian variety. Sees
[17, 10.1] for example. 17
(2) Theorem 1.1 naturally leads us to the following question: Is any simple Abelian varigty
over a fieldK the quotient of the Jacobiah of a curveT | K which can be realized as an Abelianis
Galois cover ofP1? Lange pointed out that the answer to this question is not known even oxer
the complex numbergk = C. If the answer to this question is yes, thank?) is of infinite 21
rank for any non-zero Abelian variey over a Hilbertian fieldx . 22
23
In the proof of Theorem 1.1 we use methods totally different from the method in [21]. The
key argument in our paper is a specialization theorem for Abelian varieties over Hilbertian fietds
(see Proposition 3.1 below). We want to mention that while reading papers [22,23] of Rubinand
Silverberg on rank frequencies in families of quadratic twists of elliptic curves, it occurred tozus
that we might use a specialization theorem. The specialization technique also allows us to psove
the following infinite rank result. 29
30
Theorem 1.3. Let A a non-zero Abelian variety over a Hilbertian fielkd. Suppose that a1
admits a degred projective embedding. Assume thiat 2. Thenrank(A(£2)) = co where2 is a2
the compositum of all extensionsiSfof degreed. 33
34
In [21] this is shown for the compositum of all extensionskobf degree< d(4dim(A) +2) 35
instead off2. Finally we can slightly generalize a classical result in [2]. 36
37
Theorem 1.4 (Frey—Jarden).Let A a non-zero Abelian variety over a Hilbertian fiekd and s
e > 1. Write K for the separable closure & . For o = (01, ..., 0,.) € G% denote byK (o) the 39
fixed field inK; of the closure of the grougrs, ..., 0.) C Gk generated by the components ofo
the vectoro. Thenrank(A(K;(0))) = oo for almost all(in the sense of Haar measure 6ff,) a1
oeG%. 42
43
Several remarksare in order. "
45

1 We want to thank M. Jarden for a detailed explanation of the relative roles of Theorem 1.4, [2, 9.1], [4, TheorerﬁBB]
and the result in Appendix A. 47
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Remark 1.5. (1) In [2, 9.1] Frey and Jarden have shown Theorem 1.4 under the additional hy-
pothesis thak is afinitely generatedHilbertian field. 2
(2) Foro € G4, denote byK[o] the maximal Galois extension & in K (o). In Appen- 3
dix A to this paper Jarden proves that the statement of the above Theorem 1.4 remains true # one
replacesK (o) by its subfieldK[o]. This was known in case offmitely generatedHilbertian 5
field K due to work of Geyer and Jarden (see [4, Theorem B]), but the case of an arbitrarygnot
necessarily finitely generated Hilbertian fistdas ground field is new. 7
(3) Let F a finitely generated field an& an infinite algebraic extension af. Assume 8
that K is Hilbertian. LetA|K a non-zero Abelian variety. Then there is a finitely generateé,
Hilbertian intermediate field c K’ C K with [K’: F] < oo and an Abelian variety’| K’ such 10
that A = A’ ®k K. By the classical result [2, 9.1] mentioned above @&kK(0))) = co for 11
almost allo € G%,. Furthermore we may identifg ¢ with a subgroup ofG . However this 12
doesnot immediately imply rankA (K (0))) = oo for almost allo € G% asG% has measure 13
zero inG¢%, by our hypothesi$k : F'] = oo. Thus our Theorem 1.4 is stronger than the classica
result [2, 9.1] of Frey and Jarden. By a similar kind of reasoning Jarden’s result in Appendis¢A
is stronger than the result [4, Theorem B] of Geyer and Jarden. 16
(4) Im has shown in [8] that for any elliptic curvE|Q and anys € Gg the Mordell- 17
Weil group E(Q; (o)) is of infinite rank. Furthermore, it is an elliptic curve over a num- 18
ber field K and if E(K) contains a pointP such that 2 # 0 and 3 # 0, then again 19
rank(E (K;(o))) = oo for all o € Gk by Im’s result [7]. Larsen suspects in [13] that it might2°
be true, that rantd (K (0))) = oo for any non-zero Abelian variety over an infinite, finitely 21
generated fiel& and anyo € G . 22
23
This paper is organized as follows. After summarizing some generalities on Hilbertian fiéfds
in Section 2 we prove a specialization theorem for Abelian varieties over Hilbertian field$dn
Section 3. In Section 4 we prove an abstract sufficient condition for infinite rank over infirfite
extensions. In the final section we derive the above theorems from the result in Section 4. %7
28

2. Hilbertian fields 2
30
We briefly summarize elementary but important facts about Hilbertian fields, including a fo-
tion of so-called abstract Hilbert sets. The most useful references on Hilbertian fields are [3%0].
Let K afield. LetT = (T4, ..., T,) a vector of indeterminates arila single indeterminate. *

For an irreducible polynomial 3
35

d 36

T, X) =) ai(T)X' € K(T)[X] 37

i=0 38

39

of degreed let Uy be A, with the poles of the; removed and let 40
41

Hy:={teUs(K)| f(t, X) € K[X] irreducible of degree } 42

43

the correspondinfundamental Hilbert setA Hilbert setis any subset of,, (K) which may be 44
written as the intersection of finitely many fundamental Hilbert sets and one non-empty opersset.
K is said to be dilbertian fieldif (for all ») all Hilbert sets are non-empty and hence dense

in A, (K). Note that algebraically closed fields, local fields and finite fields are never Hilbertian.
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On the other hand number fields, fields of the fafit) whereF is an arbitrary field and finite 1
extensions of Hilbertian fields are Hilbertian. 2
If S is an integral scheme, then we shall denote its function fiel® ) in the sequel. Let 3
X an integral, separated, algebr&escheme. We shall say that Y — X is aHilbert coverof 4
X if Y is an integral, separated, algebr&iescheme ang is a finite, flat, generically separable 5
(that is, the extension of function fieldY)|R (X) is separable) morphism. Note that we assume
Y is integral buinot necessarily geometrically integral 7
If Sis aK-scheme and € S is a point, then we shall denote /(s) the residue field of. 8
Note thatK (s) is an extension field oK. Now let p: Y — X a Hilbert cover of degre¢ and °
x € X aclosed point. We shall say thais inert for p if p~1(x) is connected and geometrically 10
reduced ovek (x). Thusx is inert for p iff p~1(x) is Spec of a finite separable extension field*
of K (x) of degreed. If x is inert for p, then we writesy|x (x) for the unique point over. We 12
denote the set of all closed pointss X which are inert forp by Inert(Y|X) and call Iner¢y | X) 3
the abstract Hilbert setassociated tp. Note that Hilbert sets consist @& -rational points in 14
A, (K) whereas an abstract Hilbert set Inf&iitX) is a set of closed points df. For example, if °
X is aK -variety (varieties are always meant to be geometrically integral in this papedyj@d ©
is a finite, separable extension, th€p — X is a Hilbert cover and Ine(X | X) consists of the 7

closed points € X for which K (x)|K is a separable extension linearly disjoint fram 18
19

Remark 2.1. Let X an integral, separated, algebr&eschemeY — X a Hilbert cover ofX 20

andZ — Y a Hilbert cover ofY. Let x € X a closed point. Then € Inert(Z|X) if and only if
x € Inert(Y|X) andsyx (x) € Inert(Z|Y).

21
22
23

24
Proposition 2.2. Let K a Hilbertian field andn > 1. LetU C A, a non-empty open set and ,5

p : X — U aHilbert cover ofU. Then the set 26
InertX|U)NU(K) C A,(K) 28
contains a Hilbert set. In particular it is dense ik, (K) and thus infinite.

Proof. We may assume thdf = Spec¢A) and hence als&X = Spe¢B) is affine. Eventually 33
making U smaller we may even assumpeétale andB = A[b]. Let T = (T1,...,T,) the co- 24
ordinates ofA,,. ThenK(T) is the quotient field ofA. Let f (T, Z) € K(T)[Z] the minimum 35
polynomial ofb. We havef (T, Z) € A[Z], asA is normal, andB = A[Z]/f (T, Z)A[Z]. Now 36
teU((K)isinertforp iff B®y K(t) = K[Z]/f (¢, Z) is a field, that is iff the specialization 37
f(, Z) isirreducible. Thus Ine(X|U) N U (K) contains the Hilbert seti y NU(K). O 38

In the following we let InertY,|X) = (;_; Inert(Y;|X) if (p;:Y; - X)i=1.. s is a finite 40
family of Hilbert covers ofX. Furthermore, iff : T — S is a finite, flat morphism of schemes 4
andI” := Autg(T), then we shall say that is aGalois coveiif the canonical map 42

Mor(S, Z) — Mor(T, Z)", h>ho f

is bijective for all schemeg. 47
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Remark 2.3. Let K a field andX a smoothkK -variety. Then the function fiel®(X) contains a
purely transcendental subfield over which R(X) is of finite degree. Let the transcendency
degree ofL| K. We may then construct a diagram

1
2
3
4
X' cX °
6
P\L 7
8

UC Ay, 0
where the vertical map is an étale Hilbert cover of degré®(X) : L], the symbolsC stand for ;
open immersions ang induces the inclusiof — R(X) if we identify L with R(A,). (Onemay ,,
use [3, 6.1.5] to see this.) Once such a diagram is establish®dXif = R(X’) happens to be ,,

Galois overL = R(U), then p will even be an étale Galois cover with groGdR(X")|R(U)). 4
See [6, Exposé V] for generalities on Galois covers of schemes. 15

Corollary 2.4. Let X a smooth variety over a Hilbertian fiel® and (p; : Y; — X); a finite 4,
family of Hilbert covers o. Thenlnert(Y,|X) is infinite. 18

Proof. Consider a diagram as in the above remark. Yet= pi_l(X/). Now Iner{(Y,|U) is 20
infinite by Proposition 2.2 and for any € Inert(Y,|U) there is a unique point € X’ overu 2
which lies in InertY,|X’) by Remark 2.1 and hence in In€¥|X). O 22
23

The following strengthening of the corollary will be important in Section 3. Theorems simitar

to Proposition 2.5 below with similar proofs can be found in several places in book [3] of Frisd
and Jarden. See part A of the proof of [3, 18.6.1] for example. 26
27
Proposition 2.5. Let K a Hilbertian field. Consider a diagram as in Remagk3. Let 28
(pi 1Y; — X); a finite (possibly empfyfamily of Hilbert covers ofX. Let F|K a finite, sep- 29
arable extensiofipossiblyF = K) and fix once and for all & -embedding” — K. Thenthere 2o

is a sequencé;);n of geometric points ik’ (K ) with the following properties 31
32

(1) Each geometric poing is localized in a point innert(Y,| X). 33
(2) p(t;)) e U(K) is K-rational and[K (1;) : K]=[R(X) : R(U)] for all i. 34
(3) (F,K(r1),K(r),...) is a linearly disjoint sequence of fields, thatfs® @:°; K(1;) isa 35
field. 36

37

Let £2 the composite field ik, of F' with all the K (¢;). ThenX (£2) is infinite. 38

39
Proof. Suppose that geometric points ...,1, C X'(Ky) are already constructed, such thato
properties (1) and (2) hold ford i < m and suchthatF, K (1), ..., K(t,)) is alinearly disjoint 41
family of extensions ofK. Let E = FK(11) --- K (1,,) the composite field. Le¥! = pi_l(X/). 42
Consider the composite Hilbert covers — X' — U and X, — X' — U. We may pick 43
a K-rational pointu € Inert(Y,|U) N Inert(X’;|[U) N U(K). Thenu is inert for p by Re- 44
mark 2.1. Hence there is a unique closed pairt X’ over u and, again by Remark 2.1, we 45
havex e Inert(Y;|X') N Inert(X';|X"). Let 1,1 € X'(K,) one of the geometric points local- 46
ized atx (corresponding to & -embedding; : K (x) — Kj). Clearly (1) holds fori =m + 1. 47
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Furthermorep(#,,+1) = u is K-rational by construction. From € Inert(X’|U) it follows that
[K(tut1) : K] =dedp) =[R(X): R(U)]. Hence (2) holds for =m + 1. To see that also (3)
holds fori = m + 1 note thatK (x) ® E must be a field, becausee Inert(X';|X"). Hence
K (ty11) = j (K (x)) is linearly disjoint fromE = FK(t1)--- K(¢,,). O

Remark 2.6. (1) If R(X)|R(U) and hence happens to be Galois with grodp then allK (#;) | K
will be Galois with groupl”. If in addition F|K is Galois, therf2|K is an infinite Galois exten-
sionwithG(2|K) = G(F|K) x [[72, T by 2.
(2) As indicated above we may apply the theorem without the faifjil . It then states that
for any diagram as in Remark 2.3, there is a sequéngein X (K,) satisfying (2) and (3). 10
(3) In particular we see that for any variey, whose function fieldR (X) contains a purely 11
transcendental subfield over whigh(X) is Galois with groupI”, there is an infinite Galois 12
extensions2| K with group[ [,y I”, such thatX (£2) is infinite. FurthermoreX (K%%) is infinite 13
provided I" is Abelian. For example (K%?) is infinite for any smooth curve which can beia
realized as an Abelian Galois coverlpf. 15
16
We briefly indicate how the proof of our infinite rank results will proceed. Suppose we afe
given a diagram as in Remark 2.3 over a Hilbertian figldan Abelian varietyA|K and a 1s
non-constant morphisni : X — A. We will see by the specialization Theorem 3.1 in the nexf
section that one can construct a finite family of Hilbert cougliX such thatf (X (£2)) generates 2
a subgroup of infinite rank i (£2), provideds?2 is as in Proposition 2.5. All infinite rank results »1
in this paper arise in that way. 22

23
3. Specialization 24

25
In this section we will discuss a specialization theorem that will play the key role in the seqygl.
This specialization theorem is similar to a theorem in Lang’s encyclopaedia [11, |.7]. Lang dges
not give a proof but refers to a paper of Néron [20] containing a version weaker than [11, L¢],
which is formulated in the language of Weil's foundations and therefore difficult to read for gyr
generation. For that reason we include a proof following [24] in some places. 20
For the whole section lek’ be a Hilbertian field A|K an Abelian variety and’|K a smooth,
projective variety. Assume that(K) is of finite rank. For € T there is a specialization map

33

oy - Morg (T, A)—)A(K(t)), f= f@. 34

In the rest of the paper we view without further mentionitigk’) as the subgroup of constant >
morphisms in Mog (T, A) and letM (T, A) := M2« T4 Theny, induces a homomorphism zj

A(K)

_ A(K @) ®
Mg (T, A

a Mg (T, A) — AK) 39
40
which fits into an exact diagram 41
42
0 A(K) Morg (T, A) —— Mg(T,A) ——=0 a3

I

44
[ 53 l/ t i 45
46

0 A(K) A(K (1)) AR 0. a7
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Thus keta,) = ker(a;). Note that kefa;) is non-zero for anyK -rational pointt € T(K) pro- 1
vided Mg (T, A) # 0. Hence the specialization maps can be non-injective for infinitely manyz

However we have the following specialization theorem. 3
4

Proposition 3.1. There is a finite family of étale Hilbert covegs: X; — T such that the spe- >
cialization mapsy; and; are injective for allr € Inert(X,|T). 6
;

The proof will occupy the rest of this section. z
Lemma3.2. Mg (T, A) is afreeZ-module of finite rank. In particulaker(«a;) is a freeZ-module 12

of finite rank for allz € T.

Proof. The injection Mok (T, A) — Morg(Tx, Ax) induces an injectionMg (T, A) —
Mz(Tg, Ag). Let J|K the Albanese variety dfg. There is an isomorphism
MI?(TI?,AI?)QHOTHI—((J,AE) 17
18
by the universal mapping property of the Albanese variety. (See [11, p. 31] and [12, Section [3]
for information on the Albanese variety.) Furthermore, by [17, 12.5] or [18, Theorem 3, p. 17%g],
Homg(B1, Bp) is finitely generated ané-free for any two Abelian varietie®; and B, over 5,
a field F. Thus Mg (T, A) and keta;) are finitely generated and-free as submodules of the »,
finitely generated ané-free Z-module Homg(J, Az). O 23

24
Lemma 3.3. Let/ a prime different from the characteristic. There exists a finite separable extes-

sion F|K such that for alls € Inert(Tx|T) the restriction 26
27

o | Morg (T, A); — A[(K(t)) 28

29

of the specialization map is bijective. 30

31

Proof. Clearly keXa,) N Morg (T, A); =0 as ke(a,) is Z-free. The mag, is an étale isogeny *
due to our hypothesis dnHence the group schemg is finite and étale ovek . Thus there are 33

separable extension fields over K such that there is ak -isomorphism 34
35

N 36

A= ]_[ SpecE;). 37

i=1 38

Let F = E1--- E; the composite field anegh = |{i | E; = K}|. If t € Inert(T¢|T), thenK (r) 40
is linearly disjoint from F and henceA;(K (1)) = A;(K). (To see this note thatd;(L)| = =«
Y |Homg (E;, L)| = m for all finite extension fieldd.|K which are linearly disjoint fron¥’, in 42
particular forL = K or L = K(t).) Now a;| Morg (T, A); — A;(K (t)) = A;(K) is clearly sur- 43
jective for allr € Inert(T¢|T), as Mol (T, A) contains the constant morphismsAp(K). O 44

Lemma 3.4. Let/ a prime different from the characteristic. Then the grodiprg (T, A) 7 7Z/1 46
is finite. 47
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Note that we did assume rafk(K)) < oo throughout this section, but we do not assume that
A(K) is finitely generated. Hence also MaiT, A) needs not be finitely generated. 2

Proof2 of Lemma 3.4. Let M := Morg (T, A). Then M/A(K) = Mk (T, A) is a finitely
generated, fre&Z-module by Lemma 3.2. It is thus enough to show tA&K)// is finite.
F = A(K)/A(K)ior is a torsion-free Abelian group and rgik < oo by our hypothesis
rank(A(K)) < oo. It follows that dirm, (F/1) < rank(F) < co. HenceF /[ is finite. It remains to
prove thatA (K )tor/ ! is finite. If r = dim(A), thenA (K )i injects toA(K )i = (Z/1"% and hence
dimg, (A(K);i /1) < 2r for all i € N. Consider thé-Sylow subgroupA (K )~ = [ J721 A(K);i. It
follows thatA (K );~ /1 is finite. Finally, making use of the isomorphistiiK )ior/{ = A(K)jo /1,
we conclude thatl (K)ior/ ! is finite, as desired. O

© 0w N o 00 b~ W

PR R
N P O

Lemma 3.5. Let f: X — Y a finite, flat morphism of integral schemes and supposeXhat 13
normal. If f is of degreel (thatis[R(X): R(Y)] = 1), thenf is an isomorphism. 14

Proof. f(X)is closed ag is a finite morphism and open &sis a flat morphism. Hencg must 16
be surjective, ag is connected. Ift € X andU is an open, affine neighborhood o= f(x), 17
thenV := f~1(U) is open and affine. The homomorphisfh: Oy (U) — Ox (V) = f,Ox(U) 18
is a monomorphism of integral domains which mak&s(V) a finite and hence integral algebra1®
overOy (U). The hypothesigR(X) : R(Y)] = 1 implies that both ring®y (U) andOx (V) have 20
the same quotient field. Furtherma® (U) is normal. Hencef®: Oy (U) — Ox(V) must be 2t
an isomorphism. It follows thaf is an isomorphism. O 22

23

Lemma 3.6. Let!/ a prime different from the characteristic. There is a finite family of étale

Hilbert covers(g; : X; — T); of T such that the map 25
26

Morg (T, A) ®2 Z/1 — A(K (1)) ®z Z/1 27

28

induced by, is injective for allt € Inert(X,|T). 29

30
Proof. Let M := Morg (T, A) and f € M. We denote the multiplication bymapA — Abyls. =1

Note that/4 is finite and étale by [16, 8.2]. Form Cartesian squares 32
33
j 4 34
PO — ey Ly -
w f 38

SpedK (1)) T A,
39
. . . 40
thatisX/) =T x4, AandF') = Sped¢K (1)) x7 X'/). The vertical morphismg andh are
finite and étale ak, is. 4

X must be regular by [5, 1V.6.5.2] becaugés a finite, étale morphism arifl is regular.
All local rings of X (/) are regular local rings and hence integral. Therefore, by [5, 1.6.1.10], the
connected components &f/) are open and finite in number. (Note that”) is of finite type
o 46

2 We thank C. Greither and M. Jarden for independently providing us with a proof of Lemma 3.4. 47
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over a field and thus Noetherian.) Hence they are also closed. It follow thasplits up into 1
the coproduct 2
3

s 4

X = ]_[ Xi(f) 5

i=1 6

S
over its connected components. hzetXl.(f) — X the inclusion. Them; is an open immersion s
(and hence étale) and a closed immersion (and hence finite) at the same time. If we dencte by
gii=gov; :Xl.(f) — T the restriction of the map: X) — T to Xl.(f), theng; is finite and étale 10

as a composite of two maps which are each finite and étale. Thus thegmaesHilbert covers 11

of T. 12
Now letr € H) := Inert X" |T). Denote byx; X,.(f) the unique point above Then 13

14

e 15

FU = ]_[ Spe¢K(x,-)) 16

i=1 17

and the morphisnF ") — X is the coproduct of the canonical morphisms Sgea;)) — 19
X;. Moreover we havéK (x;) : K(¢)] = degg;). Assume nowy,(f) € [A(K (t)). This means 20
that there is a morphism:Spec¢K (1)) — A such that/y o a = f o w. Using the Cartesian 21
diagram above gives a morphism SpecK (1)) — F) such thath o s = ldspeck () and 22
(f' o j) os =a. In other words# has a section. Hence there is an indexhereK (x;) = K(1). 23

Theng; must be a finite flat morphism of degree 1. By Lemmagg.& an isomorphism. 24
It follows thatg : X/) — T has a sectiog’: T — X/) and this impliesf € -Morg (T, A). 25
Indeed, sincef og =140 f'wehavef = fogog =140 f' og’. We have shown: 26
27

VieHD: felM & a(f) clA(K®)). 28

M/l is finite by Lemma 3.4. LeR C M a system of representatives fif/[. R is finite and 30
henceX := {Xff) | feR,ie(l,...,sY}}is afinite set. Letd := (.5 INer(¥|7T). Then 31

VieH:VfeR felM << o/(f)e€lA(K®)). 3

From this it is immediate that, induces an injectiolM ® Z/l — A(K(t)) ® Z/I for all 35
teH. O 36

Proof of Proposition 3.1. Let [ a prime different from chak) and M := Morg (T, A). Let  s3s
X1,..., X, as in the assertion of Lemma 3.6 aAdK as in Lemma 3.3. PuXg := Tp. Let 39
t € Inert(X,|T). We show thaty, is injective. Denote bw the kernel and by the image ofy;. 40
There is an obvious exact sequence 41

My— I > NJl— M/l 1)1 a3

The maps is explicitly given as follows: For eache I; choosem € M with o;(m) =i. Then 45
a;(Im) =0, solm € N. Mapi to the residue clags: + /N . In the above exact sequence the left4s
hand map is surjective and the right-hand map is injective by Lemmas 3.3 and 3.6, respectively.
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HenceN /I = 0. FurthermoreV is finitely generated an-free by Lemma 3.2. This implies 1
N=0. O 2
3
Remark 3.7. We briefly compare the specialization Theorem 3.1 with other specialization théo-
rems in the literature. 5
(1) As mentioned in the introduction to this section, there is a classical specialization thedrem
due to Néron [20, Chapitre 1V, Theorem 6, p. 133]. We restate Néron'’s result in our language’Let
B|R(T) an Abelian variety. The® extends to an Abelian scheme B — U over a non-empty 8
open subschem& of T and fort € U we denote byB, the fiberzr ~1(¢) of r. B, is an Abelian 9
variety overk (t). Néron showed thaB; (K (r)) contains a copy oB(R(T)) for infinitely many 10
values ofr provided B is the Jacobian variety of a curve ov®&(T). This is not enough for 11
our application as we do not want to restrict our attention to Jacobians. In [11] Lang gives'the
statement for an arbitrary Abelian varieB{R(T), but a proof is not included in [11]. Serre in 13
[24, 11.1] proves the statement for an arbitrary Abelian varBt®(7) but under the additional 4
hypothesis thal' =P; andK is a humber field. This is again not enough for our application. 15
(2) Let A|K a Jacobian variety. One may apply Néron’s theorem to the case of the constant
family, that is withB = A @x R(T), U =T andB=T xg A. ThenB(R(T)) = A(R(T)) = 7
Morg (T, A) because every rational map from the smooth varietio an Abelian variety is 18
defined on the whole df by [16, 3.1]. By Néron’s theorem, as we assumed that a Jacobian, 1°
A(K (t)) contains a copy of Mq¢(T, A) for infinitely many values of. This also follows by 2°
Proposition 3.1 together with Corollary 2.4, but in Proposition 3.1 there is no need to asséime
that A is a Jacobian variety. 22
(3) An interesting specialization theorem due to Silverman (see [1,25]) implies a staterdent
similar to Proposition 3.1: Led|K an arbitrary Abelian variety and C Morg (T, A) asubgroup 2*
for which A N A(K) is torsion. Whilea; anda; can be non-injective for infinitely manwe T 2
as mentioned above, Ke#) N A must be zero outside a set of closed points of bounded heigttt,
providedK is a global field and the Néron—Severi grouplofs cyclic. Nevertheless we prefer 27
to use Proposition 3.1 above, because we neither want to impose stricter hypoth&sisoon 28
an additional hypothesis ofi and, most importantly, because we need the injectivit§g;dor ~ 2°
sufficiently manyr, which is equivalent to the injectivity af, on the whole of Mok (T, A). The %0

weaker estimate of the good locus does not matter in our application. s
32

33
34

4, Sufficient condition for infiniterank

In this section we exploit the above results to establish an infinite rank result that will imply
the theorems mentioned in the introduction. For the whole sectiok letHilbertian field and *°

A|K an Abelian variety. Assume that(K) is of finite rank. Consider a diagram 37
38

39

T'CcT 20
pl 4
42

UCA,, 43

44
where the vertical map is an étale Hilbert cover and the symbatsstand for open immer- 4s
sions. (Recall Remark 2.3.) Furthermore F&tK a finite separable extension and assume that
Mp(Tg, Ap) # 0. Fix once and for all & -embeddingF’ — K. 47
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Remark 4.1. One may assumg = K for a first reading. We need the extfavhen we apply the

1

results in the important special case whé&rés a smooth projective curve of positive genus and

A = Jy is its Jacobian variety. Thefi(K) can be empty and g (T, Jr) can be zero. As soon
asT has a rational point oveF, however,Mr(Tr, Jr,r) contains the canonica-embedding
Tr — Jr,r and is thus non-zero.

Theorem 4.2. There is a sequendg );y of points inT’(K;) with the following properties

(1) ranKA(FK (t;))) > rank(A(F)) 4+ rank Mg (TFr, Ar)) for all i. Here FK (¢;) is the corre-
sponding composite field ik.

(2) p(t;)) e U(K) is K-rational and[K (#;) : K] =deqp) for all i.

(3) (F, K(t1), K(r2),...) is alinearly disjoint sequence of fields.

Let / ¢ N and consider the composite fiel®; = F - [[,.; K(#). If I is finite, then
rank(A(£2;7)) > rank(A(F)) + |I|rankKMp(TF, Ar)). Finally, if I is infinite, then
rank(A(£2;)) = oco. (Recall that we assumed » (Tr, Ar) # 0 at the beginning of this sectign.

Proof. By Proposition 3.1 there is a finite family; : Y; — Tr) of étale Hilbert covers such that

A(F(x))

oy - Mp(Tr, A
ax :Mp(Tp, Ap) — ACF)

4 S fx)

3
4

© 0 N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

is injective for every closed point € Inert(Y,|7TF). (Here F (x) denotes the residue field of the 24
closed pointx € Tr which is, of course, arF-algebra.) Now consider the composite Hilbergs

coversY; — Tr — T. By Proposition 2.5 there is a sequengg;n of geometric points in
T'(Ky), which satisfies (2) and (3) and such that eadh localized in a poink; € Inert(Y,|T).
By Remark 2.1 there is a unique closed pdine T, C Tr abovex; andx; € Inert(Y,|Tr).

If we let f one of the non-constant morphisffis — A, we obtain the following diagram:

[1vi

|

SpedF (%)) —— T CTr R Ap

L

SpedK (xj)) —T'C T A

|

UcCA,

in which the two complete squares are Cartesian. TH$) = F @k K (x;) = FK (t;). &z, must
be injective, ag; € Inert(Y,|Tr). Hence rankA(F K (1;))) > rank(A(F)) + rankK Mg (TF, AF)).
This concludes the existence proof for a sequence which satisfies (1)—(3).

26
27
28
29
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Now (FK (t1), FK(t2), ...) is alinearly disjoint sequence of extensiongdior any sequence 1
(t))ien, Which satisfies (1)—(3). From this it is immediate that

A(F) A(F)

iel

2
3
@A(FK(G)) |, A a
5
6
7

is injective. This implies the statements about ranls2;)). O

8
Remark 4.3. Let (f1,..., fr) C Morg(Tr, Ar) a family of morphisms whose image in?
Mrp(Tr, Ar) is Z-linearly independent. Thelf;(x;))1< <r.icr IS Z-linearly independent 10
in A(£2;) by the proof of the theorem. Note thal (x;) € A(FK(x;)) but not necessarily 11
€ A(K(x;)), as f; need not be defined ovéf. 12

13
Remark 4.4. If p is a Galois cover with groug™ and F|K is Galois, then allK (z;)|K are 14
Galois with groupl” and alsos2;|K is Galois with G(£2;|K) = G(F|K) x [[;c; I'". Thus 15
rank(A(K“?)) = oo providedp is an Abelian Galois cover anBl| K is an Abelian extension. 16

17

5. Proof of Theorems 1.1, 1.3and 1.4 18
19

We can now prove the theorems mentioned in the introduction. 20
21
Proof of Theorem 1.1. Let T a smooth, projective curve of positive genus over a Hilbertia#?
field K andp:T — IP1 a Galois cover with group’. Leta € P1(K). Thereisa poink € T(K;) 23
with p(x) = a, because is surjective.F := K (x) is then a Galois extension & = K (a) (with 24
group a subquotient af). If we choosez € Inert(T|IP1) at the beginning, theG (F|K) =1T". 25
Now T (F) is non-empty, and thus we have a canoniEaémbedding.: Tr — Jr r, Which 26
sendsy € T (K,) to the divisor clasgy] — [x] € J7(K;). Let B a non-zero Abelian variety 27
and x : Jr — B a surjective homomorphism. Thety o A : Tr — Bp iS non-constant and 28
thus Mp(Tr, Bp) #0. LetU C P1 \ oo @ non-empty open set such tHat:= plU > Uis 2
étale. If B(K) is already of infinite rank, then there is nothing to prove. Thus we may assuffe
rank(B(K)) < oo. Then rankB(£2)) = oo for a certain infinite Galois extensidn| K with group 3!
G(R|K) =[];en I by Theorem 4.2 and Remark 4.40 32
33
Proof of Theorems 1.3 and 1.4. Let K a Hilbertian field andA|K a non-zero Abelian vari- 34
ety. We will apply Theorem 4.2 witll := A and F := K in order to prove Theorems 1.3 and3s
1.4 simultaneously. Again we may and do assume (&tkK)) < co. Obviously Mg (T, A) = 36
Endk (A) is of rank> 1, as it contains the identity morphism. The function figlg4) contains 37
a purely transcendental subfield over which it is a finite extension. & admits a projective 38
embedding of degreg, then we may assumi& (A) : L] = d in addition. By Remark 4.1 there 39
are non-empty open sefs C A andU C A,, and an étale Hilbert cover: T’ — U of degree 40
[R(A): L]. By Theorem 4.2 we can conclude that there is a linearly disjoint seqé&hgey of 41
separable extensions &f, all of degregR(A) : L], such that rankA(K;)) > rank(A(K)) +1. 42
FurthermoreA acquires infinite rank over the composite field of &}l and, of course, also over 43
the composite field of any infinite subfamily ¢K;);cn. Theorem 1.3 readily follows from that. 44
To prove Theorem 1.4 we have to show that 45
46

X ={o € G% |rankA(K(0))) = oo} a1
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is of measure 1. Lell; = G(K|K;). Then obviously

oo o0
XD {a € G% | K (o) contains infinitely many((xi)} = ﬂ U Hf.

n=li=n

o 0o A W N P

It follows from the linear disjointness @;);cn that (H);cw is an independent family of open ;
subgroups of5% . By the lemma of Borel-Cantelli [3, 18.3.5] it remains to note that the serigs
S 2GS HA171 =32 [R(A) : L1~¢ diverges, in order to obtain that the right-hand term hag

measure 1, as desiredn 10
11
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Appendix A. Therank of Abelian varieties over large Galois extensions of Hilbertian 24
fields 25
26

Moshe Jarden, Tel Aviv University 27

28

We denote the absolute Galois group of a fi&ldby GakK). For eacho € Gal(K)¢ let 29

K (o) be the fixed field ofoy, ..., 0, in K; and letK [o] be the maximal Galois extension 3o
of K in K (o). Consider an Abelian variety over K. Theorem B of [4] says that iK is 31
infinite and finitely generated over its prime field (hence Hilbertian), then(i(;[0])) = co 32
for almost alloe € Gal(K)¢. Theorem 1.4 of the main text asserts thakKifis Hilbertian, then 33
rank(K; (o)) = oo for almost allo € Gal(K)¢. The following theorem generalizes both results. 34

Theorem A.1. LetK be a Hilbertian field A an Abelian variety ovek, ande a positive integer. 36
Thenrank(A(K;[o])) = oo for almost allo € Gal(K)°. 37

Proof. Let r =dim(A) and letF be the function field ofA over K. The stability of fields [3, 3°
Theorem 18.9.3] gives a stabilizing basis...,t. for F/K. Thus,z1,...,t are algebraically 40
independent ovek, F/K (¢) is a finite separable extension, and the Galois cloﬁLméF/K(t) 41
is a regular extension & . The latter condition implies th&?f/K has a projective geometrically 42
integral modelX. Choose rational maps < A LN A’y corresponding to the field embeddings®

K(t)— F — F. Choose Zariski open subsexy of X, Ag of A, andU of A% such that i:

46
3 The author is indebted to Wulf-Dieter Geyer for help in this appendix. 47
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with ap = a|x, and o = B4, Xo 20 A 5, yisa sequence of surjective morphisms and
K(x)/K(B(x(x))) is Galois for each closed poirtof Xg. Using thatk is Hilbertian, Proposi-
tions 2.5 and 3.1 of the main text give a sequengexy, x3, ... of closed points of(p such that
a; = o(x;) andu; = B(a;) satisfy the following conditions for each

(1a) K(u;) =K.

(1b) K(x;)/K is GaloisandK (x;) : K] = [F: K()].

(1c) K(x1), K(x2), K(x3), ... are linearly disjoint oveKk .
(1d) The magx,, :Endx (A) — A(K (a;))/A(K) is injective.

2
3
4
5
6
7
8
9

10
Here we have used the natural isomorphism Mo, A)/A(K) = Endk (A). In particular, since 11
n -id4 # 0, we have for eachthatna; + A(K) = a4, (n - idy) # 0, soa; + A(K) has infinite 12
order, hence rarfd (K (a;))/A(K)) > 1. For each finite subség of N, induction on|Ip| proves 13

that the mad;)ici, — Zie,o b; defines an injection 14
15
16
P A(K (@))/AK) > A<HK(a,-)>/A(K). 17
ielp i€elp 18
19
Indeed, ifzie,0 b; + A(K) =0 andly # ¥ we chooség € Ip and observe that 20
21
22
biy € A(K (aip)) N A(l;l K(a,)) CA(K(xip))N A(E[ K(x,-)> = A(K) v
1#IQ LFlo

(the latter equality follows from (1c)). Hencgielo\{io} b; + A(K) =0 and we may use induc- i
tion to conclude thab; + A(K) =0 for all i € Ip. It follows that

rank(A( ]_[ K(a,))) > |Io| — rank(A(K)). 29

ielp 30

Consequently, rard ([ [;; K (a;))) = oo for each infinite subsett of N. 32
By Borel-Cantelli [3, Lemma 18.5.3] and by (1a) and (1c), for almos# atlGal(K )¢ there 33
exists an infinite subsdtof N such thatK (x;) C K (o) for eachi € I. Since eaclK (x;)/K is 34
Galois,[ [;c; K(a;) S [];c; K(xi) € K [a]. Consequently, raniKs[o]) =oc0. O 35
36
Remark A.2 (Comparison with [4, Theorem B]). There are many Hilbertian fields which ase
not finitely generated over their prime fields. For example, each finite proper separable extension
of a Galois extension of a Hilbertian field is Hilbertian [3, Theorem 13.9.1]. Also, each Galeis
extensionK of a Hilbertian field Kg such that GdlK/Kp) is finitely generated is Hilbertian 40
[3, Proposition 16.11.1]. However, if ragk(K)) = oo, then rankA(K;[o])) = oo for each 41
o € Gal(K)¢, so Theorem A.1 is trivial in this case. Thus, Theorem A.1 gives a really new resalt
compared to [4, Theorem B] only if the paik, A) consisting of a field& and an Abelian variety 43
over K satisfies the following conditions: 44
45
(2a) K is Hilbertian but not finitely generated over its prime field. 46
(2b) ranKA(K)) < oc. 47
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We give three examples for paifk, A) satisfying condition (2).

(a) Let K be an function field of several variables over an infinite figlgland letA be an
Abelian variety ovek . Supposed = A x x K Ko has no non-trivial Abelian subvarietjp which
is isomorphic to an Abelian variety defined ovés. Then the paifK, A) satisfies condition (2).
For example, this is the case whens an elliptic curve oveK with a transcendentgtinvariant.

By [3, Proposition 13.2.1]K is Hilbertian, so condition (2a) is satisfied. To settle condition
(2b), we prove the stronger statement thak) is finitely generated. 7

ReplacingKg by Ko and A by A, we may assume thaty is algebraically closed. By a &
theorem of Chow and the relative Mordell-Weil theorem [10, pp. 138-139], there exists?an
Abelian variety B over Ko and a homomorphism: B xx, K — A with a finite kernel such 10
that A(K)/t(B(Ko)) is finitely generated (see also [12, p. 213, Theorenf glhe finite kernel 11
is necessarily defined ovefy, so we may replac® by B/ Ker(r) to assume that is injec- 12
tive. If B # 0, thent(B x g, K) is a non-zero Abelian subvariety df, in contradiction to our 13
assumption on the Abelian subvarietiesAofThus,B = 0 andA(K) is finitely generated. 14

(b) Let K be afinitely generated transcendental extensiakipof pr for some prime number 15
p and letA be an Abelian variety oveK . Let (B, t) be asin (a). TheB(Kp) is a torsion group. 16
Hence, rankA(K)) =rank(A(K)/t(B(Kp))) < co. Thus,(K, A) satisfies condition (2). 17

(c) In [14] Mazur gives examples of a number fiek, a Z, extensionk of Ko, and an 18
elliptic curve A over K such thatA (K) is finitely generated. By [3, Proposition 16.11.K],is 19

g A W N

Hilbertian. Thus, condition (2) holds f@®A, K). 20
21
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