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In this note we give evidence for a conjecture of Serre and a conjecture of Bogomolov.

Conjecture II of Serre considers a field F of characteristic p with cd(Gal(F )) ≤ 2

such that either p = 0 or p > 0 and [F : F p] ≤ p and predicts that H1(Gal(F ), G) = 1

(i.e. each principal homogeneous G-spaces has an F -rational point) for each simply

connected semi-simple linear algebraic group G [Ser97, p. 139].

As Serre notes, the hypothesis of the conjecture holds in the case where F is a

field of transcendence degree 1 over a perfect field K with cd(Gal(K)) ≤ 1. Indeed, in

this case cd(Gal(F )) ≤ 2 [Ser97, p. 83, Prop. 11] and [F : F p] ≤ p if p > 0 (by the

theory of p-bases [FrJ08, Lemma 2.7.2]). We prove the conjecture for F in the special

case, where K is PAC of characteristic 0 that contains all roots of unity.

One of the main ingredients of the proof is the projectivity of Gal(K(x)ab) (where

x is transcendental over K and K(x)ab is the maximal Abelian extension of K(x)). We

also use the same ingredient to establish an analog to the wellknown open problem of

Shafarevich that Gal(ℚab) is free. Under the assumption that K is PAC and contains

all roots of unity we prove that Gal(K(x)ab) is not only projective but even free. This

proves a stronger version of a conjecture of Bogomolov for a function field of one variable

F over a PAC field that contains all roots of unity [Pos05, Conjecture 1.1].

1. The Projectivity of Gal(K(x)ab)

We denote the separable (resp. algebraic) closure of a field K by Ks (resp. K̃) and its

absolute Galois group by Gal(K). The field K is said to be PAC if every absolutely

irreducible variety defined over K has a K-rational point. The proof of the projectivity

result applies a local-global principle for Brauer groups to reduce the statement to

Henselian fields.
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For a prime number p and an Abelian group A, we say that A is p′-divisible,

if for each a ∈ A and every positive integer n with p ∤ n there exists b ∈ A such that

a = nb. Note that if p = 0, then “p′-divisible” is the same as “divisible”.

Lemma 1.1: Let p be 0 or a prime number, B a torsion free Abelian group, and A is a

p′-divisible subgroup of B of finite index. Then B is also p′-divisible.

Proof: First suppose p = 0 and let m = (B : A). Then, for each b ∈ B and a positive

integer n there exists a ∈ A such that mb = mna. Since B is torsion free, m = na.

Thus, B is divisible.

Now suppose p is a prime number, let mpk = (B : A), with p ∤ m and k ≥ 0, and

consider b ∈ B. Then mpkb ∈ A. Hence, for each positive integer n with p ∤ n there

exists a ∈ A with mpkb = mna. Thus, pkb = na. Since p ∤ n, there exist x, y ∈ ℤ such

that xpk + yn = 1. It follows from xpkb = xna that b = n(xa+ yb), as claimed.

Corollary 1.2: Let L/K be an algebraic field extension, v a valuation of L, and p = 0

or p is a prime number. Suppose that v(K×) is p′-divisible. Then v(L×) is p′-divisible.

Proof: Let x ∈ L× and n a positive integer with p ∤ n. Then v(K(x)×) is a torsion free

Abelian group and v(K×) is a subgroup of index at most [K(x) : K]. Since v(K×) is

p′-divisible, Lemma 1.1 gives y ∈ K(x)× such that v(x) = nv(y). It follows that v(L×)

is p′-divisible.

Given a Henselian valued field (M,v) we use v also for its unique extension to Ms.

We use a bar to denote the residue with respect to v of objects associated with M , let

OM be the valuation ring of M , and let ΓM = v(M×) be the value group of M .

We write cdl(K) and cd(K) for the lth cohomological dimension and the cohomo-

logical dimension of Gal(K) and note that cd(K) ≤ 1 if and only if Gal(K) is projective

[Ser97, p. 58, Cor. 2].

Lemma 1.3: Let (M, v) be a Henselian valued field. Suppose p = char(M) = char(M̄),

Gal(M̄) is projective, and ΓM is p′-divisible. Then Gal(M) is projective.

Proof: We denote the inertia field of M by Mu. It is determined by its absolute

Galois group: Gal(Mu) = {� ∈ Gal(M) ∣ v(�x− x) > 0 for all x ∈ Ms with v(x) ≥ 0}.
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The map � 7→ �̄ of Gal(M) into Gal(M̄) such that �̄x̄ = �x for each x ∈ OM is a well

defined epimorphism [Efr06, Thm. 16.1.1] whose kernel is Gal(Mu). It therefore defines

an isomorphism

(1) Gal(Mu/M) ∼= Gal(M̄).

Claim A: M̄u is separably closed. Let g ∈ M̄ [X] be a monic irreducible separable

polynomial of degree n ≥ 1. Then there exists a monic polynomial f ∈ OMu
[X] of degree

n such that f̄ = g. We observe that f is also irreducible and separable. Moreover, if

f(X) =
∏n
i=1(X − xi) with x1, . . . , xn ∈ Ms, then g(X) =

∏n
i=1(X − x̄i). Given

1 ≤ i, j ≤ n there exists � ∈ Gal(Mu) such that �xi = xj . By definition, x̄j = �xi =

�̄x̄i = x̄i. Since g is separable, i = j, so n = 1. We conclude that M̄u is separably

closed.

Claim B: Each l-Sylow group of Gal(Mu) with l ∕= p is trivial. Indeed, let L be the

fixed field of an l-Sylow group of Gal(Mu) in Ms. If l = 2, then �l = −1 ∈ L. If l ∕= 2,

then [L(�l) : L]∣l − 1 and [L(�l) : L] is a power of l, so �l ∈ L.

Assume that Gal(L) ∕= 1. By the the theory of finite l-groups, L has a cyclic

extension L′ of degree l. By the preceding paragraph and Kummer theory, there exists

a ∈ L× such that L′ = L( l
√
a). By Corollary 1.2, there exists b ∈ L× such that

lv(b) = v(a). Then c = a
bl

satisfies v(c) = 0. By Claim A, L̄ is separably closed.

Therefore, c̄ has an lth root in L̄. By Hensel’s lemma, c has an lth root in L. It follows

that a has an l-root in L. This contradiction implies that L = Ms, as claimed.

Having proved Claim B, we consider again a prime number l ∕= p and let Gl

be an l-Sylow subgroup of Gal(M). By the Claim, Gl ∩ Gal(Mu) = 1, hence the

map res: Gal(M) → Gal(Mu/M) maps Gl isomorphically onto an l-Sylow subgroup of

Gal(Mu/M). By (1), Gl is isomorphic to an l-Sylow subgroup of Gal(M̄). Since the

latter group is projective, so is Gl, i.e. cdl(G) ≤ 1 [Ser97, p. 58, Cor. 2].

Finally, if p ∕= 0, then cdp(M) ≤ 1 [Ser97, p. 75, Prop. 3], because then char(M) =

p. It follows that cd(M) ≤ 1 [Ser97, p. 58, Cor. 2].

Lemma 1.4: Let F be an extension of a PAC field K of transcendence degree 1 and
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characteristic p. Suppose v(F×) is p′-divisible for each valuation v of F/K. Then

Gal(F ) is projective.

Proof: Let Kins be the maximal purely inseparable algebraic extension of K and

set F ′ = FKins. Then Kins is PAC [FrJ08, Cor. 11.2.5], trans.deg(F ′/Kins) = 1,

and v((F ′)×) is p′-divisible for every valuation v of F ′ (by Corollary 1.2). Moreover,

Gal(F ′) = Gal(F ). Thus, we may replace K by Kins and F by F ′, if necessary, to

assume that K is perfect.

Let V (F/K) be a system of representatives of the equivalence classes of valuations

of F that are trivial on K. For each v ∈ V (F/K) we choose a Henselian closure Fv of

F at v. By [Efr01, Thm. 3.4], there is an injection of Brauer groups,

(2) Br(F )→
∏

v∈V (F/K)

Br(Fv).

For each v ∈ V (F/K) we have, v(F×v ) = v(F×) is p′-divisible. Also, the residue field

F̄v is an algebraic extension of K. Since K is PAC, a theorem of Ax says that Gal(K)

is projective [FrJ08, Thm. 11.6.2], hence Gal(F̄v) is projective [FrJ08, Prop. 22.4.7].

Finally, char(Fv) = char(F̄v). Therefore, by Lemma 1.3, Gal(Fv) is projective, hence

Br(Fv) = 0 [Ser97, p. 78, Prop. 5]. It follows from the injectivity of (2) that Br(F ) = 0.

If F1 is a finite separable extension of F , v1 ∈ V (F1/K), and v = v1∣F , then

v(F×) is p′-divisible. Hence, by Corollary 1.2, v1((F1)×) is p′-divisible. It follows from

the preceding paragraph that Br(F1) = 0. Consequently, by [Ser97, p. 78, Prop. 5],

cd(Gal(F )) ≤ 1.

Lemma 1.5: Let p be either 0 or a prime number and let Γ be an additive subgroup of

ℚ. Suppose 1
n ∈ Γ for each positive integer n with p ∤ n. Then Γ is p′-divisible.

Proof: We consider 
 ∈ Γ. If p = 0, we write 
 = a
b , with a ∈ ℤ and b ∈ ℕ. Given

n ∈ ℕ, we have 

n = a ⋅ 1

nb ∈ Γ.

If p > 0, we write 
 = a
bpk

, where a ∈ ℤ, b ∈ ℕ, k ∈ ℤ, and p ∤ a, b. Let n ∈ ℕ

with p ∤ n. If k ≤ 0, then 

n = ap−k ⋅ 1

nb ∈ Γ. If k > 0, we may choose x, y ∈ ℤ such that

xpk + ynb = 1. Then 

n = a

nbpk
= axpk+aynb

nbpk
= ax ⋅ 1

nb + by ⋅ a
bpk
∈ Γ, as claimed.
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Proposition 1.6: Let K be a PAC field that contains all roots of unity and let E be

an extension of K of transcendence degree 1. Then Gal(Eab) is projective.

Proof: First we consider the case where E = K(x), where x is transcendental over K,

and set F = Eab. In the notation of Lemma 1.4 we consider a valuation v ∈ V (F/K)

normalized in such a way that v(E×) = ℤ. Then v(F×) ≤ ℚ. On the other hand, let

p = char(K) and consider a positive integer n with p ∤ n. Let e ∈ E with v(e) = 1. Then

e1/n ∈ F (because K contains a root of 1 of order n). Therefore, 1
n = v(e1/n) ∈ v(F×).

By Lemma 1.5, v(F×) is p′-divisible. We conclude from Lemma 1.4 that Gal(F ) is

projective.

In the general case we choose x ∈ E transcendental over K. By the preceding

paragraph, Gal(K(x)ab) is projective. Since taking purely inseparable extensions of a

field does not change its absolute Galois group, Gal(K(x)ab,ins is projective. Now note

that Gal(Eab,ins) as a subgroup of Gal(K(x)ab,ins) is also projective. Hence, Gal(Eab)

is projective.

Remark 1.7: Proposition 1.6 is false if K does not contain all roots of unity. Indeed,

the authors will elsewhere provide an example of a prime number l and a PAC field K

of characteristic 0 that contains all roots of unity of order n with l ∤ n but not �l such

that Gal(K(x)ab) is not projective.

2. Serre and Shafarevich

We refer to a simply connected semi-simple linear algebraic group G as a simply con-

nected group. In this case H1(Gal(K), G) will be also denoted by H1(K,G). Since

each element of H1(K,G) is represented by a principal homogeneous space V of G and

V is an absolutely irreducible variety defined over K, V has a K-rational point if K is

PAC. Hence, V is equivalent to G [LaT58, Prop. 4]. Thus, H1(K,G) = 1.

The proof of Serre’s Conjecture II in our case is based on the following consequence

of a theorem of Colliot-Thélène, Gille, and Parimala:

Proposition 2.1: Let F be a field and G a simply connected group defined over

F . Suppose F is a C2-field of characteristic 0, cd(F ) ≤ 2, and cd(Fab) ≤ 1. Then
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H1(F,G) = 1.

Proof: Let F ′ be a finite extension of F . Since F is C2, [CGP04, Thm. 1.1(vi)] implies

that if the exponent e of a central simple algebra A over F ′ is a power of 2 or a power

of 3, then e is equal to the index of A.

Since cd(F ) ≤ 2 and cd(Fab) ≤ 1, [CGP04, Thm. 1.2(v)] implies that H1(F,G) =

1.

Remark 2.2: By Merkuriev-Suslin, the assumption that F is a C2-field implies that

cd(F ) ≤ 2 [Ser97, end of page 88]. However, we will be able to prove both properties of

F directly in the application we have in mind.

The following result establishes the first condition on F .

Lemma 2.3: Let F be an extension of transcendence degree 1 over a perfect PAC field

K. Suppose either char(K) > 0 and K contains all roots of unity or char(K) = 0. Then

cd(F ) ≤ 2 and F is a C2-field.

Proof: By Ax, cd(K) ≤ 1 [FrJ08, Thm. 11.6.2]. Hence, by [Ser97, p. 83, Prop. 11],

cd(F ) ≤ 2.

A conjecture of Ax from 1968 says that every perfect PAC field K is C1 [FrJ08,

Problem 21.2.5]. The conjecture holds if K contains an algebraically closed field [FrJ08,

Lemma 21.3.6(a)]. In particular, if p = char(K) > 0 and K contains all roots of unity,

then F̃p ⊆ K, so K is C1. If char(K) = 0, K is C1, by [Kol07, Thm. 1]. It follows that

in each case, F is C2 [FrJ08, Prop. 21.2.12].

Theorem 2.4: Let F be an extension of transcendence degree 1 of a PAC field K

of characteristic 0. Suppose K contains all roots of unity. Then F satisfies Serre’s

conjecture II. That is, H1(F,G) = 1 for each simply connected group G defined over F .

Proof: By Lemma 2.3, cd(F ) ≤ 2 and F is a C2-field. By Proposition 1.6, cd(Fab) ≤ 1.

It follows from Proposition 2.1 that H1(F,G) = 1 for each simply connected group G.

Remark 2.5: All of the ingredients of the proof of Theorem 2.4 except possibly Propo-

sition 2.1 work also when char(K) > 0.
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The proof of the freeness of Gal(K(x)ab) applies the notion of ”quasi-freeness”

due to Harbater and Stevenson. To this end recall that a finite split embedding

problem ℰ for a profinite group G is a pair (': G → A, �: B → A), where A,B are

finite groups, ', � are epimorphisms, and � has a group theoretic section. A solution

of ℰ is an epimorphism 
: G → B such that � ∘ 
 = '. We say that G is quasi-free

if its rank m is infinite and every finite split embedding problem for G has m distinct

solutions.

Theorem 2.6: Let F be a function field of one variable over a PAC fieldK of cardinality

m containing all roots of unity and let x be a variable. Then Gal(Fab) is isomorphic to

the free profinite group of rank m.

Proof: Since K is PAC, K is ample, that is every absolutely irreducible curve defined

overK with aK-rational simple point has infinitely manyK-rational points. By [HaS05,

Cor. 4.4], Gal(F ) is quasi-free of rank m = card(K). Hence, by [Har09, Thm. 2.4],

Gal(Fab) is also quasi-free of rank m. Since by Proposition 1.6, Gal(Fab) is projective,

it follows from a result of Chatzidakis and Melnikov [FrJ08, Lemma 25.1.8] that Gal(Fab)

is free of rank m.

Acknowledgment: The authors thank Jean-Louis Colliot-Thélène for stimulating dis-

cussions, in particular for pointing out Proposition 2.1 to them.
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