Function Fields of One Variable over PAC Fields

by

Moshe Jarden, Tel Aviv University

and

Florian Pop, University of Pennsylvania

In this note we give evidence for a conjecture of Serre and a conjecture of Bogomolov.

Conjecture II of Serre considers a field F of characteristic p with $cd(Gal(F)) \leq 2$ such that either p = 0 or p > 0 and $[F : F^p] \leq p$ and predicts that $H^1(Gal(F), G) = 1$ (i.e. each principal homogeneous G-spaces has an F-rational point) for each simply connected semi-simple linear algebraic group G [Ser97, p. 139].

As Serre notes, the hypothesis of the conjecture holds in the case where F is a field of transcendence degree 1 over a perfect field K with $cd(Gal(K)) \leq 1$. Indeed, in this case $cd(Gal(F)) \leq 2$ [Ser97, p. 83, Prop. 11] and $[F : F^p] \leq p$ if p > 0 (by the theory of p-bases [FrJ08, Lemma 2.7.2]). We prove the conjecture for F in the special case, where K is PAC of characteristic 0 that contains all roots of unity.

One of the main ingredients of the proof is the projectivity of $\operatorname{Gal}(K(x)_{ab})$ (where x is transcendental over K and $K(x)_{ab}$ is the maximal Abelian extension of K(x)). We also use the same ingredient to establish an analog to the wellknown open problem of Shafarevich that $\operatorname{Gal}(\mathbb{Q}_{ab})$ is free. Under the assumption that K is PAC and contains all roots of unity we prove that $\operatorname{Gal}(K(x)_{ab})$ is not only projective but even free. This proves a stronger version of a conjecture of Bogomolov for a function field of one variable F over a PAC field that contains all roots of unity [Pos05, Conjecture 1.1].

1. The Projectivity of $Gal(K(x)_{ab})$

We denote the separable (resp. algebraic) closure of a field K by K_s (resp. \tilde{K}) and its absolute Galois group by Gal(K). The field K is said to be **PAC** if every absolutely irreducible variety defined over K has a K-rational point. The proof of the projectivity result applies a local-global principle for Brauer groups to reduce the statement to Henselian fields.

1

For a prime number p and an Abelian group A, we say that A is p'-divisible, if for each $a \in A$ and every positive integer n with $p \nmid n$ there exists $b \in A$ such that a = nb. Note that if p = 0, then "p'-divisible" is the same as "divisible".

LEMMA 1.1: Let p be 0 or a prime number, B a torsion free Abelian group, and A is a p'-divisible subgroup of B of finite index. Then B is also p'-divisible.

Proof: First suppose p = 0 and let m = (B : A). Then, for each $b \in B$ and a positive integer n there exists $a \in A$ such that mb = mna. Since B is torsion free, m = na. Thus, B is divisible.

Now suppose p is a prime number, let $mp^k = (B : A)$, with $p \nmid m$ and $k \ge 0$, and consider $b \in B$. Then $mp^k b \in A$. Hence, for each positive integer n with $p \nmid n$ there exists $a \in A$ with $mp^k b = mna$. Thus, $p^k b = na$. Since $p \nmid n$, there exist $x, y \in \mathbb{Z}$ such that $xp^k + yn = 1$. It follows from $xp^k b = xna$ that b = n(xa + yb), as claimed.

COROLLARY 1.2: Let L/K be an algebraic field extension, v a valuation of L, and p = 0or p is a prime number. Suppose that $v(K^{\times})$ is p'-divisible. Then $v(L^{\times})$ is p'-divisible.

Proof: Let $x \in L^{\times}$ and n a positive integer with $p \nmid n$. Then $v(K(x)^{\times})$ is a torsion free Abelian group and $v(K^{\times})$ is a subgroup of index at most [K(x) : K]. Since $v(K^{\times})$ is p'-divisible, Lemma 1.1 gives $y \in K(x)^{\times}$ such that v(x) = nv(y). It follows that $v(L^{\times})$ is p'-divisible.

Given a Henselian valued field (M, v) we use v also for its unique extension to M_s . We use a bar to denote the residue with respect to v of objects associated with M, let O_M be the valuation ring of M, and let $\Gamma_M = v(M^{\times})$ be the value group of M.

We write $cd_l(K)$ and cd(K) for the *l*th cohomological dimension and the cohomological dimension of Gal(K) and note that $cd(K) \leq 1$ if and only if Gal(K) is projective [Ser97, p. 58, Cor. 2].

LEMMA 1.3: Let (M, v) be a Henselian valued field. Suppose $p = char(M) = char(\overline{M})$, Gal (\overline{M}) is projective, and Γ_M is p'-divisible. Then Gal(M) is projective.

Proof: We denote the **inertia field** of M by M_u . It is determined by its absolute Galois group: $\operatorname{Gal}(M_u) = \{ \sigma \in \operatorname{Gal}(M) \mid v(\sigma x - x) > 0 \text{ for all } x \in M_s \text{ with } v(x) \ge 0 \}.$

The map $\sigma \mapsto \overline{\sigma}$ of $\operatorname{Gal}(M)$ into $\operatorname{Gal}(\overline{M})$ such that $\overline{\sigma}\overline{x} = \overline{\sigma}\overline{x}$ for each $x \in O_M$ is a well defined epimorphism [Efr06, Thm. 16.1.1] whose kernel is $\operatorname{Gal}(M_u)$. It therefore defines an isomorphism

(1)
$$\operatorname{Gal}(M_u/M) \cong \operatorname{Gal}(\bar{M}).$$

CLAIM A: \overline{M}_u is separably closed. Let $g \in \overline{M}[X]$ be a monic irreducible separable polynomial of degree $n \ge 1$. Then there exists a monic polynomial $f \in O_{M_u}[X]$ of degree n such that $\overline{f} = g$. We observe that f is also irreducible and separable. Moreover, if $f(X) = \prod_{i=1}^n (X - x_i)$ with $x_1, \ldots, x_n \in M_s$, then $g(X) = \prod_{i=1}^n (X - \overline{x}_i)$. Given $1 \le i, j \le n$ there exists $\sigma \in \operatorname{Gal}(M_u)$ such that $\sigma x_i = x_j$. By definition, $\overline{x}_j = \overline{\sigma x_i} = \overline{\sigma x_i} = \overline{\sigma x_i} = \overline{\sigma x_i}$. Since g is separable, i = j, so n = 1. We conclude that \overline{M}_u is separably closed.

CLAIM B: Each *l*-Sylow group of $\operatorname{Gal}(M_u)$ with $l \neq p$ is trivial. Indeed, let L be the fixed field of an *l*-Sylow group of $\operatorname{Gal}(M_u)$ in M_s . If l = 2, then $\zeta_l = -1 \in L$. If $l \neq 2$, then $[L(\zeta_l) : L]|l - 1$ and $[L(\zeta_l) : L]$ is a power of l, so $\zeta_l \in L$.

Assume that $\operatorname{Gal}(L) \neq 1$. By the the theory of finite *l*-groups, *L* has a cyclic extension *L'* of degree *l*. By the preceding paragraph and Kummer theory, there exists $a \in L^{\times}$ such that $L' = L(\sqrt[l]{a})$. By Corollary 1.2, there exists $b \in L^{\times}$ such that lv(b) = v(a). Then $c = \frac{a}{b^l}$ satisfies v(c) = 0. By Claim A, \overline{L} is separably closed. Therefore, \overline{c} has an *l*th root in \overline{L} . By Hensel's lemma, *c* has an *l*th root in *L*. It follows that *a* has an *l*-root in *L*. This contradiction implies that $L = M_s$, as claimed.

Having proved Claim B, we consider again a prime number $l \neq p$ and let G_l be an *l*-Sylow subgroup of Gal(M). By the Claim, $G_l \cap \text{Gal}(M_u) = 1$, hence the map res: Gal(M) \rightarrow Gal(M_u/M) maps G_l isomorphically onto an *l*-Sylow subgroup of Gal(M_u/M). By (1), G_l is isomorphic to an *l*-Sylow subgroup of Gal(\overline{M}). Since the latter group is projective, so is G_l , i.e. $\text{cd}_l(G) \leq 1$ [Ser97, p. 58, Cor. 2].

Finally, if $p \neq 0$, then $\operatorname{cd}_p(M) \leq 1$ [Ser97, p. 75, Prop. 3], because then $\operatorname{char}(M) = p$. It follows that $\operatorname{cd}(M) \leq 1$ [Ser97, p. 58, Cor. 2].

LEMMA 1.4: Let F be an extension of a PAC field K of transcendence degree 1 and

characteristic p. Suppose $v(F^{\times})$ is p'-divisible for each valuation v of F/K. Then Gal(F) is projective.

Proof: Let K_{ins} be the maximal purely inseparable algebraic extension of K and set $F' = FK_{\text{ins}}$. Then K_{ins} is PAC [FrJ08, Cor. 11.2.5], trans.deg $(F'/K_{\text{ins}}) = 1$, and $v((F')^{\times})$ is p'-divisible for every valuation v of F' (by Corollary 1.2). Moreover, Gal(F') = Gal(F). Thus, we may replace K by K_{ins} and F by F', if necessary, to assume that K is perfect.

Let V(F/K) be a system of representatives of the equivalence classes of valuations of F that are trivial on K. For each $v \in V(F/K)$ we choose a Henselian closure F_v of F at v. By [Efr01, Thm. 3.4], there is an injection of Brauer groups,

(2)
$$\operatorname{Br}(F) \to \prod_{v \in V(F/K)} \operatorname{Br}(F_v).$$

For each $v \in V(F/K)$ we have, $v(F_v^{\times}) = v(F^{\times})$ is p'-divisible. Also, the residue field \overline{F}_v is an algebraic extension of K. Since K is PAC, a theorem of Ax says that $\operatorname{Gal}(K)$ is projective [FrJ08, Thm. 11.6.2], hence $\operatorname{Gal}(\overline{F}_v)$ is projective [FrJ08, Prop. 22.4.7]. Finally, $\operatorname{char}(F_v) = \operatorname{char}(\overline{F}_v)$. Therefore, by Lemma 1.3, $\operatorname{Gal}(F_v)$ is projective, hence $\operatorname{Br}(F_v) = 0$ [Ser97, p. 78, Prop. 5]. It follows from the injectivity of (2) that $\operatorname{Br}(F) = 0$.

If F_1 is a finite separable extension of F, $v_1 \in V(F_1/K)$, and $v = v_1|_F$, then $v(F^{\times})$ is p'-divisible. Hence, by Corollary 1.2, $v_1((F_1)^{\times})$ is p'-divisible. It follows from the preceding paragraph that $Br(F_1) = 0$. Consequently, by [Ser97, p. 78, Prop. 5], $cd(Gal(F)) \leq 1$.

LEMMA 1.5: Let p be either 0 or a prime number and let Γ be an additive subgroup of \mathbb{Q} . Suppose $\frac{1}{n} \in \Gamma$ for each positive integer n with $p \nmid n$. Then Γ is p'-divisible.

Proof: We consider $\gamma \in \Gamma$. If p = 0, we write $\gamma = \frac{a}{b}$, with $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Given $n \in \mathbb{N}$, we have $\frac{\gamma}{n} = a \cdot \frac{1}{nb} \in \Gamma$.

If p > 0, we write $\gamma = \frac{a}{bp^k}$, where $a \in \mathbb{Z}$, $b \in \mathbb{N}$, $k \in \mathbb{Z}$, and $p \nmid a, b$. Let $n \in \mathbb{N}$ with $p \nmid n$. If $k \leq 0$, then $\frac{\gamma}{n} = ap^{-k} \cdot \frac{1}{nb} \in \Gamma$. If k > 0, we may choose $x, y \in \mathbb{Z}$ such that $xp^k + ynb = 1$. Then $\frac{\gamma}{n} = \frac{a}{nbp^k} = \frac{axp^k + aynb}{nbp^k} = ax \cdot \frac{1}{nb} + by \cdot \frac{a}{bp^k} \in \Gamma$, as claimed.

4

PROPOSITION 1.6: Let K be a PAC field that contains all roots of unity and let E be an extension of K of transcendence degree 1. Then $Gal(E_{ab})$ is projective.

Proof: First we consider the case where E = K(x), where x is transcendental over K, and set $F = E_{ab}$. In the notation of Lemma 1.4 we consider a valuation $v \in V(F/K)$ normalized in such a way that $v(E^{\times}) = \mathbb{Z}$. Then $v(F^{\times}) \leq \mathbb{Q}$. On the other hand, let $p = \operatorname{char}(K)$ and consider a positive integer n with $p \nmid n$. Let $e \in E$ with v(e) = 1. Then $e^{1/n} \in F$ (because K contains a root of 1 of order n). Therefore, $\frac{1}{n} = v(e^{1/n}) \in v(F^{\times})$. By Lemma 1.5, $v(F^{\times})$ is p'-divisible. We conclude from Lemma 1.4 that $\operatorname{Gal}(F)$ is projective.

In the general case we choose $x \in E$ transcendental over K. By the preceding paragraph, $\operatorname{Gal}(K(x)_{\mathrm{ab}})$ is projective. Since taking purely inseparable extensions of a field does not change its absolute Galois group, $\operatorname{Gal}(K(x)_{\mathrm{ab,ins}})$ is projective. Now note that $\operatorname{Gal}(E_{\mathrm{ab,ins}})$ as a subgroup of $\operatorname{Gal}(K(x)_{\mathrm{ab,ins}})$ is also projective. Hence, $\operatorname{Gal}(E_{\mathrm{ab}})$ is projective.

Remark 1.7: Proposition 1.6 is false if K does not contain all roots of unity. Indeed, the authors will elsewhere provide an example of a prime number l and a PAC field Kof characteristic 0 that contains all roots of unity of order n with $l \nmid n$ but not ζ_l such that $\operatorname{Gal}(K(x)_{ab})$ is not projective.

2. Serre and Shafarevich

We refer to a simply connected semi-simple linear algebraic group G as a **simply connected group**. In this case $H^1(\text{Gal}(K), G)$ will be also denoted by $H^1(K, G)$. Since each element of $H^1(K, G)$ is represented by a principal homogeneous space V of G and V is an absolutely irreducible variety defined over K, V has a K-rational point if K is PAC. Hence, V is equivalent to G [LaT58, Prop. 4]. Thus, $H^1(K, G) = 1$.

The proof of Serre's Conjecture II in our case is based on the following consequence of a theorem of Colliot-Thélène, Gille, and Parimala:

PROPOSITION 2.1: Let F be a field and G a simply connected group defined over F. Suppose F is a C_2 -field of characteristic 0, $cd(F) \leq 2$, and $cd(F_{ab}) \leq 1$. Then

 $H^1(F,G) = 1.$

Proof: Let F' be a finite extension of F. Since F is C_2 , [CGP04, Thm. 1.1(vi)] implies that if the exponent e of a central simple algebra A over F' is a power of 2 or a power of 3, then e is equal to the index of A.

Since $cd(F) \leq 2$ and $cd(F_{ab}) \leq 1$, [CGP04, Thm. 1.2(v)] implies that $H^1(F, G) = 1$.

Remark 2.2: By Merkuriev-Suslin, the assumption that F is a C_2 -field implies that $cd(F) \leq 2$ [Ser97, end of page 88]. However, we will be able to prove both properties of F directly in the application we have in mind.

The following result establishes the first condition on F.

LEMMA 2.3: Let F be an extension of transcendence degree 1 over a perfect PAC field K. Suppose either char(K) > 0 and K contains all roots of unity or char(K) = 0. Then $cd(F) \leq 2$ and F is a C_2 -field.

Proof: By Ax, $cd(K) \le 1$ [FrJ08, Thm. 11.6.2]. Hence, by [Ser97, p. 83, Prop. 11], $cd(F) \le 2$.

A conjecture of Ax from 1968 says that every perfect PAC field K is C_1 [FrJ08, Problem 21.2.5]. The conjecture holds if K contains an algebraically closed field [FrJ08, Lemma 21.3.6(a)]. In particular, if $p = \operatorname{char}(K) > 0$ and K contains all roots of unity, then $\tilde{\mathbb{F}}_p \subseteq K$, so K is C_1 . If $\operatorname{char}(K) = 0$, K is C_1 , by [Kol07, Thm. 1]. It follows that in each case, F is C_2 [FrJ08, Prop. 21.2.12].

THEOREM 2.4: Let F be an extension of transcendence degree 1 of a PAC field K of characteristic 0. Suppose K contains all roots of unity. Then F satisfies Serre's conjecture II. That is, $H^1(F,G) = 1$ for each simply connected group G defined over F. Proof: By Lemma 2.3, $cd(F) \leq 2$ and F is a C_2 -field. By Proposition 1.6, $cd(F_{ab}) \leq 1$. It follows from Proposition 2.1 that $H^1(F,G) = 1$ for each simply connected group G.

Remark 2.5: All of the ingredients of the proof of Theorem 2.4 except possibly Proposition 2.1 work also when char(K) > 0.

The proof of the freeness of $\operatorname{Gal}(K(x)_{ab})$ applies the notion of "quasi-freeness" due to Harbater and Stevenson. To this end recall that a **finite split embedding problem** \mathcal{E} for a profinite group G is a pair ($\varphi: G \to A, \alpha: B \to A$), where A, B are finite groups, φ, α are epimorphisms, and α has a group theoretic section. A **solution** of \mathcal{E} is an epimorphism $\gamma: G \to B$ such that $\alpha \circ \gamma = \varphi$. We say that G is **quasi-free** if its rank m is infinite and every finite split embedding problem for G has m distinct solutions.

THEOREM 2.6: Let F be a function field of one variable over a PAC field K of cardinality m containing all roots of unity and let x be a variable. Then $\text{Gal}(F_{ab})$ is isomorphic to the free profinite group of rank m.

Proof: Since K is PAC, K is **ample**, that is every absolutely irreducible curve defined over K with a K-rational simple point has infinitely many K-rational points. By [HaS05, Cor. 4.4], Gal(F) is quasi-free of rank m = card(K). Hence, by [Har09, Thm. 2.4], Gal(F_{ab}) is also quasi-free of rank m. Since by Proposition 1.6, Gal(F_{ab}) is projective, it follows from a result of Chatzidakis and Melnikov [FrJ08, Lemma 25.1.8] that Gal(F_{ab}) is free of rank m. ■

Acknowledgment: The authors thank Jean-Louis Colliot-Thélène for stimulating discussions, in particular for pointing out Proposition 2.1 to them.

References

- [CGP04] J.-L. Colliot-Thélńe, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over two-dimensional geometric fields, Duke Mathematical Journal 121 (2004), 285– 341.
- [Efr01] I. Efrat, A Hasse principle for function fields over PAC fields, Israel Journal of Mathematics 122 (2001), 43–60.
- [Efr06] I. Efrat, Valuations, Orderings, and Milnor K-Theory, Mathematical surveys and monographs 124, American Mathematical Society, Providence, 2006.
- [FrJ08] M. D. Fried and M. Jarden, Field Arithmetic, Third Edition, revised by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2008.

- [Har09] D. Harbater, On function fields with free absolute Galois groups, Journal f
 ür die reine und andgewandte Mathematik 632 (2009), 85–103.
- [HaS05] D. Harbater and K. Stevenson, Local Galois theory in dimension two, Advances in Mathematics 198 (2005), 623–653.
- [Kol07] J. Kollár, A conjecture of Ax and degenerations of Fano varieties, Israel Journal of Mathematics 162 (2007), 235–251.
- [LaT58] S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, American Journal of Mathematics 80 (1958), 659–684.
- [Pos05] L. Positselski, Koszul property and Bogomolov's conjecture, International Mathematics Research Notices 31 (2005), 1901–1936.
- [Ser97] J.-P. Serre, Galois Cohomology, Springer, Berlin, 1997.

8