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Introduction

Let R be a real closed field, ¢ an indeterminate, and K = R(t) the field of rational
functions in ¢ over R. In their work [KrN71], Krull and Neukirch consider the case
where R is the field of real numbers R. For each finite set S of prime divisors of
K /R they introduce the maximal extension Kg of K unramified outside S and present
Gal(Kg/K) by generators and relations. Based on this description, they present the
absolute Galois group Gal(K) as a semi-direct product of Gal(C/R) and Gal(C(t)) with
an explicit action. Schuppar [Sch80] extends the results of [KrN71] to an arbitrary real
closed field R.

In [HaJ85] we apply the presentation of Gal(Kg/K) by generators and relations
to present Gal(K) (for an arbitrary real closed field R) as a free product C'(X) * F,
where C(X) is a free product of groups of order 2 over an indexed profinite space X of
weight m = card(R) and F' is a free profinite group of rank m.

In a letter to the second author, David Harbater asked about the isomorphism
type of Gal(L), where L ranges over the finite extensions of K. In particular he asked
whether Gal(L) depends on the number of the connected components of I'( R), where I'
is a smooth model of K/R.

The goal of this note is to prove that there are actually only two isomorphism
types for Gal(L), either Gal(K) or a free profinite group of rank m = card(R). Indeed,

we prove the following theorem.

MAIN THEOREM: Let R be a real closed field, K = R(t) the field of rational functions
over R, and L a finite extension of K. Let C(X) be the free product on a constant sheaf
of groups of order 2 over the profinite space X of orderings of K, and let F' be the free
profinite group of rank card(R). If L is formally real, then Gal(L) = C(X) % F; if L is
not formally real, then Gal(L) = F.

Our proof applies Kurosh Subgroup Theorem for free profinite product of finitely
many profinite groups to reduce the main theorem to the case K = L. An essential
ingredient in the proof is Proposition 1.4 which states that every non-empty open-closed

subset of the space of orderings X (K) of K is homeomorphic to X (K).
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It is possible that the main theorem follows also from of the Kurosh Subgroup
Theorems for infinitely many factors stated either in [GiR73] or in [Zal92]. This is hinted
in Remark 4.3(c) of [Har07]. Unfortunately, neither of them explicitly gives the rank of

the free group nor the structure of the underlying topological space of involutions.

1. Spaces of orderings

Let K be a field. The set X(K) of orderings of K is a profinite space [Pre75, Theo-
rem 6.5] under the Harrison topology. This topology is given by the Harrison sub-
basis {H(a)| a € K*}, where H(a) = {P € X(K)| a € P}. This set is open-closed
in X(K); its complement is H(—a). We revise the description of open-closed Harrison
sets as a disjoint union of “open intervals” and prove that they are homeomorphic to
each other.

The following observation is obvious.

LEMMA 1.1: Let 6 be an automorphism of a field K. Then P +— 6(P) is a homeomor-

phism of the space of orderings of K. It maps the Harrison set H(a) onto H(0(a)).

For the rest of this section let R be a real closed field and K = R(t) the field of

rational functions over R. Put
H = {H(t—a),H(a—1t)| a € R}

LEMMA 1.2: The family H' is a subbasis for the Harrison topology on X (K).

Proof: This is essentially written in the proof of [Cra74, Prop. 12]: For all f,g € K*

we have

H(f/g)=H(fg) = (H(f)NH(g)) U (H(=f)NH(-g)).
Therefore the elements of the Harrison subbasis for X (K) are finite unions of finite
intersections of sets H(f), H(—f) with either f € R or f € R[t] monic and irreducible.
In the latter case either f =t — a for some a € R or f = (t + a)? + b? for some a € R
and b € R*. However, if f € R then H(f) = X(K) or H(f) = 0, depending on whether
f is positive or negative in the unique ordering on R. Similarly, if f = (¢ + a)? + b2 for

some a € R and b € R, then H(f) = X (K). |

2



For a,b € R {+xoo} put (a,b) = {P € X(K)| a <t < bin P}. (Conditions
—00 < t, t < oo are understood to hold for every P € X(K), while conditions oo < t,

t < —oo hold for no P.)

LEMMA 1.3:

(a) H={(a,b)| a,b e RU{+oo}} is a basis for the Harrison topology of X (K).

(b) Every open-closed subset of X (K) is the disjoint union of finitely many elements of
H.

Proof of (a): We have (a,00) = H(t —a), (—00,b) = H(a—t), and (a,b) = H(t —a) N

H(b—1t),if a,b € R. Hence, every H € H is the intersection of (at most two) elements

of H'. Since (a,b) N (¢,d) = (max(a,c), min(b,d)) € H, the family H is closed under

finite intersections.

Proof of (b): Let H € X(K) be open-closed. By (a), H = |J,;c; Hi, with H; € 'H
for each i. Since H is compact [Pre75, Theorem 6.5], we may assume that I is finite.
Thus, there are ¢; < ¢a < -+ < ¢, in RUY {00} such that each H; is (¢j, ¢y) for some
1 <j,k<m. If j >k, then (¢j,cx) = 0; if j < k, then (¢j,cx) = U]I:}(cy,cw_l).
Hence, we may assume that H; = (¢;,¢j41). Since (c1,c2),(c2,¢3),. .., (Cm—1,Cm) are

disjoint, H is the disjoint union of some of them. |

PROPOSITION 1.4: Every two non-empty open-closed subsets of X (K) are homeomor-

phic.

Proof: By Lemma 1.1, the R-automorphism of K which maps t onto t — a,a — t, g

induces a homeomorphism between H(t) = (0,00) and H(t — a) = (a,00),H(a —

t) = (—o00,a), H(:=2) = (b,c), respectively. Thus, the elements of H, defined in

o—t
Lemma 1.3(a), are homeomorphic.

Let H # () be an open-closed subset of X(K). By Lemma 1.3(b), H is a disjoint
union H = [, H; of elements of H. Without loss of generality, each H; is non-
empty. By the preceding paragraph, H; is homeomorphic to (i,7 + 1) and H,, is also

n—1

homeomorphic to (n,oc0). Therefore, H is homeomorphic to |-J,_; (4,7 + 1) U (n,00) =

(1, 00). |



2. Free products

Let X be a profinite space and let C' = (g) be the cyclic group of order 2. Let C'(X)
denote the free product of copies of C over the constant sheaf with base X. Thus,
C(X) is a profinite group with a continuous map w: X — C(X) such that w(z)? =1
for all x € X, and if ng: X — H is a continuous map into a profinite group H with
no(z)? = 1 for all x € X, then there exists a unique homomorphism 7: C(X) — H
satisfying 7 ow = ng. For each z € X put ¢, = w(x) € C(X). Then C(X) is also the
(inner) free product of the groups (g,) in the sense of [Mel90, Sec. 1]. In particular,
C(X) = (e.] x € X).

In addition, fix z € X and let F'(X, Z) be the free group on the pointed space
(X,Zz). Thus, F(X,Z) is a profinite group with a continuous map A\: X — F (X, ) such
that A(Z) = 1, and if n9: X — H is a continuous map into a profinite group H such
that 79(Z) = 1, then there exists a unique homomorphism 7: F(X,z) — H such that
no X =rmg. For each z € X put 0, = A(x) € F(X,Z); in particular, oz = 1.

If X is infinite, then F'(X,Z) is isomorphic to the free profinite group of rank m,
where m is the weight of X, that is, the cardinality of the family of open-closed subsets
of X [RiZ00, Proposition 3.5.12].

LEMMA 2.1: The kernel of the epimorphism ¢: C(X) — C, given by €, — ¢, is isomor-
phic to F(X,z), and C(X) = C x F(X,z), with action given by o5 = o', for every
r e X.
Proof:  Let ap: X — C(X) be the map = +— eze,. Then aog(Z) = 1 and «ay is
continuous, since it is the composition of the continuous maps X — C(X) given by
x +— e, and C(X) — C(X) given by g — ez¢g. Therefore o defines a homomorphism
a: F(X,z) — C(X) by 04 — €z6,.

The map X — F(X,Z) given by z — o, ' (and in particular z — o;' = 1)
extends to a continuous automorphism of F/(X,Z), given by o, — o, !, which is clearly

of order 2. Hence, C acts on F(X,Z) by 05 = 0,1, for x € X. We have
D) =alogh) = a0,) 7! = (eae2) T = vz = (6262)° = (a(04)).
Hence, a extends to a homomorphism a: C x F(X,z) — C(X) by € — ;.
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On the other hand, the map Gy: X — C'x F(X, %) given by x — eo, is continuous

lg, =1

and its image consists of elements of order 1 or 2, since (e0)? = 050, = 0,
in C x F(X,Z). Hence, there is a continuous homomorphism 5: C(X) — C x F(X, )
given by ¢, — €o,, for each x € X.

For each z € X we have a(f(e;)) = a(eoy) = ez(€zez) = €z, Bla(oz)) =
Bezer) = €0z€0, = 04, and [(a(e)) = B(ez) = eoz = €. The uniqueness part of the
definitions of o and [ implies that oo § and (o a are the identity maps. Hence, «

is an isomorphism. Moreover, ¢ o a is the projection C' x F(X,x) — C. Therefore,

a(F(X,z)) = Ker(yp). |

LEMMA 2.2: Let Fy, Fs be free profinite groups of ranks mq,ms, respectively. Then

Fy x Fy is a free group of rank mq + ms.

Proof: By definition [FrJ05, Definition 17.4.1], F; is the free group on a set S; of
cardinality m;, for ¢ = 1,2. Thus, S = 571 U S5 is a subset of F} x F5 that converges to 1
and each map v from S into a profinite group H that converges to 1 uniquely extends
to a homomorphism F; x F, — H. Consequently, F; * Fy is the free profinite group on

S, so rank(Fy x Fy) = mq + mao. |

PROPOSITION 2.3: Let F' be a free profinite group of rank m > Ny and let X be a
profinite space of weight m. Assume that every non-empty open-closed subset of X is
homeomorphic to X. Let G = C(X) x F and let H be an open subgroup of G. Then
either H = G or H = F.

Proof: Choose an open normal subgroup N of G contained in H and let 7: G — G /N
be the quotient map.

CLAIM A: There is a partition X = |J;_, X; of X into disjoint open-closed subsets
such that for every 1 <1i < mn we have m(e,) = 7(e,) for all x,y € X;. Indeed, the map
w: X — C(X) < G given by = — &, is continuous, hence so is Tow: X — G/N. Its

fibers Xq,..., X, satisfy the requirements of the claim.

PART B: Factors of H. By [Mel90, Theorem 1.5], G = }{;_, C(X;)*F. By the Kurosh

5



Subgroup Theorem for free product with finitely many factors [RiZ00, Theorem 9.1.9]

H= lf[ ﬁ(C(Xi)gw N H) * 1*1[(ng NH)+ F,
i=1j=1 j=1
where F’ is a finitely generated free profinite group, r,n,r; € N, and g;,¢9;; € G.

Fix 1 <7 < n. Let N; be the kernel of the epimorphism ¢;: C(X;) — C given by
gp g, forall z € X;. If C(X;)% < H, then C(X;)% NH = C(X;)% = C(X;). If
C(X;)% £ H, then C(X;) £ N. Since C(X;) = (e, | v € X;), there is a y € X, such
that ¢, ¢ N, so € = m(ey) € G/N is of order 2. By Claim A, m(e,) = ¢ for all x € Xj.
Therefore, the map ¢ +— & gives an isomorphism v: C' — (&) such that v o ¢; = 7|¢(x,),
thus C(X;) N N = N;. Since N/ = C(X;)% NN < C(X;)% NH < C(X)% and
(C(X;)% : N?7) = 2, we have C(X;)% N H = N;/“. By Lemma 2.1, N; is the
free profinite group F(X;,Z;) on a pointed space (X;, z;), for some z; € X;. Hence,
C(X;)%i N H = N; is a free group of rank m;, where m; is the weight of Xj.

For each 1 < j <r, F9 NH is isomorphic to an open subgroup of F’, hence [FrJ05,
Proposition 17.6.2] isomorphic to F'.

PART C: Conclusion. By Part B, H =~ M _, C(Y;) *H§:1 F;* F', where Y; is an open-
closed subset of X for each 7 and F; = F for each j. Since all non-empty open-closed
subsets are homeomorphic (to X), we may assume that Y7,...,Y; are disjoint. It then
follows either from [Mel90, Theorem 1.5] or directly from the definition of C'(X) that
M,_, C(Y;) =C(U;_, Yi). If U;_, Y; is not empty, it is homeomorphic to X, and hence
O, Yi) = C(X). UL, Y = 0, then C(UL_, ) = 1

By Lemma 2.2, H§:1 Fj« F" = F. Consequently, either H = C(X)«F or H= F.

All of the preliminary results now combine to a proof of our main theorem.

Proof of the Main Theorem: Put G = Gal(K) and H = Gal(E). By [HaJ85, The-
orem 4.1], G =2 C(X) x F, where X = X(K) and F is free of rank m = |R|. By
Lemma 1.3(a), X is weight m. By Proposition 1.4, any two non-empty open-closed

subsets of X are homeomorphic. Hence, by Proposition 2.3, either H =2 G or H = F.
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The first case happens if and only if H contains involutions, that is, by Artin-Schreier

theory, if and only if F is formally real. |

Remark 2.4: The case where E in the Main Theorem is not formally real has an al-
ternative proof, as noticed by Harbater in [Har07, Thm. 4.2]. His proof relies on a
combination of several deep results. In particular, he uses that each finite split embed-
ding problem over F with a nontrivial kernel has as many solutions as the cardinality

of R. |

References

[Cra74] T. C. Craven, The topological space of orderings of a rational function field, Duke
Mathematical Journal 41 (1974), 339-347.

[FrJo5] M. D. Fried and M. Jarden, Field Arithmetic, 2nd edition, revised and enlarged by

M. Jarden, Springer, a series of modern surveys in mathematics, Berlin, 2005.

[GiR73] D. Gildenhuys, L. Ribes, A Kurosh subgroup theorem for free pro-C-products of pro-
C-groups, Transactions of the AMS 186 (1973), 309-329.

[Har07] D. Harbater, On function fields with free absolute Galois groups, manuscript,
Philadelphia, 2007.

[HaJ85] D. Haran, M. Jarden, Real free groups and the absolute Galois group of R(t), Journal
of Pure and Applied Algebra 37 (1985), 155-165.

[KrN71] W. Krull and J. Neukirch, Die Struktur der absoluten Galoisgruppe iiber dem Korper
R(t), Mathematische Annalen 193 (1971), 197-209.

[Mel90] O.V. Melnikov, Subgroups and the homology of free products of profinite groups,
Mathematics USSR-Izvestiya 34 (1990), 97-119.

[Pre75] A. Prestel, Lectures on formally real fields, Lecture Notes in Mathematics 1093,
Springer, Berlin 1984.

[RiZ00] L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer Gren-
zgebiete 40, Springer, 2000.

[Sch80] B. Schuppar, Elementare Aussagen zur Arithmetik und Galoistheorie von Funktio-
nenkérpern, Journal fiir die reine und angewandte Mathematik 313 (1980), 59-71.

7



[Zal92] P. Zalesskii, Open subgroups of free profinite products, Proceedings of the Interna-
tional Conference on Algebra, Part 1 (Novosibirsk, 1989), Contemporary Mathematics
131 (1992) 473-491.



