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Abstract. It is shown that if R is a finitely generated integral domain of zero characteristic, then for
every n there exist elements of R which are not sums of at most » units. This implies in particular to
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1. An integral domain R is called (see [1]) n-good, if every element of R can be
written as a sum of » units, i.e., invertible elements of R, and it is called w-good, if
it is not n-good for any finite n, but each of its elements is a sum of units. It has
been recently proved by Ashrafi and Vamos ([1]) that the ring of integers of a
quadratic number field is not n-good for any n, and the same holds in the case of
cubic number fields having a negative discriminant and cyclotomic fields Q((w)
for every N = 1. In this note we shall establish this result for all rings of integers of
algebraic number fields. Actually we shall prove this in a more general situation:

Theorem 1. If R is a finitely generated integral domain of zero characteristic,
then there is no integer n such that every element of R is a sum of at most n units.

We shall obtain this as a simple corollary of van der Waerden’s theorem and a
finiteness result concerning unit equations. The use of Szemerédi’s theorem will
then lead to the assertion that for n = 1,2, ... the set of positive rational integers
which are sums of at most »n units in a fixed algebraic number field has zero
density.

2. Let R be a domain, and denote by U(R) its group of units. An equality of the
form

c=urtur+ -+ oy (1)

with a non-zero ¢ € R and u; € U(R) will be called proper, if the sum on the right
hand-side does not contain vanishing sub-sums.
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2 M. Jarden and W. Narkiewicz

We shall use the following two known results:

Lemma 2. (See [2]) If R is a finitely generated integral domain of zero char-
acteristic, then for every n = 2,3, ... there exists a constant B,(R) such that for
every non-zero cE Rand m = 2,3, ... nthe Eq. (1) has at most B,(R) proper unit
solutions (uy,uy, ..., Up).

The second result which will be used is a version of van der Waerden’s
theorem:

Lemma 3. Let r, s be fixed positive integers and let S be an arithmetic pro-
gression of rational integers of length N. If N is sufficiently large, and S is a union
of r sets, then at least one of them contains an arithmetic progression of s terms.

Proof. Let a, b be positive integers, let
,
S={a+md: m=1,2,...,N} = US”
i=1

and for i =1,2,...,rput A, = {m: a+mdeS;}.

Van der Waerden’s theorem ([7]) gives a constant W(r,s) such that if N
exceeds W(r,s) (for the best known effective upper bound for W(r,s) see [4]),
then for a certain i the set A; contains an arithmetic progression of s terms, and so
does S;. O]

3. Theorem 1 is a direct consequence of the following lemma:

Lemma 4. If R is a finitely generated integral domain of zero characteristic
and n = 1 is an integer, then there exists a constant A, (R) such that every arith-
metic progression in R having more than A,(R) elements contains an element
which is not a sum of n units.

Proof. We apply induction in n. Let firstn = 1, 6 #0 and let a; = ap + (j — 1)6
(j=1,2,...,N) be an arithmetic progression consisting of units of R. Since for
j=0,1,...,N — 1 we have a;;; —a; = 0, hence the equation x +y = 6 has at
least N unit solutions, thus N < By(R). It follows that we may put A;(R) = B, (R).

Assume now that the assertion of the lemma holds for a certain n > 1, denote
for non-zero 6 € R by () the set of all units u which appear in a proper equality
of the form

d=ur tup+ -+ up
withm =1,2,...,2n+ 2 in which uy,u,, ..., u, are units, and put
Q) ={xu: ueQ(0)}={x1,x2,..., 21}

Lemma 2 implies that M is bounded by a number, depending only on R and n.
Consider now a finite arithmetic progression a;j =ag+ (j—1)6€R (j=

1,2,...,N), each term of which is a sum of n + 1 units. We have to show that N
does not exceed a bound, depending only on n and R. Forn =1,2,..., N we have
n+1

aj = E :”hjv

r=1
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On Sums of Units 3

with u, ; € U(R). This implies

n+1 n+1
b= aj—aj=) upji— Y (2)
r=1 r=1
forj=1,2,...,N. The right hand-side of these equalities is non-zero, and so after

possible cancellations we obtain a proper equality, hence for each j at least one of
the units appearing in (2) lies in ©(6). Without restricting the generality we may
assume that for every j either u; ; or u; i lies in €(6).

If now we put fort=1,2,... .M

X[:{1<j<N: u]7j:xl}

and
, ={1<j<N: uij1=x}
then
M M
{1,2,....,N} = Jx,ur.
=1 =1
By Lemma 3 at least one of the sets Xi,..., Xy, Y;,..., Yy contains an arith-

metic progression P of length 7 > A, (R), provided N is sufficiently large. Without
restricting the generality we may assume that the set X; has this property. Let /& be
the difference of P. Now write P = {ny,n,,...,nr} with n; = iop + (i — 1)k, and
put by =a,, —x; (i=1,2,...,T). Then
bi = ajy (i — X1 = (ao + (io — 1)6 — x1) + (i — 1)hé,
hence by, b, ...,br is an arithmetic progression of length exceeding A,(R) in
contradiction to the induction hypothesis. ]
Theorem 1 is an immediate consequence of the lemma.

4. We point out some simple corollaries:

Corollary 5. A finitely generated integral domain of zero characteristic cannot
be n-good for any n. This holds, in particular, for the ring of integers of every
number field of finite degree.

Proof. This follows directly from the theorem.

Corollary 6. Let K be a finite extension of the rationals, and for each positive
integer n and x =1 denote by N,(x) the number of positive rational integers
m < x, which are sums of at most n units of K. Then

N,
Jim N2 )

x—0o0 X

~0. 3)

Proof. If (3) would fail, then according to Szemerédi’s theorem (see [6]), there
would exist arbitrarily long progressions of positive rational integers m < x, which
are sums of at most n units. Lemma 3 implies that in this case for a certain integer
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4 M. Jarden and W. Narkiewicz

[ < n there would exist arbitrarily long progressions of elements which are sums of
[ units, contrary to Lemma 4. ]

Corollary 7. Let n = 1 be a given integer, let py,pa,...,p, be fixed primes,
and put

A={xp]"---pir: a;eZ}.

Then the set of positive integers which are sums of at most n elements of A has
density zero.

Proof. This follows from Lemma 4 applied to the ring Z[%} with

M = T]’_, pi, and Szemerédi’s theorem O
4 v ey f)
5. Let K be aﬂ—a-l-geb;a.l-&e;%eﬂﬁeﬂ of-theratiomats and S a finite set of non-

archimedean prime divisors of K. For each p € § choose a Henselian closure K, of
K at p, and let K, be its residue field. Denote by K the algebraic closure of K, and
let Gal(K) be the absolute Galois group of K. Let K, s be the maximal Galois
extension of K in which all primes of S split completely, ie.,

Kus=(1 (1 K

peSTeGal(kK

where K| = 7(Kj). 3
Let m be a positive integer. For each & = (01,...,0,) € Gal(K)" let k(o) be
the fixed field of oy,...,0, in K, and put

ktot,s((") = f{((") N Kiot,s-

In the following we shall use the expression “for almost all o € Gal(K)"” in
the sense of the Haar measure of the profinite group Gal(K)™ (see [3], Chap. 18).

Finally, for every algebraic extension M/K denote by Oy, the ring of integers
of M.

Theorem 8. Assume that for each p €S one has |K,| = 3, and let n > 2 be a
rational integer. Then for almost all o € Gal(K)" every element of the ring R of
integers of the field Ko s(0) is a sum of n units.

Proof. Our argument is based on the following assertion, which is a combina-
tion of Corollary 1.9, Theorem 1.5 and Remark 1.3 (c) of [5]:

Lemma 9. (Local-global principle) The following statement holds for almost
all o € Gal(K)™: Let V be an affine absolutely irreducible smooth variety over the
field M = Ko.5(0). Suppose that V(Oy) # 0 and for each prime q of M lying over
S one has %g%]) #(). Then V(Oy) is non-empty.

It sufficés to establish the theorem in the case n = 2, as the general case
follows from the observation that if a ring R is 2-good, then it is n-good for all
n = 2. Indeed, if this holds for a certain n and r € R, then

r=u;+u+---+u,

with units uq,...,u,, and if we write u, =u -+ v with units u,v, then r =
Uy +---+u, +u+ois a sum of n+ 1 units.
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On Sums of Units 5

Let a € R. Consider the affine variety V defined over R by the following equations:
X1 +X; =a, X Y, =1, XY, = 1. (1)

The variety V has an Og-rational point. Indeed, let x;,x, be roots of the poly-
nomial X> — aX + 1. Then x;,x; € Ok, X1 +x, = a and x1x, = 1. Thus xy, x; are
units, and if we put y; = x; ' (i = 1,2), then (x1,x2,y1,y2) € V(Og).

Now let B be a prime of M over S. Then My; is a finite field of at least three
elements, so there exists x; € Oy, such that the elements x;,a — x;,0 are distinct
modulo B. If x, = a — x{, then x1, x, are units of Oy, and a = x; + x;. As before,
put y; = x; ' (i=1,2) to get (x1,x2,y1,)2) €V(Og). 9

Since V is smooth and absolutely irreducible, Lemma A4 is applicable to R, so
there exist (x1,x2,y1,y2) € V(R). Therefore x;,x, are units of R, and a = x; + xp,
as desired. O]

6. We conclude with three open questions related to sums of units:

Problem A. Give a criterion for an algebraic extension K of the rationals to
have the property that Ok is a-good for some a€{1,2,... w}.

This has been solved for quadratic number fields in [1] (Theorems 7 and 8).

It follows from the Kronecker-Weber theorem that the maximal Abelian exten-
sion @ of the rationals has this property. Indeed, if a € Q is an integer, then it
lies in a suitable cyclotomic field K, = Q((,), ¢, being a primitive n-th root of
unity, and since the ring of integers of K, equals Z[(,] we can write

a=Co—|—C1Cn+"'+Cr<,2;

with ¢;€7Z, and r = [K, : @] — 1. Therefore a is a sum of at most ) [c;| of
units. We do not know, whether the ring of integers of Q“ is n-good for a finite n.

One sees easily that the ring of integers of every algebraic extension of the
rationals which is closed under quadratic extensions is 2-good. Indeed, if « is an
algebraic integer, and u, v are roots of the polynomial f(X) = X> — aX — 1, then
u, v are both units, and u + v = «. In particular the ring of all algebraic integers is
2-good, and since the discriminant of f equals a? + 4, hence is positive for real
«, the same applies to the ring of all real algebraic integers.

The criterion given in [1] provides examples of quadratic fields K for which Ok
is not w-good. However every such field has a finite extension L such that the ring
Oy is w-good. This leads to the next question:

Problem B. Is it true that each number field has a finite extension L such that
Oy, is w-good?

Problem C. Let K be an algebraic number field. Obtain an asymptotical
Sformula for the number Ni(x) of positive rational integers n < x which are sums
of at most k units of the field K.
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R.Hafner, H. Waldl

Band 2:

Arbeitsbuch fiir SPSS

und Microsoft Excel
2001.XIl,244 S.221 Abb.
Brosch. EUR 22,50, sFr 38,50
ISBN 3-211-83511-3
Springers Kurzlehrbiicher der

Wirtschaftswissenschaften

W.Timischl

Biostatistik

Eine Einfihrung

fur Biologen und Mediziner
Zweite, neu bearbeitete Auflage.
2000.X,340 S.59 Abb.

Brosch. EUR 31,50, sFr 54,—

ISBN 3-211-83317-X

R.K.W.Viertl

Einfiihrung in die Stochastik
Mit Elementen der Bayes-
Statistik und der Analyse
unscharfer Information

Dritte, liberarb. und erweit. Auflage.

2003.XV, 224 S.51 Abb.
Brosch.EUR 29,80, sFr 51,—
ISBN 3-211-00837-3

Springers Lehrbucher der Informatik

R.K.W.Viertl, D. Hareter
Beschreibung und Analyse
unscharfer Information
Statistische Methoden fur
unscharfe Daten

2005.XVI, 129 S.66 Abb.
Brosch.EUR 39,, sFr 66,50

ISBN 3-211-23877-8

D. Dorninger, G.Karigl
Mathematik fiir
Wirtschaftsinformatiker
Grundlagen, Modelle,
Programme

Band 1

Zweite Auflage.
1996.X,222 S.85 Abb.
Brosch.EUR 22,90, sFr 39,
ISBN 3-211-82888-5
Band 2

Zweite Auflage.
1999.VIII, 222 S.34 Abb.
Brosch. EUR 26,50, sFr 45,50
ISBN 3-211-83365-X
Springers Kurzlehrbicher

der Wirtschaftswissenschaften

Ch. Uberhuber, St. Katzenbeisser,
D. Praetorius

MATLAB 7

Eine Einfihrung

2005.1X,309 S.57 Abb.

Brosch.EUR 37,80, sFr 64,50

ISBN 3-211-21137-3

SpringerWien NewYork

P.O.Box 89, Sachsenplatz 4-6, 1201 Wien, Osterreich  Fax +43-1-330 24 26, books@springer.at, Internet: springer.at

Serie 7b
03.06.VI

J.W.Dawson jr.

Kurt Godel: Leben und Werk
Aus dem Amerikanischen
Ubersetzt von J.Kellner.
1999.XIlI,294 S.16 Abb. 1 Frontispiz.
Brosch.EUR 55,—, sFr91,-

ISBN 3-211-83195-9
Computerkultur, Band XI

K.Menger

Selecta Mathematica

B. Schweizer, A. Sklar, K. Sigmund,
P.Gruber, E. Hlawka, L. Reich,

L. Schmetterer (Hrsg.)

Volume 1

2002.X,606 S.4 Abb.
Text: deutsch/englisch
Geb. EUR 54,95, sFr 91,-
ISBN 3-211-83734-5
Volume 2

2003.X,674 S.11 Abb.
Text: deutsch/englisch
Geb. EUR 66,95, sFr 110,50
ISBN 3-211-83834-1

Josef Trol3
Angewandte Mathematik mit
Mathcad. Lehr- und Arbeitsbuch

Band 1: Einfiihrung in Mathcad
2005.XIl,474 S. Zahlreiche Abb.
Spiralbindung EUR 49,90, sFr 85,-
ISBN 3-211-28905-4

Band 2: Komplexe Zahlen und
Funktionen, Vektoralgebra usw.
2006.X, 545 S. Zahlreiche Abb.
Spiralbindung EUR 49,90, sFr 85,-
ISBN 3-211-29687-5

Band 3: Differential- und
Integralrechnung

2006.X,486 S. Zahlreiche Abb.
Spiralbindung EUR 49,90, sFr 85,-
ISBN 3-211-29689-1

Band 4: Reihen, Transformationen,
Differentialgleichungen usw.
2006.Ca. 500 S. Zahlreiche Abb.
Spiralbindung EUR 49,90, sFr 85,-
ISBN 3-211-29693-X. Erscheint April 2006






