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In this note we give evidence for a conjecture of Serre and a conjecture of Bogomolov.

Conjecture II of Serre considers a field F' of characteristic p with cd(Gal(F)) < 2
such that either p =0 or p > 0 and [F : FP] < p and predicts that H'(Gal(F),G) = 1
(i.e. each principal homogeneous G-spaces has an F-rational point) for each simply
connected semi-simple linear algebraic group G [Ser97, p. 139].

As Serre notes, the hypothesis of the conjecture holds in the case where F' is a
field of transcendence degree 1 over a perfect field K with cd(Gal(K)) < 1. Indeed, in
this case cd(Gal(F)) < 2 [Ser97, p. 83, Prop. 11] and [F' : FP] < pif p > 0 (by the
theory of p-bases [FrJ08, Lemma 2.7.2]). We prove the conjecture for F' in the special
case, where K is PAC of characteristic 0 that contains all roots of unity.

One of the main ingredients of the proof is the projectivity of Gal(K (x)ap) (where
x is transcendental over K and K (z),p is the maximal Abelian extension of K (z)). We
also use the same ingredient to establish an analog to the wellknown open problem of
Shafarevich that Gal(Qap) is free. Under the assumption that K is PAC and contains
all roots of unity we prove that Gal(K (z),p) is not only projective but even free. This
proves a stronger version of a conjecture of Bogomolov for a function field of one variable

F over a PAC field that contains all roots of unity [Pos05, Conjecture 1.1].

1. The Projectivity of Gal(K(x)ap)

We denote the separable (resp. algebraic) closure of a field K by K, (resp. K) and its
absolute Galois group by Gal(K). The field K is said to be PAC if every absolutely
irreducible variety defined over K has a K-rational point. The proof of the projectivity
result applies a local-global principle for Brauer groups to reduce the statement to

Henselian fields.



For a prime number p and an Abelian group A, we say that A is p’-divisible,
if for each a € A and every positive integer n with p f n there exists b € A such that

a = nb. Note that if p = 0, then “p’-divisible” is the same as “divisible”.

LEMMA 1.1: Let p be 0 or a prime number, B a torsion free Abelian group, and A is a

p’-divisible subgroup of B of finite index. Then B is also p’-divisible.

Proof: First suppose p =0 and let m = (B : A). Then, for each b € B and a positive
integer n there exists a € A such that mb = mna. Since B is torsion free, m = na.
Thus, B is divisible.

Now suppose p is a prime number, let mp* = (B : A), with p{m and k > 0, and
consider b € B. Then mp*b € A. Hence, for each positive integer n with p { n there
exists a € A with mp*b = mna. Thus, p*b = na. Since p { n, there exist x,y € Z such

that xp® +yn = 1. It follows from xp*b = xna that b = n(xa + yb), as claimed. |

COROLLARY 1.2: Let L/K be an algebraic field extension, v a valuation of L, andp = 0

or p is a prime number. Suppose that v(K*) is p’-divisible. Then v(L*) is p’-divisible.

Proof: Let x € L™ and n a positive integer with p t n. Then v(K(x)*) is a torsion free
Abelian group and v(K ™) is a subgroup of index at most [K(z) : K|. Since v(K*) is
p’-divisible, Lemma 1.1 gives y € K (z)* such that v(z) = nv(y). It follows that v(L*)

is p/-divisible. |

Given a Henselian valued field (M, v) we use v also for its unique extension to M.
We use a bar to denote the residue with respect to v of objects associated with M, let
Oy be the valuation ring of M, and let I'y; = v(M*) be the value group of M.

We write c¢d;(K) and cd(K) for the Ith cohomological dimension and the cohomo-
logical dimension of Gal(K) and note that cd(K) < 1 if and only if Gal(K) is projective
[Ser97, p. 58, Cor. 2.

LEMMA 1.3: Let (M,v) be a Henselian valued field. Suppose p = char(M) = char(M),
Gal(M) is projective, and Ty is p'-divisible. Then Gal(M) is projective.

Proof: We denote the inertia field of M by M,. It is determined by its absolute
Galois group: Gal(M,) = {o € Gal(M)| v(cx —x) > 0 for all x € M, with v(xz) > 0}.

2



The map o — & of Gal(M) into Gal(M) such that 67 = oz for each z € Oy is a well
defined epimorphism [Efr06, Thm. 16.1.1] whose kernel is Gal(M,,). It therefore defines

an isomorphism
(1) Gal(M, /M) = Gal(M).

CLAIM A: M, is separably closed. Let g € M[X] be a monic irreducible separable
polynomial of degree n > 1. Then there exists a monic polynomial f € Oy, [X] of degree
n such that f = g. We observe that f is also irreducible and separable. Moreover, if
f(X) =TI, (X — x;) with z1,...,2, € M, then g(X) = [[_,(X — &;). Given
1 <i,j < n there exists 0 € Gal(M,,) such that oz; = x;. By definition, z; = oz, =

G%; = T;. Since g is separable, i = j, so n = 1. We conclude that M, is separably

closed.

CrAmM B: Each [-Sylow group of Gal(M,,) with | # p is trivial. Indeed, let L be the
fixed field of an [-Sylow group of Gal(M,) in M. If = 2, then {; = —1 € L. If | # 2,
then [L(¢;) : L]|l — 1 and [L((;) : L] is a power of I, so (; € L.

Assume that Gal(L) # 1. By the the theory of finite I-groups, L has a cyclic
extension L’ of degree [. By the preceding paragraph and Kummer theory, there exists
a € L* such that L’ = L({/a). By Corollary 1.2, there exists b € L* such that
lv(b) = v(a). Then ¢ = & satisfies v(c) = 0. By Claim A, L is separably closed.
Therefore, ¢ has an [th root in L. By Hensel’s lemma, ¢ has an [th root in L. It follows
that a has an [-root in L. This contradiction implies that L = M, as claimed.

Having proved Claim B, we consider again a prime number [ # p and let G|
be an [-Sylow subgroup of Gal(M). By the Claim, G; N Gal(M,) = 1, hence the
map res: Gal(M) — Gal(M, /M) maps G, isomorphically onto an [-Sylow subgroup of
Gal(M,/M). By (1), G; is isomorphic to an [-Sylow subgroup of Gal(M). Since the
latter group is projective, so is Gy, i.e. ¢cd;(G) < 1 [Ser97, p. 58, Cor. 2].

Finally, if p # 0, then cd, (M) < 1 [Ser97, p. 75, Prop. 3], because then char(M) =
p. It follows that cd(M) < 1 [Ser97, p. 58, Cor. 2]. i

LEMMA 1.4: Let F be an extension of a PAC field K of transcendence degree 1 and
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characteristic p. Suppose v(F*) is p'-divisible for each valuation v of F/K. Then
Gal(F) is projective.

Proof: Let Kj,s be the maximal purely inseparable algebraic extension of K and
set F/ = FKj,s. Then K, is PAC [FrJ08, Cor. 11.2.5], trans.deg(F'/Ki,s) = 1,
and v((F")*) is p’-divisible for every valuation v of F’ (by Corollary 1.2). Moreover,
Gal(F') = Gal(F). Thus, we may replace K by Kj,s and F' by F’, if necessary, to
assume that K is perfect.

Let V(F/K) be a system of representatives of the equivalence classes of valuations
of F that are trivial on K. For each v € V(F/K) we choose a Henselian closure F,, of

F at v. By [Efr01, Thm. 3.4], there is an injection of Brauer groups,

(2) Br(F)— [ Br(F).
veV(F/K)

For each v € V(F/K) we have, v(F)) = v(F*) is p'-divisible. Also, the residue field
F, is an algebraic extension of K. Since K is PAC, a theorem of Ax says that Gal(K)
is projective [FrJ08, Thm. 11.6.2], hence Gal(F,) is projective [FrJ08, Prop. 22.4.7].
Finally, char(F,) = char(F,). Therefore, by Lemma 1.3, Gal(F,) is projective, hence
Br(F,) = 0 [Ser97, p. 78, Prop. 5]. It follows from the injectivity of (2) that Br(F) = 0.

If Fy is a finite separable extension of F', vy € V(F;/K), and v = v1|p, then
v(F*) is p’-divisible. Hence, by Corollary 1.2, v1((F7)*) is p’-divisible. It follows from
the preceding paragraph that Br(Fy) = 0. Consequently, by [Ser97, p. 78, Prop. 5],
cd(Gal(F)) < 1. i

LEMMA 1.5: Let p be either 0 or a prime number and let I' be an additive subgroup of

Q. Suppose % € I for each positive integer n with p{n. Then T is p’-divisible.

Proof:  We consider v € I'. If p = 0, we write v = ¢, with a € Z and b € N. Given

nEN,wehave%:a‘%eF.
pr>0,wewrite’y:bp%,whereaEZ,bGN,k‘EZ,andea,b. Let n € N

with pfn. If £ <0, then%:ap_k-%ef. If £ > 0, we may choose x,y € Z such that

k _ ¥ _ _a _ azpitaynb _ . 1 . _a_ :
xp” +ynb = 1. Then } = oo = mbpk =ar- - +by Bk € I', as claimed. |




PROPOSITION 1.6: Let K be a PAC field that contains all roots of unity and let E be

an extension of K of transcendence degree 1. Then Gal(E,y,) is projective.

Proof: First we consider the case where £ = K(x), where z is transcendental over K,
and set F' = F,. In the notation of Lemma 1.4 we consider a valuation v € V(F/K)
normalized in such a way that v(E*) = Z. Then v(F*) < Q. On the other hand, let
p = char(K) and consider a positive integer n with p { n. Let e € E with v(e) = 1. Then
e!/m € F (because K contains a root of 1 of order n). Therefore, 2 = v(e'/™) € v(F>).
By Lemma 1.5, v(F*) is p’-divisible. We conclude from Lemma 1.4 that Gal(F) is
projective.

In the general case we choose x € E transcendental over K. By the preceding
paragraph, Gal(K(x)a.p) is projective. Since taking purely inseparable extensions of a
field does not change its absolute Galois group, Gal(K (x)ap,ins is projective. Now note
that Gal(E,p ins) as a subgroup of Gal(K (x)ap,ins) is also projective. Hence, Gal(Eap)

is projective. |

Remark 1.7: Proposition 1.6 is false if K does not contain all roots of unity. Indeed,
the authors will elsewhere provide an example of a prime number [ and a PAC field K
of characteristic 0 that contains all roots of unity of order n with [ { n but not (; such

that Gal(K (x)ap) is not projective. i

2. Serre and Shafarevich

We refer to a simply connected semi-simple linear algebraic group G as a simply con-
nected group. In this case H'(Gal(K),G) will be also denoted by H!(K,G). Since
each element of H!(K,G) is represented by a principal homogeneous space V of G and
V' is an absolutely irreducible variety defined over K, V has a K-rational point if K is
PAC. Hence, V is equivalent to G [LaT58, Prop. 4]. Thus, H!(K,G) = 1.

The proof of Serre’s Conjecture IT in our case is based on the following consequence

of a theorem of Colliot-Thélene, Gille, and Parimala:

PROPOSITION 2.1: Let F' be a field and G a simply connected group defined over
F. Suppose F is a Cy-field of characteristic 0, cd(F') < 2, and cd(Fy,) < 1. Then
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HY(F,G) =1.

Proof: Let F’ be a finite extension of F. Since F'is Cy, [CGP04, Thm. 1.1(vi)] implies
that if the exponent e of a central simple algebra A over F’ is a power of 2 or a power
of 3, then e is equal to the index of A.

Since cd(F') < 2 and cd(Fy,p,) < 1, [CGP04, Thm. 1.2(v)] implies that H(F,G) =
1. |

Remark 2.2: By Merkuriev-Suslin, the assumption that F' is a Cs-field implies that
cd(F) < 2 [Ser97, end of page 88]. However, we will be able to prove both properties of

F directly in the application we have in mind. |
The following result establishes the first condition on F'.

LEMMA 2.3: Let F' be an extension of transcendence degree 1 over a perfect PAC field
K. Suppose either char(K) > 0 and K contains all roots of unity or char(K) = 0. Then
cd(F) <2 and F is a Cy-field.

Proof: By Ax, c¢d(K) < 1 [FrJ08, Thm. 11.6.2]. Hence, by [Ser97, p. 83, Prop. 11],
cd(F) < 2.

A conjecture of Ax from 1968 says that every perfect PAC field K is C; [FrJOS,
Problem 21.2.5]. The conjecture holds if K contains an algebraically closed field [FrJ08,
Lemma 21.3.6(a)]. In particular, if p = char(K) > 0 and K contains all roots of unity,
then ﬁ‘p C K, so K is Cy. If char(K) = 0, K is C1, by [Kol07, Thm. 1]. It follows that
in each case, F' is Cy [FrJO8, Prop. 21.2.12]. i

THEOREM 2.4: Let F' be an extension of transcendence degree 1 of a PAC field K
of characteristic 0. Suppose K contains all roots of unity. Then F' satisfies Serre’s

conjecture II. That is, H*(F,G) = 1 for each simply connected group G defined over F.

Proof: By Lemma 2.3, cd(F) < 2 and F is a Cy-field. By Proposition 1.6, cd(Fyp,) < 1.
It follows from Proposition 2.1 that H*(F,G) = 1 for each simply connected group G.
|

Remark 2.5: All of the ingredients of the proof of Theorem 2.4 except possibly Propo-

sition 2.1 work also when char(K) > 0. |



The proof of the freeness of Gal(K(z).p) applies the notion of ”quasi-freeness”
due to Harbater and Stevenson. To this end recall that a finite split embedding
problem & for a profinite group G is a pair (p: G — A, a: B — A), where A, B are
finite groups, ¢, @ are epimorphisms, and a has a group theoretic section. A solution
of £ is an epimorphism ~: G — B such that oy = . We say that G is quasi-free
if its rank m is infinite and every finite split embedding problem for G' has m distinct

solutions.

THEOREM 2.6: Let F be a function field of one variable over a PAC field K of cardinality
m containing all roots of unity and let = be a variable. Then Gal(F,y,) is isomorphic to

the free profinite group of rank m.

Proof: Since K is PAC, K is ample, that is every absolutely irreducible curve defined
over K with a K-rational simple point has infinitely many K-rational points. By [HaS05,
Cor. 4.4], Gal(F') is quasi-free of rank m = card(K). Hence, by [Har09, Thm. 2.4],
Gal(Fyyp,) is also quasi-free of rank m. Since by Proposition 1.6, Gal(F,y,) is projective,
it follows from a result of Chatzidakis and Melnikov [FrJ08, Lemma 25.1.8] that Gal(F,p)

is free of rank m. |

Acknowledgment: The authors thank Jean-Louis Colliot-Thélene for stimulating dis-

cussions, in particular for pointing out Proposition 2.1 to them. |
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