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Introduction

The block approximation property of a field K is a local-global principle for absolutely

irreducible varieties defined over K on the one hand and a weak approximation theorem

for valuations and orderings on the other hand. It was proved in [FHV94] for orderings.

Moreover, [HJP07] constructs fields with the block approximation property for valua-

tions. In this work we prove the block approximation property for a much larger class

of valuations.

More technically, the block approximation property of a proper field-valuation

structure K = (K,X,Kx, vx)x∈X is a quantitative local-global principle for absolutely

irreducible varieties over K. Here K is a field and X is a profinite space on which the

absolute Galois group Gal(K) of K continuously acts. Each Kx is a separable algebraic

extension of K equipped with a valuation vx. Given an absolutely irreducible variety V

over K, open-closed subsets X1, . . . , Xn of X (called blocks), and points a1, . . . ,an ∈

Vsimp(Ks) satisfying certain compatibility conditions, the block approximation property

gives an a ∈ V (K) which is vx-close to ai for i = 1, . . . , n and every x ∈ Xi.

The block approximation property of K has several far reaching consequences: For

each x ∈ X, Aut(Kx/K) = 1 and the valued field (Kx, vx) is the Henselian closure of

(K, vx|K). If x1, . . . , xn are non-conjugate elements of X, then vx1 |K , . . . , vxn |K satisfy

the weak approximation theorem. Finally, K is PXC, where X = {Kx | x ∈ X}. This

means that every absolutely irreducible variety V with a simple Kx-rational point for

each x ∈ X has a K-rational point [HJP07, Prop. 12.3].

The main result of [HJP07] characterizes proper projective group structures as

absolute Galois group structures of proper field-valuation structures having the block

approximation property. In particular, the local fields of the field-valuation structures

turn out to be Henselian closures of K.

In [HJP05] we replace the general Henselian fields of [HJP07] by P-adically closed

fields. Here we call a field F P-adically closed if it is elementarily equivalent to a

finite extension of Qp for some p. The main result of [HJP05] considers a finite set F of

P-adically closed fields closed under Galois isomorphism (i.e. if F,F′ are P-adically

closed fields such that Gal(F) ∼= Gal(F′) and F ∈ F , then F′ ∈ F .) It says that G is
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isomorphic to the absolute Galois group of a PFC field K if and only if G is F-projective

and Subgr(G,F) is strictly closed in Subgr(G) for each F ∈ F .

The condition “G is F-projective” is very mild. It says, every finite embedding

problem for G which is F-locally solvable is globally solvable. Nevertheless, adding the

second condition that Subgr(G,F) is strictly closed in Subgr(G) for each F ∈ F , the

group G can be extended to a proper projective group structure G [HJP05, Thm. 10.4].

Then the main theorem of [HJP07] is applied to realize G as the absolute Galois struc-

ture of a field-valuation structure K = (K,X,Kx, vx) having the block approximation

property [HJP05, Thm. 11.3]. In particular, K is then PFC, that is K is PXC, where

X = AlgExt(K,F)min. The latter symbol stands for the set of minimal fields in the

set AlgExt(K,F) =
⋃

F∈F AlgExt(K,F), where AlgExt(K,F) is the set of all algebraic

extensions of K that are elementarily equivalent to F.

Conversely, let K be a PFC field. Then AlgExt(K,F) is strictly closed in

AlgExt(K) [HJP05, Lemma 10.1] and Gal(K) is F-projective [HJP05, Prop. 4.1]. It fol-

lows from the preceding paragraph that Gal(K) ∼= Gal(K ′) for some field extension K ′

of K that admits a field-valuation structure having the block approximation property.

The goal of the present work is to prove that if K is PFC, then one may choose

K ′ = K in the preceding theorem. In other words, the natural field-valuation structure

KF attached to K and F has the block approximation property. For the convenience

of the reader we reformulate this result without referring to field-valuation structures.

The P-adic Block Approximation Theorem: Let F be a finite set of P-adic fields

closed under Galois isomorphism and K a PFC field. Set X = AlgExt(K,F)min. For

each F ∈ X let vF be the unique P-adic valuation of F . Let I0 be a finite set. For each

i ∈ I0 let Xi be an étale open-closed subset of X , Li a finite separable extension of K

contained in Ks, and ci ∈ K×. Suppose X =
⋃
i∈I0

⋃
σ∈Gal(K) X σi . Suppose further, for

all i ∈ I0 and all σ ∈ Gal(K) we have X σi = Xj if and only if i = j and σ ∈ Gal(Li);

otherwise X σi ∩Xi = ∅. Assume Li ⊆ Kv for each Kv ∈ Xi. Let V be an affine absolutely

irreducible variety defined over K. For each i ∈ I0 let ai ∈ Vsimp(Li). Then there exists

a ∈ V (K) such that vF (a− ai) > vF (ci) for each i ∈ I0 and for every F ∈ Xi.
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A block approximation theorem for real closed fields is proved in [FHV94, Prop. 1.2]:

Let K be a PRC field, X a strictly closed system of representatives for the Gal(K)-orbits

of the real closures of K, and X =
⋃
· i∈I Xi a partition of X with Xi open-closed. Let

V be an absolutely irreducible variety defined over K. For each i ∈ I let ai be a simple

point of V contained in V (F ) for each F ∈ Xi. Then there exists a ∈ V (K) which is

F -close to ai for each i ∈ I and each F ∈ Xi.

The easy proof of the real block approximation theorem takes advantage of the

function X2 whose values are totally positive and of the assumption on X being a

strictly closed system of representatives of the real closures of K. The assumption on

the existence of a strictly closed system of representatives holds for every field K [HaJ85,

Cor. 9.2].

In the P-adic case we can prove a similar result about systems of representatives

only in some cases, e.g. if F = {Qp} or if K is countable. But we do not know whether

in the general case the Gal(K)-orbits of AlgExt(K,F)min have a closed (in the étale

topology) system of representatives. Fortunately, the conditions on the blocks in the

P-adic block approximation theorem can be always realized and they turn out to be

sufficient for the proof of the block approximation theorem.

The P-adic block approximation theorem is based on a block approximation the-

orem for field-valuation structures K = (K,X,Kx, vx)x∈X with bounded residue fields

(Theorem 4.1). Instead of the function X2 used in the proof of the block approximation

theorem for real closed fields our proof uses a function ℘(X) with good P-adic prop-

erties. In particular, its values are totally P-adically integral (Section 3). We also use

that if K is PXC, with X = {Kx | x ∈ X}, then K is vx-dense in Kx for each x ∈ X.

The next step is to extend the PFC field K of the P-adic block approxima-

tion theorem to a field-valuation structure K = (K,X,Kx, vx)x∈X such that X =

AlgExt(K,F)min. There are two essential points in the proof. First we prove that

Aut(Kx/K) = 1 for each x ∈ X (essentially Proposition 2.3(b)). Then we prove that

for each finite extension L of K the map of XL = {Kx ∈ X | L ⊆ Kx} into Val(L) given

by vx 7→ vx|L is étale continuous [Lemma 5.12].
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1. On the Algebraic Topological Closure of a Valued Field

The completion K̂v of a rank one valued field (K, v) is the ring of all Cauchy sequences

modulo 0-sequences. A similar construction works for an arbitrary valued field (K, v). If

rank(v) = 1, then the Henselization Kv of (K, v) coincides with the closure Kv,alg of K

in Ks with respect to the v-adic topology. In the general case, Kv,alg is only contained

in Ks. Nevertheless, as we shall see below, Kv,alg shares several properties with Kv.

Definition 1.1: Cauchy sequences. Let v be a valuation of a field K. We denote the

valuation ring of v by Ov and its residue field by K̄v. Unless we say otherwise, we

assume that v is nontrivial; that is Ov is a proper subring of K. Occasionally we also

speak about the trivial valuation v0 of K with Ov0 = K.

Let λ be a limit ordinal. A sequence (of length λ of elements of K) is a function

x from the set of all ordinals smaller than λ (usually one identifies this set with λ itself)

to K. We denote the value of x at κ < λ by xκ and the whole sequence by (xκ)κ<λ.

The sequence (xκ)κ<λ converges to an element a of K if for each c ∈ K× there is a

κ0 < λ with v(xκ − a) > v(c) for all κ ≥ κ0. We say (xκ)κ<λ is a Cauchy sequence if

for each c ∈ K× there is a κ0 with v(xκ − xκ′) > v(c) for all κ, κ′ ≥ κ0. Finally, (K, v)

is complete if every Cauchy sequence in K converges.

Proposition 1.2 ([Ax71, p. 173, Prop. 8]): Every valued field (K, v) has an extension

(K̂v, v̂) which is complete such that (K, v) is dense in (K̂v, v̂). This extension is unique

up to a (K, v)-isomorphism.

Remark 1.3: The valuation ring of K̂v. Denote the valuation ring of K̂v by Ôv. It is

the closure of Ov in K̂v under the v̂-topology. In analogy to the presentation of Zp as

an inverse limit lim←−Z/pnZ, we present Ôv as an inverse limit of quotient rings of Ov.

To this end let Γv be the value group of (K, v). For each nonnegative α ∈ Γv

consider the ideal mα = {a ∈ K | v(a) > α} of Ov. We prove that there is a natural

isomorphism lim←−Ov/mα
∼= Ôv.

Choose a well ordered cofinal subset ∆ of Γv. For each x = (xα + mα)α∈Γv in

lim←−Ov/mα the sequence (xα)α∈∆ is Cauchy. Hence, it converges to an element x̂ of Ôv

which is independent of the representatives xα of xα + mα.
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Conversely, let x̂ ∈ Ôv. For each α ∈ Γ choose xα ∈ Ov with v̂(xα − x̂) > α. If

β > α, then v(xβ − xα) > α. So, xβ ≡ xα mod mα. This gives a well defined element

x = (xα+mα)α∈Γv of lim←−Ov/mα which is mapped to x̂ under the map of the preceding

paragraph.

The map x 7→ x̂ is the promised isomorphism.

Notation 1.4: We denote the set of all valuations of K and the trivial valuation by

Val(K).

Let v, v′ ∈ Val(K). We say v is finer than v′ (and v′ is coarser than v) and write

v � v′ if Ov ⊆ Ov′ . In particular, the trivial valuation is coarser than every v ∈ Val(K).

If, in addition, Ov ⊂ Ov′ (i.e. Ov is a proper subset of Ov′), we say that v′ is strictly

coarser than v and write v ≺ v′.

Remark 1.5: Dependent valuations. Valuations v and v′ of K are dependent if K has

a valuation v′′ which is coarser than both v and v′; equivalently, if the ring OvOv′ =

{
∑n
i=1 aia

′
i | ai ∈ Ov, a′i ∈ Ov′} is a proper subring of K. This is the case if and only if

the v-topology of K coincides with the v′-topology [Jar91b, Lemma 3.2(a) and Lemma

4.1]∗ Denote the common topology by T .

The definitions of a Cauchy sequence and the convergence of transfinite sequences,

as well of the concept of density can be rephrased in terms of the T -topology. For

example, a sequence (xκ)κ<λ is Cauchy if and only if the following holds: For every

T -open neighborhood U of 0 in K there is a κ0 with xκ − xκ′ ∈ U for all κ, κ′ ≥ κ0.

Hence, (K̂v, v̂) depends only on the topology T . Thus, K̂v can be identified with K̂v′ .

If Ov ⊆ Ov′ , than Ôv ⊆ Ôv′ , because Ôv is the T -closure of Ov and Ôv′ is the T -closure

of Ov′ in K̂v.

Remark 1.6: The separable algebraic part of the completion. Let (K̂v, v̂) be the com-

pletion of a valued field (K, v). In general, K̂v is not a separable extension of K.

Nevertheless, we denote the maximal valued subfield of (K̂v, v̂) which is separable alge-

braic over K by (Kv,alg, valg). Since (K̂v, v̂) is unique up to a (K, v)-isomorphism, so is

* We use [Jar91b] as our main source for basic facts about valuation theory. Other possible
sources are [Rbn64], [Ax71], [End72], [Efr01], etc.
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(Kv,alg, valg).

We extend v̂ to a valuation v̂s of the separable closure (K̂v)s of K̂v and embed

Ks in (K̂v)s. Let vs be the restriction of v̂s to Ks. Then Kv,alg is the closure of K

in Ks under the vs-topology. Thus, a choice of v̂s and an embedding of Ks in (K̂v)s

determines Kv,alg uniquely within Ks. We say that Kv,alg is the v-closure of K.

Suppose w is a valuation coarser than v. Then K̂w = K̂v (Remark 1.5). By the

first paragraph of this remark, Kw,alg = Kv,alg. Thus, the v-closure and the w-closure

of K coincide.

Let Dvs = {σ ∈ Gal(K) | σOvs = Ovs} be the decomposition group of vs over

K. Let Kv be the fixed field of Dvs in Ks and vh be the restriction of vs to Kv. Then

(Kv, vh) is the Henselian closure of (K, v). It is determined by v up to a K-isomorphism.

Each σ ∈ Dvs preserves the vs-topology of Ks, hence fixes each element of the

vs-closure of K in Ks, so σ ∈ Gal(Kv,alg). Therefore, Kalg,v ⊆ Kv.

Suppose rank(v) = 1; that is, no nontrivial valuation of K is strictly coarser than

v. Alternatively, the value group of v is isomorphic to a subgroup of R [Jar91b, Lemma

3.4]. Then K̂v is Henselian (Hensel’s lemma). Hence, Kv,alg = Ks∩K̂v is also Henselian.

It follows that Kv,alg = Kv.

Remark 1.7: Definition of
⋂
w�vKw. We consider v ∈ Val(K). If v is nontrivial, we

extend v to a valuation vs of Ks, otherwise we let vs be the trivial valuation of Ks.

Then we extend each w ∈ Val(K) which is coarser than v to a valuation ws which is

coarser than vs [Jar91b, Lemma 9.4]. The map w 7→ ws is a bijection of the set of all

valuations of K coarser than v onto the set of all valuations of K coarser than vs. Its

inverse is the map ws 7→ ws|K . Moreover, if w � w′, then ws � w′s. Indeed, since

both ws and w′s are coarser than vs, they are comparable [Jar91b, Lemma 3.2]. Hence,

ws � w′s or w′s � ws. In the latter case, w = w′, so ws = w′s.

Let D(ws) be the decomposition group of ws over K. We denote the fixed field

of D(ws) in Ks by Kw and put wh = ws|Kw . Then (Kw, wh) is a Henselian closure of

(K,w). If w � w′, then Dws ⊆ Dw′
s

and Kw′ ⊆ Kw [Jar91b, Prop. 9.5].

It follows that
⋂
w�vKw is an extension of K which is well defined up to a K-

isomorphism. Since Kv,alg = Kw,alg for each w � v [Remark 1.6], Kv,alg ⊆
⋂
w�vKw ⊆
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Kv.

Lemma 1.8 ([Eng78, Thm. 2.11]): Let (K, v) be a valued field. For each valuation w

of K which is coarser than v we choose a Henselian closure (Kw, wh) with Kw ⊆ Kv

and vh|Kw = wh. Then Kv,alg =
⋂
w�vKw.

Proof: By Remark 1.7, L =
⋂
w�vKw is well defined. Moreover, the set of all valuations

w of K which are coarser than v is linearly ordered. That is, if v � w,w′, than either

Ow ⊆ Ow′ or Ow′ ⊆ Ow [Jar91b, Lemma 3.2]. Hence, O =
⋃
w�v Ow is either a

valuation ring of K or K itself.

Case A: O is the valuation ring of a valuation w0. (We say that v is bounded). In

this case w0 is finer than no other valuation of K. Hence, rank(w0) = 1. Therefore,

L = Kw0 = Kw0,alg = Kv,alg (Remark 1.6).

Case B: O = K (We say that v is unbounded). It suffices to prove K is v-dense

in L. Consider w,w′ � v. Denote the restriction of wh (resp. (w′)h, v) to L by wL

(resp. w′L, vL). By our choice w � w′ if and only if wL � w′L. Hence, vL is unbounded.

Therefore,
⋃
w�v OwL = L and

⋂
w�v mwL = 0.

Let now x, c ∈ L×. Then, there is w � v with c, c−1, x, x−1 /∈ mwL . Thus,

wL(c) = wL(x) = 0. Since K ⊆ L ⊆ Kw, the residue field of L at wL is K̄w. Hence, there

is a ∈ K with wL(a− x) > 0 = wL(c). Since mwL ⊆ mvL , this gives vL(a− x) > vL(c),

as desired.

Lemma 1.9: Let f ∈ Kv,alg[X]. Suppose f has a zero in Kw for each w � v. Then f

has a zero in Kv,alg.

Proof: Let x1, . . . , xn be the zeros of f in K̃. Assume x1, . . . , xn /∈ Kv,alg. Then, for

each i there is wi � v with xi /∈ Kwi (Lemma 1.8). Let w be the coarsest valuation

among w1, . . . , wn. Thus, Kw ⊆ Kwi , i = 1, . . . , n, so x1, . . . , xn /∈ Kw. In other words,

f has no zero in Kw, a contradiction.

The following result generalizes a lemma of Kaplansky-Krasner [FrJ86, Lemma

10.13]. Its proof is included in the proof of [Pop90, Lemma 2.7].
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Lemma 1.10: Let f ∈ Kv,alg[X]. Suppose f has no root in Kv,alg. Then f is bounded

away from 0. That is, 0 has a v-open neighborhood U in Kv,alg such that f(Kv,alg)∩U =

∅.

Proof: Lemma 1.9 gives w � v with no roots in Kw of f . Kaplansky-Krasner for

Henselian fields [FrJ, Lemma 10.13] gives a w-open neighborhood Uw of 0 in Kw with

f(Kw) ∩ Uw = ∅. Then U = Kv,alg ∩ Uw is a w-open, hence also v-open, neighborhood

of 0 in Kv,alg which satisfies f(Kv,alg) ∩ U = ∅.

Proposition 1.11: Consider valuations v and w of K. Suppose Kv = Kv,alg, Kw =

Kw,alg, and Kv 6= Kw. Then KvKw = Ks.

Proof: Put M = KvKw. Assume M 6= Ks. With the notation of Remark 1.6, let vs

(resp. vM ) be the restriction of v̂s to Ks (resp. M). Define wM and ws analogously. Then

M is Henselian with respect to both vM and wM . Hence, vM and wM are dependent

[Jar91b, Lemma 13.2]. Therefore, they define the same topology T on M .

By Remark 1.6, Kv is the closure of K in Ks in the vs-topology, so Kv is the

T -closure of K in M . Similarly Kw is the T -closure of K in M . It follows, Kv = Kw,

in contradiction to our assumption.

Definition 1.12: The core of a valuation. Let (K, v) be a valued field. Suppose K̄v is

separably closed. Denote the set of all w ∈ Val(K) with v � w and K̄w separably closed

by V (v). If w ∈ V (v), w0 ∈ Val(K) and v � w0 � w, then K̄w0 is a residue field of K̄w.

Hence, K̄w0 is separably closed and w0 ∈ V (v).

Let O =
⋃
w∈V (v)Ow. The right hand side is an ascending union of overrings of

Ov (i.e. subrings of K containing Ov). Hence, O is an overring of Ov. As such, either

O is a valuation ring of K or K itself. Let vcore be the corresponding valuation in the

former case and the trivial valuation in the latter case. Call vcore the core of v.

To make the definition complete, we define V (v) = {v} and vcore = v if K̄v is

not separably closed. This definition follows the convention of [Pop88] but is slightly

different from that of [Pop94].

Let K be a non-separably-closed field and v1, v2 Henselian valuations of K. If K̄v1

or K̄v2 are not separably closed, then by F.K.Schmidt-Engler [Jar91b, Prop 13.4], v1
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and v2 are comparable. The following result completes this statement in the case where

both K̄v1 and K̄v2 are separably closed. It appears without proof as [Pop88, Satz 1.9].

Lemma 1.13 ([Pop94, Prop. 1.3]): Let v1 and v2 be Henselian valuations of a field K.

Suppose K is not separably closed. Then v1,core and v2,core are comparable.

Proof: We consider two cases.

Case A: v1 and v2 are comparable. Without loss we may assume that v1 � v2. Then

K̄v1 is a residue field of K̄v2 . We first suppose K̄v1 is not separably closed. Then K̄v2

is not separably closed. So, v1,core = v1 and v2,core = v2. Therefore, v1,core � v2,core.

Next we suppose K̄v1 is separably closed but K̄v2 is not. Let w ∈ V (v1). Then

v1 � w and K̄w is separably closed. Hence, w is not coarser than v2, so w must be finer

than v2. It follows, v1,core � v2 = v2,core.

Finally we suppose both K̄v1 and K̄v2 are separably closed. Then v2 ∈ V (v1) and

v1,core = v2,core.

Case B: v1 and v2 are incomparable. By assumption, K is not separably closed.

Hence, both K̄v1 and K̄v2 are separably closed. Moreover, K has a valuation w with

v1, v2 � w and K̄w separably closed [Jar91b, Proposition 13.4]. Hence, by the third

paragraph of Case A, v1,core = wcore = v2,core.

We use the notion of the core of a valuation to supplement a result of F.K.Schmidt-

Engler saying that if K̄v is not separably closed, then Aut(Kv/K) = 1

[Jar91b, Prop. 14.5].

Proposition 1.14: Let (K, v) be a valued field. Suppose Kv = Kv,alg but Kv 6= Ks.

Then Aut(Kv/K) is trivial.

Proof: Consider σ ∈ Aut(Kv/K). Let K ′ be the fixed field of σ in Kv and v′ the

restriction of vh to K ′. Then Kv = K ′v′ . Also, Kv is the vs-closure of K ′ in Ks

(Remark 1.6). Hence, Kv = K ′v′,alg. Replace therefore (K, v) by (K ′, v′), if necessary,

to assume Kv/K is Galois.

The field Kv is Henselian with respect to both vh and vh ◦ σ. By Lemma 1.13,

(vh)core and (vh ◦ σ)core are comparable. Since (vh ◦ σ)core = (vh)core ◦ σ, the valuations

9



(vh)core and (vh)core ◦σ are comparable. In addition, (vh)core|K = (vh)core ◦σ|K . Hence,

by [Jar91b, Cor. 6.6], (vh)core = (vh)core ◦ σ. Thus, σ belongs to the decomposition

group D of (vh)core in Gal(Kv/K).

Denote the restriction of (vh)core to K by w. Then v � w. Hence, Kv = Kv,alg ⊆

Kw ⊆ Kv. So, Kw = Kv. This implies D is trivial. It follows from the preceding

paragraph that σ = 1.
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2. Henselian Closures of PXC Fields

A valued field (K, v) is v-dense in Kv,alg but not necessarily in its Henselization. How-

ever, under favorable conditions, this is the case.

We consider a field K, a fixed separable closure Ks of K, and denote the family

of all extensions of K in Ks by SepAlgExt(K). A basis for the étale topology of

SepAlgExt(K) is the collection of all sets SepAlgExt(L), where L is a finite separable

extension of K [HJP07, Section 1].

Let X be an étale compact subset of SepAlgExt(K), K ′ a minimal field in X ,

and v a valuation of K ′. Suppose K is PXC and (K ′, v) is Henselian. We prove that

K is v-dense in K ′ and (K ′, v) is a Henselian closure of (K, v|K) (Proposition 2.3). An

analogous result holds when v is replaced by an ordering.

We recall here that K is said to be PXC, if each absolutely irreducible variety

over K with a simple K ′-rational point for each K ′ ∈ X has a K-rational point.

Lemma 2.1: Let F be a separable algebraic extension of K and M an arbitrary exten-

sion of K. Suppose every irreducible polynomial f ∈ K[X] with a root in F has a root

in M . Then there is a K-embedding of F in M .

Proof: For each finite extension L of K in F let EmbdK(L,M) be the set of all K-

embedding of L in M . It is a nonempty finite set. Indeed, let x be a primitive element

for L/K and f = irr(x,K). By assumption, f has a root x′ in M . The map x 7→ x′

extends to a K-embedding of L into M .

Suppose L′ is a finite extension of L in F . Then the restriction from L′ to L maps

EmbdK(L′,M) into EmbdK(L,M). The inverse limit of all EmbdK(L,M) is nonempty.

Each element in the inverse limit defines a K-embedding of F into M .

The following result is an elaboration of [Pop90, Lemma 2.7].

Lemma 2.2: Let X be an étale compact subset of SepAlgExt(K) and v a valuation of

K. Suppose K is PXC. Then the following holds.

(a) Let f ∈ K[X] be a separable polynomial. Suppose f has a zero in each K ′ ∈ X .

Then f has a zero in Kv,alg.

(b) There is a K ′ ∈ X that can be K-embedded in Kv,alg.
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Proof of (a): Assume f has no root in Kv,alg. Choose b ∈ K with f ′(b) 6= 0 and let

c = f(b). Then c 6= 0. Lemma 1.10 gives a v-open neighborhood U of 0 in Kv,alg with

(2) f(Kv,alg) ∩ U = ∅

Choose d ∈ K× with

(3) {y ∈ Kv,alg | v(y) > v(d)} ⊆ U.

Finally choose e ∈ K× with v(e) > 2v(d)− v(c).

Now consider x ∈ K. By (2), f(x) /∈ U , so by (3), v(f(x)) ≤ v(d). Similarly, by

(3), v(c) = v(f(b)) ≤ v(d). Hence, v
(

c
f(x)

)
≥ v(c)− v(d). Therefore,

v
(
e
(
1− c

f(x)
))
≥ v(e) + min(v(1), v(c)− v(d))

>
(
2v(d)− v(c)

)
+
(
v(c)− v(d)

)
= v(d).

Thus,

(4) e
(

1− c

f(K)

)
⊆ U.

Set h(X,Y ) = f(Y )
(
1 − f(X)

e

)
− c. Since f(Y ) has no multiple roots and c 6=

0, Eisenstein’s criterion [FrJ05, Lemma 2.3.10(b’)] implies that h(X,Y ) is absolutely

irreducible. By assumption, for each K ′ ∈ X there exists a ∈ K ′ with f(a) = 0.

Hence, h(a, b) = 0 and ∂h
∂Y (a, b) = f ′(b) 6= 0. Since K is PXC, there are x, y ∈ K with

h(x, y) = 0. Thus, f(x) = e
(
1 − c

f(y)

)
. By (4), the right hand side is in U . Hence,

f(x) ∈ f(K) ∩ U . This contradiction to (2) completes the proof of (a).

Proof of (b): Assume no K ′ ∈ X is K-embeddable in Kv,alg. Consider K ′ ∈ X . By

Lemma 2.1, there is an aK′ ∈ K ′ such that irr(aK′ ,K) has no roots in Kv,alg. By

definition, SepAlgExt(K(aK′)) is an étale open neighborhood of K ′ in SepAlgExt(K).

The union of all these neighborhoods covers X . Since X is étale compact, there are

K ′1, . . . ,K
′
n ∈ X with X ⊆

⋃n
i=1 SepAlgExt(K(aK′

i
)). Put f(X) = lcm(irr(aK′

i
,K) | i =

1, . . . , n). It is a separable polynomial without roots in Kv,alg.

12



On the other hand, for each K ′ ∈ X there is an i with K ′ ∈ SepAlgExt(K(aK′
i
)).

Thus, aK′
i

is a root of f(X) in K ′. We conclude from (a) that f(X) has a root in

Kv,alg. This contradiction to the preceding paragraph proves there is a K ′ ∈ X which

is K-embeddable in Kv,alg.

Call a pair (F, T ) a locality if F is a field, and either T is the topology defined

on F by a Henselian valuation or F is real closed and T is the topology defined by the

unique ordering of F .

Proposition 2.3 (Density [Pop90, Thm. 2.6]): Let K be a field, X a Gal(K)-invariant

family of separable algebraic extensions of K, and (K ′, T ′) a locality. Suppose X is étale

compact, K is PXC, and K ′ is a minimal element of X . Then:

(a) K is T ′-dense in K ′. Moreover, if T ′ is defined by a Henselian valuation v′ of K ′

and v = v′|K , then (K ′, v′) is a Henselian closure of (K, v) and K ′ = Kv,alg.

(b) Suppose K ′ 6= Ks. Then, Aut(K ′/K) = 1.

(c) Let (K ′′, T ′′) be a locality such that K ′′ is a minimal element of X and K ′′ 6= K ′.

Then K ′K ′′ = Ks.

Proof of (a): First we suppose T ′ is defined by a Henselian valuation v′ of K ′. Since

(K ′, v′) is Henselian, it contains a Henselian closure (Kv, vh) of (K, v).

Lemma 2.2(b) gives E ∈ X in Kv,alg. Thus, K ⊆ E ⊆ Kv,alg ⊆ Kv ⊆ K ′. Since

K ′ is minimal, E = K ′. Hence, Kv,alg = Kv = K ′. In particular, (K ′, v′) is a Henselian

closure of (K, v) and K is v′-dense in K ′ (Remark 1.6).

Now we suppose K ′ is real closed and T ′ is the topology defined by the unique

ordering < of K ′. If < is archimedean, then K ′ is contained in R and Q ⊆ K. Since Q

is dense in R, so is K.

Suppose < is nonarchimedean. Then the set of all x ∈ K ′ with −n ≤ x ≤ n for

some n ∈ N is a valuation ring of a Henselian valuation v of K ′ [Jar91b, Lemma 16.2].

In particular, {x ∈ K ′ | −1 ≤ x ≤ 1} ⊆ Ov. This means, in the terminology of [Jar91b,

§16], v is coarser than <. It follows from [Jar91b, Remark 16.3] that the T ′-topology

on K ′ coincides with the <-topology. We conclude from the first case that K is <-dense

in K ′.
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Proof of (b): Statement (b) is well known if K ′ is real closed [Lan, p. 455, Thm. 2.9].

When T ′ is defined by a Henselian valuation v of K ′, use (a) and Proposition 1.14.

Proof of (c): If K ′ or K ′′ is real closed, then its codegree in K̃ is 2. Hence, K ′ 6= K ′′

implies K ′K ′′ = K̃. If both T ′ and T ′′ are induced by nontrivial valuations, use (a) and

Proposition 1.11.

The minimality condition in Proposition 2.3 is automatic if (K ′, v′) is a Henselian

closure of (K, v) with a finite residue field.

Lemma 2.4: Let E be a Henselian field with respect to valuations v and w. Suppose

both Ēv and Ēw are algebraic extensions of finite fields but at least one of them is not

algebraically closed. Then v and w are equivalent.

Proof: Since one of the fields Ēv and Ēw is not separably closed, v and w are comparable

[Jar91b, Prop. 13.4]. This means Ēv is a residue field of Ēw or Ēw is a residue field of

Ēv. Since both Ēv and Ēw are algebraic extensions of finite fields, none of them has a

nontrivial valuation. Hence, Ēv = Ēw. Consequently, v and w are equivalent.

Proposition 2.5: Let K be a field and X a set. For each x ∈ X let (Kx, vx) be a

valued field with residue field K̄x = (Kx)vx . Suppose K̄x is finite and (Kx, vx) is the

Henselian closure of (K, vx|K) for all x ∈ X, and X = {Kσ
x | x ∈ X, σ ∈ Gal(K)} is

étale compact, and K is PXC. Then K is vx-dense in Kx.

Proof: By Proposition 2.3, it suffices to prove each Kx with x ∈ X is minimal in X .

Let y ∈ X, σ ∈ Gal(K), and Kσ
y ⊆ Kx. We may assume that σ = 1. Extend

vy to a valuation v′y of Kx. Then Kx is Henselian with respect to both vx and v′y. By

assumption, K̄x is finite and (Kx)v′
y

is an algebraic extension of the finite field K̄y. By

Lemma 2.4, vx = v′y, so vx|K = vy|K . Thus, both Kx and Ky are Henselian closures

of K with respect to the same valuation, hence Kx
∼=K Ky. Since K ⊆ Ky ⊆ Kx, this

implies Kx = Ky [FrJ05, Lemma 20.6.2].
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3. The bounded Operator

Let (K, v) be a Henselian field having an element π with a minimal positive value and

a finite residue field of q elements. The Kochen operator

γ(X) =
1
π

Xq −X
(Xq −X)2 − 1

is then a rational function on K satisfying γ(K) = Ov [JaR80, p. 426 or PrR84, p. 122].

It plays a central role in the theory of P-adically closed fields.

Here we consider an arbitrary valued field (K, v) with a finite residue field. Let

m be a positive integer. Denote the residue of an element a ∈ Ov (resp. polynomial

g ∈ Ov[X]) in K̄v (resp. K̄v[X]) by ā (resp. ḡ). We say (K, v) has an m-bounded

residue field if K̄v is finite and m is a multiple of |K̄×v |. Then ām = 1 for each a ∈ Ov
with v(a) = 0.

We replace the Kochen operator by the m-bounded operator

(1) ℘(X) = ℘m(X) =
X2m

X2m −Xm + 1
∈ K(X).

It has several improved properties which turn out to be useful in the proof of the block

approximation theorem:

Lemma 3.1: Let (K, v) be a valued field with an m-bounded residue field. Then the

following holds for each a ∈ K:

(a) v(℘(a)) ≥ 0.

(b) v(℘(a)) ≥ v(a).

(c) Either v(℘(a)) > 0 or v(℘(a)− 1) > 0.

(d) v(a) > 0 if and only if v(℘(a)) > 0.

(e) v(a) ≤ 0 if and only if v(℘(a)− 1) > 0.

Proof: The assertions follow by analyzing the three possible cases.

First we suppose, v(a) > 0. Then v(a2m − am + 1) = v(1) = 0, so v(℘(a)) =

2mv(a) > v(a) > 0.

Now suppose v(a) < 0. Then v(a2m−am+1) = v(a2m) = 2mv(a) and v(am−1) =

mv(a). Thus v(℘(a)−1) = v(am−1)−v(a2m−am+1) = −mv(a) > 0 and v(℘(a)) = 0.
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Finally suppose v(a) = 0. Then v(a2m − am + 1) ≥ 0. Hence, ā2m − ām + 1 =

12−1+1 6= 0. Therefore, v(a2m−am+1) = 0. Consequently, v(℘(a)−1) = v(am−1) > 0

and v(℘(a)) = 0.

Lemma 3.1(a),(b) implies:

Corollary 3.2: Let (K, v) be a valued field with an m-bounded residue field and let

c1, . . . , cr ∈ K×. Then, c =
∏r
i=1 ℘(ci) satisfies v(c) ≥ v(c1), . . . , v(cr).

Notation 3.3: A special rational function. Consider a polynomial

g(Y ) = bnY
n + bn−1Y

n−1 + · · ·+ b1Y + b0 ∈ Ov[Y ]

satisfying the following conditions:

(3a) b0, bn ∈ O×v ,

(3b) ḡ(Y ) has no roots in K̄v = Fq,

(3c) if char(K) = p > 0, then g has a root of multiplicity < p in K̃, and

(3d) n ≥ 4.

(For instance, g(Y ) = Ym−1
Y−1 = Y m−1 + · · ·+ Y + 1, where m ≥ 5 is relatively prime to

q(q − 1). In this case each zero of g in K̃ is simple.) Set

f(Y ) = b1Y
3 − 2b1Y 2 + (b1 − b0)Y + b0

and

Φ(Y ) = 1− f(Y )
g(Y )

=
g(Y )− f(Y )

g(Y )

=
bnY

n + · · ·+ b4Y
4 + (b3 − b1)Y 3 + (b2 + 2b1)Y 2 + b0Y

bnY n + bn−1Y n−1 + · · ·+ b1Y + b0
.

Lemma 3.4: Let (K, v) be a valued field with an m-bounded residue field.

(a) Every a ∈ K satisfies v(Φ(a)) ≥ 0. Moreover, if v(a) > 0 then v(Φ(a)) ≥ v(a).

(b) Φ(0) = 0 and Φ(1) = 1.

(c) Suppose (K, v) is Henselian. Let c ∈ K be such that either v(c) > 0 or v(c−1) > 0.

Then there is a y ∈ K such that Φ(y) = c and Φ′(y) 6= 0.
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(d) The numerator of the rational function Φ(Y1) + Φ(Y2) + Φ(Y3) − a is absolutely

irreducible for each a ∈ K.

Proof of (a): If v(a) > 0, then v(g(a)) = v(b0) = 0. Also, v(g(a) − f(a)) ≥ v(a),

because Y divides g(Y )− f(Y ) in Ov[Y ]. Hence v(Φ(a)) ≥ v(a) > 0.

If v(a) = 0, then v(g(a) − f(a)) ≥ 0 and v(g(a)) ≥ 0. But v(g(a)) ≤ 0, by (3b).

Hence, v(g(a)) = 0. Therefore, v(Φ(a)) ≥ 0.

Finally, if v(a) < 0, then v(g(a) − f(a)) = nv(a) and v(g(a)) = nv(a). Hence

v(Φ(a)) = 0.

Proof of (c): It suffices to show that the polynomial

h(Y ) = f(Y ) + (c− 1)g(Y ) ∈ K[Y ]

has a root y in K such that h′(y) 6= 0 and g(y) 6= 0. Indeed, then Φ(y) = c and

Φ′(y) = −h
′(y)
g(y) . By (3b) it suffices to find a root y ∈ Ov of h such that h′(y) 6= 0.

If v(c) > 0, then

(4a) h(0) ≡ f(0)− g(0) ≡ b0 − b0 ≡ 0 mod mv and

(4b) h′(0) ≡ f ′(0)− g′(0) ≡ (b1 − b0)− b1 ≡ −b0 6≡ 0 mod mv.

If v(c− 1) > 0, then

(5a) h(1) ≡ f(1) ≡ b1 − 2b1 + (b1 − b0) + b0 ≡ 0 mod mv and

(5b) h′(1) ≡ f ′(1) ≡ 3b1 − 4b1 + (b1 − b0) ≡ −b0 6≡ 0 mod mv.

Thus, the assertion follows from Hensel’s Lemma.

Proof of (d): By [Gey94, Theorem A], it suffices to prove the following statement:

Suppose char(K) = p > 0. Then there exist no rational function Ψ(Y ) ∈ K̃(Y ) and

a0, a1, . . . , ak ∈ K̃ with k > 0, ak 6= 0, and Φ(Y ) =
∑k
j=0 ajΨ

pj (Y ).

Assume the contrary. Then every pole of Φ(Y ) is a pole of Ψ(Y ). Conversely,

every pole of Ψ(Y ), say, of order d, is a pole of Φ(Y ) of order pkd. Thus, every pole

of Φ(Y ) is of order divisible by p. Hence, every zero of g(Y ) is of order ≥ p. This

contradicts (3c).

Lemma 3.5: Let V ⊆ An be an absolutely irreducible affine variety, defined over a field

K by polynomials f1, . . . , fm ∈ K[X] = K[X1, . . . , Xn]. Set K[x] = K[X]/(f1, . . . , fm).
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Let r ≥ 0 and for each 1 ≤ i ≤ r let hi ∈ K[X,Yi] = K[X1, . . . , Xn, Yi1, . . . , Yini ] be a

polynomial such that hi(x,Yi) ∈ K[x,Yi] is absolutely irreducible. Suppose the tuples

X,Y1, . . . ,Yr are disjoint. Then the affine variety W defined in Am+n1+···+nr by the

equations

fi(X) = 0, i = 1, . . . ,m; hj(X,Yj) = 0, j = 1, . . . , r,

is an absolutely irreducible variety defined over K of dimension

dim(V ) + (n1 − 1) + · · ·+ (nr − 1).

Proof: For each 1 ≤ i ≤ r put

Ri = K̃[X,Y1, . . . ,Yi]/(f1(X), . . . , fm(X), h1(X,Y1), . . . , hi(X,Yi));

if Ri is a domain, let Qi be its quotient field. Put di = dim(V )+(n1−1)+ · · ·+(ni−1).

We have to show that K̃[W ] = Rr is an integral domain and trans.degK̃Qr = dr.

Observe that R0 = K̃[V ] and trans.degK̃Q0 = d0. Suppose, by induction on

i, that Ri−1 is a domain and trans.degK̃Qi−1 = di−1. Since hi(x,Yi) is irreducible

over Qi−1, the ring Qi−1[Yi]/(hi(x,Yi)) is a domain. Hence so is its subring Ri =

Ri−1[Yi]/(hi(x,Yi)) and Qi is the quotient field of Qi−1[Yi]/(hi(x,Yi). We conclude

that trans.degK̃Qi = di−1 + (ni − 1) = di.

Definition 3.6: Let K be a field. The patch topology of Val(K) has a basis consisting

of all sets

(6) {v ∈ Val(K) | v(b1) > 0, . . . , v(bk0) > 0, v(bk0+1) ≥ 0, . . . , v(bk) ≥ 0},

with v1, . . . , bk ∈ K. Each of these sets is also closed [HJP07, Section 8]. In particular,

each of the sets

{v ∈ Val(K) | v(c1) = 0, . . . , v(cm) = 0}

with c1, . . . , cm ∈ K× is open-closed in Val(K). By [HJP07, Prop. 8.2], Val(K) is

profinite under the patch topology. Let B be a closed subset of Val(K), and m a

positive integer. We say B has m-bounded residue fields if for every v ∈ B the

valued field (K, v) has an m-bounded residue field.
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Lemma 3.7: Let K be a field and B a closed subset of Val(K) with m-bounded residue

fields. Let B0 be an open-closed subset of B. Then there exists b ∈ K such that

(7) B0 = {v ∈ B | v(b) > 0} and B r B0 = {v ∈ B | v(1− b) > 0}.

Proof: First we assume that B0 is the intersection of B with a basic set of the form

(6). By Lemma 3.1(e), for each k0 + 1 ≤ j ≤ k the condition v(bj) ≥ 0 is equivalent to

v(1− ℘(b−1
j )) > 0. Thus, we may assume that

B0 = {v ∈ B | v(b1) > 0, . . . , v(bk) > 0}.

If k = 0, then B0 = B and we may take b = 0. Thus, we assume that k ≥ 1.

By Lemma 3.1(d), we may replace bj by ℘(bj). Hence, by Lemma 3.1(c), we may

assume that, for each v ∈ B, either v(bj) > 0 or v(1 − bj) > 0. For k = 1, this gives

B0 = {v ∈ B | v(b1) > 0} and B r B0 = {v ∈ B | v(1− b1) > 0}.

Suppose k = 2. Then B0 = {v ∈ B | v(b1) > 0, v(b2) > 0} and each v ∈ B r B0

satisfies either b1 ≡ 1 mod mv and b2 ≡ 0 mod mv, or b1 ≡ 1 mod mv and b2 ≡

1 mod mv, or b1 ≡ 0 mod mv and b2 ≡ 1 mod mv. Set b = b21 − b1b2 + b22. Then

v(b) > 0 for each v ∈ B0 and v(1 − b) > 0 for each v ∈ B r B0. The quickest way to

check the latter relation is to prove that b ≡ 1 mod mv by computing b modulo mv in

each of the above mentioned three alternatives.

If k ≥ 3, we inductively find b′1 ∈ K such that {v ∈ B | v(b1) > 0, . . . , v(bk−1) >

0} = {v ∈ B | v(b′1) > 0}. Then B0 = {v ∈ B | v(b′1) > 0, v(bk) > 0} and we apply the

case k = 2.

In the general case B0 is compact, and hence it is a finite union of basic subsets

of B. The preceding paragraphs prove that the collection of subsets B0 as in (7) with

b ∈ K contains the basic subsets and is closed under finite intersections. Clearly it is

also closed under taking complements in B: if B0 is defined by b then B r B0 is defined

by 1− b. Therefore this collection is closed also under finite unions.

Lemma 3.8: Let K be an infinite field and B a closed subset of Val(K) with m-bounded

residue fields. Then there is a b ∈ K× such that v(b) > 0 for all v ∈ B.
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Proof: First we note that the residue field of the trivial valuation v0 of K is K itself,

hence v0 is not m-bounded, so v0 /∈ B. Therefore, for each v ∈ B there is a bv ∈ K×

such that v(bv) > 0. If v′ ∈ B is sufficiently close to v, then also v′(bv) > 0. Since B is

compact, there are b1, . . . , br ∈ K× such that for each v ∈ B there is an i = i(v) with

v(bi) > 0. By Corollary 3.2, b =
∏
i ℘(bi) satisfies v(b) ≥ v(bi(v))) > 0 for each v ∈ B.
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4. Block Approximation Theorem

The block approximation theorem is a far reaching generalization of the weak approx-

imation theorem. The latter deals with independent valuations v1, . . . , vn of a field K

and elements a1, . . . , an ∈ K and c1, . . . , cn ∈ K×. It assures the existence of a ∈ K

with vi(a−ai) > v(ci), i = 1, . . . , n. The block approximation theorem considers a fam-

ily (Kx, vx) of valued fields with Kx separable algebraic over K indexed by a profinite

space X and an affine variety V . The space X is partitioned into finitely many “blocks”

Xi. For each i a point ai ∈
⋂
x∈Xi Vsimp(Kx) and an element ci ∈ K× are given. Under

certain conditions on this data, the block approximation theorem gives an a ∈ V (K)

such that vx(a− ai) > vx(ci) for all i and each x ∈ Xi.

The version of the block approximation theorem we prove assumes that the residue

fields of (Kx, vx) are finite with bounded cardinality. The formulation of all other

conditions uses terminology of [HJP07] which we now recall.

Let G be a profinite group. Denote the set of all closed subgroups of G by

Subgr(G). This set is equipped with two topologies, the strict topology and the

étale topology. A basic strict open neighborhood of an element H0 of Subgr(G)

is the set {H ∈ Subgr(G) | HN = H0N}, where N is an open normal subgroup of G.

A basic étale open neighborhood of Subgr(G) is the set Subgr(G0), where G0 is an

open subgroup of G. See also [HJP07, §1] and [HJP05, Section 2] for more details.

Now let K be a field. Galois correspondence carries over the strict and the

étale topologies of Gal(K) to strict and étale topologies of SepAlgExt(K). Thus,

a basic strict open neighborhood of an element F0 of SepAlgExt(K) is the set

{F ∈ SepAlgExt(K) | F ∩ L = F0 ∩ L}, where L is a finite Galois extension of K. A

basic étale open neighborhood of SepAlgExt(K) is the set SepAlgExt(L), where L

is a finite separable extension of K.

A group-structure is a system G = (G,X,Gx)x∈X consisting of a profinite group

acting continuously (from the right) on a profinite space X and a closed subgroup Gx

of G for each x ∈ X satisfying these conditions:

(1a) The map δ: X → Subgr(G) defined by δ(x) = Gx is étale continuous.

(1b) Gxσ = Gσx for all x ∈ X and σ ∈ G

21



(1c) {σ ∈ G | xσ = x} ≤ Gx [HJP07, §2].

A special partition of a group-structure G as above is a data (Gi, Xi)i∈I0 sat-

isfying the following conditions [HJP07, Def. 3.5]:

(2a) I0 is a finite set disjoint from X.

(2b) Xi is a nonempty open-closed subset of X, i ∈ I0.

(2c) For all i ∈ I0 and all x ∈ Xi, Gi is an open subgroup of G that contains Gx.

(2d) Gi = {σ ∈ G | Xσ
i = Xi}, i ∈ I0.

(2e) For each i ∈ I0 let Ri be a subset of G satisfying G =
⋃
· ρ∈Ri Giρ. Then X =⋃

· i∈I0
⋃
· ρ∈Ri X

ρ
i .

A proper field-valuation-structure is a system K = (K,X,Kx, vx)x∈X , where

K is a field, X is a profinite space, and for each x ∈ X, Kx is a separable algebraic

extension of K and vx is a valuation of Kx satisfying these conditions:

(3a) Let X = {Kx ∈ SepAlgExt(K) | x ∈ X} and δ: X → X the maps defined by

δ(x) = Kx. Then δ is an étale homeomorphism. In particular, X is profinite under

the étale topology.

(3b) Kσ
x = Kxσ and vσx = vxσ for all x ∈ X and σ ∈ Gal(K).

(3c) xσ = x implies σ ∈ Gal(Kx) for all x ∈ X and σ ∈ Gal(K).

(3d) For each finite separable extension L of K let XL = {x ∈ X | L ⊆ Kx}. Then the

map νL: XL → Val(L) defined by νL(x) = vx|L is continuous.

In particular, Gal(K) = (Gal(K), X,Gal(Kx))x∈X is a group structure.

A block approximation problem for a proper field-valuation-structure K is a

data (V,Xi, Li,ai, ci)i∈I0 satisfying the following conditions:

(4a) (Gal(Li), Xi)i∈I0 is a special partition of Gal(K).

(4b) V is an affine absolutely irreducible variety over K.

(4c) ai ∈ Vsimp(Li).

(4d) ci ∈ K×.

A solution of the problem is a point a ∈ V (K) satisfying vx(a− ai) > vx(ci) for

all i ∈ I0 and x ∈ Xi. We say K satisfies the block approximation condition if each

block approximation problem has a solution.
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Theorem 4.1 (Residue Bounded Block Approximation Theorem):

Let K = (K,X,Kx, vx)x∈X be a proper field-valuation-structure. Put X = {Kx | x ∈

X} and B = {vx|K | x ∈ X}. Suppose K is PXC, B is m-bounded for some positive

integer m, and for all x ∈ X the valued field (Kx, vx) is the Henselian closure of

(K, vx|K). Then K has the block approximation property.

Proof: We let (4) be a block approximation problem for K and divide the rest of the

proof into several parts.

Part A: Proof in case V = A1. We write a, ai rather than a,ai, respectively.

Part A1: Reduction to the case where ai ∈ K, for all i ∈ I0. Fix i ∈ I0. Let x ∈ Xi.

By Proposition 2.5, K is vx-dense in Kx. Hence, there is aix ∈ K with vx(aix − ai) >

vx(ci). We consider the open-closed subset Tix = {w ∈ Val(Li) | w(aix − ai) > w(ci)}

of Val(Li). By (2c), Li ⊆ Kx for each x ∈ Xi. By (3d), the map Xi → Val(Li) defined

by y 7→ vy|Li is continuous. Hence, Xix = {y ∈ Xi | vy(aix− ai) > vy(ci)}, which is the

inverse image of Tix in Xi, is an open-closed neighborhood of x in Xi. Moreover, Xix

is Gal(Li)-invariant.

Since Xi is compact, finitely many of these neighborhoods cover Xi. Hence, there

is a partition Xi = Xi1
·∪ · · · ·∪Xit of Xi with Xij closed and Gal(Li)-invariant and for

each 1 ≤ j ≤ t there is some aij ∈ K with vx(aij − ai) > vx(ci) for all x ∈ Xij .

If we find a ∈ K with vx(a − aij) > vx(ci) for all x ∈ Xij , with i ∈ I0, then

vx(a− ai) > vx(ci) for all x ∈ Xij with i ∈ I0. Thus, replacing the family {Xi | i ∈ I0}

by its refinement {Xij | i, j}, and the elements ai by aij , if necessary, we may assume

ai ∈ K.

Part A2: Reduction to the case where Li = K. Let Bi = {vx|K | x ∈ Xi}. Since the

map X → Val(K) is continuous (by (3d)) and both X and Val(K) are profinite spaces

(Definition 3.6), B and each of the sets Bi is closed in Val(K). If x ∈ Xi and ρ ∈ Gal(K),

then vxρ |K = vρx|K = vx, hence B =
⋃
i∈I0 Bi (by (2e)). Moreover, B =

⋃
· i∈I0 Bi.

Indeed, assume there are distinct i, j ∈ I0 and x ∈ Xi, x′ ∈ Xj with vx|K = vx′ |K .

Then there exists σ ∈ Gal(K) with (Kσ
x , v

σ
x ) = (Kx′ , vx′) (because both (Kx, vx) and

(Kx′ , vx′) are Henselian closures of (K, vx|K)). By (3b), Kxσ = Kx′ . Hence, by (3a),
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xσ = x′. Let ρ ∈ Ri and τ ∈ Gal(Li) with σ = τρ. Then x′ = xτρ ∈ Xτρ
i = Xρ

i . This is

a contradiction to X =
⋃
· i∈I0

⋃
· ρ∈Ri X

ρ
i (Assumption (2e)). It follows that each of the

sets Bi is open-closed in B.

Thus, we have to find an a ∈ K with v(a− ai) > v(ci) for all i ∈ I0 and v ∈ Bi.

Part A3: Simplifying Bi. If there is an i with Bi = B (and hence Bj = ∅ for j 6= i),

take a = ai. Thus, we may assume Bi 6= B for each i.

Since B is closed in Val(K) and each Bi is open-closed in B (Part A2), Lemma

3.7 gives for each i an element di ∈ K with Bi = {v ∈ B | v(di) > 0} and B r Bi =

{v ∈ B | v(1− di) > 0}. Since Bi 6= B, we have di 6= 0.

Part A4: System of equations. Let ℘ = ℘m be the m-bounded operator defined by

(1) of Section 3. We write I0 as {1, 2, . . . , r} and consider the system

(5) ℘(
Z − ai
ci

) = di
(
Φ(Yi1) + Φ(Yi2) + Φ(Yi3)

)
, i = 1, . . . , r

of r equations in 3r+ 1 variables Z, Yij , where Φ is the special rational function defined

in Notation 3.3. By Lemma 3.4(d), each of these equations is absolutely irreducible

over the field of rational functions K(Z). Therefore, by Lemma 3.5, with V = A1, (5)

defines an absolutely irreducible variety A ⊆ A3r+1 over K of dimension 2r + 1.

Part A5: Local solution. Let v ∈ B. There is a unique k ∈ I0 with v ∈ Bk. We

choose an a ∈ Kv with v(a − ak) > v(dk) + v(ck). Then v(a−akck
) > v(dk). Hence, by

Lemma 3.1(b), v(℘(a−akck
)) > v(dk), so v(d−1

k ℘(a−akck
)) > 0. By Lemma 3.4(c), there

is a bk1 ∈ Kv such that Φ(bk1) = d−1
k ℘(a−akck

) and Φ′(bk1) 6= 0. By Lemma 3.4(b),

Φ(0) = 0. Therefore, (a, bk1, 0, 0) solves the kth equation of (5).

Let j ∈ I0 such that j 6= k. By Lemma 3.1(c), either v(℘(a−ajcj
)) > 0 or

v(℘(a−ajcj
) − 1) > 0. Since v /∈ Bj , we have v(dj − 1) > 0 (Part A3), so v(dj) = 0.

Therefore, either v
(
d−1
j ℘(a−aici

)
)
> 0 or v

(
d−1
j ℘(a−aici

)− 1
)
> 0. In both cases, Lemma

3.4(c) gives a bj1 ∈ Kv with Φ(bj1) = d−1
j ℘

(
a−aj
cj

)
and Φ′(bj1) 6= 0. It follows that

(a, bj1, 0, 0) is a solution of the jth equation of (5).

The solution Z = a, Yi1 = bi1, Yi2 = Yi3 = 0, i = 1, . . . , r, of (5) is a Kv-rational

point on A. It is simple, because the corresponding r × (3r + 1) Jacobi matrix of
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derivatives of the equations in (5) contains a submatrix of rank r. Indeed, the matrix

of derivatives with respect to Y11, . . . , Yr1, is the non-singular diagonal matrix

diag
(
d1Φ′(b11), . . . , drΦ′(br1)

)
.

Thus, (5) has a simple solution in Kv for each v ∈ B.

Part A6: Global solution. Since K is PXC, (5) has a K-rational solution (a,b).

Thus, ℘
(
a−ai
c

)
= di

(
Φ(bi1) + Φ(bi2) + Φ(bi3)

)
, i = 1, . . . , r.

Let 1 ≤ i ∈ I0 and v ∈ Bi. Then v(di) > 0 (Part A3). Hence, by Lemma 3.4(a),

v(℘(a−aici
)) ≥ v(di) > 0. By Lemma 3.1(d), v(a−aici

) > 0. Consequently, v(a − ai) >

v(ci).

Part B: Proof of the general case. If K is finite, then Val(K) consists of the trivial

valuation only. The Henselization of K at that valuation is K itself. Hence, this is a

trivial case, so we assume K is infinite.

Part B1: System of equations. Lemma 3.8 gives b ∈ K× with v(b) > 0 for all v ∈ B.

Put c = b
∏
i∈I0 ℘(ci). By Lemma 3.1, v(c) = v(b) +

∑
j∈I0 v(℘(cj)) > v(℘(cj)) > v(ci)

for each i ∈ I0. By Part A, there is an a′ = (a′1, . . . , a
′
n) ∈ An(K) with vx(a′ν − aiν) >

vx(ci) for each i ∈ I0, each 1 ≤ ν ≤ n, and every x ∈ Xi. Thus, it suffices to find

a ∈ V (K) with vx(aν − a′ν) ≥ vx(ci) for each 1 ≤ ν ≤ n and for all x ∈ X.

Suppose V is defined by polynomials f1(Z), . . . , fm(Z) ∈ K[Z1, . . . , Zn]. Consider

the Zariski-closed set W ⊆ A4n defined over K by the equations

(6)
fµ(Z) = 0, µ = 1, . . . ,m,
Zν − a′ν

c
= Φ(Yν1) + Φ(Yν2) + Φ(Yν3), ν = 1, . . . , n.

Since V is absolutely irreducible, K[z] = K[Z]/(f1, . . . , fm) is an integral domain. By

Lemma 3.4(d), with zν−a′
iν

c replacing a, each of the equations zν−a′
ν

c = Φ(Yν1)+Φ(Yν2)+

Φ(Yν3) is absolutely irreducible. Hence, by Lemma 3.5, W is an absolutely irreducible

variety over K of dimension dim(V ) + 2n.

Part B2: Rational points on W . Let x ∈ Xi for some i ∈ I0 and 1 ≤ ν ≤ n.

By Part B1, vx(aiν−a
′
ν

c ) > 0. Hence, by Lemma 3.4(c), there is bν1 ∈ Kv such that
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Φ(bν1) = aiν−a′
ν

c and Φ′(bν1) 6= 0. Set bν2 = bν3 = 0. By assumption, ai ∈ V (Kx).

Hence, (ai,b) ∈ W (Kx). Moreover, (ai,b) is a simple point on W : the Jacobi matrix

of (6) at this point with respect to the variables

Z1, . . . , Zn, Y11, . . . , Yn1, Y21, . . . , Yn2, Y31, . . . , Yn3

is the block matrix J =
(
J1 0 0 0
∗ J2 ∗ ∗

)
of order (m + n) × (n + n + n + n) where

J1 =
(
∂fµ
∂Zj

(ai)
)

, and J2 = −diag(Φ′(b11), . . . ,Φ′(bn1)). Since V is smooth, rank(J1) =

n − div(V ). Since Φ′(bν1) 6= 0, rank(J2) = n. Hence, rank(J) = n − dim(V ) + n =

4n− (dim(V ) + 2n) = 4n− dim(W ), so (ai,b) ∈Wsimp(Kx).

By assumption, K is PXC. Hence, (6) has a solution (a,b) in W (K). The first

m equations of (6) ensure that a ∈ V ; the other n equations imply, by Lemma 3.4(a),

that vx(aν−a
′
ν

c ) ≥ 0, for all x ∈ X.
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5. Local Preparations

The block approximation theorem is proved in Section 4 in the setup of proper field-

valuation structures of valued Henselian fields with bounded residue fields. We proceed

to prove the block approximation theorem for P-adically closed fields. In this case, all

technical results which are needed in the setup of field-valuation structures are shown to

follow from basic natural assumptions. One of the most difficult ones is the continuity

of the maps νL: XL → Val(L) (Condition (3d) of Section 4). In this section we make

local preparation for the proof of this fact. The conclusion of the proof follows in the

next section.

Lemma 5.1: Let (K, v) be a valued field, Kv a Henselian closure, and L a finite sepa-

rable extension of K in Kv. Then v has an open neighborhood U in Val(K) satisfying

this: For each w ∈ U there is a K-embedding of L in a Henselian closure of (K,w).

Proof: By [HJP07, Lemma 8.3], there exists a primitive element x for L/K such that

f(X) = irr(x,K) = Xn +Xn−1 + an−2X
n−2 + · · ·+ a0 with v(ai) > 0, i = 0, . . . , n− 2.

Then U = {w ∈ Val(K) | w(ai) > 0, i = 0, . . . , n − 2} is an open neighborhood of v

in Val(K). Now we apply [HJP07, Lemma 8.3] in the other direction to conclude: For

each w ∈ U there is a K-embedding of L in a Henselian closure of (K,w).

Corollary 5.2: Let K be a field and B a closed subset of Val(K). Denote the set of

all Henselian closures Kv of K inside Ks at valuations v ∈ B by X . Suppose the residue

field of each v ∈ B is finite and X is étale profinite. Then the map χ: X → B given by

Kv 7→ v is étale continuous and open.

Proof: By Lemma 2.4, each field in X is the Henselian closure of K at a unique valua-

tion belonging to B, so χ is well defined. The set X is closed under Galois conjugation.

Since X is étale profinite, so is the quotient space, X/Gal(K). Moreover, the quotient

map π: X → X/Gal(K) is continuous and open [HaJ85, Claim 1.6].

By Lemma 5.1, the map β: B→ X/Gal(K) which maps each v ∈ B onto the class

of Kv is étale continuous. In addition, β bijective. Since B is compact (Definition 3.6)

and X/Gal(K) is Hausdorff (because X is étale profinite), β is a homeomorphism.
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Finally we observe that χ = β−1 ◦ π to conclude that χ is continuous and open.

Lemma 5.3: Let K be a field, S a finite set of prime numbers, and m a positive integer.

Denote the set of all v ∈ Val(K) with char(K̄v) ∈ S and |K̄v| ≤ m by B. Then B is

closed in Val(K).

Proof: For each p ∈ S let Bp = {v ∈ B | char(K̄v) = p}. Then B =
⋃
· p∈S Bp. It

suffices to prove each Bp is closed. So, assume S consists of a single prime number p.

We consider w in the closure of B in Val(K), let p′ = char(K̄w), and assume p′ 6= p.

Then w(p′) > 0, that is the set {v ∈ Val(K) | v(p′) > 0} is an open neighborhood of w

in Val(K) (Definition 3.6). Hence, there is a v ∈ B with v(p′) > 0. This contradiction

to char(K̄v) = p proves that p′ = p.

Now assume |K̄w| > m. Then, there are a1, . . . , am+1 ∈ Ow whose reductions

in K̄w are distinct. In other words, w(ai) ≥ 0 and w(ai − aj) = 0 for all distinct

1 ≤ i, j ≤ m + 1. Hence, there exists v ∈ B with v(ai − aj) = 0 for i 6= j. This

contradiction to |K̄v| ≤ m proves |K̄w| ≤ m.

Let (F, v) be a valued field. We call (F, v) P-adic if there is a prime number p

satisfying these conditions:

(1a) The residue field F̄v is finite, say with q = pf elements.

(1b) There is a π ∈ F with a smallest positive value v(π) in v(F×). Thus, mv = πOv.

We call π a prime element of (F, v).

(1c) There is a positive integer e with v(p) = ev(π).

We call (e, q, f) the type of (F, v) and say (F, v) is P-adically closed if (F, v) is

P -adic but admits no finite proper P-adic extension of the same type [HJP05, §8]∗. In

particular, (F, v) is Henselian [HJP05, Prop. 8.2(g)].

Lemma 5.4: Let (F, v) be a P-adically closed field and w valuation of F which is strictly

coarser than v. Let w̃ be an extension of w to a valuation of F̃ . Then w̃ is unramified

* Section 8 of [HJP05] includes all of the basic facts on P -adic fields we need in the present
work. Most of them have been collected from the monograph [PrR84] of Alexander Prestel
and Peter Roquette
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over F and its decomposition group over F is Gal(F ). In particular, the homomorphism

Gal(F )→ Gal(F̄w) is bijective.

Proof: Let π be a prime element of (F, v) and let (e, q, f) be its type. Let v̄ be the

valuation of F̄w induced by v. We denote reduction of elements of Ow modulo mw by a

bar. We note that π ∈ O×w , otherwise mv = πOv ⊆ mw, hence mv = mw, so Ov = Ow,

contradicting our assumption. By [Jar91b, §3], Γv̄ is a convex subgroup of Γv = v(K×)

that contains v(π) = v̄(π̄). For each positive integer n and each γ ∈ Γv there are k ∈ Z

and δ ∈ Γv with γ = kv(π) + nδ [HJP05, Prop. 8.2(g)]. Therefore, Γw = Γv/Γv̄ is

divisible.

F

Ow // F̄w

Ov // Ov̄ // F̄v = F̄v̄

mv = πOv // mv̄

mw

F× // Γv // Γw

Uw // Γv̄ // 1

Uv // 1

Since (F, v) is Henselian, so is (F,w) [Jar91b, Prop. 13.1]. By assumption, the

residue field F̄v of (F̄w, v̄) has characteristic p and p = uπe with v(u) = 0. Hence,

p = ūπ̄e 6= 0, so char(F̄w) = 0. Therefore, the formula [F ′ : F ] = e(F ′/F )f(F ′/F )

holds for each finite extension F ′ of F with respect to the unique extension of w to F ′

[Rbn64, p. 236]. Since Γw is divisible, e(F ′/F ) = 1. Hence, w is unramified in F ′ and

[F̄ ′w : F̄w] = [F ′ : F ]. It follows that the decomposition group of w̃ over F is Gal(F ).

Lemma 5.5: Let (F, v) be a P-adically closed field and v′ a valuation of F . Then either

Fv′ = F or Fv′ = F̃ . If F̄v′ is finite, then Fv′ = F and v′ = v.

Proof: Set L = Fv′ and let vL and v′L be extensions of v and v′ to L. Then both vL

and v′L are Henselian.

First suppose vL and v′L are incomparable. Then, L has a valuation wL which is

coarser than both vL and v′L such that L̄wL is separably closed [Jar91b, Prop. 13.4].

In particular, wL is strictly coarser that vL. Denote the restriction of wL to F by w.
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Then w is strictly coarser than v [Jar91b, Cor. 6.6]. By Lemma 5.4, the residue map

Ow → F̄w defines an isomorphism Gal(F ) ∼= Gal(F̄w), hence Gal(L) ∼= Gal(L̄wL) = 1.

Hence, L = F̃ .

Now suppose vL and v′L are comparable. Then v and v′ are comparable. If v were

strictly coarser than v′, then F̄v′ would be a residue field of a nontrivial valuation of

F̄v. Since F̄v is finite, this is a contradiction. Hence, v � v′, so Fv′ can be F -embedded

in Fv = F [Jar, Cor. 14.4]. Consequently, Fv′ = F .

Finally, if F̄v′ is finite, then Fv′ 6= F̃ . Hence, by the preceding two paragraphs, v

and v′ are comparable. Therefore, one of the fields F̄v and F̄v′ is a residue field of the

other. Since both fields are finite, this implies v′ = v.

We denote the set of all extensions of K in K̃ by AlgExt(K). Thus, if char(K) = 0,

then AlgExt(K) = SepAlgExt(K).

Proposition 5.6: Let X be a nonempty family of P-adically closed algebraic exten-

sions of a field K. Suppose X is étale compact and closed under elementary equivalence

of fields (i.e. F ∈ X , F ′ ∈ AlgExt(K), and F ′ ≡ F imply F ′ ∈ X ). Suppose also K is

PXC. Let w be a valuation of K with Kw 6= K̃. Then Kw ∈ X .

Proof: Lemma 2.2 gives an F ∈ X with F ⊆ Kw,alg. Then F ⊆ Kw. By Lemma 5.5,

Kw = F .

Notation 5.7: For each valued field (K, v) let ψv: K → K̄v∪{∞} be the place extending

the residue map Ov → K̄v. If w is a coarser valuation of K than v and v̄ is the unique

valuation of K̄w with ψ−1
w (Ov̄) = Ov [Jar91b, §3], we write ψv = ψv̄ ◦ψw, v̄ = w/v, and

note that ψv(x) = ψv̄(ψw(x)) for all x ∈ K if we set ψv̄(∞) =∞.

The next result generalizes [HaJ88, Lemma 6.7].

Lemma 5.8: Let F be a finite extension of Qp and v̄ the P-adic valuation of F. Let F

be a field elementarily equivalent to F and v the corresponding P-adic valuation [HJP05,

Prop. 8.2(h)]. Then there is a v̇ ∈ Val(F ) (possibly trivial) coarser than v with F̄v̇ ⊆ F

and ψv = ψv̄ ◦ψv̇ (Diagram (2)). Moreover, F̄v̇ is a P-adically closed field, elementarily
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equivalent to F, the restriction of v̄ to F̄v̇ is its P-adic valuation, and it is discrete.

Finally, if (F, v) is a P-adic closure of (K, v), then (F̄v̇, v̄) is a P-adic closure of (K̄v̇, v̄).

Proof: Let F0 = F ∩ Q̃ and F0 = F ∩ Q̃. By [HJP05, Prop. 8.2(f)], F0 ≡ F ≡ F ≡ F0.

Hence, F0
∼= F0 [FrJ05, Cor. 20.6.4(b)]. Without loss identify F0 with F0. Again, by

[HJP05, Prop. 8.2(b),(f)], F0 admits a unique P-adically closed valuation v0 which is

the restriction of both v̄ and v. Moreover, F̄v = F̄0,v0 = F̄v̄ and any prime element π of

(F0, v0) is also a prime element of both (F, v̄) and (F, v).

To construct v̇, we choose a system of representatives R for F̄v in Ov. Then

for each element a ∈ Ov there are unique a0 ∈ R and b1 ∈ Ov with a = a0 + b1π.

Similarly there are unique a1 ∈ R and b2 ∈ Ov with b1 = a1 + b2π. Thus, a =

a0 + a1π + b2π
2. If we continue by induction, we find unique a0, a1, a2, . . . ∈ R with

a ≡
∑n
i=0 aiπ

i mod πn+1Ov, n ∈ N. The infinite series
∑∞
i=0 aiπ

i converges to an

element ψ(a) ∈ F. Similarly, each a ∈ F has a unique representation as a =
∑∞
i=0 aiπ

i

with ai ∈ R for all i.

(2) F ∪ {∞}

ψv̄

��<
<<

<<
<<

<<
<<

<<
<<

<<
<

F
ψv̇ //

ψv

**UUUUUUUUUUUUUUUUUUUUU F̄v̇ ∪ {∞}

Ov̇ // F̄v̇ // F̄v ∪ {∞}

Ov
ψ // Ov̄ // F̄v

mv // mv̄

This gives a homomorphism ψ: Ov → F with Ker(ψ) =
⋂∞
i=1 π

iOv that maps

Ov ∩ F0 identically onto itself, in particular ψ(π) = π. The local ring of Ov at Ker(ψ)

is Ov[ 1
π ]. It is the valuation ring of some v̇ ∈ Val(F ) with residue field F̄v̇ ⊆ F and

ψv = ψv̄ ◦ ψv̇. Note that Ker(ψ) 6= πOv = mv, so v̇ is strictly coarser than v. But it

may happen that Ker(ψ) = 0. In this case Ov̇ = F and v̇ is trivial.
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The P-adic valuation v̄ of F is discrete. Hence, so is its restriction to F̄v̇ (which we

also denote by v̄). Then, the residue field of (F̄v̇, v̄) is F̄v and v̄(π) = v(π) is the smallest

positive value in v̄(F̄v̇). Since (F, v) is Henselian, so is (F̄v̇, v̄) [Jar91b, Prop. 13.1]. By

[HJP05, Prop. 8.2(g)], F̄v̇ is P-adically closed and v̄ is its P-adic valuation. Since

F0 ⊆ F̄v̇ ⊆ F, we have F0 = F̄v̇ ∩ Q̃. We conclude from [HJP05, Prop. 8.2(f)] that

F̄v̇ ≡ F0 ≡ F.

Finally, suppose (F, v) is a P-closure of a P-adic field (K, v). Then K contains a

prime element π′ for (F, v). Its image π̄′ in F̄v̇ is a prime element for (K̄v̇, v̄). Also,

the residue field of (K̄v̇, v̄) is K̄v, which is F̄v. Therefore, (F̄v̇, v̄) is a P-adic closure of

(K̄v̇, v̄).

Proposition 5.9: Let v be a P-adic valuation of a field K and F, F ′ P-adic closures

of (K, v). Then F ≡ F ′.

Proof: If v is discrete, then F ∼=K F ′ [HJP05, Prop. 8.2(d)], so F ≡ F ′.

Suppose v is not discrete. Let p be the residue characteristic of (K, v). By [HJP05,

Prop. 8.2(j)], F (resp. F ′) is elementarily equivalent to a finite extension F (resp. F′)

of Qp. Let vF (resp. vF ′) be the unique P-adic valuation of F (resp. F ′) extending v

[HJP05, Prop. 8.2(c),(d)]. Lemma 5.8 gives a valuation v̇F (resp. v̇F ′) of F (resp. F ′)

with residue field F̄v̇ = F̄v̇F ⊆ F (resp. F ′v̇′ = F ′v̇F ′ ⊆ F′). Let v̇ (resp. v̇′) be the

restriction of v̇F (resp. v̇F ′) to K. Then both v̇ and v̇′ are strictly coarser than v.

Hence, one of them is coarser than the other, say v ≺ v̇ � v̇′. By Lemma 5.8, the

residue valuation v̇F ′/vF ′ of F ′v̇′ is discrete. Since F ′v̇′/K̄v̇′ is an algebraic extension

and the valuation v̇F ′/vF ′ of F ′v̇′ extend the valuation v̇′/v of K̄v̇′ , the latter valuation

is also discrete. Therefore, v̇ = v̇′.

It follows that the residue valuations of F̄v̇ and F̄v̇′ coincide on K̄v̇. Denote their

common restriction to K̄v̇ by v̄. It is discrete and both F̄v̇ and F̄v̇′ are P-adic closures

of (K̄v̇, v̄) (Lemma 5.8). By [HJP05, Prop. 8.2(d)], F̄v̇ ∼=K̄v F̄v̇′ . Hence, by Lemma 5.8,

F ≡ F̄v̇ ≡ F̄v̇′ ≡ F ′.

Notice that Q is p-adically dense in Qp, so Qp,alg = Qvp,alg = Qp ∩ Q̃.
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Lemma 5.10: Let p be a prime number, σ ∈ Gal(Q), M an algebraic extension of Q,

and M ′ a finite extension of M not equal to Q̃. Suppose Qp,alg ⊆ M and Qσ
p,alg ⊆ M ′.

Then Qσ
p,alg = Qp,alg.

Proof: The field Q is p-adically dense in both Qp,alg and Qσ
p,alg. If Qσ

p,alg 6= Qp,alg,

then by Proposition 1.11, Qp,algQσ
p,alg = Q̃. This contradicts the fact that the left hand

side is contained in M ′ and M ′ 6= Q̃. Consequently, Qσ
p,alg = Qp,alg.
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6. Continuity

We apply the results of Section 5 to prove the continuity of the field theoretic analog λL

(see Lemma 6.3(c) below) of the maps νL defined in (3d) of Section 4, under appropriate

assumptions.

Data 6.1: S-fields. Let S be a finite set of prime numbers. For each p ∈ S let Fp be

a finite set of finite extensions of Qp. Put F =
⋃
p∈S Fp . Suppose F is closed under

Galois-isomorphism; that is, if F ∈ F , and F′ is a finite extension of Ql′ for some

prime number l′, and Gal(F′) ∼= Gal(F), then F′ ∈ F .

Let K be a field. For each finite extension F of Qp let AlgExt(K,F) be the set of

all algebraic extensions of K which are elementarily equivalent to F. Then let BK,F be

the set of all P-adic valuations v of K such that (K, v) has a P-adic closure (F,w) with

F ≡ F. If F′ is a finite extension of Qp′ and F′ 6≡ F, then BK,F
⋂

BK,F′ = ∅ (Proposition

5.9).

We set AlgExt(K,F) =
⋃

F∈F AlgExt(K,F) and BK,F =
⋃

F∈F BK,F.

For each subset Y of AlgExt(K) let Ymin be the set of all minimal elements of Y

with respect to inclusion. If Y is closed under conjugation with elements of Gal(K),

then so is Ymin. This is the case for AlgExt(K,F), hence also for AlgExt(K,F).

Let K be a family of algebraic extensions of K. We say K is pseudo-K-closed

(abbreviated PKC) if every variety defined over K with a simple F -rational point for

each F ∈ K has a K-rational point. In that case K is also PK′C for each family K′ of

algebraic extensions of K that contains K. We say K is PFC (pseudo-F-closed) if K

is pseudo-AlgExt(K,F)-closed.

Lemma 6.2: Let K, S, and F be as in Data 6.1.

(a) AlgExt(K,F) is strictly closed and étale compact.

(b) Suppose K is PFC. Then AlgExt(K,F)min is étale profinite.

(c) Suppose K is PFC. Then BK,F is closed in Val(K).

Proof of (a): By [HJP05, Lemma 10.1], each of the sets AlgExt(K,F) is strictly closed in

AlgExt(K). Hence, AlgExt(K,F) =
⋃

F∈F AlgExt(K,F) is strictly closed. By [HJP07,

Remark 1.2], AlgExt(K,F) is étale compact.
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Proof of (b): Let G =
⋃

F∈F{Gal(F ) | F ∈ AlgExt(K) and Gal(F ) ∼= Gal(F)}. By

assumption, F is closed under Galois equivalence. Hence, by [HJP05, Thm. 10.4],

(Gal(K),Gmax) is a proper group structure. In particular, Gmax is étale profinite [HJP05,

Definition preceding Prop. 6.3]. By [HJP05, Lemma 10.3],

G =
⋃

F∈F
{Gal(F ) | F ∈ AlgExt(K) and F ≡ F} = {Gal(F ) | F ∈ AlgExt(K,F}.

In the terminology of fields, this means that AlgExt(K,F)min is étale profinite.

Proof of (c): Set B = BK,F . Since F is finite, there is a positive integer m with

|K̄v| ≤ m for all v ∈ B. Let B′ = {v ∈ Val(K) | |K̄v| ≤ m}. Then B ⊆ B′. By Lemma

5.3, B′ is closed in Val(K).

Consider w in the closure of B. Then w ∈ B′, so |K̄w| ≤ m. In particular,

Kw 6= K̃. By (a), X = AlgExt(K,F) is étale compact. In addition, X is closed under

elementary equivalence and K is PXC. By Proposition 5.6, Kw ∈ X . In particular, Kw

is a P-adic closure of some v ∈ B. Let v′ be the corresponding extension of v to Kw.

Then the residue field of Kw at v′ is finite. Let wh be the Henselian valuation of Kw

lying over w. By Lemma 5.5, wh = v′. Consequently, w = v ∈ B.

Lemma 6.3: Let S, F , and K be as in Data 6.1. Suppose K is PFC. Let X =

AlgExt(K,F)min. Then:

(a) Each F ∈ AlgExt(K,F) admits a unique P-adic valuation wF ; moreover, (F,wF )

is P-adically closed.

(b) {(F,wF ) | F ∈ X} is the set of all Henselian closures of K at valuations v ∈ BK,F .

(c) Let L be a finite extension of K. Then the map

λL: AlgExt(L) ∩ X → Val(L)

given by F 7→ wF |L is étale continuous. Moreover, λK : X → BK,F is an open

surjection.

Proof of (a): Let F ∈ AlgExt(K,F). Then F ≡ F for some F ∈ F . By [HJP05,

Prop. 8.2(h)], F admits a P-adic valuation wF such that (F,wF ) is P-adically closed.
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Let w be another P-adic valuation on F . Let (F ′, w′) be a P-adic closure of (F,w) and

extend wF to a valuation w′F on F ′. Since P-adically closed fields are Henselian, and

algebraic extensions of Henselian fields are Henselian, F ′ is Henselian with respect to

both w′ and w′F . Moreover, the residue field (F ′)w′ is finite and (F ′)w′
F

is an algebraic

extension of a finite field. By Lemma 2.4, w′F = w′. Restriction to F gives wF = w.

Proof of (b): By Lemma 6.2(a), AlgExt(K,F) is étale compact.

Let F ∈ X . Put w = wF and v = w|K . Then v ∈ BK,F . By (a), (F,w) is

P-adically closed, hence Henselian. By assumption, K is PFC. Hence, by Proposition

2.3(a), (F,w) is a Henselian closure of (K, v).

Conversely, let (F,w) be a Henselian closure of (K, v), with v ∈ BK,F . Then w is

a P-adic valuation of F of the same type as v. Let (F ′, w′) be a P-adic closure of (F,w).

Then (F ′, w′) is also a P-adic closure of (K, v). By the definition of BK,F , (K, v) has

a P-adic closure (K ′, v′) with K ′ ≡ F for some F ∈ F . By Proposition 5.9, F ′ ≡ K ′,

hence F ′ ≡ F, so F ′ ∈ AlgExt(K,F). By [HJP05, Lemma 2.6], F ′ contains a minimal

element E of AlgExt(K,F); that is, E ∈ X . Then w0 = w′|E is a P-adic valuation of

E of the same type as w and v and w0|K = v. By the preceding paragraph, (E,w0) is

a Henselian closure of (K, v) and P-adically closed. The latter gives E = F ′, so F ⊆ E,

the former gives that F = E ∈ X . By (a), w = wF .

Proof of (c): First assume L = K. Then λK(X ) = BK,F . Indeed, let F ∈ X . By

definition, λK(F ) = wF |K ∈ BK,F . Conversely, let v ∈ BK,F . Let (F,w) be a Henselian

closure of (K, v). By (b), F ∈ X . By (a), w = wF . Hence, λK(F ) = v.

By Lemma 6.2, X is étale profinite and BK,F is closed in Val(K). The residue

field of K at each v ∈ BK,F is finite. Hence, by Corollary 5.2, λK : X → BK,F is étale

continuous and open.

Now let L be an arbitrary finite extension of K. We denote the set of all finite

extensions of Qp, with p ranging over all prime numbers, by P. Let FL be the set of all

F′ ∈ P that are elementarily equivalent to FL for some F ∈ AlgExt(K,F). We claim

that FL is finite.

Indeed, consider F ∈ AlgExt(K,F). Then F is a P-adically closed field, elemen-
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tarily equivalent to a finite extension F of Qp for some p ∈ S. By [FrJ05, Cor. 20.6.4(b)],

there is an isomorphism σ: F∩Q̃→ F ∩Q̃. In particular, (Qp∩Q̃)σ ⊆ F ∩Q̃. By [HJP05,

Prop. 8.2(i)], FL is elementarily equivalent to a finite extension F′ of Qp. Again, by

[FrJ05, Cor. 20.6.4(b)], there is an isomorphism τ : F′ ∩ Q̃ → FL ∩ Q̃. In particular,

(Qp ∩ Q̃)τ ⊆ FL ∩ Q̃. Since FL ∩ Q̃ is a finite extension of F ∩ Q̃, Lemma 5.10 implies

that (Qp ∩ Q̃)σ = (Qp ∩ Q̃)τ . Hence, by [HJP05, Prop. 8.2(l)],

[F′ : Qp] = [F′ ∩ Q̃ : Qp ∩ Q̃]

= [FL ∩ Q̃ : (Qp ∩ Q̃)σ](2)

= [FL ∩ Q̃ : F ∩ Q̃][F ∩ Q̃ : (Qp ∩ Q̃)σ]

= [FL ∩ Q̃ : F ∩ Q̃][F ∩ Q̃ : Qp ∩ Q̃]

= [FL : F ][F : Qp] ≤ [L : K][F : Qp].

Since F is a finite set, the right hand side of (2) is bounded as p ranges on S and F

ranges on F . Hence, by [HJP05, Prop. 8.2(k)], there are only finitely many possibilities

for F′.

If F ∈ AlgExt(K,F), then there exists F ∈ F with F ≡ F. Since FL is a fi-

nite extension of F , it is elementarily equivalent to a finite extension F′ of F. Thus,

F′ ∈ FL. Hence, FL ∈ AlgExt(L,FL). Therefore, AlgExt(K,F)L ⊆ AlgExt(L,FL).

Since K is pseudo-AlgExt(K,F)-closed, L is pseudo-AlgExt(K,F)L-closed [Jar91a,

Lemma 8.2], hence L is pseudo-AlgExt(L,FL)-closed. Thus, L is PFLC (Data 6.1).

Let β: AlgExt(L,FL)min → Val(L) be the map that maps the unique P-adic valuation

wF of each F ∈ AlgExt(L,FL)min onto wF |L. By the case L = K (applied to L,FL
replacing K,F), β is étale continuous. Each F ∈ AlgExt(L)∩AlgExt(K,F)min belongs

to AlgExt(L,FL)min. Moreover, the restriction of β to AlgExt(L) ∩ AlgExt(K,F)min

coincides with λL. Consequently, λL is étale continuous.
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7. The Block Approximation Theorem for P-adic Valuations

We attach a field-valuation structure KF to each PFC field K. Then we reduce the

P-adic Block Approximation Theorem to the Residue Bounded Block Approximation

Theorem 4.1.

Construction 7.1: P-adic Structure. Let F be a finite set of P-adic fields closed under

Galois isomorphism. Let K be a PFC field. We attach a proper field-valuation structure

KF to F and K.

Let X = AlgExt(K,F)min. By Lemma 6.2, X is étale profinite. Moreover, the

action of Gal(K) on X by conjugation is étale continuous. We choose a homeomorphic

copy X of X and a homeomorphism δ: X → X . For each x ∈ X let Kx = δ(x).

We define a continuous action of Gal(K) on X via δ; that is, Kxσ = Kσ
x for all σ ∈

Gal(K). We denote the unique P-adic valuation of Kx [HJP05, Prop. 8.2(c)] by vx.

Then vσx = vxσ for all x ∈ X and σ ∈ Gal(K). By Proposition 2.3(b), Aut(Kx/K) = 1,

so Gal(Kx) = {σ ∈ Gal(K) | xσ = x} for each x ∈ X.

Let L be a finite extension of K and set XL = {x ∈ X | L ⊆ Kx}. Then

δ(XL) = AlgExt(L) ∩ X . By Lemma 6.3(c), the map λL: AlgExt(L) ∩ X → Val(L)

is étale continuous. Hence, the map λL ◦ δ: XL → Val(L) mapping x ∈ XL to vx|L is

continuous.

It follows that KF = (K,X,Kx, vx)x∈X is a proper field-valuation structure (Sec-

tion 4).

Theorem 7.2 (P-adic Block Approximation Theorem): Let F be a finite set of P-adic

fields closed under Galois isomorphism. Let K be a PFC field. Then the field-valuation

structure KF has the block approximation property.

Proof: We use the notation of Construction 7.1. By assumption, K is PXC. Let m a

common multiple of the orders of the multiplicative groups of the residue fields of the

fields in F . Then (Kx, vx) is m-bounded in the sense of Section 3 for each x ∈ X.

Claim: For each x ∈ X the valued field (Kx, vx) is the Henselian closure of (K, vx|K).

Indeed, as a P-adically closed field, (Kv, vx) is Henselian [HJP05, Prop. 8.2(g)]. Hence,

(Kx, vx) is an extension of a Henselian closure (E,w) of (Kx, vx|K). In particular,
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E 6= K̃. Hence, by Proposition 5.6, E ∈ X . The minimality of Kx implies that

Kx = E. Thus, vx = w and (Kx, vx) is the Henselian closure of (K, vx|K), as claimed.

It follows from Theorem 4.1 that KF has the block approximation property.

Finally we show how the version of the P-adic Block Approximation Theorem

appearing in the introduction follows from Theorem 7.2.

Proof of the P-adic Block Approximation Theorem of the Introduction: Let KF and

δ: X → X be as in Construction 7.1. For each i ∈ I0 let Xi = δ−1(Xi). Then

(V,Xi, Li,ai, ci)i∈I0 is a block approximation problem for KF . By Theorem 7.2, this

problem has a solution a. It satisfies, vF (a − ai) > vF (ci) for each i ∈ I0 and every

F ∈ Xi.
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